
Grez – User Manual

H.J. Sander Bruggink

Contents

Contents i

1 Introduction 1
1.1 Introduction to Grez . 1
1.2 Name . 1
1.3 People . 2
1.4 System requirements . 2
1.5 Installation . 2
1.6 Feedback and bug reports . 2
1.7 How to read this manual . 3
1.8 License . 3

2 The Graphical User Interface 5
2.1 Running Grez . 5
2.2 The main window . 5
2.3 The main menu . 6
2.4 Opening graph transformation systems . 7

2.4.1 Reading a system from a file . 7
2.4.2 Generating random systems . 7

2.5 Actions . 8
2.5.1 Proving termination . 8
2.5.2 Comparing algorithms . 9
2.5.3 Generating traces . 9

2.6 Specifying algorithms . 9
2.6.1 The algorithm list editor . 9
2.6.2 The algorithm editor . 9

2.7 Configuring external tools . 10
2.7.1 Configuring SMT solvers . 10
2.7.2 Configuring termination tools . 11

2.8 Changing user preferences . 12
2.9 Getting help . 12

3 The Command-Line Interface 13

i

Contents

3.1 Using Grez from the command-line . 13
3.2 Command-line options . 13

3.2.1 General options . 13
3.2.2 Action type and system selection . 14
3.2.3 Reporting and proof generation . 14
3.2.4 Random system generation . 14

3.3 Specifying algorithms . 15

4 Specifying Graph Transformation Systems: The Simple Graph Format 17
4.1 A first tour . 17

4.1.1 Defining rules . 17
4.1.2 Defining graph transformation systems . 18

4.2 Grammar . 19
4.2.1 Tokens . 19
4.2.2 Object definitions . 19
4.2.3 Graphs . 20
4.2.4 Morphisms . 20
4.2.5 Transformation rules . 21
4.2.6 Transformation systems . 21

4.3 Examples . 22
4.3.1 Two systems in one file . 22
4.3.2 In-place definition . 22
4.3.3 Ad-hoc routing . 23

5 Theoretical Foundations 25
5.1 Graph transformation . 25
5.2 Termination . 26
5.3 Satisfiability modulo theories . 27
5.4 Algorithms for proving termination and non-termination 27

5.4.1 Finding cycles . 27
5.4.2 Node counting . 27
5.4.3 Edge counting . 28
5.4.4 Petri-net approximation . 28
5.4.5 Type graph techniques . 29
5.4.6 Match bounds . 30

A License texts 33
A.1 BSD License . 33
A.2 Apache License, version 2.0 . 33
A.3 Creative Commons Attribution 4.0 International Public License 36

Bibliography 41

Index 43

ii

One

Introduction

1.1 Introduction to Grez

Termination, the absence of infinite computations,
is a property that is required in many applications,
in particular in model transformation, algorithms
and protocol specifications. Many of these appli-
cations, such as graphical model transformation
(for example, of UML models) and algorithms
that manipulate data structures on the heap, are
naturally modeled by graph transformation sys-
tems. Grez is a software tool that, given a graph
transformation system, automatically tries to find
a proof that the graph transformation system
terminates or a proof that it does not. It does
this by running a number of algorithms concur-
rently and reporting the result of the first of them
that successfully finishes. Since the problem is
undecidable in general [7], in many cases none
of the algorithms will find a termination or non-
termination proof.

Grez provides both a graphical user interface
and a command-line interface. Configuring Grez,
in particular the paths and parameters of the
external tools called by it, is only possible with
the graphical user interface, but other than that
all Grez functionality can be accessed through
both interfaces.

Grez is written in Java 8 and uses the standard
Java libraries, including Swing and concurrency,
JavaCC, ANTLR and Google Guava, as well as

a number of in-house libraries for graph trans-
formation and visualization. For some (optional)
functionality it needs an external tool, in partic-
ular an SMT solver to find solutions for sets of
constraints and a LATEX distribution to generate
PDF reports.

1.2 Name
People have wondered where the name Grez
comes from. There are two slightly different
things that people want to know when they ask
this question.

Some people who ask this question are curious
about what “Grez” means. An implicit assump-
tion here is that every name must mean something.
Amsterdam is a city which grew around a dam
built in the river Amstel; England is the land of
the angles, an ancient Germanic tribe; Columbia
is named after Christopher Columbus. But that
is not the case here. There is no language I know
of, current or historic, where the letter sequence
G, R, E, Z has any sensible meaning other than
“some word which starts with a G, and ends with
a Z.”

Other people do not want to know what “Grez”
means but what the reason is that the name “Grez”
was picked for this particular piece of software.
This is an entirely different question, one with an
answer! I took the letters T, E, R and M, which

1

1. Introduction

are the first four letter of the word “termination”,
and the applied the well-known ROT-13 cipher
to them. The result is “Grez”, which, coinciden-
tally, starts with the same two letters as the word
“Graph”.

1.3 People
The following people (in alphabetical order) are or
were involved in the development of Grez, either
by directly implementing the tool or by providing
its theoretical foundation:

• H.J. Sander Bruggink (main developer)

• Barbara König

• Dennis Nolte

• Hans Zantema

1.4 System requirements
Grez is written in Java. To use Grez, you need
a recent Java virtual machine (Java 8 or newer).
Additionally, to export proofs to PDF, you need
a LATEX distribution installed, including common
packages and style files (the command pdflatex
must be in the path).

The performance of some algorithms is greatly
improved if an external SMT solver is used (SMT
means satisfiability modulo theories), and some
algorithms even require this. All SMT solvers
which understand the SMT-LIB 2 input format
are supported.1 External SMT solvers can be set
up using the GUI, and after that they are also
available for use with the command-line interface.

The standard Grez distribution contains all li-
braries that Grez uses; thus, other than Java itself,
you don’t have to install additional software to
run Grez. To compile from source, however, you
need the following external Java libraries:

1 Some SMT solvers that claim to support the SMT-
LIB 2 format, actually do not fully do so.

• ANTLR 4 (www.antlr.org), used for pars-
ing the output of SMT solvers;

• Google Guava, version 14 or newer (github.
com/google/guava);

1.5 Installation

To install Grez it is only needed to copy the file
grez.jar to a location of your choice.

If you plan on using Grez through the command-
line a lot, it is advisable to create a shell script
in a directory in the path. In Unix-like operating
systems, such as Mac OS X and Linux, this file
could be named grez and contain:

#/bin/sh
java -jar -Dgrez.script=grez

å /path/to/grez.jar "$@"

(the last two lines should be on the same line).
In Windows, the file could be named grez.bat
and look like:

java -jar -Dgrez.script=grez
å C:\path\to\grez.jar %*

(the file should consist of a single line). The
-Dgrez.script=grez option sets a Java prop-
erty which is read by Grez. It has no effect
to the working of the program except that the
command name is displayed correctly in some
user interactions. Creating such a shell script
allows you to use grez as a command instead of
java -jar grez.jar.

1.6 Feedback and bug reports

Grez is free software, both as in free speech and
as in free beer. This means that you can use the
software and inspect and modify its source code
without cost, but it also means that there is no
warranty, no guarantee and no customer support.

2

www.antlr.org
github.com/google/guava
github.com/google/guava

1.8. License

Still, if you have feedback, bug reports and
questions you may send them to the main devel-
oper by e-mail:

sanderbruggink@gmail.com

(Please indicate Grez in the subject line.) If time
allows for it, you might even get an answer!

1.7 How to read this manual
This manual is not intended to be read sequen-
tially. In particular, the theoretical foundations
of the variant of graph transformation that Grez
uses, as well as of the algorithms that it employs
to find termination proofs, are covered in Chap-
ter 5, so if you want to know the theory behind
Grez, you should start there.

Grez offers to main user interfaces, a graphi-
cal user interface and a command-line interface,
which are covered in Chapters 2 and 3, respec-
tively. If you are not interested in the graphical
user interface you do not need to read Chapter 2,
and if you do not want to use the command-line
interface, you do not need to read Chapter 3.

Chapter 4 presents the file format that Grez
uses. Since Grez currently lacks a graphical user
interface for specifying graph transformation sys-
tems, you need to read this chapter if you want
to apply it to your own graph transformation
systems.

1.8 License
Grez is distributed under the terms of the (three
clause) BSD license (see Appendix A.1). The
two main third-party libraries used are ANTLR
and Google Guava. The first is, like Grez itself,
distributed under the terms of the (three clause)
BSD license, while the second is distributed under
the Apache license (see Appendix A.2).

This documentation is distributed under
the Creative Commons 4.0 Attribution licence,
CC BY 4.0 (see Appendix A.3).

3

sanderbruggink@gmail.com

Two

The Graphical User Interface

The most common way to interact with Grez is
the graphical user interface, which is presented in
this chapter. The graphical user interface allows
the user to open graph transformation systems
(and generate random ones), run algorithms which
try to prove termination or non-termination, and
inspect termination and non-termination proofs
produced by these algorithms. Additionally the
graphical user interface is used to configure the
external tools called by Grez.

2.1 Running Grez

To run Grez, a working Java 8 installation must
be present. If this is the case Grez ’s graphical
user interface (GUI) is started on the command-
line by changing to the directory where the file
grez.jar resides and issuing the command

java -jar grez.jar

Alternatively, in most operating systems one can
double-click the grez.jar file in the file browser.

When starting Grez ’s graphical user interface,
one can also specify an input file and use the
command-line option --system to open a specific
graph transformation system (see § 3.2).

2.2 The main window

The main window of Grez is displayed in Fig-
ure 2.1. It consists of the following parts; from
top to bottom these are:

• In the main menu there are various com-
mands for opening and generating graph
transformation systems, configuring external
programs and changing user preferences.

• In the rule selection box the user can se-
lect the rule of the currently opened graph
transformation system which is displayed.

• In the rule display the currently selected rule
is displayed. One can change the layout
of the rule by dragging nodes and (control
points of) edges. When multiple nodes and
edges are selected, they can be moved simul-
taneously by dragging the selection box or
rotated by dragging the quarter circle in the
top left corner of the selection box. Currently
it is not possible to modify the structure of
the rule.

• In the action panel the user can select the ac-
tion she wants to perform (prove, compare or
trace) and give the algorithm or algorithms
which are to be used in this action. In the
right of the action panel is the Execute but-

5

2. The Graphical User Interface

Figure 2.1: Main window of Grez.

ton which executes the currently selected
action.

• At the bottom is the status bar which dis-
plays information about the currently open
graph transformation system, in particular
the number of rules and the edge labels oc-
curring in it.

2.3 The main menu

Grez ’s main menu contains the following menus
and commands:

• System – Commands for obtaining graph
transformation systems.

– Open GTS – Open a system from a file;
see § 2.4.1.

– Generate random GTS – Generates
a random graph transformation sys-
tem with user-specified parameters; see
§ 2.4.2.

– Exit – Quit Grez

• Options – Command for configuring Grez.

– Termination tools – Configure external
termination tools used by Grez ; see
§ 2.7.2.

– SMT solvers – Configure SMT solvers
used by Grez ; see § 2.7.1.

– GUI options – Change some preferences
for the graphical user interface; see
§ 2.8.

