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Abstract. We introduce two techniques for proving termination of graph
transformation systems. We do not fix a single initial graph, but consider
arbitrary initial graphs (uniform termination), but also certain sets of
initial graphs (non-uniform termination). The first technique, which can
also be used to show non-uniform termination, uses a weighted type
graph to assign weights to graphs. The second technique reduces uniform
termination of graph transformation systems of a specific form to uniform
termination of cycle rewriting, a variant of string rewriting.

1 Introduction

Termination, the absence of infinite computations, is a property that is required in
many applications, in particular in model transformation, algorithms and protocol
specifications. Many of these applications, such as graphical model transformation
(for example, of uml models) and algorithms that manipulate data structures on
the heap, are naturally modeled by graph transformation systems. This paper
is concerned with the termination of such graph transformation systems. In
particular we study the following question: given a set of graph transformation
rules, and possibly an infinite set of potential initial graphs, does a transformation
sequence of infinite length from one of the initial graphs exist? This problem
is undecidable in general [9], but it is still important to develop semi-decision
procedures that correctly decide as many instances as possible (and output
“unknown” in the others).

Although termination is a basic notion of any computational formalism, it has
not received a lot of attention in the graph transformation community; the focus
is on reachability problems – the question whether a graph with some required or
unwanted property is reachable from an initial graph. However, some prior work
on the topic exists, mostly applied to model transformation [2, 6, 10]. Similar to
[3] we follow a more general approach. We consider graph transformation from a
theoretical point of view. This has the disadvantage of making results harder to
obtain, but the advantage of being more broadly applicable.

The paper is organized as follows. In Sect. 2 we recapitulate definitions and fix
notation. The heart of the paper is formed by Sect. 3, in which we introduce the



weighted type graph technique for proving termination of graph transformation
systems. We define the technique, consider special cases and investigate its limits;
finally we give a detailed example that demonstrates its strengths. In Sect. 4 we
show that termination of graph transformation systems of a specific kind can
be reduced to termination of cycle rewriting, which is a form of rewriting that
is related to string rewriting. This clarifies the relation to string rewriting and
provides us with an additional method for graphs. Finally, we briefly present an
implementation of the techniques of this paper in Sect. 5, compare with related
work in Sect. 6 and give pointers for further research in Sect. 7. Proofs are omitted
in the main text and can be found in the appendix.

2 Preliminaries

We first introduce graphs, morphisms, and graph transformation, in particular
the double pushout approach [5]. We use edge-labeled, directed graphs.

Definition 1 (Graph). Let Λ be a fixed set of edge labels. A Λ-labeled graph
is a tuple G = 〈V,E, src, tgt , lab〉, where V is a set of nodes, E is a set of edges,
src, tgt : E → V assign to each edge a source and a target, and lab : E → Λ is a
labeling function.

As a notational convention, we will denote, for a given graph G, its components
by VG, EG, srcG, tgtG and labG, unless otherwise indicated. The size of a graph G,
written |G|, is the number of nodes and edges it contains, that is |G| = |VG|+|EG|.

Definition 2 (Graph morphism). Let G,G′ be two Λ-labeled graphs. A graph
morphism ϕ : G→ G′ consists of two functions ϕV : VG → VG′ and ϕE : EG →
EG′ , such that for each edge e ∈ EG it holds that srcG′(ϕE(e)) = ϕV (srcG(e)),
tgtG′(ϕE(e)) = ϕV (tgtG(e)) and labG′(ϕE(e)) = labG(e).

We will often drop the subscripts V,E and simply write ϕ instead of ϕV , ϕE .

Definition 3 (Graph transformation). A graph transformation rule ρ con-
sists of two injective morphisms L�ϕL− I −ϕR�R, consisting of the left-hand
side L, the right-hand side R and the interface I.

A match of a left-hand side in a graph G is an injective morphism m : L→ G.
Given a rule ρ and a match m : L→ G, a graph H is the result of applying

the rule at the match, written G⇒m,ρ H (or G⇒ρ H if
m is arbitrary or clear from the context), if there exists
a graph C and injective morphisms such that the two
squares in the diagram on the right are pushouts in the
category of graphs and graph morphisms.3

L I R

G C H

ϕL ϕR

m (po) (po)

A graph transformation system R is a set of graph transformation rules. For
a graph transformation system R, ⇒R is the rewriting relation on graphs induced
by those rules.

3 See the appendix for a description of how pushouts are constructed in the case of
graphs and graph morphisms.

2



The above formal definition of a graph transformation step can be algorith-
mically described as follows. Let a rule ρ = L �ϕL− I −ϕR� R and a match
m : L→ G be given. The rule can be applied to the match if for every edge e of
G which is not in the image of m it holds, for v ∈ {src(e), tgt(e)}, that v has a
pre-image in I (under m ◦ ϕL) if v has a pre-image in L (under m). In this case
we say that the dangling edge condition is satisfied. If the rule is applicable, all
images of elements in L, whose preimages are not in the interface I, are removed
from G. This gives us the “context” graph C. Furthermore the elements of R
that do not have a preimage in I are added and connected with the remaining
elements, as specified by the interface. This results in the graph H. The dangling
edge condition ensures that nodes can only be deleted if all incident edges are
deleted.

Example 1. We take as label set Λ = {a, c}. Consider the following graph trans-
formation rule:

1 2

a a

1 2 1 2

a a
c

ϕL ϕR

The numbers represent which nodes are mapped to each other. The following is
a legal transformation step using the above rule:

a a

a
a

c

⇒
a a

c

a
a

c

There is no step replacing the aa-pattern at the bottom, because the middle
node, although deleted by the rule, is incident to a c-edge not in the pattern (the
dangling edge condition is not satisfied, that is, edges would be left dangling).

A graph is discrete when it does not contain any edges. A well-known result
from double-pushout graph transformation is that we can restrict to rules with
discrete interfaces without affecting the expressive power of the formalism: for
each rule with non-discrete interface a rule with discrete interface exists which
induces the same rewrite relation. As examples we will only use rules with
discrete interfaces, although the results of Sect. 3 are also applicable to graph
transformation systems that contain rules with non-discrete interfaces.

