
Augur 2—A tool for the analysis of
(attributed) graph transformation systems using

approximative unfolding techniques

April 8, 2008

CONTENTS 1

Contents

1 Introduction 2

2 People 4

3 System and Software Requirements 5

4 Installation and Usage 5

4.1 Installation . 5
4.2 Usage . 6

5 File Formats 8

5.1 Database Format . 8
5.2 Input Formats . 12

5.2.1 Example in GTXL format 12
5.2.2 Example in the new GTXL format 14
5.2.3 Example of an SPL program 17
5.2.4 Interface to AGG . 18
5.2.5 Regular Expressions . 18
5.2.6 First Order Logic . 19

5.3 Output Formats . 19
5.3.1 Example in GXL format 19

6 Verification Example 21

7 List of examples 27

8 Limitations and Known Problems 28

9 License Agreement 29

Bibliography 29

1 INTRODUCTION 2

1 Introduction

The aim of this tool is the verification of systems described by (attributed)

graph transformation systems (GTS, AGTS) using approximated unfoldings

[BCK01, BCKar]. Graphs are a natural and convenient means to describe

complex structures and graph transformation systems give the possibility to

model dynamically changing systems. This is important for the specification

of systems, where objects can be created and deleted and the system un-

dergoes structural changes during runtime. For more information on graph

transformation systems see [Roz97, EEKR99, EKMR99]. A list of publica-

tion describing the theoretical background behind Augur can be found at

http://www.ti.inf.uni-due.de/publications/project-augur.shtml.

It is often convenient to extend a modelling language by adding attributes which

carry values of some data types. This is for instance true for coloured Petri

nets [Jen86] and attributed GTSs (AGTSs) [EEKR99, Kas05, Tae99, LKW93].

Extending GTSs with attributes allows one to combine the intuitive graphical as-

pects of the modelled systems with natural data structures, which makes such ex-

tended GTSs more suitable for practical applications. Usually this leads to more

compact models, because many well-known operations need not be described in

an artificial way using the graph structures.

Since data types are often infinite, abstraction of data types is needed in order

to do automatic verification. This is usually done in one of the following ways:

data abstraction [CGL94], abstract interpretation [Sif83, Cou01] or predicate ab-

straction [GS97, DDP99, HJMS02, JM06]. In Augur 2 the first two approaches

are used.

In the last few years the verification tool Augur 1 has been developed [KK05]

which analyzes graph transformation systems (GTSs)1. Using this tool several

case studies have been already conducted, verifying, for instance, a mobile system

with a firewall [BCK02], a mutual exclusion protocol [DKdSR04] and the insertion

of elements into red-black trees [BCE+05a].

The development of Augur 1 (the previous version of the tool) started with a

small tool that reads GTXL files, constructs an approximating unfolding of the

given GTS and writes it in GXL files (GXL2 respectively GTXL [Lam04] are XML

standards for the encoding of graphs and graph transformation systems). In the

following, in the course of the extension of the tool we faced the constant necessity

of adding new features and new functionality. More specifically, the following

1
The tool can be obtained from http://www.ti.inf.uni-due.de/research/augur 1/.

2http://www.gupro.de/GXL/

1 INTRODUCTION 3

components were added: analysis algorithms for Petri nets [Tur04] based on

coverability graphs [Rei85] and backward reachability [AJKP98], an interface to

Graphviz3 for visualization purposes, the possibility to specify forbidden paths

in graphs using regular expressions [Rel04], the finite complete prefix technique

for graph transformation systems [BCK04, Bar05], the extension of the tool in

order to use it for the purpose of test case generation [Hor05]. Probably the most

extensive addition was to add support for counterexample-guided abstraction

refinement [KK06b, KK05].

The architecture of Augur was strongly oriented to the concrete task of ap-

proximating unfolding of GTS. This made all changes mentioned above hard to

implement and led to several versions of the tool, each with a different function-

ality. Hence the new version of Augur was needed which should have a more

general and extensible software architecture and should allow an easier extension

of the tool with more functionality concerning analysis and visualization methods.

Another new feature of the tool which was almost impossible to implement in

the frame of Augur 1 was the possibility to work with attributed graphs, i.e.,

graphs with (integer and string) attributes assigned to nodes and edges and the

corresponding extension of existing analysis techniques.

It was also rather hard to extend the input and output interface, for instance

with establishing a connection to Agg [Tae99]. All this led us to the idea to

create a completely new tool Augur 2 with a corresponding functionality and

an easily extendable architecture.

In this documentation we describe technical details of installation and usage of the

tool. Also, the complete verification example of (attributed) GTS and commented

input and output files can be found below. The description of functionality, sys-

tem architecture and software design of Augur 2 can be found in [KK06a, Kozar].

Additional information on the software design of the tool can be found in the de-

sign documentation (http://www.ti.inf.uni-due.de/research/augur/design.pdf).

Users that are mainly interested in working with the graphical user interface and

who do not want to delve too deeply into the technical details are referred to the

GUI documentation (http://www.ti.inf.uni-due.de/research/augur/gui.ps).

3http://www.graphviz.org/

2 PEOPLE 4

2 People

The following people are or were involved either in the theoretical development

or in the implementation of the tool:

• Paolo Baldan (Università Ca’ Foscari di Venezia, Italy)

• Julian Bart (Universität Stuttgart, Germany)

• Andrea Corradini (Università di Pisa, Italy)

• Olga Danylevych (Universität Stuttgart, Germany)

• Salil Joshi (Indian Institute of Technology (IIT), Delhi, India)

• Tobias Heindel (Universität Duisburg-Essen, Germany)

• Lars Heinemann (Universität Stuttgart, Germany)

• Martin Horsch (Universität Stuttgart, Germany)

• Barbara König (Universität Duisburg-Essen, Germany)

• Bernhard König (Boise State University, USA)

• Vitali Kozioura (Universität Duisburg-Essen, Germany)

• Alberto Lluch Lafuente (Università di Pisa, Italy)

• Michael Mayer (Universität Duisburg-Essen, Germany)

• Anja Monakova (Universität Stuttgart, Germany)

• Nicolas Relange (Universität Stuttgart, Germany)

• Timur Tsotniashvili (Universität Stuttgart, Germany)

• Sinan Turan (Universität Stuttgart, Germany)

• Valentin Wolf (Universität Duisburg-Essen, Germany)

• Ingo Walther (Technische Universität München, Germany)

• Maxim Zaks (Universität Duisburg-Essen, Germany)

The current maintainers of the tool and the documentation are Vi-

tali Kozioura and Barbara König. The web site of Augur is at

http://www.ti.inf.uni-due.de/research/tools/augur/. Please address questions to

barbara koenig@uni-due.de.