– Change number of worker threads –
Change the number of worker threads

6

2.4. Opening graph transformation systems

that Grez uses when proving or com-
paring algorithms (the default is the
number of separate CPU cores in the
computer).

• Help – Obtain information about the pro-
gram; see § 2.9

– Visit website – Open Grez ’s website in
a browser window.

– About – Display copyright, license and
version information of Grez.

2.4 Opening graph
transformation systems

There are two ways to open a graph transfor-
mation system: reading a graph transformation
system from a file or generating a random one.

2.4.1 Reading a system from a file

A graph transformation system can be read from a
file in two ways, on the command-line and through
the graphical user interface.

• On the command line. Specify the file con-
taining the GTS on the command-line. If
this file contains more than one GTS, the
name of the GTS must be specified using
the --system=name command-line option.
See Chapter 3 for more information.

• Through the graphical user interface. Select
Open GTS from the System menu. A file
dialog appears. Select the file containing
the graph transformation system you want
to open. When selecting a file, in the right
of the dialog a list of graph transformation
systems in this file appears. Select the one
you want to open and click Open.

2.4.2 Generating random systems
Grez provides the option of automatically gener-
ating GTSs. To generate a random graph trans-
formation system, select the Generate random
GTS menu item from the System menu. A dialog
appears in which the parameters of graph trans-
formation system generation can be specified.

The parameters can be divided in four parts:
general parameters, parameters for the left-hand
side, parameters for the right-hand side and pa-
rameters for the interface of the rule.

General parameters.

• Number of rules – This is a single number
which specifies the number of rules in the
randomly generated GTS.

• Signature – The labels that can occur
in the GTS and their arities. This is a
comma-separated list of entries of the form
label :arity , where label is the string
displayed on the edge and arity is the arity
of the label, that is the number of nodes
edges labeled with this label are incident to.
Alternatively, press the Edit button to edit
the signature through a dialog.

Left-hand and right-hand side parameters.

• Number of nodes. Distribution for the num-
ber of nodes in a graph (see below).

• Density. Distribution for the density of the
graph. The density is a floating point number
≥ 0 which determines the number of edges
in the graph depending on the number of
nodes. In particular, if n is the number of
nodes and d the density, the number of edges
in the graph will be d · n2. In typical cases,
the density will lie between 0 and 1.

• Connectedness. This parameter control to
which extend the graph is connected. It has
three possible values:

7

2. The Graphical User Interface

– Arbitrary. All graphs can be gener-
ated, regardless of whether they are
connected or not.

– No isolated nodes. Non-connected
graphs can be generated, but each node
will always be incident to at least one
edge.

– Connected. Only connected graphs will
be generated.

Interface parameters.

• Number of nodes. Distribution for the num-
ber of nodes in the interface (see below).

• Discrete interfaces. When checked, only
interfaces without edges will be generated.
Otherwise, the interface will be the maximal
interface such that each interface edge of
the left-hand side has a corresponding edge
in the right-hand side.

Specifying distributions. Distributions can be
given through a dialog by clicking the Edit but-
ton, or entered manually by giving a string rep-
resentation of the distribution. The followings
distributions are available for all options where a
distribution is required:

• Non-random. A single number which is al-
ways chosen. The syntax is simply this num-
ber, for example 3 or 0.25.

• Uniform. All numbers within a speci-
fied range have an equal probability. The
string representation of such a distribution
is uniform(min,max).

• Normal. Normal distribution with a given
mean and standard deviation. The string
representation of such a distribution is
normal(mean,sd), where sd is the stan-
dard deviation.

2.5 Actions

Grez has three main actions to perform on graph
transformation systems: it can try to automat-
ically prove that a given graph transformation
system terminates or not using a number of al-
gorithms (§ 2.5.1), it can compare the result of a
number of algorithms (§ 2.5.2), and it can produce
a trace for a single algorithm (§ 2.5.3).

2.5.1 Proving termination

To prove termination of a graph transformation
system, choose the Prove tab from the action
panel, give the algorithms which are to be used
for proving termination, and press the Execute
button.

When proving termination, Grez runs a number
of user-selected algorithms concurrently. As soon
as one algorithm returns a proof of termination
or non-termination of the graph transformation
system under consideration, all algorithms are
stopped and the found proof is reported to the
user. If an algorithm finds a relative termina-
tion proof, all algorithms are stopped and the
procedure is repeated on the smaller graph trans-
formation system from this relative termination
proof.

Algorithms are run concurrently, but it is not
the case that all algorithms are started at the
same time: only as many algorithms are run con-
currently as CPU cores. The order in which the
algorithms are executed depends on their order in
the list.

There are three possible outcomes of this ac-
tion: a proof that the currently opened graph
transformation system terminates, a proof that
the currently opened graph transformation system
does not terminate, or, if none of the algorithms
could find a termination or non-termination proof,
no proof at all.

8

2.6. Specifying algorithms

2.5.2 Comparing algorithms

To compare the results of a number of algorithms
on the currently opened graph transformation
system, select the Compare tab from the action
panel, give a list of algorithm to compare and
click the Execute button.

When comparing algorithms, all algorithms
specified by the user are run until they finish,
either by giving a (relative or non-relative) termi-
nation proof, a non-termination proof or report
that they cannot find a proof. The results of
all algorithms are reported to the user. If some
algorithm return a relative termination proof the
relative termination proof will be reported and
the procedure will not be repeated on the smaller
graph transformation system.

2.5.3 Generating traces

Some algorithms can generate a trace to make
visible in what order certain operations are tried
out. To generate a trace of an algorithm, se-
lect the Trace tab of the action panel, enter the
algorithm to generate a trace of, and click the
Execute button. The selected algorithm is exe-
cuted, the steps of the algorithm are stored, and
after the algorithm finishes its trace and its result
are reported to the user.

Note that generating a trace is not supported
by all algorithms.

2.6 Specifying algorithms
There are two ways to specify the algorithms
which are going to be run: the string represen-
tation of the algorithm or algorithm list can be
edited directly, or it can be edited through a di-
alog. If you want to edit the string directly, see
§ 3.3 for the syntax. If you want to use the di-
alog press the Edit button to the right of the
text box. If the currently selected action is Prove
or Compare, the Algorithm list editor appears to
specify the list of algorithms; if the Trace action is

selected, the Algorithm editor appears to specify
the algorithm.

2.6.1 The algorithm list editor
The algorithm list editor displays the list of (repre-
sentations of) algorithm on the left and a number
of command buttons on the right. Available com-
mand buttons are:

• Add – Opens the Algorithm editor and adds
the algorithm specified there to the algorithm
list.

• Remove – Removes the currently selected
algorithm from the list.

• Clear – Removes all algorithms from the list.

• Edit – Opens the Algorithm editor to edit
the currently selected algorithm.

• Move up – Moves the currently selected al-
gorithm one position up in the list.

• Move down – Moves the currently selected
algorithm one position down in the list.

• Default – Replaces the list by the default list
of algorithms.

• Complete – Adds to the algorithm list all
algorithms of the default list, for which there
is not already an algorithm of the same type
(but possibly with different parameters) in
the list.

2.6.2 The algorithm editor
In the algorithm editor we can specify the algo-
rithm type and for each type we can give a number
of parameters. The following algorithm types are
available:

• Cycle finder. Tries to prove non-termination
of the selected graph transformation system
by trying to construct a cycle. This algorithm
is described in § 5.4.1. The parameters are:

9

2. The Graphical User Interface

– Initial graph size – number of nodes in
the initial graph;

– Length limit – length of the transfor-
mation sequences which are generated.

• Node counter. Tries to prove termination by
showing that the number of nodes decreases
in each rule application. This algorithm is
described in § 5.4.2.

• Edge counter. Tries to prove termination
by showing that the number of edges with
a label from a certain set decreases in each
rule application. This algorithm is described
in § 5.4.3.

• Type graph finder. Tries to prove termination
by the weighted type graph method described
in § 5.4.5. The parameters are:

– Number of nodes in type graph – maxi-
mal number of nodes in the type graph;

– Maximum weight – maximal weight
(only available if the Use SMT option
is turned off; if on, there is no limit on
the maximum weight);

– Possible semirings – which kind of eval-
uation can be used;

– Use SMT – whether to use an external
SMT solver; click the Configure button
to specify which SMT solver to use.

– Use non-relative termination – whether
to use a relative or non-relative termi-
nation. If non-relative termination is
used and the SMT solver fails to find a
proof, the relative termination is used
afterwards.

• Match bound finder. Tries to prove termi-
nation by using the match bound method
described in § 5.4.6. The Length limit pa-
rameter specifies after how many iterations
the algorithm will be aborted, while the other

parameters specify which type graph simpli-
fications will be used.

• Petri-net approximator. Tries to prove ter-
mination by approximating the graph trans-
formation system by a Petri-net. This al-
gorithm is described in § 5.4.4. This algo-
rithm requires an external SMT solver. Click
the Configure button to specify which SMT
solver to use.

• External tool. Sends the graph transforma-
tion to an external tool, possibly after per-
forming some translation.

2.7 Configuring external tools

Two types of external tools can be used with Grez :
external SMT solvers and external termination
tools. The external SMT solvers are used by some
algorithms to solve constraints, while external
termination tools serve as a kind of oracle: Grez
instructs them to prove termination of a graph
transformation system, after translating it to a
format suitable for the tool, and trusts that the
result is correct.

External SMT solvers and termination tools
need to be configured before Grez can use them.
In particular, Grez needs to know where their ex-
ecutable files are, what command-line arguments
the tools require, how and in what format they
expect their input, and how to interpret their
output.

2.7.1 Configuring SMT solvers

To configure the external SMT solvers used by
Grez, select the SMT solvers item from the Op-
tions menu. A dialog appears with which you can
add, remove and edit the configurations for the
external SMT solvers. For each SMT solver the
following information is required:

10

2.7. Configuring external tools

• Name – The name of the SMT tool. This
name is used to refer to the tool in user
interactions.

• Executable – Full path of the executable file
of the tool. Click the Browse button to select
the executable in a file dialog box.

• Command-line arguments – The command-
line arguments to be passed to the tool when
called from Grez. If the command-line argu-
ments contain the literal string ‘%FILE%’ or
‘$FILE’, this string is replaced by the input
file name. If it is required to pass an input
file name to the tool, but none of the two
string is present, then Grez adds the input
file name to the end of the command-line.

• Input method – Whether the SMT solver
expects its input to be passed through the
standard input stream, or via a temporary
file on disk.

Grez expects SMT solvers to write their output in
SMT-LIB 2 format to the standard output stream.

In principle Grez support any SMT solver which
can read files in SMT-LIB 2 format and produces
results and models in the same format. Some
SMT solvers which claim to be compatible with
SMT-LIB 2, however, are not or not completely.
Grez was tested and found to work with CVC4
[1] and Z3 [2]. Other solvers might also work; it
is up to the user to try out.

2.7.2 Configuring termination tools

To configure external termination tools used by
Grez, select the Termination tools item from the
Options menu. A dialog appears with which you
can add, remove and edit the configurations for
the external termination tools. For each termina-
tion tool the following information is required:

• Name – The name of the tool. This name is
used to refer to the tool in user interactions.

