
Submitted to:
QAPL 2017

c© B. König, S. Küpper & C. Mika
This work is licensed under the
Creative Commons Attribution License.

PAWS: A Tool for the Analysis of Weighted Systems

Barbara König
Universität Duisburg-Essen

barbara koenig@uni-due.de

Sebastian Küpper
Universität Duisburg-Essen

sebastian.kuepper@uni-due.de

Christina Mika
Universität Duisburg-Essen

christine.mika@uni-due.de

PAWS is a tool to analyse the behaviour of weighted automata and conditional transition systems. At
its core PAWS is based on a generic implementation of algorithms for checking language equivalence
in weighted automata and bisimulation in conditional transition systems. This architecture allows
for the use of arbitrary user-defined semirings. New semirings can be generated during run-time
and the user can rely on numerous automatisation techniques to create new semiring structures for
PAWS’ algorithms. Basic semirings such as distributive complete lattices and fields of fractions can be
defined by specifying few parameters, more exotic semirings can be generated from other semirings
or defined from scratch using a built-in semiring generator. In the most general case, users can define
new semirings by programming (in C#) the base operations of the semiring and a procedure to solve
linear equations and use their newly generated semiring in the analysis tools that PAWS offers.

1 Introduction

In recent times, modelling techniques have shifted from a purely acceptance-based reasoning to one
that takes various notions of weight and quantities into consideration. The theory of weighted automata
gives rise to a flexible framework, where acceptance behaviour can be quantified in numerous ways.
Probabilities are commonly used to express the likelihood of making a given transition, whereas the
tropical semiring is commonly used to denote the cost of making a transition. Due to the great variety of
semirings the theory of weighted automata can be applied to a multitude of different fields of interest,
such as natural language processing, biology or performance modelling (see e.g. [12]). Typical questions
regarding weighted automata concern their language (or traces), for instance language equivalence. Due
to the generality of the notion of weighted automata, they are a versatile means for modelling purposes,
though decidability results are not as strong as for non-deterministic automata. In particular, it is well
known, that language equivalence is an undecidable problem for weighted automata [16]. This, however,
is not a damning result for language equivalence, since it is also well-known that language equivalence is
decidable for many other semirings such as the two-valued boolean algebra (for which weighted automata
are just nondeterministic finite automata) or fields (where decision procedures run in polynomial time
[14, 7]). PAWS1 is a tool that offers algorithms to decide language equivalence and the threshold or
universality problem for weighted automata.

Based on our previous work in [15] and [5], the tool PAWS implements two different approaches
to language equivalence checks for weighted automata. One approach employs a backwards search
assuming at first that all states are language equivalent and exploring words from the end to the beginning
to determine non-equivalent pairs of states, similar to partition refinement. Different from usual partition
refinement algorithms, this algorithm does not necessarily terminate at the moment when the partitions
cannot be further refined in one step, because refinements can happen at a later point of time. The
termination condition has to be chosen differently here, and as expected, the algorithm does not necessarily

1The tool can be downloaded from http://www.ti.inf.uni-due.de/research/tools/paws/

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Paws: Program for the Analysis of Weighted Systems

terminate for all semirings (see the undecidability result by Krob [16]). However, for many semirings
it does and in either case it is always a suitable semi-decision procedure for the absence of language
equivalence. This approach is closely related to the line of work started by Schützenberger, [18] and later
generalised in [3], using the notion of conjugacy.