3 SYSTEM AND SOFTWARE REQUIREMENTS 5

3 System and Software Requirements

The code is written in C++ and uses libxml (http://xmlsoft.org/) and

lp solve (http://lpsolve.sourceforge.net/) libraries. Augur 2 has been

tested under Linux using libxml 2.0. Furthermore the libxml develop-

ment package (libxml-dev/libxml-devel) is needed. For visualization pur-

poses the installation of the Graphviz package (which can be obtained from

http://www.research.att.com/sw/tools/graphviz/) is required. Optionally one can

use the package MetricFF (http://members.deri.at/~joergh/metric-ff.html) for

checking coverability of non-attributed Petri nets.

4 Installation and Usage

4.1 Installation

The source code of the system is available as a tar.gz archive. After unpacking you

should compile the programs by calling make from the root directory. In most

Linux distributions the library libxml2 is located in /usr/include/libxml2/

and /usr/lib/libxml2.so.2. If the library is in another directory, please change

the file src/Makefile (the first three lines) accordingly. You should also check

the path to the lpsolve library in the file src/Makefile. The default path is

/usr/lib/lp solve/liblpsolve55.a. We have experienced some problems by

using the precompiled version of the library. In this way we would recommend

to compile it from the source code.

The executables can subsequently be found in the directory /bin and can be

started as shell applications or by using a graphical user interface (GUI).

The recommended way of using Augur 2 is with the GUI. The GUI is written

in Java and can be called in the following way:

java -jar aunfoldGUI.jar

The file aunfoldGUI.jar is in the distribution of Augur 2, while the source code

of the GUI is in the directory /gui. For additional information on the GUI see

the GUI documentation (http://www.ti.inf.uni-due.de/research/augur/gui.ps).

If you use Augur 2 as a command line application then make sure that the /bin

directory is added to the PATH environment variable.

4 INSTALLATION AND USAGE 6

If you use MetricFF (http://members.deri.at/~joergh/metric-ff.html) please copy

the executable file ”ff” into the directory /bin.

In the directory /example several examples can be found:

1. /example/1st order logic: Examples of properties in first-order logic for-

mat.

2. /example/agg: Examples of GTSs in AGG format.

3. /example/attributes: Examples of attributed GTSs (AGTSs) in GTXL

format.

4. /example/gtxl: Example of GTSs in GTXL format.

5. /example/new gtxl: Example of GTSs in the new GTXL format.

6. /example/spl: Example of GTSs in single pointer language (SPL) format.

Most of the examples verified with Augur 2 are provided in GTXL format.

4.2 Usage

If you do not use the GUI the program can be called from a shell as follows:

augur -db=DATABASE -sc=SCENARIO [options] input_files output_files

The field DATABASE should contain the path to the XML file which contains

a database of the available scenarios and algorithms. In the field SCENARIO

one specifies an alias of the scenario to be executed. The following scenarios

are currently available in Augur 2 (algorithm aliases are listed in the database

description):

• aunfold: Construction of the unfolding. Possible algorithms are approx-

imating unfolding, finite prefix, finite complete prefix. The input file is a

GTS and the output file is a Petri graph.

• property2marking: Encoder from a property (which is a regular expression

or a first order logic formula) to a marking. Possible algorithms are simple

path encoder - sponge, encoder to semilinear set (the marking is then the

first element in the representation of the semilinear set), logic encoder.

• cover: Checking the coverability property for the given marking. Possi-

ble algorithms are coverability graph, backward coverability, approximating

reachability, metric FF.

4 INSTALLATION AND USAGE 7

• refinement: Counterexample-based abstraction refinement. Here the

needed method of refinement (structural or attribute-based refinement) will

be detected automatically.

• refinement loop: Full mechanization of the verification procedure.

• gts emulator: Emulates the application of the rules in the given GTS.

• rules2ps: Visualizes the given GTS and outputs it in a postscript file.

• hg2ps: Visualizes the hypergraph component of the Petri graph.

• pn2ps: Visualizes the Petri net component of the Petri graph.

• spl: Converts an input file in the simple pointer language (SPL) to GTXL

(i.e., to a graph transformation system that is an implementation of the

program).

• test: This scenario is used for debugging and testing.

In order to obtain the list of command line parameters needed for each scenario

one can start Augur 2 with the chosen scenario but without parameters:

> bin/augur -db=db/default.xml -sc=aunfold

loading database

severe error: a SCENARIO named "aunfold" received 0 instead of 2.

Usage: augur -sc=aunfold [options] grammar petrigraph

grammar graph grammar in GTXL format

petrigraph output destination for the unfolding,

a Petri graph in GXL format

If the output files already exist, they are overwritten without warning.

Available options are:

-q quiet mode; nothing is written to stdout, only the output file is created.

-d debugging mode; internal information, such as the nodes of the coverability

graph, is dumped to stdout during the calculation.

-t trace mode; before each folding or unfolding operation the intermediate Petri

graph is written to the output file.

-nc do not check covering information when folding or unfolding; this is used

for speeding up the construction in the case of complex coverability com-

5 FILE FORMATS 8

putations. The result is still a correct over-approximation, but may be less

precise.

-nr do not enforce the irredundancy condition.

-depth=k the k-depth over-approximation, also called k-covering, will be con-

structed.

-nfold=k no folding steps will be made and unfolding steps will only be executed

up to depth less than k.

-step=n only n steps of the algorithm will be executed.

-nmapping no mapping information will be saved in the output file; mappings

are needed for the next version of the system.

-timeout=n timeout in seconds.

-size=s size of the hypergraphs in the visualization of the GTS (default: 0.5).

The corresponding parameter in the command line has priority over the one set

in the the database.

The program is not interactive and terminates when the calculation is finished.

5 File Formats

5.1 Database Format

Suitable database settings should be made before the tool is used. It is recom-

mended to change the database settings using the GUI. Otherwise please orient

yourself on the tags “info”, where the possible algorithms are sometimes listed

and on the algorithm aliases below.

The database is implemented as a single XML file and consists of three parts.

The first part contains a description of the global parameters, below we give an

example for the format of global variables. Some parameters are Boolean and

some are of type integer.