• Executable – Full path of the executable file
of the tool. Click the Browse button to select
the executable in a file dialog box.

• Command-line arguments – The command-
line arguments to be passed to the tool when
called from Grez. If the command-line argu-
ments contain the literal string ‘%FILE%’ or
‘$FILE’, this string is replaced by the input
file name. If it is required to pass an input
file name to the tool, but none of the two
string is present, then Grez adds the input
file name to the end of the command-line.

• Input format – The file format in which Grez
will translate the graph transformation sys-
tem prior to passing it to the tool. The
possible values are:

– Simple graph format – Pass the graph
transformation system in simple graph
format to the external tool.

– String rewrite system – Builds a cy-
cle rewrite system which is equivalent
to the graph transformation system in
terms of termination, and then calls the
tool on that.

• Input method – Whether the termination
tool expects its input to be passed through
the standard input stream, or via a temporary
file on disk.

• Terminating regex – If the tool’s output
matches this regular expression, Grez will
interpret this to mean: the system is termi-
nating.

• Non-terminating regex – If the tool’s output
matches this regular expression, Grez will
interpret this to mean: the system is not
terminating.

11

2. The Graphical User Interface

2.8 Changing user preferences
By choosing GUI options from the Options menu
the user can change the way Grez displays graphs
and rules, and specify when the log window is
closed after executing an action.

The following options can be changed by the
user:

• Layouter – Select the layouter which pro-
duces the initial layout (that is, determines
the initial position of the nodes and edges)
of the graphs and rules. Possible options are:

– Leveled – Locate nodes with minimum
number of incoming edges at the top,
nodes directly reachable from those
nodes at the level below, etc. In gen-
eral produces good results for graphs
containing only binary edges.

– Spring embedder – Use a spring em-
bedder to layout graphs and rules. In
general produces satisfiable results.

• Rule style – Select how rules are displayed.
Possible options are:

– Separated – The left-hand side and
right-hand side are displayed separately,
and the correspondence morphism is
displayed with dashed lines.

– Unified – The left-hand side and right-
hand side are displayed in a merged
graph; colors indicate which nodes and
edges are removed and created.

• Close log when finished – During proving,
comparing or tracing a log is displayed which
reports to the user what the algorithms are
currently doing. This option controls when
this log is automatically closed. Possible
values are:

– Never – Never automatically close the
log. The user must click the Close but-
ton manually to close the log.

– When successful – The log is automati-
cally closed when one of the algorithms
returned a result, but not when no
termination or non-termination proof
could be found.

– Always – The log is always automati-
cally closed after all algorithms finished.
This causes Grez to finish silently when
no proof can be found.

2.9 Getting help
Grez does not provide an online help system. Its
documentation consists of this user manual and
the web site. Under the Help menu you can find
two menu items: Visit website will open Grez ’s
website in your standard browser, and About dis-
plays version and license information of Grez.

12

Three

The Command-Line Interface

Almost all functionality of Grez can also be ac-
cessed from the command line. This is mainly
useful if you want to start Grez from a shell script
or another application, for example to perform
batch processing. In this chapter we describe the
command-line interface of Grez.

One thing you cannot do with the command-
line interface is configuring external tools, such as
other termination provers and SMT solvers. For
this you need the graphical user interface (see
§ 2.7). After an external tool has been configured,
it is available through the command-line interface,
however.

3.1 Using Grez from the
command-line

From the directory where the file grez.jar is
located, Grez is started from the command-line
with following command:

java -jar grez.jar --cli <args>

When a suitable shell script is created in the path
(see § 1.5), one can also use (in any directory) the
following:

grez --cli <args>

In both cases the <args> consist of a number
of command-line options and, optionally, a single

input file. An option starts with -, -- or /, and
any other command-line argument is interpreted
as an file name. The --cli option makes sure
that Grez ’s graphical user interface is not started.
The command-line options and input file may
occur in any order. The available command-line
options are listed in the next section.

3.2 Command-line options

Options start with -, -- or /. These three
are equivalent; for example, -help, --help and
/help are all recognized as a command-line op-
tion and have the same effect. The available
command-line options are:

3.2.1 General options

--help, -h – Display usage information (basi-
cally the information of this section) and
abort.

--version, -v – Display version information and
abort.

--cli, -c – Use the command-line interface,
that is, do not start the graphical user in-
terface.

If none of the above options are present, the
graphical user interface is started.

13

3. The Command-Line Interface

3.2.2 Action type and system selection
--action=act – Select the action to perform,

possibilities for act are: prove (try to
prove termination or non-termination of
a graph transformation system) compare
(compare results of different algorithms)
and trace (produce a trace of a supported
algorithm).

--algos=list – Select the algorithm(s) to try.
list is a comma-separated list of algo-
rithms (see § 3.3).

--threads=num – Specify the number of worker
threads that Grez uses when executing the
Prove or Compare actions. The default
value is the number of separate CPU cores
in the machine. The Trace action uses a
single thread regardless of the value of this
parameter.

--system=system – If the input file contains
more than one graph transformation system,
select the one with the given name.

--random – Generate a random graph transfor-
mation system.

--beta – Enable algorithms that are based on
unpublished results and/or currently in beta
stage. These algorithms are disabled by
default. Note that these algorithms are not
documented.

3.2.3 Reporting and proof generation
--progress=style – Set the progress report

style, possibilities for style are: silent
(no progress report), nice (the default),
nice-unicode and standard.

--rtype=ext – Set the file type of the gener-
ated report (proof/disproof), possibilities
for ext are: silent (do not write report),
text (text only; default) and pdf (PDF).
For the last option a LATEX distribution is
required.

--rfile=file – Set the file where the generated
report is written; default is standard out
if rtype=text and grez-output.pdf if
rtype=pdf.

--silent – Shorthand for --rftype=silent
--progress=silent.

3.2.4 Random system generation

For more information on the meaning of these op-
tions, and the syntax for specifying distributions,
see § 2.4.2.

--left-size=dist – Set the distribution for the
number of nodes in the left-hand side.

--right-size=dist – Set the distribution for
the number of nodes in the right-hand side.

--if-size=dist – Set the number of nodes in
the interface.

--left-dens=dist – Set the distribution for the
density of the left-hand side.

--right-dens=dist – Set the distribution for
the density of the right-hand side.

--dens=dist – Set the distribution for the den-
sity of the left-hand side and right-hand
side at the same time.

--left-conn=conn – Set the connectedness of
the left-hand side, possibilities are all,
connected and noiso.

--right-conn=conn – Set the connectedness of
the right-hand side, possibilities are all,
connected and noiso.

--conn=conn – Set connectedness of the left-
hand side and right-hand side at the same
time.

--discrete=bool – Set whether or not the in-
terface is discrete (default value: true).

--rules=num – Set the number of rules to gen-
erate.

14

3.3. Specifying algorithms

--labels=list – Set the signature of the gen-
erated graph transformation system. The
value list is a comma-separated list of
entries of the form label :arity .

3.3 Specifying algorithms
The general syntax for specifying algorithms is
the following:

Algorithm (Parameters)

where Parameters is a comma-separated list of
param =value pairs. If an algorithm has no pa-
rameters the parentheses are optional.

The value can be any string not containing
a comma. If the parameter requires an integer
value, value must be an non-negative integer
(a sequence of digits), and if the parameter is a
boolean parameter, value must be either ‘true’
or ‘false’; if the value is to be set to true, ‘=true’
can be omitted.

The possible algorithms are list below. Here, an
arbitrary string is denoted by s , a (non-negative)
integer by n and a boolean value by b .

CycleFinder – Tries to prove non-termination
by constructing a cycle. This algorithm is
described in § 5.4.1.

EdgeCounter – Tries to prove termination by
showing that the number of edges with a
label from a certain set decreases in each
rule application. This algorithm is described
in § 5.4.3.

External(tool=s) – Calls an external termina-
tion tool, the name of which is given by
the tool parameter. External tools can
only be configure using the graphical user
interface, see § 2.7.2.

MatchBound(size=n,limit=n,mini=b,in=b,
out=b) – Tries to prove termination by
using the match bound method described
in § 5.4.6. The size parameter specifies

the size of the initial graph, the limit
parameter specifies after how many
iterations the algorithm is aborted. The
parameters mini, in and out turn on or
off conservative minimization, incoming
factorization and outgoing factorization,
respectively.

NodeCounter – Tries to prove termination by
showing that the number of nodes de-
creases in each transformation step. This
algorithm is described in § 5.4.2.

PetriNet(tool=s) – Tries to prove termination
by approximating the graph transformation
system by a Petri-net. This algorithm is
described in § 5.4.4. This algorithm requires
an external SMT solver, the name of which
is specified by the tool parameter.

TypeGraph(smt=b,tool=s,nodes=n,max=n,
wt=s, nrt=b) – Tries to prove termina-
tion by the weighted type graph method
described in § 5.4.5. The parameters are:
smt – whether or not to use an external
SMT solver; tool – SMT solver to use
(only if SMT is used); nodes – maximum
number of nodes in generated type graph;
max – maximum weight of generated type
graph (only if SMT is not used); wt –
evaluation type; if it contains ‘T’ tropical
evaluation may be used, if it contains ‘A’
arctic evaluation can be used, if it contains
‘N’ arithmetic evaluation can be used;
nrt – wether or not to use non-relative
termination. This option is only available
if an SMT-solver is used

15

Four

Specifying Graph Transformation Systems:
The Simple Graph Format

Currently, Grez does not provide a graphical user
interface for constructing graph transformation
systems. It can generate random graph trans-
formation systems, or read existing ones from a
file stored on disk. If the user wants to find a
termination proof of a custom graph transforma-
tion system, he must use an external program to
create a file which describes the wanted graph
transformation system.

The file format that Grez natively supports,
called the simple graph format (SGF), is a text-
based format that describes various objects which
play a role in graph transformation, such as graphs
(and hypergraphs), morphisms and rules. The
format was developed to have a single parser and
input format that can be used in different graph
transformation tools.

Unlike other text-based formats, such as XML-
derived formats, which are mainly designed to
be easily parsed by a computer program, SGF is
designed to be easily written, read and maintained
in source form by a human being – the word simple
in the name reflects that it is supposedly simple to
write, not that it describes simple graphs. One of
the results of the emphasis on easy writing rather
than easy parsing is that there is sometimes more
than one way to define the same object.

In this chapter we describe the fragment of SGF
which describes objects that Grez understands,
namely graphs, rules, morphisms and graph trans-
formation systems.

4.1 A first tour
An SGF file consists of a list of object definitions.
Each of the objects defined in an SGF file can
either be nameless or be named by an identifier.
If it is named by an identifier, object definitions
occurring later in the file may refer to the object
by using its name.

The types of object that are mainly important
for Grez are graph transformation rules (rules for
short) and graph transformation systems, which
are sets of rules. In this section the most common
way to define such objects is presented. For a
complete reference on how these objects can be
defined, the reader is referred to § 4.2.