Additionally, PAWS offers a second approach to decide language equivalence [5]. This approach
stands in the tradition of Bonchi’s and Pous’ seminal work on equivalence checks for NFAs using up-to
techniques [6]. Here, a language equivalence relation on vectors is built, starting from the initial pair
of vectors suspected to be language equivalent. As the algorithm progresses, it builds up a language
equivalence relation similar to a bisimulation relation and stops at the moment when a suitable relation
proving language equivalence is found, or a witness to the contrary is found. The algorithm works up-to
congruence and therefore prunes the relation on-the-fly, dropping redundant vector pairs. The flexibility
of this optimised variant of the algorithm is reduced when compared to the partition refinement algorithm,
but it can still be used for a variety of user-generated semirings, such as rings and l-monoids, and can
lead to an exponential speed up in some cases. Based on a similar approach, PAWS also offers a decision
procedure for the universality problem for weighted automata over the tropical semiring of the natural
numbers, which is potentially exponentially faster than a naive approach due to Kupferman et al. [2]. The
universality problem checks whether from a given starting vector, all words have a weight smaller than or
equal to a given threshold.

Finally, PAWS also considers conditional transition systems, which, rather than adding weights to
transitions, extend traditional transition systems by means of conditions, or product versions to enable
flexible modelling of software product lines, while taking possible upgrades between different products of
a software product line into account [8]. For these kinds of systems, bisimulation rather than language
equivalence is considered, because the user experience for different products is in the focus. The
bisimulation check can be performed on any finite distributive lattice defined via its set of join irreducible
elements. Alternatively, a BDD-based implementation of (certain) lattices is offered and allows for a
significantly faster bisimulation check as presented in [4]. Again, the bisimulation check is parametrised
over the lattice used and can accept any lattice, either defined directly via its irreducible elements, or using
the BDD-based approach, as input.

A key feature of PAWS is its extensibility. The algorithms are parametrised over the semiring and
it is therefore possible to use the algorithms PAWS offers, not only for the semirings that come pre-
implemented, but also for newly generated semirings. For that purpose, PAWS offers ways of adding
new semirings and executing algorithms for these semirings. All algorithms are implemented generically
and can be used for various semirings or l-monoids, provided all necessary operations such as addition,
multiplication, and solving linear equations are specified. Therefore, PAWS is equipped with a semiring
generator that allows to generate new semirings that are not pre-implemented and to define weighted
automata or conditional transition systems over these. Specifically, we have built several layers of
automatisation, so that whenever one, e.g., defines a complete distributive lattice, it suffices to give a
partial order, from which the lattice of downward-closed sets is generated [11] and all operations are
provided automatically. Building semirings from other semirings using crossproducts is almost completely
automatised and modulo rings are automatised using Hensel liftings [10]. In addition, it is possible to add
arbitrary semirings by providing code for the operations mentioned before.



B. König, S. Küpper & C. Mika 3

2 Preliminaries: System Types and Decision Problems

Here we give a short overview over the systems that PAWS can analyse, i.e. weighted automata and
conditional transition systems. For that purpose we require the notions of semirings and distributive
lattices.

• A semiring is a tuple S= (S,+, ·,0,1) where (S,+,0) is a commutative monoid, (S, ·,1) is a monoid,
0 annihilates · (i.e., 0 · s1 = 0 = s1 ·0) and · distributes over + (i.e., (s1 + s2) · s3 = s1 · s3 + s2 · s3
and s3 · (s1 + s2) = s3 · s1 + s3 · s2, for all s1,s2,s3 ∈ S).

• A complete distributive lattice is a partially ordered set (L,v) where for all subsets L′ ⊆ L of L
the infimum

d
L′ and the supremum

⊔
L′ w.r.t. the order v exists and infimum distributes over

finite suprema: (`1t `2)u `3 = (`1u `3)t (`2u `3) for all `1, `2, `3 ∈ L. Together with >=
⊔

L and
⊥=

d
L, a complete distributive lattice forms a semiring L= (L,t,u,⊥,>).

• An l-monoid is a lattice (L,t,u,⊥,>) together with a monoid (L, ·,1) such that · distributes over
t. If ⊥ annihilates ·, i.e. ⊥· `=⊥ for all ` ∈ L, then the l-monoid can be regarded as a semiring
(L,t, ·,⊥,1).