<Globals>

<debug val="false"/> // debug mode

<quiet val="false"/> // quite mode

<ncov val="true"/> // do not use coverability by unfolding

<coloured val="true"/> // is attributed

5 FILE FORMATS 9

<nfold val="false"/> // do not fold

<red val="true"/> // use irredundancy condition

<mapping val="true"/> // use mappings in GTXL

<trace val="false"/> // give out traces

<depth val="0"/> // do not fold until the "val"

<unfdepth val="-1"/> // construct only until depth "val"

<maxstep val="-1"/> // make only first "val" steps

<full_coverability_graph val="false"/>

// full coverability graphs

<clear_cov_count val="4"/>

// clear count by incremental coverability

<mod_base val="2"/> // base for modulo abstraction

<interval_from val="0"/> // left bound of interval abstraction

<interval_to val="1"/> // right bound of interval abstraction

<ref_loop_limit val="5"/> // number of refinement steps

<attr_ref_count val="5"/> // number of attribute refinement steps

</Globals>

The second part describes algorithms and their interaction in the format as in the

example below. Here for the algorithm alg 1 which is not reusable (explanation

see below) at the label l 1 we have following possibilities: if in the stack of the

current instance of alg 1 the algorithms alg 3 and alg 4 were called at the labels

l 3 and l 4 respectively then algorithm alg 5 will be called. Otherwise we call the

default algorithm alg 2. The interactions can be quite complex and the general

idea is described in [KK06a].

<algorithm name="alg_1" reusable="false">

<label name="l_1">

<default algorithm="alg_2"/>

<info>description</info>

<expert status="true">

<history>

<happen algorithm="alg_3" label="l_3"/>

<happen algorithm="alg_4" label="l_4"/>

<call algorithm="alg_5"/>

</history>

</expert>

</label>

</algorithm>

Below are some algorithm aliases that are currently used:

5 FILE FORMATS 10

• causality relation: calculation of a causality relation (needed for the merg-

ing of Petri graphs).

• findmatch: standard matching algorithm.

• findmatch by sp: matching algorithm using the searchplan technique.

• first matchhandler : matchhandler for the unfolding.

• find all matches : computes all possible matches with the standard match-

ing algorithm.

• find all matches by sp: computes all possible matches with the searchplan

technique.

• fold : folding algorithm.

• merge petrigraph: merging of a Petri graph.

• merge petrigraph uf : merging of a Petri graph using the union-find algo-

rithm.

• reduce transitions: irredundancy check.

• second matchhandler : matchhandler for folding.

• unfold : unfolding algorithm.

• agg reader : reader from AGG format.

• coverability : coverability calculation with a coverability graph.

• bwra: backward coverability algorithm.

• reachability analyse: reachability (coverability) analysis using lp solve.

• abstraction refinement : abstraction refinement.

• second matchhandler refinement : matchhandler for abstraction refinement.

• gtxl reader : reader from GTXL format.

• new gtxl reader : reader from the new GTXL format.

• spl reader : reader from SPL format

• gxl reader : reader from GXL format.

• gxl writer : writer in GXL format.

• approximated unfolding : the entire unfolding procedure.

5 FILE FORMATS 11

• coverability test : tests coverability graphs obtained by the incremental ap-

proach.

• expression engine: standard attribute engine.

• expression engine mp: {−, +}-abstraction of attributes.

• expression engine mod : modulo-abstraction of attributes.

• expression engine mp0 : {−, 0, +}-abstraction of attributes.

• expression engine pn: [0, N]-abstraction of attributes.

• expression engine mn: [M, N]-abstraction of attributes.

For each algorithm we indicate in the database if the algorithm is reusable or

not. Non-reusable algorithms will be created each time, when they will be called,

whereas for reusable algorithms the same instance will be used during the whole

session.

If you want to use incremental coverability you should set the “reusable” flag of

the algorithm “coverability” to true. Also, do not forget to set the value of the

“ncov” parameter to true.

Below is an example of using the algorithms in the database. Here, different

matchhandlers are used depending on the previous history. The history indicates

if the current algorithm runs in the abstraction refinement procedure or in the

folding or (default) in the unfolding procedures.

<algorithm name="findmatch" reusable="false">

<label name="call_matchhandler">

<default algorithm="first_matchhandler"/>

<info>string</info>

<expert status="true">

<history>

<happen algorithm="abstraction_refinement"

label="call_unfolding"/>

<happen algorithm="first_matchhandler" label="call_findmatch"/>

<call algorithm="second_matchhandler_refinement"/>

</history>

<history>

<happen algorithm="first_matchhandler" label="call_findmatch"/>

<call algorithm="second_matchhandler"/>

</history>

</expert>

5 FILE FORMATS 12

</label>

</algorithm>

The third part of the database file is a description of scenarios which are algo-

rithms having only external files as input and output. Scenarios are high-level

algorithms describing the current task of the tool. In the database we indicate

which algorithm will be used in which scenario. For example in scenario aunfold

(see below) this may either be approximating unfolding or finite prefix or finite

complete prefix.

<algorithm name="main" reusable="false">

<label name="scenario_1">

<default algorithm="alg_1"/>

<info>description</info>

<expert status="false"/>

</label>

<label name="scenario_2">

<default algorithm="alg_2"/>

<info>description</info>

<expert status="false"/>

</label>

</algorithm>

As an example we give here the scenario “property2marking” The possible en-

coder algorithms are listed inside the “info” tag.

<label name="scenario_property2marking">

<default algorithm="sponge_call"/>

<info>sponge, sponge_call, logic_converter,

reg2marking, reg2semilin</info>

<expert status="false"/>

</label>

5.2 Input Formats

5.2.1 Example in GTXL format

In this section we present a commented description of an AGTS from Fig 1 in

GTXL format. The example consists of an initial graph, which consists one edge

labelled “A”having two attributes “a1” and “a2”, and one rewriting rule.

<?xml version="1.0"?>

<!DOCTYPE gtxl SYSTEM "gtxl.dtd">

5 FILE FORMATS 13

Initial Graph

A

Rewriting Rule

A

1 2 1

A

a2: [y,z]

a2: [5,’ab’]

2

a1: 10

a1: x a1: x+5
a2: [y−3, z.’a’]

a3: x+y

Rewriting Sequence

(x>10) AND (y>0)

A A
a1: 10
a2: [5,’ab’]

a1: 15
a2: [2, ’aba’]

a3: 15

a1: 20
a2: [−1, ’abaa’]

a3: 15

a3: 17

B

B B

B

A

Figure 1: First example of an attributed graph transformation system

<GTS id="simple">

<Initial> // initial graph

<Graph id="Private Server and public generator" edgeids="true" hypergraph="true"

edgemode="undirected">

<node id="n1"/> // nodes with unique ids

<node id="n2"/>

<rel id="ida"> // edge with unique ids

<attr name="label"> // label of an edge is

<string>A</string> // written as a string

</attr>

<attr kind="attr-int" name="a1"> // first attribute of type integer with value 10