Let L be a set of graphs. We say that a set of rules R is L-terminating if each
reduction sequence G0 ⇒R G1 ⇒R G2 ⇒R · · · with G0 ∈ L is finite. The set of
rules R is uniformly terminating or simply terminating if it is G-terminating,
where G is the set of all graphs.

We will specify sets of graphs, in this setting called graph languages, by so-
called type graphs.4 A type graph is just a graph T . The graph language accepted
by T , written L(T ), is the set of all graphs from which there exists a morphism into

4 In the literature, for example [4], typing morphisms are often considered as an intrinsic
part of graph and rule definitions. We consider untyped graphs and rules, and use
type graphs merely as a means to describe graph languages.
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T , that is: L(T ) = {G | there exists a morphism ϕ : G→ T}. A type graph T is
closed under a set of rules R, if for each rule L�ϕL−I−ϕR�R ∈ R and morphism
tL : L→ T , there exists a morphism tR : R→ T such that (tL ◦ ϕL) = (tR ◦ ϕR).
A type graph T being closed under a set of rules R ensures that L(T ) is closed
under R-reachability, that is, it ensures that if G ⇒R H and G ∈ L(T ), then
also H ∈ L(T ).

3 Termination Analysis via Weighted Type Graphs

In this section, we present a termination argument based on weighted type
graphs. The technique is inspired by the semantic labeling technique for proving
termination of term rewrite systems [11], where the algebra is replaced by type
graphs.

3.1 Weighted Type Graphs

We assume a set W of weights with a binary operation ⊕ and a well-founded
partial order < such that the following holds: for a, b, c ∈ W we have that (i)
a < b ⇐⇒ a ⊕ c < b ⊕ c, and (ii) a = b ⇐⇒ a ⊕ c = b ⊕ c. Note that from
these two conditions it follows that (iii) a ≤ b ⇐⇒ a⊕ c ≤ b⊕ c.

G0

G1

G2

G T

ψ1

ψ2

ϕ1

ϕ2

t(po)

Furthermore, for a given graph T , called the type graph,
we have a weight function w that assigns a weight from W
to every morphism ϕ : G→ T . This weight function must
be stable under pushouts in the following sense: given a
pushout of injective morphisms as shown on the right and
an arrow t : G → T from the pushout object G into the
type graph, we have that w(t) ⊕ w(t ◦ ϕ1 ◦ ψ1) = w(t ◦ ϕ1) ⊕ w(t ◦ ϕ2). (Note
that ϕ1 ◦ ψ1 = ϕ2 ◦ ψ2.)

The intuiton behind stability under pushouts is the following. A pushout can
be seen as an operation which glues together two graphs over a common interface.
Above, the graphs G1 and G2 are glued together over the common interface G0.
The weight of morphisms from the G to T should be obtained by adding together
the weights of the corresponding morphisms from G1 and G2 to T . However, in
w(t ◦ ϕ1)⊕ w(t ◦ ϕ2) the common interface is counted twice, so we have to add
w(t ◦ ϕ1 ◦ ψ1) to the left-hand side to balance the equation.

Although the termination argument will be stated for weight functions of this
form in general, the specific type of weight function we will use in examples and
in Sect. 3.4 will be so-called linear weight functions, which are defined as follows.
Weights are natural numbers with summation and order <. Let d : (VT ∪ET )→ N
be a function which assigns a weight to each node and edge of the type graph T .
The linear weight function wd for d assigns to a morphism ϕ : G→ T the weight
wd(ϕ) =

∑
x∈(VG∪EG) d(ϕ(x)).

Proposition 1. Let T be a type graph and d : (VT∪ET )→ N a function assigning
a weight to all nodes and edges of T . The linear weight function wd as defined
above is a well-defined weight function, that is, it is stable under pushouts.
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Now termination analysis works as follows.

Definition 4. Let T be a type graph and w a weight function for T .

(i) A rule ρ = L�ϕL− I −ϕR�R is tropically decreasing with respect to T and
w if for each morphism tL : L→ T (where tL is not necessarily injective),
there exists a morphism tR : R → T such that (tL ◦ ϕL) = (tR ◦ ϕR) and
w(tL) > w(tR). A rule ρ is tropically non-increasing if the same condition
applies, except that w(tL) ≥ w(tR).

(ii) A rule ρ = L�ϕL− I −ϕR�R is arctically decreasing with respect to T and
w if for each morphism tR : R→ T (where tR is not necessarily injective),
there exists a morphism tL : L → T such that (tL ◦ ϕL) = (tR ◦ ϕR) and
w(tL) > w(tR). A rule ρ is arctically non-increasing if the same condition
applies, except that w(tL) ≥ w(tR).

Note that in the definition above the morphisms into type graphs are not
necessarily injective, although the morphisms used in rules and matches are.
This is intended, because only for subgraphs T ′ of the typegraph T (or graphs
isomorphic to such a subgraph) there exists an injective morphism from T ′ to T ,
and restricting to the subgraphs of T is clearly undesired.

The names tropical and arctic stem from string rewriting, where analogous
termination arguments use tropical and arctic semi-rings as evaluation algebras;
see for example [8].

Theorem 1. Let L be a set of graphs and let R be a graph transformation
system. Furthermore, let T be a type graph which is closed under R, such that
L ⊆ L(T ), and let w be a weight function of T .

Finally, let R′ ⊆ R be such that one of the following conditions holds:

– all rules of R′ are tropically decreasing with respect to T and w, and all rules
of R \R′ are tropically non-increasing with respect to T and w; or

– all rules of R′ are arctically decreasing with respect to T and w, and all rules
of R \R′ are arctically non-increasing with respect to T and w.

Then R is L-terminating if and only if R \R′ is L-terminating.

The above theorem allows to “remove” rules from a graph transformation
system, concluding termination of the complete system from termination of a
subset of the rules (this is called relative termination in the literature). In the
case that R = R′ termination follows directly. Otherwise, a new termination
argument for the simpler system is sought. Thus, we obtain iterative termination
proofs (see Sect. 3.5 for an example of such an iterative proof).