A weighted automaton (WA) can be understood as a non-deterministic automaton that additionally
carries weights from a given semiring S on each transition, as well as a termination weight for each
state. Rather than accepting or rejecting a word w, a state x in a weighted automaton associates it with a
value from S. This value can be obtained as follows: Take the sum of the weight of all w-labelled paths
p starting in x. The weight of a path p is the product of all transition weights along p, including the
termination weight. Consider for instance the following simple weighted automaton over the field R:

A

B C

a,2 a,3

1

b,2

2

b,2

1

The weight of the word ab in state A can be computed as follows: there exist two paths to consider,
(A,a,B,b,B) and (A,a,C,b,C). The first path has the weight 2 · 2 · 2 = 8 and the second path has the
weight 3 ·2 ·1 = 6, so overall, the weight of the word ab in A is 8+6 = 14. For weighted automata, PAWS

offers an algorithm to decide which pairs of states are language equivalent, i.e. assign the same weight to
all words. In general, this problem is undecidable, but for many specific semirings (e.g. the reals) it is
decidable.

PAWS offers two algorithms to decide language equivalence. The more generally applicable algorithm
called Language Equ.(Complete) in the program, can be applied to any semiring and yields, if it terminates,
a complete characterisation of language equivalence in the automaton.

For complete and completely distributive lattices, and more generally, completely distributive l-
monoids, an optimisation up to congruence is available (Language Equ.(Up-To) ). This algorithm checks
whether two initial vectors are language equivalent by building a language equivalence relation and
pruning the relation by congruence closure, i.e. pairs of vectors that are already in the congruence closure
of previously found pairs of vectors, are discarded.



4 Paws: Program for the Analysis of Weighted Systems

One semiring, where language equivalence is undecidable is the tropical semiring over the natural
numbers (N0∪{∞},min,+,∞,0), as shown by Krob [16]. However, the universality problem is decidable
in this case. The universality problem asks, for any given number n ∈ N0, whether the weight of all words
from a given starting vector is bounded by n.

All algorithms for these problems require a method for solving linear equations over the semiring.

PAWS also analyses a second type of systems: conditional transition systems (CTS) [4, 1]. CTS
are defined over a finite partial order of conditions. Each transition is assigned a downwards closed set
of conditions under which the transition may be taken. Before execution, one condition is fixed and
all transitions that carry the respective condition remain active and all other transitions remain inactive.
Afterwards, the CTS evolves just like a traditional labelled transition system. At any point though, a
change of conditions can occur by going down in the order. If the condition is changed, so do the active
transitions and additional transitions may become available. Note that due to the requirement that all
transitions carry a downwards closed set of conditions, only additional transitions can appear, no transition
can be deactivated by performing a change in conditions. Therefore this change of conditions can be
considered as an upgrade of the system. Also note the strong relation to complete distributive lattices:
Every finite partial order gives rise to a lattice by considering all downwards closed sets of elements
ordered by inclusion. And vice versa, every finite distributive lattice can be represented in this way [11].

Now consider the following CTS defined over the set of conditions {ϕ,ϕ ′}, where ϕ ′ ≤ ϕ .

A

B C

a,{ϕ ′} a,{ϕ,ϕ ′}

b,{ϕ,ϕ ′} b,{ϕ ′}

Furthermore assume we are starting in state A and under the initial condition ϕ . Then only the
transitions from B to B and from A to C are available. If we choose to make a step from A to C via the
a-labelled edge, we cannot do any further steps, unless we first perform an upgrade to ϕ ′, which allows us
to use the b-loop in state C.

For CTS we are interested in conditional bisimulation. Two states are conditionally bisimilar, if there
exists a conditional bisimulation relating the states. A conditional bisimulation is family of traditional
bisimulations Rϕ , one for each condition ϕ , on the respective underlying transition systems. For two
conditions ϕ ′ ≤ ϕ it must hold that Rϕ ′ ⊇ Rϕ , which intuitively means that if two states are bisimilar
under ϕ , they must also be bisimilar under every smaller condition ϕ ′. Furthermore, the standard transfer
property for bisimulations must be satisfied.