<string>10</string> // written as a string

</attr>

<attr kind="attr-int-str" name="a2"> // second attribute is a tuple integer-string

<string>[5,’ab’]</string> // with a value written as a string

</attr>

<relend id="spriv" target="n1" startorder="0" /> // connections of an edge

<relend id="spriv" target="n2" startorder="1" />

</rel>

</Graph>

</Initial>

<Rule id="Rule1"> // first rule

<precondition> // precondition = guard expression

<condition>

<attrCondition>

<string>x>10 AND y>0</string> // expression itself as a string

</attrCondition>

</condition>

</precondition>

<LHS> // left-hand side of the rule

<RuleGraph id="lr1">

<Graph id="lgraph1" edgeids="true" hypergraph="true" edgemode="undirected">

<node id="nl1"/> // nodes

<node id="nl2"/>

<rel id="la1" > // edge

<attr name="label">

<string>A</string> // label

</attr>

5 FILE FORMATS 14

<attr kind="attr-int" name="a1"> // attributes are now from the term algebra

<string>x</string> // here the value is x

</attr>

<attr kind="attr-int-str" name="a2"> // tuple

<string>[y,z]</string>

</attr>

<relend id="lspriv1" target="nl1" startorder="0" />

<relend id="lspriv2" target="nl2" startorder="1" />

</rel>

</Graph>

</RuleGraph>

</LHS>

<RHS> // right-hand side of the rule

<RuleGraph id="rr1">

<Graph id="rgraph1" edgeids="true" hypergraph="true" edgemode="undirected">

<node id="nr1"/> // nodes

<node id="nr2"/>

<rel id="ra1"> // first edge

<attr name="label">

<string>A</string> // label A

</attr>

<attr kind="attr-int" name="a1"> // attribute from the term algebra

<string>x+5</string> // value

</attr>

<attr kind="attr-int-str" name="a2">

<string>[y-3,z.’a’]</string>

</attr>

<relend id="rspriv1" target="nr1" startorder="0" /> // two connections to nodes

<relend id="rspriv2" target="nr2" startorder="1" />

</rel>

<rel id="rb2"> // second edge

<attr name="label">

<string>B</string> // label B

</attr>

<attr kind="attr-int" name="a3"> // attribute from the term algebra

<string>x+y</string> // value

</attr>

<relend id="rspriv3" target="nr2" startorder="0" /> // only one connection

</rel>

</Graph>

</RuleGraph>

</RHS>

<Mapping id="cps_mapping"> // interface between left and right hand-sides of the rule

<MapElem from="nl1" to="nr1" /> // as a map on nodes

<MapElem from="nl2" to="nr2" />

</Mapping>

</Rule> // end of the rule

</GTS> // end of GTS

5.2.2 Example in the new GTXL format

In this section we present a commented description of the AGTS from Fig 1 in the

new GTXL format. This format was proposed in [Lam04] and is used for instance

in the AGG tool [Tae99]. In Augur 2 this format is used as an alternative to

the GTXL format described in the last chapter. We use the same GTS from the

5 FILE FORMATS 15

previous section in order to illustrate its usage.

The main difference of the new GTXL format compared to the previous one is

the description of a type graph which is here called “Schema Graph”. Here,

one describes the map from possible labels to the corresponding data types. For

example if an edge has label “A” then the type graph constrains it to have the

attributes “a1” and “a2” of types “integer” and “[integer,string]” correspondingly.

Later, in the concrete hypergraphs, only the values of attributes (but not their

types) will be given.

The next specific characteristic of the new GTXL format is that each rule is

specified as consisting of three parts: “preserved”, “deleted” and “created”. In

the part “preserved” one provides a rule interface, which is in our case discrete and

consist only of preserved nodes. In the “deleted” (“created”) part one specifies

the nodes and edges of the left-hand side (right-hand side) of the rule which are

not preserved (i.e., either deleted or created).

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE gtxl SYSTEM "gtxl.dtd">

<gtxl xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xalan="http://xml.apache.org/xalan"

xmlns:lxslt="http://xml.apache.org/xslt">

<graph edgeids="true" id="Schema Graph"> // Schema Graph is a type graph of GTS

<node id="stdNode"> // There is only one type of nodes

<graph edgeids="true">

<rel id="A"> // Declaration of an edge with a label "A"

<attr name="a1" kind="AttrType"> // Declaration of an attribute "a1"

<string>int</string> // of type integer

</attr>

<attr name="a2" kind="AttrType"> // Declaration of an attribute "a2"

<string>int-str</string> // of type integer-string

</attr>

<relend target="stdNode" startorder="0"/> // Connections of all edges labelled with "A"

<relend target="stdNode" startorder="1"/> // are the same

</rel>

<rel id="B"> // Declaration of an edge with a label "B"

<attr name="a1" kind="AttrType"> // Declaration of an attribute "a3"

<string>int</string> // of type integer

</attr>

<relend target="stdNode" startorder="0"/> // Only one connection

</rel>

</graph>

</node>

</graph>

<gts id="I2" approach="DPO"> // Begin of GTS

<type xlink:type="simple" xlink:href="#SchemaGraph"/> // Link to the schema graph

<initial> // Initial graph

<graph id="ini" edgeids="true" hypergraph="true" edgemode="undirected">

<node id="v1"> // First node

<type xlink:href="stdNode"/> // linked to the Schema graph

</node>

<node id="v2"> // Second node

<type xlink:href="stdNode"/>

</node>

5 FILE FORMATS 16

<rel id="r1"> // Edge description

<type xlink:href="A"/> // Type "A"

<attr name="a1"> // Attribute "a1"

<string>10</string> // with value 10

</attr>

<attr name="a2"> // Attribute "a2"

<string>[5,’ab’]</string>

</attr>

<relend id="relend1" target="v1"/> // Connections

<relend id="relend2" target="v2"/>

</rel>

</graph>

</initial>

<rule name="create proc" id="Rule1"> // Description of rule

<precondition> // precondition = guard expression

<condition>

<attrCondition>

<string>x>10 AND y>0</string> // expression itself as a string

</attrCondition>

</condition>

</precondition>

<preserved> // Preserved is usually the discrete interface

<graph id="G1"> // i.e., only nodes

<node id="N1">

<type xlink:href="stdNode"/>

</node>

<node id="N2">

<type xlink:href="stdNode"/>

</node>

</graph>

</preserved>

<deleted> // To delete are all edges from

// the left-hand side of the rule

<rel id="Rel_1"> // Edge "A"

<type xlink:href="A"/> // Link to the Schema Graph

<attr name="a1"> // Attribute "a1"