Example 2. See the graph transformation system from Ex. 1. This system is
terminating because of the dangling edge condition, because the number of nodes
without a c-loop strictly decreases in each transformation step. Now, we want
to use the type graph argument to prove this. Since there is only one rule, it is
sufficient to show that it is decreasing with respect to some type graph T and
some weight function.
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We take the type graph and weight function d displayed on
the right. The superscripts of the edge labels denote the d-value
of the edge, while d(v) = 0 for all nodes v. Because of the “flower
structure” on the left node, every graph consisting of a- and
c-labeled edges can be mapped into this type graph, so we can
show uniform termination.

1 2

a0

c0

a1

a1

a2

We arctically evaluate the rule with respect to the given type graph. There
are a number of morphisms from the right-hand side into the type graph. For
each of them a corresponding morphism of greater weight from the left-hand
side into the type graph, which agrees on the interface nodes, can be found. For
example, one possibility is to map nodes 1 and 2 of the right-hand side of the rule
to node 2 of the type graph and the middle node of the right-hand side to node 1
of the type graph; the edges are mapped accordingly (weight: 2). A compatible
morphism from the left-hand side to the type graph maps all nodes to node 2 of
the type graph (weight: 4). Thus, the system terminates by Theorem 1.

Example 3. Let Λ = {D,X}. Consider the graph transformation system which
consists of the rule depicted below on the left. This graph transformation system
is not uniformly terminating, as is witnessed by the step displayed on the right,
the target of which contains its source as a subgraph:

1

2 3

D
X

1

2 3

1

2 3

D
X

D

X

X ⇒ D

X

X

S = D

X

D

T = D1

X1

D0

X0

D1 D0

It is L(S)-terminating, however, where S is given
on the right. This follows by considering the weighted
type graph T , where the weights of the edges are
again given by the superscripts. For each morphism
from the left-hand side into T , a smaller morphism
from the right-hand side into T , which agrees on
the interface nodes, can be found, so the rule is
tropically decreasing. Since T contains S as a subgraph and is closed under the
transformation rule, the transformation system is L(S)-terminating by Theorem 1.

3.2 Special Case: Node and Edge Counting

A simple (but weak) termination argument for graph transformation (previously
considered in, among others, [1, 2]) is the counting of nodes and edges. We
consider a somewhat more general variant, weighted node and edge counting.

Let d : Λ → N be a function which maps each label to a weight. Then a
graph G can be assigned a weight by taking the sum of the weights of all labels
occurrences in it: w(G) =

∑
e∈EG

d(`G(e)). If for each production L← I → R it
holds that w(L) > w(R), then the graph transformation system terminates.

This termination argument is a special case of the weighted type graph
argument. As type graph we take the “flower” graph FΛ = 〈{v}, Λ, s, t, `〉 with
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for each A ∈ Λ: s(A) = v, t(A) = v and `(A) = A. Now we can use the linear
weight function wd, as defined before Prop. 1. This works with both the tropical
and the arctic variant of the weighted type graph termination argument.

With an even simpler argument in the same style we can view node counting
as a special case of the weighted type graph approach.

3.3 Special Case: Match-Bounds

In [3] a method for proving termination of graph transformation systems based
on the match-bounds approach for string rewrite systems [7] was introduced.
Here, we briefly recapitulate the termination argument of this paper and show
that it can be considered as a special case of the weighted type graph approach.

The idea of match-bounds is to annotate the edges with a “creation height”,
which is a measure of how many previous transformation steps were responsible
for creating the edge. In particular, when an occurrence of a left-hand side is
replaced by a right-hand side, the new edges are annotated with a creation
height which is equal to the smallest creation height of the left-hand side plus
one. Now, the termination argument is as follows: if there exists a type graph
(with annotated edges) which is closed under the annotated graph transformation
system, then the original graph transformation system is terminating. See [3] for
more details and formal definitions and proofs.

Example 4. Consider the graph transformation consisting of the following rule:

ρ =
1 2

a a

1 2 1 2

a b aϕL ϕR

This rule is replaced by the infinitely many annotated rules of the following form,
where m = min(p, q)+1. The superscripts denote the creation height annotations
of the edges.

ρp,q =
1 2

ap aq

1 2 1 2

am bm amϕL ϕR

The following is an annotated transformation sequence of this system:

a0 a0 a0 a0 ⇒ a1 b1 a1 a0 a0

⇒ a1 b1 a1 a1 b1 a1

⇒ a1 b1 a2 b2 a2 b1 a1

The following is a type graph which is closed under the annotated system:

a0

b0
a1

b1

a1
a1

a2

b2

a2
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So, by the match-bounds technique, we conclude that the system is terminating.

The match-bounds approach is a special case of the type graph approach, in
particular of the tropical variant. The annotated type graph plays the role of
the type graph by which graphs are assigned weights. Consider an annotated
type graph T with maximum annotation c (in Ex. 4 above, c = 2). Let T ′

be the graph which is equal to T , except that the annotations are removed
from the labels. As weights we take strings of natural numbers of length c+ 1,
lexicographically ordered. A morphism ϕ : G→ T ′ is now assigned a weight as
follows: w(ϕ) = n0 . . . nc, where ni is the number of edges in G which are mapped
to an edge of T which has annotation i. Analogously to Prop. 1 we can show
that this weight function is stable under pushouts and thus well-defined. By
construction, all rules are decreasing with respect to this type graph.

3.4 Derivational Complexity

In this subsection we consider the type graph method with linear weight functions.
First, we show that transformation sequences of graph transformation systems

which can be proved to be terminating with a single application of the type graph
technique are linearly bounded (with respect to the size of the initial graph).
Because we restrict to linear weight functions, this result is not very surprising.

Secondly, however, we show by example that graph transformation systems
that can be proven terminating by a repeated application of the type graph
technique may even have transformation sequences of exponential length.

Proposition 2. Let T be a type graph and d : (VT ∪ET )→ N a weight function.
Furthermore, let R be graph transformation system such that all rules r ∈ R are
decreasing with respect to T and w. Then there exists a c ∈ N such that for each
R-reduction sequence G = G0 ⇒R G1 ⇒R · · · it holds that |G| ≤ c · |G0|.