In [4] we have shown how to model a small adaptive routing protocol as CTS.

Summarizing, the problems PAWS solves and the corresponding algorithms and semirings are displayed
in the following table:

Problem Algorithm Semiring Model
Language equivalence (all pairs) Language Equ.(Complete) any semiring WA

Language equivalence (initial vectors) Language Equ.(Up-To) l-monoids, lattices WA
Universality Problem Universality Tropical Semiring WA

Conditional bisimilarity CTS Bisimilarity finite lattice CTS



B. König, S. Küpper & C. Mika 5

3 Design and Usage

In this section, we give an overview of some design decisions and the usage of the tool. First, we mention
the basic structure of the tool and then discuss some of the problems and math-related features of the tool.
Furthermore we explain how to work with PAWS.

3.1 Design

PAWS is a Windows tool offering a complete graphical interface, developed in Microsoft’s Visual Studio
using C#. The program is divided into two autonomous components:

Both components are designed according to the MVC pattern. In the sequel, we will discern these two
program parts, as their interaction is rather limited, allowing them to be considered as separate concerns.

3.1.1 The Semiring Generator

The development of the semiring generator started in a master’s thesis [17]. It supports five different
generation processes, which, for clarity, are equipped with five separate input forms. The semiring
generator supports three fully automated cases:

• Direct products

• Fields of fractions

• Field extensions for Q

Furthermore, there are two options to generate code based on user implementations:

• l-monoids

• Arbitrary semirings

For the generation of source code we use CodeDOM of the .NET Framework, which enables code
generation based on object graphs. The five processes are implemented via one superclass and three
derived classes. The superclass contains all methods for creating if-statements, for-loops or useful
combinations of these, based on predefined patterns. Except for the direct product generator, every class
uses the constructor generating methods of the superclass. Most of the differences between the classes
are reflected in the methods for generating the binary operators. Concerning methods for solving linear
equations we are offering two templates: a naive implementation of the Gaussian algorithm and one
method for l-monoids, based on the residuum operator [9].



6 Paws: Program for the Analysis of Weighted Systems

With code generation, one always has to face the question of how to give the remaining program,
i.e., the analysis component of PAWS, access to the newly generated classes. We decided to use the
Microsoft.Build.Execution namespace for updating the analysis tool. This decision avoids creating
multiple DLL files, which would be the case with a pure reflection-based solution to the problem.
However, reflection is used to solve another difficulty. Due to the combination of different semirings
or data types as elements of a new semiring, a dynamic approach is required to enable the automated
generation of constructors with a string parameter, specifying the semiring value.

PAWS also manages the names of the semiring classes in individual text files. First, this prevents a
user from overwriting an already fixed class name. Another advantage is that by using System.Activator,
an instance can be created dynamically during runtime without knowing the class name at the level
of program design. Hence, both parts use consistent config files, which is ensured by updating the
corresponding config file if one of the program parts creates or deletes a semiring. But when deleting a
semiring that has already been used to create and store an automaton or transition system, conflicts may
occur with the serialised objects and thus with the user’s storage files. Therefore, deletion of semirings
must be dealt with separately. A semiring can only be deleted or modified if it has not been used in the
previous session within an automaton.

3.1.2 The Analysis Tool

As already mentioned, for both program parts MVC is used to implement the user interface. The main
focus of PAWS is to give the user the tools to define an automaton in order to be able to subsequently
analyse it with the supported algorithms. In order to implement this as dynamically as possible, we have
opted for a generic implementation. Therefore, the class Matrix〈T 〉 (where T is the generic type of the
semiring), which implements automata in a matrix representation, is the core of the tool’s architecture.

The main argument for the generic approach is that the algorithms for analysis of an automaton are based
on the basic operators of a semiring. A further method is needed to solve systems of linear equations,
which is also defined for each semiring within PAWS. It is therefore recommended to use a generic class
that includes all the methods of analysis, which in turn dynamically call the corresponding operators or
methods of the currently used semiring. This dynamic approach is thus combined with reflection.