4.1.1 Defining rules

Rules are defined in the following way:

<name> = rule {
<left-hand side>
=>

17

4. Specifying Graph Transformation Systems: The Simple Graph Format

<right-hand side>
};

The ‘<name> =’ part is optional if you want to
define a rule with a default name. The left-hand
side and right-hand side are blocks (delimited with
‘{’ and ‘}’) defining the nodes and edges of the
respective graph (the node and edge definitions
are separated by semicolons). An edge can be
defined in the following ways:

• e:A(n1,...,nk) denotes a (hyper)edge
with name e and label A which is incident to
the nodes n1,. . . ,nk. Giving a name to an
edge is optional; if it is absent the edge will
not be in the correspondence morphism of
the rule.

• n1 --e:A-> n2 denotes a binary edge with
source node n1 and target node n2. Again,
the name of the edge is optional. The defi-
nition n1 --e:A-> n2 is equivalent to the
definition e:A(n1,n2).

• n2 <-e:A-- n1 denotes a binary edge with
source node n1 and target node n2. Again,
the name of the edge is optional. The defini-
tion n2 <-e:A-- n1 is equivalent to the def-
initions n1 --e:A-> n2 and e:A(n1,n2).

The latter two variants can be “chained”. For
example

n1 --e:A-> n2 --B-> n2 <-A-- n3

defines three edges: one A-labelled edge from n1
to n2, one B-labelled edge from n2 to n2 (a loop)
and one A-labelled edge from n3 to n2 (a loop).
Only the first of these edges is given a name, e.

All nodes occurring in edge definitions are also
implicitly added to the graph. If more nodes are
to be added to the graph, we can do so by the
‘node’ keyword:

node n4

adds a node named n4 to the graph. In practice,
the ‘node‘ keyword is only required to add nodes
to the graph which are not incident to any edge
(that is, isolated nodes).

The correspondence morphism of the rule is im-
plicitly defined to be the partial morphism which
maps nodes and edges of the left-hand side to
the node or edge of the right-hand side with the
same name, if it exists.

Example 4.1.1. Consider the following SGF code:

MyRule = rule {
{ n1 --A-> n2 --A-> n3 }
=>
{ B(n1,n4,n3) }

};

defines a rule which removes pairs of consecutive
A-labelled edges and replaces them by a single
hyperedge labelled B. The node n2 of the left-hand
side is removed, and the node n4 of the right-hand
side is created when this rule is applied.

4.1.2 Defining graph transformation
systems

A graph transformation system is defined as fol-
lows:

<name> = gts {
rules = [

<list of rules>
];

};

The list of rules is a comma-separated list or rules.
Usually, the list entries are names of rules defined
earlier, but it is also possible to define rules in-
place using the rule{...} syntax of the previous
section.

Example 4.1.2. A graph transformation system
which only contains the rule of Example 4.1.1 is
defined by the following SGF code:

18

4.2. Grammar

MyGTS = gts {
rules = [MyRule];

};

4.2 Grammar
In this section we specify the grammar of the
fragment of SGF which describes graph transfor-
mation systems and the objects on which they
depend.

In the grammar fragments we use the follow-
ing conventions. Terminal symbols are given in
typewriter font and enclosed in double quotes (for
example "graph" and "{"). Non-terminal sym-
bol are displayed in a slanted font. We use a kind
of extended Backus-Naur form: the right-hand
sides of the rules are basically regular expression
consisting of optional parts (?), choice (|) and
repetition (∗).

4.2.1 Tokens

SGF tokens are delimited by whitespace (space,
tab, carriage return and line feed) characters. Oth-
erwise, whitespace is ignored (this means, in par-
ticular, that newlines are ignored and do not carry
any meaning).

The following tokens are keywords in SGF:

copy
from
graph
gts

ifgraph ?
morphism
node
not ?

rule
system ?
to
trace ?

The keywords marked with a star are used to
describe objects which are not used in the context
of termination proving; they are mentioned here
for the sake of completeness but can otherwise
be ignored when specifying graph transformation
systems for use with Grez. They are not further
mentioned in this chapter.

An identifier in SGF is any non-empty sequence
of letters (‘a’–‘z’ and ‘A–Z’), digits (‘0’–‘9’) and

the special symbols ‘@’, ‘_’ and ‘.’ which is not a
keyword. Identifiers and keywords in SGF are case-
sensitive, that is ‘myRule’ is not the same token
as ‘myrule’ or ‘MYRULE’. Identifiers function both
as names (of defined objects, nodes and edges)
and as labels (of edges):

name → identifier
label → identifier

C/C++-style comments can be used through-
out SGF code: on encountering ‘//’ everything
until the end of the line is ignored, and addition-
ally every symbol between ‘/*‘ and ‘*/’ is ignored.

4.2.2 Object definitions

An SGF file consists of a list of object definitions:

sgf → object∗

Each object definition defines an object of a
certain type. For Grez, only graphs (‘graph’),
morphisms (‘morphism’), graph transformation
rules (‘rule’) and graph transformation systems
(‘gts’) are relevant.

Optionally, each defined object is given a name
by preceding the object definition with ‘name =’,
where the name is an identifier. By giving an
object a name it is possible to refer to the object
later.

Each object definition ends with a semicolon.

object → (name "=") ?
(graph
| morphism
| rule
| gts
| copy) ";"

To make a copy of a previously defined object,
we can use the copy keyword:

copy → "copy" "(" name ")"

19

4. Specifying Graph Transformation Systems: The Simple Graph Format

A declaration of the form copy(name) makes a
copy of the object with the given name. This
is especially useful if you wish to store the same
object under two names1.

4.2.3 Graphs

Graphs are defined with the keyword ‘graph’,
followed by a description of the nodes and edges
of the graph.

graph → "graph" "{" graph desc "}"

The description of the nodes and edges of the
graph is block delimited with curly braces contain-
ing a semicolon-separated list of node and edge
definitions:

graph desc → node edge
(";" node edge?) ∗

node edge → node | edge | binedge

Defining nodes. Nodes can be defined by the
‘node’ keyword followed by the name of the node.
Nodes have no label (see Chapter 5).

node → "node" name

A definition of the form ‘node name ’ makes sure
that the graph contains a node with the given
name; if the graph already contains a node with
that name, a second node with the same name
will not be added.

Defining edges. Edges can be defined in two
ways: in a functional style, which allows edges of
arbitrary arity to be defined – both binary edges
and hyperedges – and in an “arrow” style, which
only allows binary edges to be defined but which
is much more convenient in most circumstances.
In both cases edges have a label and, optionally, a
name, in the grammar called an edge annotation:

1Note, however, that an actual copy is made of the
object; thus the object will be represented in memory twice.

edge annot → (name ":")? label

In the functional style, edges are defined by
definitions of the form ‘A(n1,. . .,nk)’, where A
is the annotation (label and optionally the name)
of the edge and n1, . . . , nk are the names of the
nodes incident to the edge.

edge → edge annot
"(" inc nodes? ")"

inc nodes → name ("," name)∗

In the arrow style binary edges are defined by
entries of the form ‘src --A -> tgt ’ and ‘tgt
<-A -- src ’, which denote binary edges from
node src to node tgt . These entries can be
chained; for example: ‘x --A-> y <-B-- z’.

binedge → name (direction name)∗
direction → "--" edge annot "->" |

"<-" edge annot "--"

For both the functional style and the arrow
style it holds that if one of the node names does
not yet occur in the graph, a node of that name
is added to the graph.

Names. Within a single graph, each name can
occur only once. That is, for each name there can
be at most on node or edge with that name. If a
node name occurs in a graph definition multiple
times, then it refers to the same node in all cases.
In particular, the edge definition ‘x --A-> x’ de-
fines an A-labeled loop on the node named x. On
the other hand, each edge can only be defined
once. Defining two edges with the same name
will result in an error, even if they have the same
label in both cases.

4.2.4 Morphisms

Morphisms are defined by the keyword ‘morphism’
as follows:

20

4.2. Grammar

morphism → "morphism"
("from" name)?
("to" name)?
"{" mappings? "}"

mappings → mapping (";" mapping)∗
mapping → name "=>" name

Every morphism has a domain graph (given af-
ter the ‘from’ keyword) and a codomain graph
(given after the ‘to’ keyword). In some cases (for
example when defining a rule) the domain and
codomain can be determined from the context; in
these cases explicitly specifying the domain and
the codomain is optional. In all other cases the
domain and codomain must be specified.

The body of a morphism definition consists of
a semicolon-separated list of individual mappings
which map nodes of the domain graph to nodes of
the codomain and edges of the domain to edges
of the codomain. When mapping an edge it is
not necessary to explicitly map the incident nodes
of that edge also; this is done automatically.

If the specified mapping does not represent a
(partial) morphism – in particular this happens
when a node or an edge of the domain is mapped
to two different nodes or edges of the codomain
– an error is reported.

4.2.5 Transformation rules

A transformation rule2 consists of a left-hand side,
a right-hand side and a correspondence morphism
which associates a subset of the nodes and edges
of the left-hand side with nodes and edges of the
right-hand side. There are two ways in which rules
can be specified: firstly, the three components of
a rule can be given explicitly, and secondly there
is a short-hand form where the correspondence
morphism is automatically constructed from the
names of the nodes and edges of the left-hand
side and the right-hand side.

2 In addition to these three components, SGF allows
the definition of negative application conditions. Since
they are ignored by Grez, they are not described here.

rule → exp rule | short rule

Explicit form. In the explicit form, a rule is
defined by the following grammar:

exp rule → "rule" "{"
("left" "=" graph ref
| "right" "=" graph ref
| "morphism" "="

morph ref
graph ref → graph | name
morph ref → morphism | name

The three components of a rule are explicitly spec-
ified, either by referring by name to a previously
defined graph or morphism, or by defining the
components in-place (the graph and morphism
non-terminals are defined in § 4.2.3 and § 4.2.4,
respectively). The left-hand side, right-hand side
and morphism can be given in any order, and from
their definition until the end of the rule declara-
tion scope, left, right and morphism function
as names for the respective objects.

Short-hand form. In the short-hand form, a
rule is defined by the following grammar:

short rule → "rule" "{"
"{" graph desc "}"
"=>"
"{" graph desc "}"

"}"

The definition of graphs is the same as in § 4.2.3.
The correspondence morphism is automatically
generated from the graph definitions by mapping
each node and edge of the left-hand side to the
node or edge of the right-hand side with the same
name, if it exists.

4.2.6 Transformation systems
A transformation system is a set of rules. Trans-
formation systems are defined by the following
grammar:

21

4. Specifying Graph Transformation Systems: The Simple Graph Format

gts → "gts" "{"
"rules" "=" "["

rules?
"]" ";" "}"

rules → rule ref ("," rule ref)∗
rule ref → rule | name

The list of rules is a comma-separated list in which
each entry is an in-place rule definition (the non-
terminal rule is defined in § 4.2.5) or the name
of a previously defined rule.

4.3 Examples

4.3.1 Two systems in one file

It is possible to define two or more graph trans-
formation systems in a single SGF file. This can
be useful if the two systems share certain graphs
or rules. For example:

A = graph { 1 --A-> 2 };
B = graph { 1 --B-> 2 };

AtoB = rule {
left = A;
right = B;
morphism = morphism {

1 => 1;
2 => 2;

}
}

BtoA = rule {
left = B;
right = A;
morphism = morphism {

1 => 1;
2 => 2;

}
}

SysAtoB = gts {
rules = [AtoB];

};

SysBtoA = gts {
rules = [BtoA];

};

SysAeqB = gts {
rules = [AtoB, BtoA];

};

If the user tries to open an SGF file which con-
tains two graph transformation systems, she must
specify the name of the system she wants to open,
either by using the --system=<name> command-
line option or selecting it in the open dialog of
the graphical user interface.