Although proving termination by a single type graph implies a linear reduction
bound, by repeating the type graph argument we can show termination of systems
with even exponential reduction bounds, as the following example shows:

Example 5. Consider the following graph transformation system, adapted from
cycle rewriting [12], which consists of the following graph transformation rules:

ρ1 =
1 2

0 L

1 2 1 2

L 1 1

ρ2 =
1 2

R 1

1 2 1 2

0 R

ρ3 =
1 2

B L

1 2 1 2

R

ρ4 =
1 2

R B

1 2 1 2

L B
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This graph transformation system has exponential derivational complexity: start-
ing from a string graph of the form BnR1B the string graph of the form L12

n

B
is reachable in exponentially many steps.

We can show that this graph transformation system
terminates. First, ρ3 can be removed by counting B’s, then
ρ4 by counting R’s – as shown in Sect. 3.2, label counting
is an instance of the type graph technique. For ρ1 and ρ2,
which indeed by itself have a linear derivational complexity,
we construct the type graph on the right (using tropical
evaluation).

01

12

L0

R0

L0

10
10

Note that, although the example derives from a similar example in cycle
rewriting, the termination proof is stronger, since it shows uniform termination
for all possible start graphs.

3.5 Detailed Example: Ad-hoc Routing Protocol

We conclude the paper by demonstrating the weighted type graph technique on
a simple ad-hoc routing protocol in a dynamically changing network. A message
(M) traverses a network of servers (S), routers (R) and directed connections (C)
between them. The message can only be sent to unvisited (U) nodes. In addition,
rules which modify the network’s layout are active. The graph transformation
system which models the protocol consists of the following rules:

send-message =
1 2

C
M U

1 2 1 2

C
M

add-router =
1 2

C
S S

1 2 1 2

C C
S

R U
S

connect-isolated =
1

S U

1 1

C
S U

Note that, due to the dangling edge condition, the connect-isolated rule cannot
be applied to patterns where the right node is connected to any other nodes; in
fact this condition ensures termination in this case.

T1 = M0

S0

R0

C0

U0

S1

U1

T2 =

M0S0

R0

C1 U0

C0

C0

R0

U0

The fact that this system is uniformly terminat-
ing can be shown using a sequence of weighted type
graph arguments. First, we arctically evaluate the
rules with respect to T1 (again, the superscripts de-
note the weights of the edges). For connect-isolated,
the right-hand side can only be mapped to the flower
structure on the left node (weight 0), while for the
left-hand side the nodes with the S- and the U -loop
can be matched to the right node (weight 2). For
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the other rules, both the left-hand side and the right-hand side can only be
mapped to the flower, so all morphisms have weight 0. Thus, connect-isolated
can be removed.

Now, we tropically evaluate send-message and add-router with respect to T2.
In both cases, the left-hand side can only be mapped to the flower structure on
the left node (weight: 1). But for add-router, a compatible morphism from the
right-hand side to T2 can be found which maps the middle node to the right node
of T2 (weight: 0). Thus, add-router can be removed.

Finally, the system consisting of only send-message is terminating because
the number of U -edges strictly decreases in each step.

4 Termination Analysis via Cycle Rewriting

In this section we consider graph transformation systems of a specific string-like
form, and show that termination of such systems reduces to termination of cycle
rewriting [12], which is a variant of string rewriting.

The result of this section has both theoretical and practical relevance. From
a theoretical point of view, it shows that graph transformation shares some
characteristics (with respect to termination) with a string-based rewriting for-
malism, which motivates considering cycle rewriting as a step between graph
transformation and term rewriting. In fact, [12] uses an approach similar to the
type graph method for proving termination of cycle rewrite systems. For cycle
rewrite systems finding termination arguments is easier because of the more
restricted format.

From a practical point of view it is useful for proving termination of actual
graph transformation systems. Although graph transformation systems which
consist only of string-like rules are rare “in the wild”, such rules do occur quite
often. We can try to use the weighted type graph method to first remove the
non-string-like rules from the system, and then, when only string-like rules are left,
apply the easier (faster) techniques for cycle rewriting to finish the termination
proof.

4.1 Cycle Rewriting with Graph Transformation Systems

Cycle rewriting, introduced in [12], is a variant of string rewriting where strings
are considered modulo cyclic shift. Let Σ be an alphabet (that is, a finite set
of symbols). Fur u, v ∈ Σ∗, we write u ∼ v if there are u1, u2 ∈ Σ∗ such that
u = u1u2 and v = u2u1. A cycle rewrite rule is a pair 〈`, r〉 of strings, written
`→ r, and a cycle rewrite system is a finite set R of cycle rewrite rules. A string
s rewrites to a string t (written s ⇒R t) if there are a rule ` → r ∈ R and
s′, t′, x, y ∈ Σ∗ such that s ∼ s′, t ∼ t′, s′ = x`y and t′ = xry.

First, we have to encode cycle rewrite systems as graph transformation systems.
The natural way to do this is to represent a string by a “string graph”, a graph
consisting of a single path, and a cycle by a “cycle graph”, a graph consisting of
a single cycle.
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Let w = a1 · · · an (where ai ∈ Σ for 1 ≤ i ≤ n) be a string. We de-
fine path(w) = 〈V,E, src, tgt , lab〉, where V = {v0, . . . , vn}, E = {e1, . . . , en},
src(ek) = vk−1, tgt(ek) = vk and lab(ek) = ak for 1 ≤ k ≤ n.

Furthermore, we define cycle(w) = 〈V,E, src, tgt , lab〉, where V = {v1, . . . , vn},
E = {e1, . . . , en}, src(e1) = vn, tgt(e1) = v1, lab(e1) = a1, and src(ek) = vk−1,
tgt(ek) = vk and lab(ek) = ak for 2 ≤ k ≤ n.

To encode a cycle rewrite rule, it is natural to encode the left-hand side
and the right-hand side with a string graph, and associate via the interface the
left-most node and right-most node of the left-hand side with left-most node and
right-most node of the right-hand side, respectively. Still, there are two natural
choices of what to do with the middle nodes of the left-hand side. Either they
are deleted (have no corresponding node in the right-hand side) or they are kept
(for each middle node we add an isolated node to the right-hand side). First, we
show that under the first encoding termination is preserved. Then, we extend
the result to the second encoding by showing that in this case the isolated nodes
can be removed from the right-hand side without affecting termination.