<string>x</string> // with value x

</attr>

<attr name="a2"> // Attribute "a2"

<string>[y,z]</string>

</attr>

<relend id="Rel1_relend1" target="N1"/> // Connections to N1

<relend id="Rel1_relend2" target="N2"/> // and N2

</rel>

</deleted>

<created> // To create are all edges from

// the right-hand side of the rule

<rel id="Rel2"> // Edge "A"

<type xlink:href="A"/>

<attr name="a1"> // Attribute "a1"

<string>x+5</string> // with value x+5

</attr>

<attr name="a2"> // Attribute "a2"

<string>[y-3,z.’a’]</string>

</attr>

<relend id="Rel2_relend1" target="N1"/>

<relend id="Rel2_relend2" target="N2"/>

</rel>

5 FILE FORMATS 17

<rel id="Rel3"> // Edge "B"

<type xlink:href="B"/>

<attr name="a3"> // Attribute "a3"

<string>x+y</string> // with value x+y

</attr>

<relend id="Rel2_relend1" target="N2"/>

</rel>

</created>

</rule>

</gts>

</gtxl>

5.2.3 Example of an SPL program

In this section we present an example of a program in SPL format, which can

be used as an input for Augur 2. For this purpose the corresponding reader

(SPL reader) should be switched on in the database. The program will be then

translated into an AGTS, which can be further approximated and analyzed. The

details of the SPL language and its translation into AGTSs can be found in

[Tso06].

An SPL program consists of a type declaration part, where a record consisting of

one integer (info rec) and a list of such records (list rec) are defined. Then

the variables (list, help of type “pointer to list rec” and i of type “integer”) are

declared and initialized. After this the functionality of the program is specified:

First, an infinite list of records is produced and then, during the iteration through

this list, each element in the record will be increased by one.

For each pointer (list and help) the error rule will be added which should

check if at some point in the execution of the program an assignment to the null-

pointer is made. When the SPL program is translated to an AGTS the special

edge “error” will be created. The property to verify is that no “error”-edge will

be ever created.

TYPE info_rec;

TYPE list_rec IS RECORD (next: POINTER TO RECORD list_rec, info: POINTER TO

RECORD info_rec);

TYPE info_rec IS RECORD(value: INTEGER);

VAR list: POINTER TO RECORD list_rec;

VAR help: POINTER TO RECORD list_rec;

VAR i: INTEGER;

i:=0;

NEW(list);

NEW(list.info);

help:=list;

5 FILE FORMATS 18

help.info.value:=i;

WHILE(TRUE) DO

i:=i+1;

NEW(help.next);

help:=help.next;

NEW(help.info);

help.info.value:=i;

OD;

help:=list;

WHILE(TRUE) DO

help.info.value:=help.info.value+1;

help:=help.next;

OD;

SKIP;

5.2.4 Interface to AGG

Augur 2 allows one to read (attributed) GTSs visually created in the

AGG [Tae99]. Details can be found in the documentation available at s

http://www.ti.inf.uni-due.de/research/augur/agg.pdf.

5.2.5 Regular Expressions

Given an hypergraph and a regular expression, Augur 2 generates conditions

on the markings of the hypergraph which ensure that a path in the hypergraph

matches the regular expression. In other words, it computes how many parallel

instances of edges are necessary in order to obtain a path corresponding to the

regular expression that traverses every edge at most once. This information, given

as a list of markings, can be used in order to show that no graphs containing

undesirable paths can be reached.

If one wants to specify a single 0-ary edge (for example labelled with “Error”)

not connected to any nodes one writes 0’Error’0 if one uses the encoder sponge

and Error if one uses an encoder to semilinear sets. In all other cases the regular

expressions are syntactically for both encoders. For example, ’A’’B’ specifies

connected edges labelled ’A’ and ’B’. In general, the regular expression must be

given according the following grammar:

reg_exp ::= reg_exp + term /* union */

term ::= term factor /* concatenation */

factor ::= (reg_exp)

| factor * /* kleene-closure */

| epsilon

| motif

5 FILE FORMATS 19

epsilon ::= ~ | "" /* epsilon */

motif ::= char

| ’ word ’

| digit word digit

| ’ number word number ’

word ::= char word

| char

char ::= [A-Za-z_]

number ::= digit number

| digit

digit ::= [0-9]

Note: the delimiters space, tab and newline are not taken into account.

For more information on regular expressions and their usage see [HK04, Rel04].

5.2.6 First Order Logic

In Augur 2 there exists a possibility to specify properties in form of first order

logic on hypergraphs. Please note that these properties can not be analyzed with

usual coverability algorithms and hence one should use the technique based on

linear equations (implemented with lp solve).

For a detailed description of the format of formulas in first-order logic and also

of their analysis please refer to [vM06].

5.3 Output Formats

5.3.1 Example in GXL format

In this section we present a commented description of a Petri graph obtained as

an over-approximation for the example from Fig 1. The hypergraph component

consists of two edges labelled “A” and “B” and two nodes. In the Petri net

component there is only one transition corresponding to the rule “Rewriting

Rule”. Note that the guard of the transition is exactly the same as the guard of

the rule.

<?xml version="1.0"?>

<gxl>

<graph id="augur2.out" hypergraph="true" edgemode="undirected">

<node id="_22"> // a node can be either a hypergraph node or a transition

<attr name="vertex"/> // this is a hypegraph node

<attr name="iota_mapping"> // iota match from the initial graph

<string>n1</string>

5 FILE FORMATS 20

</attr>

</node>

<node id="_23"> // node

<attr name="vertex"/> // hypegraph node

<attr name="iota_mapping">

<string>n2</string>

</attr>

</node>

<rel id="_24"> // first edge

<attr name="label">

<string>A</string> // labelled with "A"

</attr>

<attr name="initial_marking"> // initial marking of the edge

<token>

<int>1</int> // one token

<attr kind="attr-int" name="a1"> // attribute "a1" of the token

<string>10</string> // value

</attr>

<attr kind="attr-int-str" name="a2"> // atribute "a1" of the token

<string>[5,’ab’]</string> // value

</attr>

</token>

</attr>

<attr name="iota_mapping"> // iota match for the edge

<string>ida</string> // id in the initial graph

</attr>

<relend target="_22" role="vertex" startorder="0"/> // connections

<relend target="_23" role="vertex" startorder="1"/>

<relend target="_26" role="postset"> // postset for the transition with id="_26"

