Universität Duisburg-Essen
SS 2016
Ingenieurwissenschaften / Informatik
Sheet 3
Lecturer: Harsh Beohar
19. June 2017

Exercise: "Modelling of concurrent systems"

The tutorial will take place on Friday (30.06.17) from 17:15-18:45 in Room LF 265. Please submit your solutions either in person to me OR email me by Thursday (29.06.17), 1700 hours. Please note that late submissions (i.e., after 1700 hours) will not be accepted.

Task 1 Order induced by summands

Recall the process algebra BSP and consider the following relation \leq on the open terms of BSP:

$$
x \leq y \Longleftrightarrow \operatorname{BSP}(A) \vdash x+y=y
$$

(a) Prove that the relation \leq is a partial order. (Points: 4)
(b) Give an example of two closed $\operatorname{BSP}(A)$ terms p, q such that $p \leq q$ but not a.p $\leq a . q$ (with $a \in A$). (Points: 2)

Task 2 Basic sequential processes

Prove the following two statements.
(a) Let p, q, r be closed $\operatorname{BSP}(A)$-terms. If $(p+q)+r \leftrightarrows r$, then $p+r \leftrightarrows r$ and $q+r \leftrightarrows r$. (Points: 2)
(b) Show that there is no closed $\operatorname{BSP}(A)$-term p such that $p \leftrightarrows a . p$. (Points: 4)

Task 3 Recursion I: On syntax

Recall the quotient term algebra $\mathbb{P}(\operatorname{BSP}(A)) / \leftrightarrows$ from the lectures.
(a) Find two different solutions of the recursive equation $X=X+a .0$ in the term model $\mathbb{P}(\mathrm{BSP}(\mathrm{A})) / \leftrightarrows$. (Points: 2)
(b) Determine whether the following recursive specifications are guarded or unguarded: $\{X=Y, Y=a \cdot X\}$ and $\{X=a \cdot Y+Z, Y=b \cdot Z+X, Z=c \cdot X+Y\}$. (Points: 2)
(c) Assume that the set of actions A is empty, i.e., $A=\emptyset$. Then, give an unguarded recursive specification with only one solution in the term model $\mathbb{P}(\operatorname{BSP}(\mathrm{A})) / \leftrightarrows$. (Points: 2)

Task 4 Recursion II: On semantics

(a) Give the transition system induced by the following process terms: $\mu(a \cdot X) \cdot\{X=$ $a . b \cdot X+b . Y+0, Y=X+a .(Y+X)\}$ and $\mu(b \cdot X+1) \cdot\{X=a \cdot X+Y, Y=a . Y\}$. (Points: 2)
(b) Consider the recursive specification $E=\{X=a \cdot X+b \cdot Y, Y=a \cdot Y+b \cdot X\}$. Can we derive $(\mathrm{BSP}+E+\mathrm{RSP})(A) \vdash X=Y$? If not, construct a recursive specification E^{\prime} from which it follows that $\left(\mathrm{BSP}+E+E^{\prime}+\mathrm{RSP}\right)(A) \vdash X=Y$? In any case, please support your answer formally. (Points: 5)