Let ρ = `→ r be a cycle rewrite rule. We define graph(ρ) = L�ϕL−I −ϕR�R,
where L = path(`) and R = path(r); I = 〈{u1, u2},∅,∅,∅,∅〉; ϕL(u1) = v0 and
ϕL(u2) = v|`|; and ϕR(u1) = v0 and ϕR(u2) = v|r|.

For a cycle rewrite system R, graph(R) consists of the graph transformation
rules corresponding to its rules: graph(R) = {graph(ρ) | ρ ∈ R}.

Example 6. Let the rule aa→ aba be given. The corresponding graph transfor-
mation rule is:

ρ = v0
1

v1 v2
2

a a u1

1

u2

2

v0
1

v1 v2 v3
2

a b aϕL ϕR

Above, the white labels inside the nodes are the names given to the nodes in the
definitions above, while the numbers below represent the morphisms ϕL and ϕR.

Termination of graph transformation systems of this specific form can now be
reduced to termination of cycle rewriting – which, because of the more restricted
form, is in some cases slightly easier. Techniques for proving termination of cycle
rewrite systems were developed in [12]. Note that here we consider uniform
termination: the rules in graph(R) are applied to arbitrary graphs, not only
to cycles. Hence, proving such a result is non-trivial since we have to derive
termination on all graphs from the fact that the rules terminate on all possible
cycles.

Theorem 2. Let R be a cycle rewrite system. R is terminating if and only if
graph(R) is terminating.

Since termination of cycle rewriting is undecidable (proved in [12]; basically
it is a consequence of the undecidability of termination of string rewriting), we
obtain an alternative proof of the following result (previously proved in [9]) as a
small bonus:

Corollary 1. Uniform termination of graph transformation systems is undecid-
able.
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4.2 Removing Isolated Nodes from the Right-Hand Side

Above, we mentioned two different encodings for string rewrite rules: either the
middle nodes are deleted or they are maintained by adding corresponding isolated
nodes to the left-hand side. (In fact, we can make this choice independently for
each middle node.) Which of the encodings we adopt is significant, as the following
example shows.

Example 7. Consider the rule ρ of Ex. 6 and the following rule ρ′:

ρ′ =
1 2 3

a a

1 2 3 1 3 2

a b aϕL ϕR

The rules ρ and ρ′, although similar, generate a different transformation relation,
even if we ignore isolated nodes. The following transformation step is possible
with ρ′:

1 2 3

a a
c

⇒ρ′

1 3 2

a b a
c

Because of the dangling edge condition, there are no ρ-steps at all from the source
of the above step.

It turns out that, for a class of graph transformation systems which includes
“string-like” systems, isolated nodes can be removed from the right-hand sides
without affecting termination of the system.

Let ρ = L �ϕL− I −ϕR� R be a graph transformation rule with a discrete
interface I. The graph transformation rule deiso(ρ) is obtained by removing from
R all isolated nodes, removing from I all nodes which are mapped by ϕR to
an isolated node, and restricting ϕL and ϕR to the new smaller I. For a graph
transformation system R, deiso(R) = {deiso(ρ) | ρ ∈ R}.

Proposition 3. Let R be a graph transformation system and C a cycle rewrite
system. If deiso(R) = graph(C), then R is terminating if and only if C is termi-
nating.

Example 8. Consider the graph transformation system R consisting of the rule ρ′

of Ex. 7. The graph transformation system deiso(R) is (isomorphic to) the graph
transformation system of Ex. 6 (consisting of ρ), which is graph(aa→ aba). Since
{aa→ aba} is a terminating cycle rewrite system (see [12]), R is terminating by
Prop. 3.

5 Implementation

A prototype Java-based tool, called Grez, has been written, which implements,
among others, the termination techniques presented in this paper. The tool
may be downloaded from the following web page: www.ti.inf.uni-due.de/

research/tools/grez.
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The tool concurrently runs a number of algorithms. Each of the algorithms
tries to prove uniform termination of a graph transformation system. As soon
as one of the algorithms successfully finds a termination proof, all algorithms
are interrupted and the proof is reported to the user. If the found termination
proof is relative, that is, termination of a smaller system must still be proved,
this procedure is repeated.

The key algorithms implemented in the tool are:

– Weighted type graphs. For all weighted type graphs with a user-specified
number of nodes and a user-specified maximum weight it is checked whether
they prove the graph transformation system terminating.

– Cycle rewriting. If the graph transformation system is of the correct form, it
is translated into a cycle rewrite system. Then, the tool torpacyc, developed
in the context of [12], is run as an external program to prove termination.

– Node counting. It is checked whether all left-hand sides have more nodes than
the corresponding right-hand side.

– Label counting. For all one- and two-element subsets of the labels, and for
the set of all labels, it is checked that all left-hand sides have more edges
labeled with such a label than the corresponding right-hand side.

– Match bounds. The algorithm of [3] is implemented. Additionally, nodes are
optionally merged according to two rules: target-merging : if a node of the
type graph has two outgoing edges with the same label, the target nodes of
the edges are merged; and source-merging : if a node of the type graph has
two incoming edges with the same label, the source nodes of the edges are
merged.

Note that the last three techniques are subsumed by the weighted type graph
technique. However, specialized algorithms make them often substantially faster
than the type graph technique.

We ran the tool on the (uniformly terminating) examples of this paper, using
a Linux workstation with a 2.67 Mhz, 4-core cpu. To be better able to compare
run times, we only enabled the weighted type graphs algorithm (using linear
weight functions and both tropical and arctic evaluation). Note that with a single
running algorithm the tool is essentially single-threaded. The parameters we used
were: generate weighted type graphs with at most two nodes and a maximum
weight of 1 (that is: 0 or 1). The run times are listed in Table 1. Note that the
ad-hoc routing protocol takes significantly longer than the other examples; this
is due to the larger number of labels and thus larger number of type graphs that
the exhaustive algorithm needs to generate. It is a direction for further research
to develop better heuristical algorithms to find suitable weighted type graphs.