<attr name="weight"> // weight on the arc is 1

<int>1</int>

</attr>

<attr kind="attr-int" name="a1"> // attribute fron term algebra on the arc

<string>x+5</string> // value

</attr>

<attr kind="attr-int-str" name="a2"> // second attribute

<string>[y-3,z.’a’]</string>

</attr>

</relend>

<relend target="_26" role="preset"> // postset

<attr name="weight">

<int>1</int>

</attr>

<attr kind="attr-int" name="a1"> // first attribute

<string>x</string>

</attr>

<attr kind="attr-int-str" name="a2"> // second attribute

<string>[y,z]</string>

</attr>

</relend>

</rel>

<rel id="_25"> // second edge

<attr name="label">

<string>B</string> // labelled with "B"

</attr>

<attr name="initial_marking"/> // not marked initiallly

<attr name="iota_mapping"> // iota is empty

<string></string>

</attr>

<relend target="_23" role="vertex" startorder="0"/> // connection

<relend target="_26" role="postset" // postset for the transition with id = "_26"

<attr name="weight">

<int>1</int> // weight on arc is 1

</attr>

<attr kind="attr-int" name="a3"> // attribute on arc

6 VERIFICATION EXAMPLE 21

<string>x+y</string>

</attr>

</relend> // not in the preset of any transition

</rel>

<node id="_26"> // transition with id = "_26"

<attr name="transition"/>

<attr name="rule">

<string>Rewriting Rule</string> // name of the rule

</attr>

<attr kind="attr-bool"> // guard function of the type boolean

<string>x>=10 AND y>0</string> // value

</attr>

<attr name="mu_mapping"> // mu match from a rule to the Petri graph

<string>nl1,22;nl2,23;cps_lh_gpub,24;nr1,22;nr2,23;cps_rh_Sprv,24;idbr,25;</string>

</attr> // match is based on ids

</node>

</graph>

</gxl>

6 Verification Example

In this section we represent the verification protocol for the attributed example

from Fig. 2 (file augur/example/attributed/conn2.xml in the tool).

We use here the command line version of the tool. The property we want to verify

is that no edge labelled “Error” will ever be created. We use modulo abstraction

of attributes with the initial value mod = 1. This value should be set in the

database in the following way:

<Globals>

...

<mod_base val="1"/>

...

</Globals>

...

<algorithm name="storage" reusable="true">

<label name="attribute_engine">

<default algorithm="expression_engine_mod"/>

<info>Here an attribute engine (abstraction) is set</info>

<expert status="false"/>

</label>

...

</algorithm>

6 VERIFICATION EXAMPLE 22

21 21

21 21

21 21

B
n: 1

C

B
n: 2

Initial Graph
c: 2

C
c: x

B
n: y

B
n: y

C
c: x*y

Cross Forward

B
n: y

C
c: x Cross Backward

B
n: y

B
n: y

Create B
B

n: y
B

n: y+1

A

A

C
c: x

C
c: x

Error
Error

(c=7)

Figure 2: Second example of an attributed graph transformation system

6 VERIFICATION EXAMPLE 23

...

First, construct the approximated unfolding using the scenario aunfold:

> bin/augur -db=db/default.xml -sc=aunfold

example/attributes/conn2.xml work/PetriNet_0.xml

loading database

Running scenario ...

step 1:

searching matches.unfolding rule 9 (Cross Forward) ...done.

step 2:

searching matches.folding rule 9 (Cross Forward) ...done.

step 3:

searching matches..unfolding rule 10 (Cross Backward) ...done.

step 4:

searching matches.folding rule 9 (Cross Forward) ...done.

step 5:

searching matches.folding rule 9 (Cross Forward) ...done.

step 6:

searching matches.folding rule 9 (Cross Forward) ...done.

step 7:

searching matches...unfolding rule 11 (Create C) ...done.

step 8:

searching matches.folding rule 9 (Cross Forward) ...done.

step 9:

searching matches.folding rule 9 (Cross Forward) ...done.

step 10:

searching matches....unfolding rule 12 (Error) ...done.

step 11:

searching matches....calculation finished.

time used: 0.01 sec.

edges: 4, vertices: 1, transitions: 4

The computed Petri graph (Petri net and graph component) can be visualized

using scenarios pn2ps and hg2ps. Furthermore, the initial graph and the rules

can be visualized using the scenario rules2ps.

For instance, the visualization of the hypergraph can be done in the following

way:

> bin/augur -sc=hg2ps -db=db/default.xml

6 VERIFICATION EXAMPLE 24

work/HyperGraph_0.xml work/out.hg.ps

The result is saved in the postscript file out.hg.ps.

Now we convert the regular expression 0’Error’0 describing an error edge of

arity 0 and corresponding to the property to be verified. This regular expression

is converted into a marking of the Petri graph via scenario property2marking.

> bin/augur -db=db/default.xml -sc=property2marking

work/PetriNet_0.xml work/regexpr work/marking

loading database

Running scenario ...

info: Hypergraph: vertices: 101 edges: 102 <S>(101) 103 <P>(101)

104 <Error>() 105 <C>(101 101)

info: result: MinCover {

Path 13926736 -> 164505152 f: 104 |-> 1

}

FORMULA (Error_104 >= 1)

The regular expression is saved in the file work/regexpr and the resulting mark-

ing is written to work/marking. Regular expression can also be more complex,

consider for instance ’A’C*’B’ specifying a chain of “C”s from an edge labelled

“A” to an edge labelled “B”. Note however that general regular expressions are

not fully supported by abstraction refinement.

We continue with our example. The file marking specifying markings that should

not be coverable contains the following content:

MARKING Error_104: 1;

If this marking is not coverable, then the verified property is true. Now we are

ready to check if this marking is coverable in the underlying Petri net. To this

aim we call the scenario cover with a standard coverability algorithm, which

checks whether a marking can be covered, in the following way:

> bin/augur -db=db/default.xml -sc=cover

work/PetriNet_0.xml work/marking work/transpath

loading database

Running scenario ...

Searching the trace to id=5

write counter-example to augur/work/transpath

6 VERIFICATION EXAMPLE 25

The Final Marking(s) are coverable

time used: 0 sec.

We can see that the marking is coverable in the Petri net and the trace is saved

in the file work/transpath:

Error

109

% x(int): 0

But this does not necessarily mean that the property is false, since we work with

an over-approximation. Let us now call counterexample-based abstraction refine-

ment with scenario refinement in order to obtain a more precise approximation.

> bin/augur -db=db/default.xml -sc=refinement

example/attributes/conn2.xml work/PetriNet_0.xml

work/transpath work/sample.xml work/PetriNet_1.xml

loading database

Running scenario ...

The example is spurious

Transition number 1, id: 109, name: Error,

could not be fired

Structural refinement is needed

equivalence class: nodes (2 3 4)

optimized sample size: 1

step 1:

searching matches.unfolding rule 9 (Cross Forward) ...done.