4.3.2 In-place definition

In almost all cases where you can use the name
of a previously defined object, you can also define
that object in-place. (The exception to this rule
is in the definition of a morphism: after the from
and to keywords you can only use the name of a
previously defined graph.) For example:

MakeTriangle = gts {
rules = [

rule {
{ T(1,2,3) }
=>
{ 1 --A-> 2 --A-> 3 --A-> 1 }

}
];

}

If you define an object in place, you cannot give
it a name and thus you cannot refer to it later.
Defining an object in-place can be advantageous
if you need an object only once and do not want
to introduce a new name.

22

4.3. Examples

4.3.3 Ad-hoc routing

The following example is adapted from [5]. The
example describes a simple ad-hoc routing proto-
col in a dynamically changing network. A message
(M) traverses a network of servers (S), routers
(R) and directed connections (C) between them.
The message can only be sent to unvisited (U)
nodes. In addition, rules which modify the net-
work’s layout are active. The graph transforma-
tion system which models the protocol consists
of the following rules:

Send =
1 2

C
M U

→
1 2

C
M

Add =
1 2

C
S S

→
1 2

C C
S

R U
S

Connect =
1

S U
→

1
C
S U

The numbers below the nodes indicate what nodes
are mapped to each other by the correspondence
morphism.

This graph transformation system is repre-
sented by the following SGF code:

Send = rule {
{ 1 --M-> 1 --C-> 2 --U-> 2 }
=>
{ 1 --C-> 2 --M-> 2 }

};

Add = rule {
{ 1 --S-> 1 --C-> 2 --S-> 2 }
=>
{ 1 --S-> 1 --C-> n

--C-> 2 --S-> 2;
n --R-> n --U-> n; }

};

Connect = rule {
{ node 1;

r --S-> r --U-> r; }
=>
{ 1 --C-> n;

n --S-> n --U-> n; }
};

AdHocRouting = gts {
rules = [Send,Add,Connect];

};

23

Five

Theoretical Foundations

In this chapter we present some of the theoretical
foundations of the termination proving techniques
used in Grez. We have choses to keep the text
on a high level, referring to the literature for the
details.

5.1 Graph transformation
Grez uses so-called hypergraphs. A hypergraph
differs from a normal graph in that edges can be
incident to any number of nodes. Formally, a
hypergraph G consists of a finite set of nodes VG
(sometimes also called vertices in the literature)
and a finite set of edges EG disjoint from VG.
Each edge e ∈ EG has a label labG(e) and a
sequence of incident nodes attG(e) ⊆ V ∗G. Note
that in this approach nodes do not have labels;
they solely serve as a means to connect edges. In
the following a hypergraph will be simply called a
graph.

We will sometimes confuse the graph G with
the set of its components: G = VG ∪EG. In this
chapter we will additionally assume – without loss
of generality – that, for two graphs G and H, VG
and EH are disjoint (in other words, we assume
global, disjoint universes of nodes and edges).

The graph labels come from a fixed set Λ, called
the signature. In Grez, the signature consists of
all identifiers, that is, strings consisting of letters,
digits and some special characters (see § 4.2.1)

can function as labels. The subset of labels that
occur in a graph G is called the signature of G.

If G is a graph, e is an edge of G and v a node
of G, then we will say that e and v are incident
if v ∈ attG(e). Furthermore, two edges e1 and
e2 are adjacent if there exists a node v which is
incident to both e1 and e2. Similarly, two nodes
v1 and v2 are called adjacent if there exists an
edge which is incident to both v1 and v2.

A morphism f from a graph G to a graph H
is a function which maps nodes of G to nodes
of H and edges of G to edges of H, such that,
for each edge e ∈ EG, labG(e) = labH(f(e)) and
f(attG(e)) = attH(f(e)).1

Grez employs the so-called double pushout ap-
proach to graph transformation [6]. However,
for performance and convenience reasons, graph
transformation rules are represented similar to
single pushout rules. A graph transformation rule
consists of two graphs, a left-hand side L and a
right-hand side R, and a partial, injective mor-
phism from L to R. The morphism f will be
called the correspondence morphism. Without
loss of generality it will always be assumed that
the correspondence morphism f is of the following

1 In this case, f is extended to sequences of nodes as
follows: f(v1 · · · vn) = f(v1) · · · f(vn).

25

5. Theoretical Foundations

form:

f(x) =
{
x if x ∈ L ∩R
undefined otherwise.

Using this assumption, the equivalent rule in the
normal double pushout style is obtained by taking
L ∩R as the interface and the two injections as
the rule span.

A graph transformation step can be algorithmi-
cally described as follows. Let a rule ρ = L→ R

with correspondence morphism f be given. Sup-
pose there exists an injective morphism m, the
match, from L into some graph G. The rule can
be applied to m if for every edge e ∈ EG not in
the image of m and node v ∈ attG(e) it holds,
that if v is in the image of m, f is defined on the
pre-image of v under m. In this case we say that
the dangling edge condition is satisfied. If the
rule is applicable, all images of elements in L for
which f is undefined are removed from G. This
gives us the “context” graph C. Furthermore the
elements of R that do not have a preimage in
L are added and connected with the remaining
elements, as specified f . This results in the graph
H, and we write G ⇒ρ H. The dangling edge
condition ensures that nodes can only be deleted
if all incident edges are deleted.

Finally, a graph transformation system is a fi-
nite set of graph transformation rules. The rewrite
relation induced by the graph transformation sys-
tem is the union of the rewrite relations induced
by its rules.

5.2 Termination

There are two kinds of termination: uniform and
non-uniform termination. A graph transforma-
tion system is uniformly terminating if it does
not allow an infinite transformation sequence
G0 ⇒ G1 ⇒ · · · , where G0 is an arbitrary graph.
A graph transformation system is non-uniformly
terminating with respect to a set of graphs L if

it does not allow an infinite transformation se-
quence G0 ⇒ G1 ⇒ · · · with G0 ∈ L. Grez only
proves uniform termination (although in future
versions also non-uniform termination might be
supported).

A lot of research has been done on techniques
for proving (uniform) termination of rewrite sys-
tems, in particular of term and string rewrite
systems. An overview of such techniques can be
found in [8, Chap. 6]. In general, termination of a
term or string rewrite system is proven by finding
a suitable well-founded ordering > on the terms
or strings. In particular, it is convenient if the
ordering has the following property: if l > r for
some rule ρ = l → r, and s ⇒ρ t, then s > t.
Now, if we want to show that a term or string
rewrite system is terminating, it suffices to check
that l > r for each rule of the system.

In graph transformation the rules do only con-
sist of a left-hand side and a right-hand side, but
also of the correspondence morphism. So we
do not want to compare the left-hand side and
the right-hand side in isolation, but also want
to consider the correspondence morphism to get
stronger termination arguments. We will call a
rule ρ decreasing (resp. non-increasing) if it holds
that G ⇒ρ H implies G > H (resp. G ≥ H),
where > is a well-founded ordering on graphs
which depends on the specific technique and ≥
is the reflexive closure of >. Now it holds that a
graph transformation system is terminating if all
its rules are decreasing.

A useful notion is that of relative termination.
Let R be a set of graph transformation rules (that
is, R is a graph transformation system). If R can
be partitioned into two setsR> andR= = R\R>
such that all rules of R> are decreasing and all
rules of R= are non-increasing, then R is termi-
nating if and only if R= is terminating. Often,
proving that R= is terminating is considerably
easier than proving that R is terminating. Thus,
iterative termination proofs are produced. Many
termination techniques employed by Grez support

26

5.4. Algorithms for proving termination and non-termination

relative termination.

5.3 Satisfiability modulo
theories2

Some algorithms used by Grez solve constraints by
translating them into a satisfiability modulo the-
ories (SMT) formula and then calling an external
SMT solver. Here we briefly describe SMT.

The SMT problem is a decision problem for
logical formulas with respect to combinations of
background theories expressed in classical first-
order logic with equality. Examples of theories
typically used in computer science are the the-
ory of real numbers, the theory of integers, and
the theories of various data structures such as
lists, arrays, bit vectors and so on. SMT can be
thought of as a form of the constraint satisfaction
problem and thus a certain formalized approach
to constraint programming.

Formally speaking, an SMT instance is a for-
mula in first-order logic, where some function
and predicate symbols have additional interpre-
tations, and SMT is the problem of determining
whether such a formula is satisfiable. In other
words, imagine an instance of the Boolean satisfi-
ability problem (SAT) in which some of the binary
variables are replaced by predicates over a suitable
set of non-binary variables. A predicate is basi-
cally a binary-valued function of non-binary vari-
ables. Example predicates include linear inequali-
ties (for example 3x+ 2y − z ≥ 4) or equalities
involving uninterpreted terms and function sym-
bols (for example f(f(u, v), v) = f(u, v) where
f is some unspecified function of two unspecified
arguments.) These predicates are classified ac-
cording to the theory they belong to. For instance,
linear inequalities over real variables are evaluated
using the rules of the theory of linear real arith-
metic, whereas predicates involving uninterpreted
terms and function symbols are evaluated using

2This section is adapted from Wikipedia [10].

the rules of the theory of uninterpreted functions
with equality (sometimes referred to as the empty
theory). Other theories include the theories of
arrays and list structures (useful for modeling and
verifying software programs), and the theory of
bit vectors (useful in modeling and verifying hard-
ware designs). Most SMT solvers support only
quantifier free fragments of their logics.

Grez employs only the theories of linear integer
arithmetic (beta algorithms also non-linear integer
arithmetic) and uninterpreted functions, using
quantifier-free logic.

5.4 Algorithms for proving
termination and
non-termination

5.4.1 Finding cycles

Grez implements a simple cycle finder which ex-
haustively generates all transition sequences up
to a given length which start with an arbitrary
initial graph with a given size. If a cycle exists
among these finitely many transition sequences
this constitutes a proof of non-termination.

5.4.2 Node counting

The node counting technique is a simple termina-
tion technique which supports relative termination.
Let #(G) denote the number of nodes of a graph
G. This induces a well-founded order on graph
by counting the number of nodes.

A rule ρ = L → R is node-decreasing if
#(L) > #(R) and it is non-node-increasing
if #(L) ≥ #(R). Clearly, when G ⇒ρ H,
#(G) > #(H) if ρ is node-decreasing and
#(G) ≥ #(H) if ρ is non-node-increasing. This
leads to the following termination argument:

Theorem 5.4.1. If R and S are graph trans-
formation systems such that all rules of R are
node-decreasing and all rules of S are non-node-

27

5. Theoretical Foundations

increasing, then R∪ S is terminating if and only
if S is.

The node counter algorithm used by Grez uses
this termination argument. It just checks if the
condition applies and returns a termination proof
if it does.