6 Related Work

As mentioned in the introduction, various other works concern themselves with
termination of graph transformation, more specifically, of graph transformation
as a model transformation formalism.
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Example Run time (s)

Adding c-loop (Ex. 2) 0.20
graph(aa → aba) (Ex. 4 and Ex. 6) 0.15
Exponential transformation complexity (Ex. 5) 0.93
Ad-hoc routing protocol (Sec. 3.5) 144.8

Table 1. Run times (in seconds) of running the weighted type graph finder of Grez on
various examples of the paper (average of 5 tries).

The paper [2] considers high-level replacement units (hlru), which are trans-
formation systems with external control expressions. The paper introduces a
general framework for proving termination of such hlrus, but the only concrete
termination criteria considered are node and edge counting, which are subsumed
by the weighted type graph method of this paper (see Sect. 3.2).

In [6] layered graph transformation systems are considered, which are graph
transformation systems where interleaving creation and deletion of edges with
the same label is prohibited and creation of nodes is bounded. The paper shows
such graph transformation systems are terminating.

The paper [10] simulates a graph transformation system by a Petri-net. Thus,
the presence of edges with certain labels and the causal relationships between
them are modeled, but no other structural properties of the graph. The paper
uses typed graph transformation systems; thus, a type graph is used but, unlike in
our weighted type graph method, it is fixed by the graph transformation system.

Finally, [3] was one of the inspirations for this paper. As shown in Sect. 3.3,
its termination argument is subsumed by the weighted type graph technique.

7 Conclusion and Further Research

We introduced the weighted type graph technique for proving termination of
graph transformation systems in the double pushout approach. The technique
uses type graphs to assign weights to graphs that strictly decrease in each graph
transformation step. It is simple and elegant and supports both uniform and non-
uniform termination. Two simpler techniques, weighted edge and node counting
(Sect. 3.2) and match bounds (Sect. 3.3) are subsumed by the technique.

Secondly, we showed that uniform termination of graph transformation systems
of a specific form can be reduced to uniform termination of cycle rewriting, a form
of rewriting related to string rewriting. This makes it possible to use the stronger
termination algorithms of cycle rewriting for graph transformation systems. As a
bonus, it provides an alternative proof of the undecidability of the termination
problem of graph transformation systems.

Although all theorems have been stated and proved for (binary) multigraphs,
a generalization to hypergraphs would be trivial. On the other hand, transferring
the results to other graph transformation formalisms is harder. For example, in
the single pushout approach, the graph transformation system corresponding to
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the one of Ex. 1 is non-terminating, so the result of Ex. 2 (in which it is proved
that this system is terminating) shows that the weighted type graph technique
cannot be transferred one-to-one to single pushout graph transformation. It is
left as future research to find similar arguments for the single pushout approach
and other formalisms.

Another direction for further research is to allow for graph transformation
systems with negative application conditions or more general application condi-
tions. Note, however, that the implicit negative application condition of double
pushout graph transformation, the dangling edge condition, can in some cases
already be handled (see Ex. 2).

Finally, for interesting real-world applications, it would be interesting to
generalize the technique to more expressive methods of specifying the initial
graph languages, so that we can, for example, restrict to trees or rings of arbitrary
size (both graph languages cannot be expressed by a type graph).
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A Proofs

2 Preliminaries

Pushouts are a construct from category theory. In the case of graphs and graph
morphisms, pushouts can be constructed using the following construction:

Definition 5 (Construction of pushouts). Let G0, G1 and G2 be graphs.
Without loss of generality we assume that the node and edge sets of G1 and G2

are disjoint.
Let ϕ1 : G0 → G1 and ϕ2 : G0 → G2 be graph morphisms. Furthermore, let

≡V be the smallest equivalence on V = VG1
∪ VG2

such that ϕ1(v) ≡V ϕ2(v) for
every v ∈ VG0 and let ≡E be the smallest equivalence on E = EG1 ∪ EG2 such
that ϕ1(e) ≡E ϕ2(e) for every e ∈ EG0 .

The pushout graph G3 of ϕ1 and ϕ2 is constructed as follows:

G3 = 〈VG3
, EG3

, srcG3
, tgtG3

, labG3
〉,

with:

– VG3
= {[v]≡V

| v ∈ V },
– EG3

= {[e]≡E
| e ∈ E},

– for e ∈ EGi : srcG3([e]≡E
) = [srcGi(e)]≡V

, tgtG3
([e]≡E

) = [tgtGi
(e)]≡V

and
labG3([e]≡E

) = labGi(e),

where [x]R denotes the equivalence class of x in the equivalence relation R.
Furthermore the morphisms from G1, G2 to G3 map nodes and edges to their
respective equivalence classes.

Binary relations will be written infix. We call a binary relation ≺ ⊆ S × S
well-founded if there are no infinite descending chains s1 � s2 � s3 � · · · .

Definition 6. Let S be a set, and ≺ ⊆ S × S a binary relation on S. We define
the following relations:

(i) ≺set is a relation on ℘(S) defined by: A ≺set B if for all a ∈ A there exists
a b ∈ B such that a ≺ b.

(ii) ≺set is a relation on ℘(S) defined by: A ≺set B if for all b ∈ B there exists
an a ∈ A such that a ≺ b.

(iii) ≺mul is a relation on multisets over S defined by: A ≺mul B if A 6= B and
for all a ∈ A \B there exists a b ∈ B \A such that a ≺ b.

Note that the difference between ≺set and ≺set is that ≺set first quantifies over
the elements of the smaller set, whereas ≺set first quantifies over the elements
of the larger one. (The relation ≺mul could be defined analogously, but is not
used in this paper.) As an example, consider the normal less-than relation < on
natural numbers. Then it holds for two sets X,Y ⊆ N, that X <set Y if and only
if max(X) < max(Y ), and X <set Y if and only if min(X) < min(Y ).
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Lemma 1. Let S be a set and ≺ a binary relation on S. The following are
equivalent: (i) ≺ is well-founded. (ii) ≺set is well-founded. (iii) ≺set is well-
founded. (iv) ≺mul is well-founded.