...

step 33:

searching matches....unfolding rule 12 (Error) ...done.

step 34:

searching matches....calculation finished.

time used: 0.25 seconds

edges: 9, vertices: 3, transitions: 13

Now the refined over-approximation is saved in the file work/PetriNet 1.xml.

From the output of the tool it can be deduced that the refinement step was

of the structural kind. If we repeat all earlier verification steps with scenarios

property2marking and cover, then we will see, that the undesirable situation

is still possible in the Petri net obtained from the first refinement step (i.e., the

6 VERIFICATION EXAMPLE 26

approximation is still too coarse).

In this case scenario cover gives the following answer:

loading database

Running scenario ...

Searching the trace to id=11

write counter-example to augur/work/transpath

The Final Marking(s) are coverable

time used: 0.01 sec.

This means that the marking is still coverable and the new counterexample is:

Cross Backward

618

% x(int): 0, y(int): 0

Error

629

% x(int): 0

If we restart counterexample-based abstraction refinement, then the new output

is:

> bin/augur -db=db/default.xml -sc=refinement

example/attributes/conn2.xml work/PetriNet_1.xml

work/transpath work/sample.xml work/PetriNet_2.xml

loading database

Running scenario ...

The example is spurious

Transition number 1, id: 618, name: Cross Backward,

could not be fired

Refinement of attributes is needed

(1) Attributes have been refined

Spurious counter-example is eliminated

We see that in this case refinement of attributes was needed and the attribute

abstraction was successfully refined. After the refinement step the modulo ab-

straction value becomes 2 and repeating the verification steps with scenarios

property2marking and cover shows us that the marking corresponding to the

edge “Error” is no more coverable:

7 LIST OF EXAMPLES 27

loading database

Running scenario ...

The Final Marking(s) are not coverable.

time used: 0.46 sec.

This means we have successfully verified the example.

7 List of examples

Here we comment some of the example files contained in the directory examples/:

• gtxl/dphil finite.xml (gtxl/dphil infinite.xml): A system of dining

philosophers in a finite-state and in an infinite-state version. In the latter

version philosophers are allowed to reproduce and create more philosophers.

This example is described in more detail in [BCK01].

• gtxl/external-internal.xml: A very simple toy example of external and

internal processes living in a network.

• gtxl/firewall2.xml: A network of secure and insecure locations, divided

by a firewall. This example is described in more detail in [BCK02, KK06b].

• gtxl/mutual.xml: A mutual exclusion protocol where a token is passed

around. Only the process in possession of the token can use a shared re-

source. Details can be found in [DKdSR04].

• gtxl/producer-consumer-directed.xml, gtxl/producer-consumer.xml:

A simple toy example describing the production and consumption of mes-

sages.

• gtxl/pub priv server.xml: A system of public and private servers inter-

acting with mobile processes.

• gtxl/resources.xml: A system of several processes sharing two resources.

This example is described in more detail in [BKK03].

• gtxl/red-black.xml, gtxl/red-black-converted.xml: Generates all

possible red-black trees (a form of balanced search trees) and models the in-

sertion of elements into red-black trees. Details can be found in [BCE+05b].

• attributed/simple.xml A very simple example of an attributed GTS.

8 LIMITATIONS AND KNOWN PROBLEMS 28

• attributed/conn2.xml The example is used in this paper as a verification

example (see Section 6).

• attributed/leader.xml A system describing a leader election protocol in

a ring architecture [Lyn96] with AGTSs. Details can be found in [Kozar].

8 Limitations and Known Problems

If the abstraction refinement is used one should insert an additional rule to the

system whose left-hand side L corresponds to the property to be verified. The

right-hand side of this new rule contains a 0-ary edge labelled Error and we will

check that this edge is not coverable in the approximation.

The reason for introducing such a new rule and not working with regular expres-

sions directly is the following: Assume that we have found, in the approximating

Petri net, a sequence of transitions t1, . . . , tn, corresponding to rules r1, . . . , rn
,

which generates a marking covering L. A corresponding sequence could very well

exist in the graph transformation system itself, with the only difference that the

graph obtained in this way does not contain L, but L′, such that L can be ob-

tained by merging nodes of L′. For instance, L′ could consist of two disconnected

edges. In order to recognize this as a spurious run, we will hence add the new

rule, that will be fired in the approximation, but can not be applied in the original

system.

A left-hand side should not contain two edges having the same label. There is

no error message if this should be the case, but there is no guarantee for the

correctness of the result (especially in the case of abstraction refinement).

For all tested examples, the running time is dominated by the calculation of the

coverability graph. The calculation of the coverability graph can be ignored by

adding the option -nc to the program call or by setting the nc flag in the database

to true. This can speed up the program essentially.

In the regular expressions it is required that all edge labels consist letters only,

labels containing numerical characters are disallowed. Note that if one wants

to specify a single 0-ary edge (for example labelled with “Error”) one writes

0’Error’0 if one uses the encoder sponge and Error if one uses an encoder to

semilinear sets.

Note also that not all techniques are implemented for attributed GTSs. For

example the marking check with MetricFF or with techniques based on linear

equations is not possible.

9 LICENSE AGREEMENT 29

Also errors in the input file are not always detected, and it is not always checked

if the prerequisites for the algorithm are met.

9 License Agreement

This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software

Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along with

this program; if not, write to the Free Software Foundation, Inc., 59 Temple

Place, Suite 330, Boston, MA 02111-1307, USA

Copyright (C) 2008

References

[AJKP98] Parosh Aziz Abdulla, Bengt Jonsson, Mats Kindahl, and Doron

Peled. A general approach to partial order reductions in symbolic

verification. In Proc. of CAV ’98, pages 379–390. Springer, 1998.

LNCS 1427.

[Bar05] Julian Bart. Effiziente Entfaltungsalgorithmen für Grapherset-

zungssysteme. Master’s thesis, Universität Stuttgart, June 2005.

No. 2290.

[BCE+05a] Paolo Baldan, Andrea Corradini, Javier Esparza, Tobias Heindel,

Barbara König, and Vitali Kozioura. Verifying red-black trees. In

Proc. of COSMICAH ’05, 2005. Proceedings available as report RR-

05-04 (Queen Mary, University of London).

[BCE+05b] Paolo Baldan, Andrea Corradini, Javier Esparza, Tobias Heindel,

Barbara König, and Vitali Kozioura. Verifying red-black trees. In

Proc. of COSMICAH ’05, 2005. Proceedings available as report RR-

05-04 (Queen Mary, University of London).