5.4.3 Edge counting

The edge counting technique is a simple termina-
tion technique which supports relative termination.
Let S ⊆ Λ be a set of labels; then, for a graph G,
#S(G) denotes the number of edges in G which
are labelled with a label from S.

A rule ρ = L→ R is edge-decreasing with re-
spect to S if #S(L) > #S(R) and it is non-edge-
increasing with respect to S if #S(L) ≥ #S(R).
Clearly, when G ⇒ρ H, #S(G) > #S(H)
if ρ is edge-decreasing with respect to S and
#S(G) ≥ #S(H) if ρ is non-edge-increasing with
respect to S. This leads to the following termina-
tion argument:

Theorem 5.4.2. Let S ⊆ Λ be a set of labels.
If R and S are graph transformation systems
such that all rules of R are edge-decreasing with
respect to S and all rules of S are non-edge-
increasing with respect to S, then R ∪ S is ter-
minating if and only if S is.

The edge counter algorithm used by Grez uses
this termination argument. It tries all subsets of
the graph transformation system’s signature and
returns a termination proof if the above condition
holds for one of those subsets.

5.4.4 Petri-net approximation

In [9] a termination technique was presented
which over-approximates the transition sequences
of a graph transformation system by a Petri-net.
If the Petri-net is terminating, which is the case
if a certain system of linear inequalities does not

have any trivial solutions, then the graph transfor-
mation system is terminating as well. In fact, the
paper [9] extends this result to graph transforma-
tion systems with negative application conditions
(of a certain kind), but since Grez does not sup-
port negative application conditions at this point,
this extension was not implemented.

The Petri-net that approximates the graph
transformation system has a place for each label
in the signature and a transition for each graph
transformation rule. The pre- and post-conditions
of the Petri-net are as follows: for each edge la-
belled with a label A in the left-hand side of a
rule ρ the place corresponding to A is added as
a pre-condition to the transition corresponding
to ρ, and, for each edge labelled with a label B
in the right-hand side of a rule ρ the place cor-
responding to B is added as a post-condition to
the transition corresponding to ρ. Note that the
Petri-net only models the number of edges with
a certain label; it does not model the structure
of the graph.

Clearly, each transformation sequence of the
graph transformation system induces a firing se-
quence of the Petri-net of the same length. Thus,
termination of the Petri-net implies termination
of the graph transformation system – but not vice
versa.

A non-termination Petri-net is called weakly
repetitive in the Petri-net literature. To check
whether a Petri-net is weakly repetitive, the fol-
lowing well-known result can be used:

Proposition 5.4.3. Let A be the incidence ma-
trix of a Petri-net M . Then M is weakly repetitive
if there exists a vector z, with z > 0 and z 6= 0,
such that AT × z ≥ 0.

Grez ’s Petri-net approximation algorithm uses
an external SMT solver to check whether the
inequality of the above proposition has any so-
lutions (since it is a linear inequality, this is a
decidable problem).

28

5.4. Algorithms for proving termination and non-termination

5.4.5 Type graph techniques

A type graph for a graph transformation system
R is a graph T , such that for each reachable
graph G there exists a morphism from G to T .
(Since Grez only supports uniform termination,
effectively this means that for each graph G there
exists a morphism from G to T .) We additionally
require that for each rule ρ ∈ R, (where ρ = L→
R and ρ has correspondence morphism f) and
morphism m : L → T , there exists a morphism
m′ : R→ T such that (m′ ◦ f)(x) = m(x) for all
x for which f is defined.

A weighted type graph is a type graph where
each node and edge has been given a weight ∈ N.

Rules can be evaluated with respect to a
weighted type graph in two ways: tropically and
arcticly (see below). In each of these cases a
graph transformation system is proved to be ter-
minating by finding a weighted type graph which
satisfies the properties required by the chosen
evaluation type. Grez ’s type graph algorithm sup-
ports two methods for find (tropically, arcticly or
arithmetically evaluated) weighted type graphs:
the first is a naive implementation which exhaus-
tively enumerates all weighted type graphs up to
a certain number of nodes and maximum weight;
the second encodes the properties as an SMT for-
mula and runs an external SMT solver to find a
weighted type graph with k nodes satisfying these
properties (where k is a user-specified parameter).

Tropical evaluation. This termination tech-
nique was introduced in [5]. The technique sup-
ports relative termination.

Given a weighted type graph T , the weight
of a morphism m : G → T , denoted wt(m), is
the sum of all the weights in its image. Then a
rule ρ = L→ R, with correspondence morphism
f , is called tropically decreasing with respect
to T if for each morphism mL : L → T there
exists a morphism mR : R → T which agrees
on f such that wt(mL) > wt(mR); it is called
tropically non-increasing with respect to T if for

each morphism mL : L → T there exists a mor-
phism mR : R→ T which agrees on f such that
wt(mL) ≥ wt(mR).

The following termination argument was proved
in [5]:

Theorem 5.4.4. Let T be a weighted type graph.
If R and S are graph transformation systems such
that all rules of R are tropically decreasing with
respect to T and all rules of S are tropically
non-increasing with respect to T , then R∪ S is
terminating if and only if S is.

Arctic evaluation This termination technique
was introduced in [5]. It is very similar to the
tropical evaluation, except that rules are evaluated
“from left to right”. As the tropical evaluation,
this technique supports relative termination.

Given a weighted type graph T , the weight
of a morphism m : G → T is defined in the
same way as with the tropical evaluation. A
rule ρ = L → R, with correspondence mor-
phism f , is called arcticly decreasing with respect
to T if for each morphism mR : R → T there
exists a morphism mL : L → T which agrees
on f such that wt(mL) > wt(mR); it is called
arcticly non-increasing with respect to T if for
each morphism mR : R→ T there exists a mor-
phism mL : L→ T which agrees on f such that
wt(mL) ≥ wt(mR).

The following termination argument was proved
in [5]:

Theorem 5.4.5. Let T be a weighted type graph.
If R and S are graph transformation systems
such that all rules of R are arcticly decreasing
with respect to T and all rules of S are arcticly
non-increasing with respect to T , then R∪ S is
terminating if and only if S is.

Arithmetical evaluation. This termination
technique was introduced in [4]. The technique
supports relative termination.

29

5. Theoretical Foundations

Given a weighted type graph T , the weight of
a graph G , denoted wt(G), is the sum of the
weights of all morphisms m : G → T , denoted
wt(m) which is the product of all the weights in its
image. Then a rule ρ = L�ϕL− I −ϕR�R, with
morphism f : I → T , is called arithmetically non-
increasing with respect to T if for all f it holds
that

∑
mL : L→T
mL◦ϕL=f

wt(mL) ≥
∑
mR : R→T
mR◦ϕR=f

wt(mR);

it is called arithmetically decreasing with respect
to T if the sum of weights for mL is > than the
sum of weights for mR with respect to f ′ : I → T

where f ′ maps all nodes onto the flower node of
T .

The following termination argument was proved
in [4]:

Theorem 5.4.6. Let T be a weighted type graph.
If R and S are graph transformation systems such
that all rules of R are arithmetically decreasing
with respect to T and all rules of S are arith-
metically non-increasing with respect to T , then
R∪ S is terminating if and only if S is.

5.4.6 Match bounds

The match bound technique implemented in Grez
is a slightly improved version of the technique
presented in [3]. The idea is to annotate each
edge with a match height, informally the number
of rule applications responsible for creating the
edge in question. If the match height of the graph
transformation system is bounded, then the graph
transformation system is terminating.

Formally, annotating a graph transformation
system is done by constructing a new graph trans-
formation systems which uses Λ× N as label set,
where Λ is the label set of the original system.
When an occurrence of a left-hand side is replaced
by a right-hand side, the new edges are annotated
with a creation height which is equal to the small-
est creation height of the left-hand side plus one.
Now, the termination argument is as follows: if
there exists a type graph (with annotated edges)

for the annotated graph transformation system,
then the match bound is bounded (because the
type graph is finite by definition) and thus the
original graph transformation system is terminat-
ing. See [3] for more details and formal definitions
and proofs.

Grez ’s match bound algorithm uses the follow-
ing algorithm to try to find a type graph for the
annotated graph transformation system:

1. Start with the flower graph, that is the graph
which consists of a single node v and for each
label and edge which is only connected (as
many times as the arity prescribes) to v. All
edges are annotated with the creation height
0.

2. Find an occurrence of an annotated left-hand
side in the current type graph. If such an
occurrence exists, extend the type graph with
the right-hand side. The left-hand side is not
removed from the type graph. Note that the
annotations of all edges in the right-hand side
is the minimum annotation of the left-hand
side plus one.

3. Reduce the type graph by user-specified type
graph reductions (see below).

4. Continue with step 2 as long as the type
graph can be modified this way.

If the algorithm terminates, then a type graph for
the annotated graph transformation system has
been found and thus the original graph transfor-
mation system is terminating.

Grez implements the following type graph re-
ductions:

• Conservative minimization – While the type
graph has an endomorphism (a morphism
from the type graph to itself) which is not
an isomorphism, the type graph is replaced
by the image of this endomorphism. This
reduction is conservative in the following
sense. Let T be a type graph and T ′ its

30

5.4. Algorithms for proving termination and non-termination

minimization. Then there exists a morphism
f : G→ T if and only if there exists a mor-
phism f ′ : G→ T ′.

• Outgoing edge factorization – If there are
two edges with the same label, which are
connected to the same node in port 0 (in
binary edges, this is the source port), then
the nodes connected to port 1 (the target
port) of the two edges are merged. This is a
non-conservative reduction. Let T be a type
graph and T ′ its outgoing edge factorization.
Then it is the case that the existence of a
morphism f : G→ T implies the existence of
a morphism f ′ : G→ T ′, but not the other
way around. For some graph transformation
systems this reduction is necessary for the
algorithm to terminate, while in others it
causes non-termination.

• Incoming edge factorization – The same as
outgoing edge factorization, but now nodes
are merged if they are the source nodes of
two edges with the same label and the same
target node.

31

Appendix A

License texts

A.1 BSD License
Redistribution and use in source and binary forms,
with or without modification, are permitted pro-
vided that the following conditions are met:

1. Redistributions of source code must retain
the above copyright notice, this list of condi-
tions and the following disclaimer.

2. Redistributions in binary form must repro-
duce the above copyright notice, this list of
conditions and the following disclaimer in
the documentation and/or other materials
provided with the distribution.

3. Neither the name of the copyright holder nor
the names of its contributors may be used
to endorse or promote products derived from
this software without specific prior written
permission.

This software is provided by the copyright holders
and contributors “as is” and any express or implied
warranties, including, but not limited to, the im-
plied warranties of merchantability and fitness for
a particular purpose are disclaimed. In no event
shall the copyright holder or contributors be liable
for any direct, indirect, incidental, special, exem-
plary, or consequential damages (including, but
not limited to, procurement of substitute goods or
services; loss of use, data, or profits; or business

interruption) however caused and on any theory
of liability, whether in contract, strict liability, or
tort (including negligence or otherwise) arising in
any way out of the use of this software, even if
advised of the possibility of such damage.

A.2 Apache License, version 2.0

1. Definitions. “License” shall mean the terms
and conditions for use, reproduction, and distri-
bution as defined by Sections 1 through 9 of this
document.