Proof. (i)–(ii) and (i)–(iv): See [7].
(i)–(iii): Suppose S0 �set S1 �set · · · is an infinite descending ≺set-chain. This

gives rise to an infinite descending chain s0 � s1 � · · · , where si ∈ Si for each i,
as follows: s0 ∈ S0 is arbitrary, and the existence of each si+1 follows from the
definition of ≺set and the existence of si.

(all)–(i): An infinite descending ≺-chain s0 � s1 � · · · gives rise to the infinite
descending chains {s0} > {s1} > · · · , for > ∈ {�set,�set,�mul}. ut

3 Termination Analysis via Weighted Type Graphs

Proposition 1. Let T be a type graph and d : (VT ∪ET )→ N a function assigning
a weight to all nodes and edges of T . The linear weight function wd as defined
above is a well-defined weight function, that is, it is stable under pushouts.

Proof. Extend the function d to sets as follows: d(X) =
∑
x∈X d(x). Consider

the following situation:

G0

G1

G2

G T

ψ1

ψ2

ϕ1

ϕ2

t

Let, for X ∈ {G0, G1, G2, T}, CX = VX ∪ EX . Three subsets of the set CG of
nodes and edges in G can be identified:

D0 = {x ∈ CG | ∃y ∈ G0 : (ϕ1 ◦ ψ1)(y) = x}
D1 = {x ∈ CG | ∃y ∈ G1 : ϕ1(y) = x}
D2 = {x ∈ CG | ∃y ∈ G2 : ϕ2(y) = x}

Because the square is a pushout, it is the case that D0 = D1 ∩D2 (see Def. 5).
Now it is the case that wd(t) = d(CG) = d(D1) + d(D2)− d(D0) and therefore:

wd(t) + wd(t ◦ ϕ1 ◦ ψ1) =

d(D1) + d(D2)− d(D0) + d(D0) = d(D1) + d(D2) =

wd(t ◦ ϕ1) + wd(t ◦ ψ1),

as required. ut

Theorem 1. Let L be a set of graphs and let R be a graph transformation system.
Furthermore, let T be a type graph which is closed under R, such that L ⊆ L(T ),
and let w be a weight function of T .

Finally, let R′ ⊆ R be such that one of the following conditions holds:
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– all rules of R′ are tropically decreasing with respect to T and w, and all rules
of R \R′ are tropically non-increasing with respect to T and w; or

– all rules of R′ are arctically decreasing with respect to T and w, and all rules
of R \R′ are arctically non-increasing with respect to T and w.

Then R is L-terminating if and only if R \R′ is L-terminating.

Proof. (⇒): Assume that R is L-terminating, then clearly the same holds for
the restricted set of rules R \R′.

(⇐): In order to show the other direction, we prove that each rule in r ∈ R′
can only be applied finitely often. Let W be the set of weights. The orders <set

and <set are well-founded because of Lemma 1.
We define the weight of a graph G (with respect to T and w) to be the following

subset of W : wT (G) = {w(ϕ) | ϕ : G→ T}. Since for each reachable graph there
is at least one such morphism ϕ, the weight of a graph G is well-defined (on the
reachable graphs). Let ρ be rule and assume G⇒ρ H.

We now show that if ρ is tropically decreasing, then wT (G) >set wT (H).
Let tG : G → T be some morphism from G to T . We have the situation as
shown on the left below. Since r is decreasing there is an arrow tR : R→ T such
that the diagram commutes (take tL = tG ◦m) and in addition w(tL) > w(tR).
Furthermore we set tC = tG ◦ ψL. Since the right-hand square is a pushout, we
also obtain a mediating morphism tH : H → T making everything commute, as
shown below on the right.

L I R

G C H

T

ϕL ϕR

m c n

ψL ψR

tG

L I R

G C H

T

ϕL ϕR

m c n

ψL ψR

tC
tG

tL tR

tH

We now have

w(tG)⊕ w(tL ◦ ϕL) = w(tL)⊕ w(tC)

> w(tR)⊕ w(tC) = w(tH)⊕ w(tR ◦ ϕR) = w(tH)⊕ w(tL ◦ ϕL)

Since this holds for all morphisms tG, we infer that wT (G) >set wT (H). For a
tropically non-increasing rule, we obtain w(tG)⊕w(tL ◦ϕL) ≥ w(tH)⊕w(tL ◦ϕL)
and hence wT (G) ≥set wT (H).

Analogously, we can show that if ρ is arctically decreasing, then wT (G) >set

wT (H) and if ρ is arctically non-increasing, then wT (G) ≥set wT (H).
Since for (tropically or arctically) decreasing rules the weight of a graph gets

strictly smaller, whereas for (tropically or arctically) non-increasing rules it gets
smaller or stays equal, and furthermore the order is well-founded, decreasing rules
can only be applied finitely often and from some point onward only rules in R\R′
will be applied. Since R \R′ is L-terminating by assumption, L-termination of
R follows. ut
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Proposition 2. Let T be a type graph and d : (VT ∪ET )→ N a weight function.
Furthermore, let R be graph transformation system such that all rules r ∈ R are
decreasing with respect to T and w. Then there exists a c ∈ N such that for each
R-reduction sequence G = G0 ⇒R G1 ⇒R · · · it holds that |G| ≤ c · |G0|.

Proof. We take c to be the maximum weight of d, that is,

c = max{n ∈ N | ∃x ∈ (VG0
∪ EG0

) : n = d(x)}.

Now, wd(G0) ≤ c · |VG0 ∪ EG0 |. Since for each i and j such that i < j it holds
that wd(Gi) < wd(Gj), this implies that |G| ≤ c · |G0|. ut

4 Termination Analysis via Cycle Rewriting

Lemma 2. Let u, v ∈ Σ∗ be words, and R a cycle rewrite system.

(i) If u ∼ v, then uu ∼ vv.
(ii) If u⇒R v, then uu⇒∗R vv.

Proof. (i) By definition of ∼, it holds that u = u1u2 and v = u2u1 for some
u1, u2 ∈ Σ∗. Then uu = u1u2u1u2 and v = u2u1u2u1. For w1 = u1 and w2 =
u2u1u2 we now have uu = w1w2 and vv = w2w1, therefore uu ∼ vv.