REFERENCES 30

[BCK01] Paolo Baldan, Andrea Corradini, and Barbara König. A static analy-

sis technique for graph transformation systems. In Proc. of CONCUR

’01, pages 381–395. Springer-Verlag, 2001. LNCS 2154.

[BCK02] Paolo Baldan, Andrea Corradini, and Barbara König. Static analysis

of distributed systems with mobility specified by graph grammars—

a case study. In H. Ehrig, B. Krämer, and A. Ertas, editors, Proc.

of IDPT ’02 (Sixth International Conference on Integrated Design &

Process Technology). Society for Design and Process Science, 2002.

[BCK04] Paolo Baldan, Andrea Corradini, and Barbara König. Verifying

finite-state graph grammars: an unfolding-based approach. In Proc.

of CONCUR ’04, pages 83–98. Springer-Verlag, 2004. LNCS 3170.

[BCKar] Paolo Baldan, Andrea Corradini, and Barbara König. A framework

for the verification of infinite-state graph transformation systems.

Information and Computation, to appear.

[BKK03] Paolo Baldan, Barbara König, and Bernhard König. A logic for

analyzing abstractions of graph transformation systems. In Proc. of

SAS ’03 (International Static Analysis Symposium), pages 255–272.

Springer-Verlag, 2003. LNCS 2694.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model

checking and abstraction. ACM Trans. Program. Lang. Syst.,

16(5):1512–1542, 1994.

[Cou01] P. Cousot. Abstract interpretation based formal methods and future

challenges, invited paper. In R. Wilhelm, editor, Informatics —

10 Years Back, 10 Years Ahead, volume 2000 of Lecture Notes in

Computer Science, pages 138–156. Springer-Verlag, 2001.

[DDP99] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with

predicate abstraction. In Proc. of CAV’99, pages 160–171, 1999.

[DKdSR04] Fernando Lúıs Dotti, Barbara König, Osmar Marchi dos Santos, and

Leila Ribeiro. A case study: Verifying a mutual exclusion protocol

with process creation using graph transformation systems. Technical

Report 08/2004, Universität Stuttgart, 2004.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors.

Handbook of Graph Grammars and Computing by Graph Transfor-

mation, Vol.2: Applications, Languages and Tools. World Scientific,

1999.

REFERENCES 31

[EKMR99] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors.

Handbook of Graph Grammars and Computing by Graph Transfor-

mation, Vol.3: Concurrency, Parallellism, and Distribution. World

Scientific, 1999.

[GS97] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs

with PVS. In Proc. of CAV’97, pages 72–83. Springer, 1997. LNCS

1254.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire

Sutre. Lazy abstraction. In Proc. of POPL ’02, pages 58–70. ACM,

2002.

[HK04] Markus Holzer and Barbara König. Regular languages, sizes of syn-

tactic monoids, graph colouring, state complexity results, and how

these topics are related to each other. EATCS Bulletin, 83:139–155,

June 2004. Appeared in The Formal Language Theory Column.

[Hor05] Martin Horsch. Test case generation for rule-based translators, June

2005. Studienarbeit (Student research project), No. 1984.

[Jen86] Kurt Jensen. Coloured Petri Nets. In Advances in Petri Nets, pages

248–299, 1986.

[JM06] Ranjit Jhala and Kenneth L. McMillan. A practical and complete

approach to predicate refinement. In Proc. of TACAS’06, pages 459–

473, 2006.

[Kas05] Harmen Kastenberg. Towards attributed graphs in Groove. In Pro-

ceedings of Workshop on Graph Transformation for Verification and

Concurrency, volume 05-34 of CTIT Technical Report, pages 91–98,

2005.

[KK05] Barbara König and Vitali Kozioura. Augur—a tool for

the analysis of graph transformation systems using approxi-

mative unfolding techniques, January 2005. Available from

http://www.ti.inf.uni-due.de/research/augur 1/doc augur 1.ps.

[KK06a] Barbara König and Vitali Kozioura. Augur 2—a new version of a tool

for the analysis of graph transformation systems. In Proc. of GT-

VMT ’06 (Workshop on Graph Transformation and Visual Modeling

Techniques), pages 63–72, 2006. ENTCS.

REFERENCES 32

[KK06b] Barbara König and Vitali Kozioura. Counterexample-guided abstrac-

tion refinement for the analysis of graph transformation systems. In

Proc. of TACAS ’06, pages 197–211. Springer, 2006. LNCS 3920.

[Kozar] Vitali Kozioura. Abstraction and Abstraction Refinement in the Veri-

ication of Graph Transformation Systems. PhD thesis. Universität

Duisburg-Essen, To appear.

[Lam04] Leen Lambers. A new version of GTXL: An exchange format for

graph transformation systems. In Proc. Workshop on Graph-Based

Tools (GraBaTs’04), pages 51–63, 2004.

[LKW93] Michael Löwe, Martin Korff, and Annika Wagner. An algebraic

framework for the transformation of attributed graphs. In Term

graph rewriting: theory and practice, pages 185–199. John Wiley and

Sons Ltd., 1993.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-

lishers, Inc, 1996.

[Rei85] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on The-

oretical Computer Science. Springer-Verlag, Berlin, Germany, 1985.

[Rel04] Nicolas Relange. Verifikation dynamischer Systeme: Reguläre

Ausdrücke zur Spezifikation verbotener Pfade. Master’s thesis, Uni-

versität Stuttgart, September 2004. No. 2192.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and

Computing by Graph Transformation, Vol.1: Foundations, volume 1.

World Scientific, 1997.

[Sif83] Joseph Sifakis. Property preserving homomorphisms of transition

systems. In Proceedings of the Carnegie Mellon Workshop on Logic

of Programs, pages 458–473. Springer-Verlag, 1983.

[Tae99] Gabriele Taentzer. AGG: A tool environment for algebraic graph

transformation. In Proc. of AGTIVE ’99 (Applications of Graph

Transformations with Industrial Relevance, International Work-

shop), pages 481–488. Springer, 1999. LNCS 1779.

[Tso06] Timur Tsotniashvili. Übersetzung von imperativen Programmen mit

Zeigermanipulation in Graphtransformations-Regeln. Master’s the-

sis, Universität Stuttgart, June 2006. No. 2431.

REFERENCES 33

[Tur04] Sinan Turan. Effiziente Berechnung der Überdeckbarkeit bei Petri-

Netzen, June 2004. Studienarbeit (Student research project),

No. 1935.

[vM06] Arwed von Merkatz. Analyse von Graphtransformationssystemen

mit Hilfe von Petrinetzen und Logiken. Master’s thesis, Universität

Stuttgart, July 2006. No. 2442.