“Licensor” shall mean the copyright owner or
entity authorized by the copyright owner that is
granting the License.

“Legal Entity” shall mean the union of the
acting entity and all other entities that control, are
controlled by, or are under common control with
that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect,
to cause the direction or management of such
entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership
of such entity.

“You” (or “Your”) shall mean an individual or
Legal Entity exercising permissions granted by
this License.

“Source” form shall mean the preferred form for

33

A. License texts

making modifications, including but not limited
to software source code, documentation source,
and configuration files.

“Object” form shall mean any form resulting
from mechanical transformation or translation
of a Source form, including but not limited to
compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship,
whether in Source or Object form, made available
under the License, as indicated by a copyright
notice that is included in or attached to the work.

“Derivative Works” shall mean any work,
whether in Source or Object form, that is based
on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or
other modifications represent, as a whole, an orig-
inal work of authorship. For the purpose of this
License, Derivative Works shall not include works
that remain separable from, or merely link (or
bind by name) to the interfaces of, the Work and
Derivative Works thereof.

“Contribution” shall mean any work of author-
ship, including the original version of the Work
and any modifications or additions to that Work
or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by
the copyright owner or by an individual or Legal
Entity authorized to submit on behalf of the copy-
right owner. For the purposes of this definition,
“submitted” means any form of electronic, verbal,
or written communication sent to the Licensor or
its representatives, including but not limited to
communication on electronic mailing lists, source
code control systems, and issue tracking systems
that are managed by, or on behalf of, the Licen-
sor for the purpose of discussing and improving
the Work, but excluding communication that is
conspicuously marked or otherwise designated in
writing by the copyright owner as “Not a Contri-
bution.”

“Contributor” shall mean Licensor and any in-
dividual or Legal Entity on behalf of whom a

Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to
the terms and conditions of this License, each
Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare
Derivative Works of, publicly display, publicly per-
form, sublicense, and distribute the Work and
such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the
terms and conditions of this License, each Contrib-
utor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license
to make, have made, use, offer to sell, sell, im-
port, and otherwise transfer the Work, where
such license applies only to those patent claims
licensable by such Contributor that are necessarily
infringed by their Contribution(s) alone or by com-
bination of their Contribution(s) with the Work
to which such Contribution(s) was submitted. If
You institute patent litigation against any entity
(including a cross-claim or counterclaim in a law-
suit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct
or contributory patent infringement, then any
patent licenses granted to You under this License
for that Work shall terminate as of the date such
litigation is filed.

4. Redistribution. You may reproduce and dis-
tribute copies of the Work or Derivative Works
thereof in any medium, with or without modifi-
cations, and in Source or Object form, provided
that You meet the following conditions:

a. You must give any other recipients of the Work
or Derivative Works a copy of this License; and

34

A.2. Apache License, version 2.0

b. You must cause any modified files to carry
prominent notices stating that You changed
the files; and

c. You must retain, in the Source form of any
Derivative Works that You distribute, all copy-
right, patent, trademark, and attribution no-
tices from the Source form of the Work, ex-
cluding those notices that do not pertain to
any part of the Derivative Works; and

d. If the Work includes a “NOTICE” text file as
part of its distribution, then any Derivative
Works that You distribute must include a read-
able copy of the attribution notices contained
within such NOTICE file, excluding those no-
tices that do not pertain to any part of the
Derivative Works, in at least one of the fol-
lowing places: within a NOTICE text file dis-
tributed as part of the Derivative Works; within
the Source form or documentation, if provided
along with the Derivative Works; or, within
a display generated by the Derivative Works,
if and wherever such third-party notices nor-
mally appear. The contents of the NOTICE file
are for informational purposes only and do not
modify the License. You may add Your own at-
tribution notices within Derivative Works that
You distribute, alongside or as an addendum
to the NOTICE text from the Work, provided
that such additional attribution notices cannot
be construed as modifying the License.
You may add Your own copyright statement to
Your modifications and may provide additional
or different license terms and conditions for
use, reproduction, or distribution of Your mod-
ifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and
distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions. Unless You
explicitly state otherwise, any Contribution in-
tentionally submitted for inclusion in the Work

by You to the Licensor shall be under the terms
and conditions of this License, without any addi-
tional terms or conditions. Notwithstanding the
above, nothing herein shall supersede or modify
the terms of any separate license agreement you
may have executed with Licensor regarding such
Contributions.

6. Trademarks. This License does not grant
permission to use the trade names, trademarks,
service marks, or product names of the Licensor,
except as required for reasonable and custom-
ary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required
by applicable law or agreed to in writing, Licensor
provides the Work (and each Contributor provides
its Contributions) on an “as is” basis, without
warranties or conditions of any kind, either ex-
press or implied, including, without limitation, any
warranties or conditions of title, non-infringement,
merchantability, or fitness for a particular pur-
pose. You are solely responsible for determining
the appropriateness of using or redistributing the
Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and
under no legal theory, whether in tort (includ-
ing negligence), contract, or otherwise, unless
required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing,
shall any Contributor be liable to You for damages,
including any direct, indirect, special, incidental,
or consequential damages of any character arising
as a result of this License or out of the use or in-
ability to use the Work (including but not limited
to damages for loss of goodwill, work stoppage,
computer failure or malfunction, or any and all
other commercial damages or losses), even if such
Contributor has been advised of the possibility of
such damages.

35

A. License texts

9. Accepting Warranty or Additional Liability.
While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee
for, acceptance of support, warranty, indemnity, or
other liability obligations and/or rights consistent
with this License. However, in accepting such
obligations, You may act only on Your own behalf
and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree
to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims
asserted against, such Contributor by reason of
your accepting any such warranty or additional
liability.

A.3 Creative Commons
Attribution 4.0
International Public License

By exercising the Licensed Rights (defined below),
You accept and agree to be bound by the terms
and conditions of this Creative Commons Attri-
bution 4.0 International Public License (”Public
License”). To the extent this Public License may
be interpreted as a contract, You are granted
the Licensed Rights in consideration of Your ac-
ceptance of these terms and conditions, and the
Licensor grants You such rights in consideration
of benefits the Licensor receives from making the
Licensed Material available under these terms and
conditions.

Section 1 – Definitions

a. Adapted Material means material subject to
Copyright and Similar Rights that is derived
from or based upon the Licensed Material and
in which the Licensed Material is translated,
altered, arranged, transformed, or otherwise
modified in a manner requiring permission un-
der the Copyright and Similar Rights held by
the Licensor. For purposes of this Public Li-
cense, where the Licensed Material is a mu-

sical work, performance, or sound recording,
Adapted Material is always produced where the
Licensed Material is synched in timed relation
with a moving image.

b. Adapter’s License means the license You ap-
ply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in ac-
cordance with the terms and conditions of this
Public License.

c. Copyright and Similar Rights means copy-
right and/or similar rights closely related to
copyright including, without limitation, perfor-
mance, broadcast, sound recording, and Sui
Generis Database Rights, without regard to
how the rights are labeled or categorized. For
purposes of this Public License, the rights spec-
ified in Section 2(b)(1)-(2) are not Copyright
and Similar Rights.

d. Effective Technological Measures means
those measures that, in the absence of proper
authority, may not be circumvented under laws
fulfilling obligations under Article 11 of the
WIPO Copyright Treaty adopted on December
20, 1996, and/or similar international agree-
ments.

e. Exceptions and Limitations means fair use,
fair dealing, and/or any other exception or
limitation to Copyright and Similar Rights that
applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or liter-
ary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to
You subject to the terms and conditions of
this Public License, which are limited to all
Copyright and Similar Rights that apply to
Your use of the Licensed Material and that the
Licensor has authority to license.

36

A.3. Creative Commons Attribution 4.0 International Public License

h. Licensor means the individual(s) or entity(ies)
granting rights under this Public License.

i. Share means to provide material to the public
by any means or process that requires permis-
sion under the Licensed Rights, such as re-
production, public display, public performance,
distribution, dissemination, communication, or
importation, and to make material available
to the public including in ways that members
of the public may access the material from
a place and at a time individually chosen by
them.

j. Sui Generis Database Rights means rights
other than copyright resulting from Directive
96/9/EC of the European Parliament and of
the Council of 11 March 1996 on the legal
protection of databases, as amended and/or
succeeded, as well as other essentially equiva-
lent rights anywhere in the world.

k. You means the individual or entity exercising
the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope

a. License grant.

1. Subject to the terms and conditions of
this Public License, the Licensor hereby
grants You a worldwide, royalty-free, non-
sublicensable, non-exclusive, irrevocable li-
cense to exercise the Licensed Rights in the
Licensed Material to:
A. reproduce and Share the Licensed Ma-

terial, in whole or in part; and
B. produce, reproduce, and Share Adapted

Material.
2. Exceptions and Limitations. For the avoid-

ance of doubt, where Exceptions and Lim-
itations apply to Your use, this Public Li-
cense does not apply, and You do not need
to comply with its terms and conditions.

3. Term. The term of this Public License is
specified in Section 6(a).

4. Media and formats; technical modifications
allowed. The Licensor authorizes You to
exercise the Licensed Rights in all media
and formats whether now known or here-
after created, and to make technical modi-
fications necessary to do so. The Licensor
waives and/or agrees not to assert any right
or authority to forbid You from making tech-
nical modifications necessary to exercise the
Licensed Rights, including technical modi-
fications necessary to circumvent Effective
Technological Measures. For purposes of
this Public License, simply making modifi-
cations authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Ma-
terial. Every recipient of the Licensed
Material automatically receives an of-
fer from the Licensor to exercise the
Licensed Rights under the terms and
conditions of this Public License.

B. No downstream restrictions. You may
not offer or impose any additional or dif-
ferent terms or conditions on, or apply
any Effective Technological Measures
to, the Licensed Material if doing so re-
stricts exercise of the Licensed Rights by
any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public
License constitutes or may be construed as
permission to assert or imply that You are,
or that Your use of the Licensed Material
is, connected with, or sponsored, endorsed,
or granted official status by, the Licensor or
others designated to receive attribution as
provided in Section 3(a)(1)(A)(i).

b. Other rights.

37

A. License texts

1. Moral rights, such as the right of integrity,
are not licensed under this Public License,
nor are publicity, privacy, and/or other simi-
lar personality rights; however, to the extent
possible, the Licensor waives and/or agrees
not to assert any such rights held by the
Licensor to the limited extent necessary to
allow You to exercise the Licensed Rights,
but not otherwise.

2. Patent and trademark rights are not li-
censed under this Public License.

3. To the extent possible, the Licensor waives
any right to collect royalties from You for
the exercise of the Licensed Rights, whether
directly or through a collecting society un-
der any voluntary or waivable statutory or
compulsory licensing scheme. In all other
cases the Licensor expressly reserves any
right to collect such royalties.