(ii) By definition of⇒R, u ∼ u1`u2 and v ∼ u1ru2, for some (`→ r) ∈ R. But
then it holds by (i) that uu ∼ u1`u2u1`u2 ⇒∗R u1ru2u1ru2 ∼ vv, as required. ut

Lemma 3. Let R be a cycle rewrite system and S = graph(R). Let k be the size
of the largest left-hand side of R. Furthermore, let w1, w2 ∈ Σ∗ be words over
the alphabet. Then:

(i) If cycle(w1)⇒S cycle(w2), then w1 ⇒R w2.
(ii) If |w1| > k and w1 ⇒R w2, then cycle(w1)⇒S cycle(w2);

(iii) If path(w1)⇒S path(w2), then w1 ⇒R w2.

Proof. Items (i) and (iii) are clear from the form of the graph transformation
rules in graph(R).

For item (ii), let `→ r be the rule responsible for the step w1 ⇒R w2. First, for
all x, y ∈ Σ∗ it holds that cycle(xy) is isomorphic to cycle(yx), so by construction
of graph(` → r) there exists a match from path(`) to cycle(w1). Second, since
|`| ≤ k < w1, this match is injective. Thus, it holds that cycle(w1)⇒S cycle(w2).

ut

For a graph G and a node v ∈ VG, the in-degree and out-degree of v, written
deg in

G (v) and degout
G (v), are the number of edges leading in to and going out from

v, respectively. That is:

deg in
G (v) = |{e ∈ EG | tgtG(e) = v}|

degout
G (v) = |{e ∈ EG | srcG(e) = v}|

19



Furthermore, the degree of v is sum of the in- and out-degrees:

degG(v) = deg in
G (v) + degout

G (v).

Note that degG(v) is not necessarily equal to the number of edges incident to v:
some of the edges may be loops.

Theorem 2. Let R be a cycle rewrite system. R is terminating if and only if
graph(R) is terminating.

Proof. (⇐): Let w0 ⇒ w1 ⇒ w2 ⇒ · · · be an infinite R-reduction. Let k be
the size of the largest left-hand side of R. By Lemma 2 (ii), we can obtain
an infinite R-reduction w′0 ⇒ w′1 ⇒ w′2 ⇒ · · · such that |w′i| > k for all i.
Thus, by Lemma 3 (ii) cycle(w′0)⇒ cycle(w′1)⇒ cycle(w′2)⇒ · · · is an infinite
graph(R)-reduction.

(⇒): Because we are working within the double pushout approach, the left-
hand sides can only be mapped to subgraphs where the middle nodes do not
have any incoming or outgoing edges. This means that a node with an in-degree
different than 1 or an out-degree different than 1 never occurs in a match, except
as the left-most or the right-most node of a left-hand side. Therefore, with respect
to termination, such nodes can be split in a number of copies each having degree
exactly 1. Now, by the pigeon hole principle, an infinite graph(R)-reduction
performs infinitely many steps in one of the connected components, and this
maps to an infinite R-reduction by Lemma 3 (i) (if the connected component is
a cycle) and Lemma 3 (iii) (if the connected component is a path). ut

Lemma 4. Let R be a graph transformation system and k ≥ 1 a natural number.
If for all rules ρ ∈ R, with ρ = L�ϕL− I −ϕR�R, the following four conditions
hold:

– L does not contain any isolated nodes;
– for all nodes v ∈ I, degL(ϕL(v)) ≥ degR(ϕR(v));
– for all nodes v ∈ I such that ϕR(v) is isolated, it holds that degL(ϕL(v)) ≥ k;
– for all nodes v ∈ R which are not in the range of ϕR it holds that degR(v) ≤ k;

then, R is terminating if and only if deiso(R) is terminating.

Proof. (⇒): Follows from the fact that every deiso(R)-reduction yields an R-
reduction by adding isolated nodes.

(⇐): Let degs(G) be the multiset of degrees of nodes in G, counting only
nodes with a degree larger than k, that is:

degs(G) = [degG(v) | v ∈ VG and degG(v) > k],

where [· · · ] denotes a multiset. Multisets of natural numbers are ordered by <mul

(see Def. 6), which is well-founded by Lemma 1.
Consider a graph transformation rule ρ ∈ R; let ρ = L �ϕL− I −ϕR� R.

Suppose G⇒m,ρ H according to the following diagram:
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L I R

G C H

ϕL ϕR

m

ψL ψR

Now we observe the following: For nodes v ∈ C it holds, either because they
are not affected in the rewriting step or because of the second condition of the
theorem, that degG(ψL(v)) ≥ degH(ψR(v)); that is all nodes of H in the range of
ψR have a corresponding node in G with a larger or equal degree. On the other
hand, all nodes of H not in the range of ψR have a degree ≤ k by assumption,
and thus degs(H) ≤mul degs(G).

If degs(H) = degs(G), then for all nodes v ∈ I such that ϕR(v) is isolated it
must hold that degG(m(ϕL(v))) ≤ k (otherwise it would hold that degs(H) <mul

degs(G)). In this case it holds, by the third assumption of the lemma and the
fact that m is a morphism, that

k ≤ degL(ϕL(v)) ≤ degG(m(ϕL(v))) ≤ k,

and therefore degL(ϕL(v)) = degG(m(ϕL(v))).
Let G0 ⇒R G1 ⇒R G2 ⇒R · · · be an infinite transformation sequence in R.

Since <mul is well-founded, there exists an n such that degs(Gi) = degs(Gn) for
each i ≥ n. By the above observation, from Gn onward, for each node v ∈ VI
such that ϕR(v) is isolated, it holds that degL(ϕL(v)) = degG(m(ϕL(v))). This
means that the dangling edge condition is satisfied, and therefore the infinite R-
transformation sequence starting at Gn yields an infinite deiso(R)-transformation
sequence (isolated nodes can be ignored due to the first condition of the theorem).

ut

Proposition 3. Let R be a graph transformation system and C a cycle rewrite
system. If deiso(R) = graph(C), then R is terminating if and only if C is termi-
nating.

Proof. If deiso(R) ' graph(C) for some cycle rewrite system C, then the condi-
tions of Lemma 4 apply (for k = 2), and thus the result follows directly from
Theorem 2 and Lemma 4. ut
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