Section 3 – License Conditions Your exercise
of the Licensed Rights is expressly made subject
to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (includ-
ing in modified form), You must:

A. retain the following if it is supplied by
the Licensor with the Licensed Material:

i. identification of the creator(s) of
the Licensed Material and any oth-
ers designated to receive attribu-
tion, in any reasonable manner re-
quested by the Licensor (including
by pseudonym if designated);

ii. a copyright notice;
iii. a notice that refers to this Public

License;
iv. a notice that refers to the disclaimer

of warranties;

v. a URI or hyperlink to the Licensed
Material to the extent reasonably
practicable;

B. indicate if You modified the Licensed
Material and retain an indication of any
previous modifications; and

C. indicate the Licensed Material is li-
censed under this Public License, and
include the text of, or the URI or hyper-
link to, this Public License.

2. You may satisfy the conditions in Sec-
tion 3(a)(1) in any reasonable manner
based on the medium, means, and context
in which You Share the Licensed Material.
For example, it may be reasonable to sat-
isfy the conditions by providing a URI or
hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must re-
move any of the information required by
Section 3(a)(1)(A) to the extent reasonably
practicable.

4. If You Share Adapted Material You produce,
the Adapter’s License You apply must not
prevent recipients of the Adapted Material
from complying with this Public License.

Section 4 – Sui Generis Database Rights
Where the Licensed Rights include Sui Generis
Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1)
grants You the right to extract, reuse, repro-
duce, and Share all or a substantial portion of
the contents of the database;

b. if You include all or a substantial portion of
the database contents in a database in which
You have Sui Generis Database Rights, then
the database in which You have Sui Generis
Database Rights (but not its individual con-
tents) is Adapted Material; and

38

A.3. Creative Commons Attribution 4.0 International Public License

c. You must comply with the conditions in Sec-
tion 3(a) if You Share all or a substantial por-
tion of the contents of the database.

For the avoidance of doubt, this Section 4 sup-
plements and does not replace Your obligations un-
der this Public License where the Licensed Rights
include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and
Limitation of Liability

a. Unless otherwise separately undertaken by
the Licensor, to the extent possible, the
Licensor offers the Licensed Material as-
is and as-available, and makes no repre-
sentations or warranties of any kind con-
cerning the Licensed Material, whether
express, implied, statutory, or other. This
includes, without limitation, warranties of
title, merchantability, fitness for a partic-
ular purpose, non-infringement, absence
of latent or other defects, accuracy, or
the presence or absence of errors, whether
or not known or discoverable. Where dis-
claimers of warranties are not allowed in
full or in part, this disclaimer may not ap-
ply to You.

b. To the extent possible, in no event will the
Licensor be liable to You on any legal the-
ory (including, without limitation, negli-
gence) or otherwise for any direct, special,
indirect, incidental, consequential, puni-
tive, exemplary, or other losses, costs, ex-
penses, or damages arising out of this Pub-
lic License or use of the Licensed Mate-
rial, even if the Licensor has been advised
of the possibility of such losses, costs, ex-
penses, or damages. Where a limitation
of liability is not allowed in full or in part,
this limitation may not apply to You.

c. The disclaimer of warranties and limitation of
liability provided above shall be interpreted in

a manner that, to the extent possible, most
closely approximates an absolute disclaimer
and waiver of all liability.

Section 6 – Term and Termination

a. This Public License applies for the term of
the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public
License, then Your rights under this Public
License terminate automatically.

b. Where Your right to use the Licensed Ma-
terial has terminated under Section 6(a), it
reinstates:

1. automatically as of the date the violation
is cured, provided it is cured within 30 days
of Your discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b)
does not affect any right the Licensor may
have to seek remedies for Your violations of
this Public License.

c. For the avoidance of doubt, the Licensor may
also offer the Licensed Material under separate
terms or conditions or stop distributing the
Licensed Material at any time; however, doing
so will not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination
of this Public License.

Section 7 – Other Terms and Conditions

a. The Licensor shall not be bound by any addi-
tional or different terms or conditions commu-
nicated by You unless expressly agreed.

b. Any arrangements, understandings, or agree-
ments regarding the Licensed Material not
stated herein are separate from and indepen-
dent of the terms and conditions of this Public
License.

39

A. License texts

Section 8 – Interpretation

a. For the avoidance of doubt, this Public License
does not, and shall not be interpreted to, re-
duce, limit, restrict, or impose conditions on
any use of the Licensed Material that could
lawfully be made without permission under this
Public License.

b. To the extent possible, if any provision of this
Public License is deemed unenforceable, it shall
be automatically reformed to the minimum ex-
tent necessary to make it enforceable. If the
provision cannot be reformed, it shall be sev-
ered from this Public License without affecting
the enforceability of the remaining terms and
conditions.

c. No term or condition of this Public License will
be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or
may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that
apply to the Licensor or You, including from
the legal processes of any jurisdiction or au-
thority.

40

Bibliography

[1] Cvc4. http://cvc4.cs.nyu.edu/web/.

[2] Z3. http://z3.codeplex.com/.

[3] H.J. Sander Bruggink. Towards a systematic method for proving termination of graph transfor-
mation systems. In Proceedings of GT-VC 2007, 2007.

[4] H.J. Sander Bruggink, Barbara König, Dennis Nolte, and Hans Zantema. Proving termination
of graph transformation systems using weighted type graphs over semirings. Submitted for
ICGT 2015, 2015.

[5] H.J. Sander Bruggink, Barbara König, and Hans Zantema. Termination analysis of graph
transformation systems. In Proceedings of TCS 2014, volume 8705 of LNCS. Springer, 2014.

[6] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel, and Michael
Löwe. Algebraic approaches to graph transformation I: Basic concepts and double pushout
approach. In Grzegorz Rozenberg, editor, Handbook of Graph Grammars and Computing by
Graph Transformation, vol. 1: Foundations. World Scientific, 1997.

[7] Detlef Plump. Termination of graph rewriting is undecidable. Fundementa Informaticae,
33(2):201–209, 1998.

[8] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

[9] Dániel Varró, Szilvia Varró-Gyapay, Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer.
Termination analysis of model transformations by petri nets. In Proceedings of ICGT 2006,
volume 4178 of LNCS. Springer, 2006.

[10] Wikipedia. Satisfiability modulo theories. http://en.wikipedia.org/w/index.php?title=
Satisfiability_Modulo_Theories&oldid=635242269, 2014.

41

http://cvc4.cs.nyu.edu/web/
http://z3.codeplex.com/
http://en.wikipedia.org/w/index.php?title=Satisfiability_Modulo_Theories&oldid=635242269
http://en.wikipedia.org/w/index.php?title=Satisfiability_Modulo_Theories&oldid=635242269

Index

About menu item, 7, 12
action panel, 5
actions, 8–9
Add button, 9
adjacent, 25
Algorithm editor dialog, 9–10
Algorithm list editor dialog, 9
annotation, 20
arctic evaluation, 29

Change number of worker threads menu item,
7

Clear button, 9
command-line interface, 13–15
command-line options, 13, 14

--action, 14
--algos, 14
--beta, 5, 14
-c, 13
--cli, 13
--conn, 14
--dens, 14
--discrete, 14
-h, 13
--help, 13
--if-size, 14
--labels, 15
--left-conn, 14
--left-dens, 14
--left-size, 14
--progress, 14
--random, 14
--rfile, 14
--right-conn, 14

--right-dens, 14
--right-size, 14
--rtype, 14
--rules, 14
--silent, 14
--system, 5, 7, 14
--threads, 14
-v, 13
--version, 13

Compare action, 9
Complete button, 9
conservative minimization, 30
copy,

textttcopy19
Cycle finder algorithm, 27
cycle finder algorithm, 15
Cycle finder algorithms, 9
CycleFinder, 15

Default button, 9
double pushout approach, 25

edge counter algorithm, 10, 15, 28
edge counting, 28
edge factorization, 30
EdgeCounter, 15
Edit button, 9
Execute button, 6
Exit menu item, 6
External, 15
external tool algorithm, 10, 15

from, 20

Generate random GTS

43

Index

dialog, 7–8
menu item, 6, 7

graph, 25
graph, 20
graph transformation rule, see rule
graph transformation system, 26
graphical user interface, 5–12
GTS, see graph transformation system
gts, 18, 21
GUI, see graphical user interface
GUI options menu item, 6

Help menu, 7, 12
hypergraph, see graph

incident, 25
incoming edge factorization, see edge factor-

ization
installation, 2

main menu, 5, 6
main window, 5, 6
match bound algorithm, 10, 15, 30
match bounds, 29–30
MatchBound, 15
morphism, 25
morphism, 20
Move down button, 9
Move up button, 9

name of Grez, 1
node, 18, 20
node counter algorithm, 10, 15, 28
node counting, 27–28
NodeCounter, 15
non-uniform termination, see termination
Number of rules parameter, 7

Open GTS menu item, 6, 7
Options menu, 6
outgoing edge factorization, see edge factor-

ization

Petri-net approximation, 28
Petri-net approximation algorithm, 10, 15, 28

PetriNet, 15
Prove action, 8

relative termination, see termination
Remove button, 9
rule, 25–26
rule, 17, 21
rule display, 5
rule selection box, 5

satisfiability modulo theories, 2, 27
SGF, see simple graph format
signature, 25
Signature parameter, 7
simple graph format, 17–23

comment, 19
defining edges, 18, 20
defining graph transformation systems, 18–

19, 21–22
defining morphisms, 20–21
defining nodes, 18, 20
defining rules, 17–18, 21
identifier, 19
keyword, 19

SMT, see satisfiability modulo theories
SMT solver, 10–11
SMT solvers menu item, 6
status bar, 6
System menu, 6, 7

termination, 1, 26–27
non-uniform, 26
relative, 26
uniform, 26

termination tool, 10–11
Termination tools menu item, 6
to, 20
Trace action, 9
tropical evaluation, 29
type graph, 29
type graph algorithm, 10, 15, 29
TypeGraph, 15

uniform termination, see termination

44

Index

Visit website menu item, 7, 12

weighted type graph, 29

45

	Contents
	Introduction
	Introduction to Grez
	Name
	People
	System requirements
	Installation
	Feedback and bug reports
	How to read this manual
	License

	The Graphical User Interface
	Running Grez
	The main window
	The main menu
	Opening graph transformation systems
	Reading a system from a file
	Generating random systems

	Actions
	Proving termination
	Comparing algorithms
	Generating traces

	Specifying algorithms
	The algorithm list editor
	The algorithm editor

	Configuring external tools
	Configuring SMT solvers
	Configuring termination tools

	Changing user preferences
	Getting help

	The Command-Line Interface
	Using Grez from the command-line
	Command-line options
	General options
	Action type and system selection
	Reporting and proof generation
	Random system generation

	Specifying algorithms

	Specifying Graph Transformation Systems: The Simple Graph Format
	A first tour
	Defining rules
	Defining graph transformation systems

	Grammar
	Tokens
	Object definitions
	Graphs
	Morphisms
	Transformation rules
	Transformation systems

	Examples
	Two systems in one file
	In-place definition
	Ad-hoc routing

	Theoretical Foundations
	Graph transformation
	Termination
	Satisfiability modulo theories
	Algorithms for proving termination and non-termination
	Finding cycles
	Node counting
	Edge counting
	Petri-net approximation
	Type graph techniques
	Match bounds

	License texts
	BSD License
	Apache License, version 2.0
	Creative Commons Attribution 4.0 International Public License

	Bibliography
	Index