Therefore, the management of automata created by the user requires a generic implementation as well.
The Model for the matrices is therefore also generic and thus it makes sense to manage several semiring
models by the controller.

Because of the generic approach, automatically checking the correctness of the user input proves
to be problematic when the user has generated his or her own semiring and has implemented a string



B. König, S. Küpper & C. Mika 7

constructor to read semiring elements from input strings without input verification. In this case PAWS can
not check whether the input is well-formed, this has to be taken care of in the user-implemented method.
Such semirings can not be further used to generate other semirings.

A further design decision is that one can create finite semirings directly within the analysis component
of PAWS. The reason why we chose to not move this option to the generator is that for finite lattices
and modulo semirings over the integers no new classes have to be generated nor is there any need for
new source code at all. In this case, it is sufficient to configure template classes for the corresponding
semirings via static variables that contain the required information about the semiring. The operators are
designed to behave according to the configuration of the class. In such cases, the analysis program must
also access the configuration files in order to make the extensions known to the semiring generator.

As an additional feature, we have also integrated GraphViz2 into the tool, as it allows visualization of
weighted automata, if desired by the user.

3.2 Usage

We will discuss the usage of the tool separately for the two individual components of PAWS, hence this
section contains subsections giving details about the following two components.

• The semiring generator to build and provide the required semirings over which automata can be
defined. This generator is used to generate semirings that cannot be obtained in a fully automated
way and supports some automatic generations.

• The analysis tool that allows the user to choose a previously generated semiring, one of the
semirings that come built-in with the PAWS or to build a lattice and then to define automata in a
matrix representation over those lattices. Matrices are then interpreted as weighted automata or
conditional transition systems (CTS) and can be used to compute language equivalence for weighted
automata with two different approaches, decide the threshold problem for weighted automata over
the tropical semiring of natural numbers or to compute the greatest bisimilarity of a CTS.

3.2.1 The Semiring Generator

The semiring generator is used to generate the semirings under consideration. In order for a semiring to
be usable within the context of PAWS, the structure needs to define the following components:

• A universe which contains all elements of the semiring. All predefined datatypes from C#, as well
as combinations of them can serve as universes.

• An addition operator + of the semiring.

• A multiplication operator ∗ of the semiring.

• One() and Zero() methods, which return the units of addition and multiplication.

• A method for solving linear equations over the semiring.

While the first four components are necessary to define a semiring in a mathematical context either
way, the procedure to solve linear equations is an additional requirement – one that PAWS aims at reducing
as much as possible – but in order to provide the greatest amount of flexibility possible, the tool offers the
option to define a procedure to solve linear equations from scratch.

2www.graphviz.org/



8 Paws: Program for the Analysis of Weighted Systems

3.2.2 The Analysis Tool

The analysis component is designed to offer generic algorithms applicable to numerous predefined or
user-defined semirings. Some of the algorithms can however only be used with specific (types) of
semirings. The most general algorithm is the language equivalence check, for which all semirings are
eligible. Conditional Transition Systems are only defined over lattices, therefore, the bisimulation check is
limited to lattice structures. However, the user still has the choice between two different ways of dealing
with lattices: representing elements of the lattice as downwards closed sets of irreducibles via the Birkhoff
duality [11], applicable to all finite distributive lattices, or represented using binary decision diagrams
(BDDs). The BDD variant is more restrictive and only designed for the application to CTS. Here, the
irreducibles are required to be full conjunctions of features from a base set of features, ordered by the
presence of distinct upgrade features. Lastly, the threshold check can only be performed over a single
semiring, the tropical semiring over natural numbers.

The general workflow of the analysis tool is as follows:

. Choose a semiring

. Generate a matrix over this semiring, representing a weighted automaton or a conditional transition
system
Alternatively: Choose the matrix from a list of matrices that have been generated previously

. Start the algorithm and provide – if necessary – additional input

Additional input comes in two forms: starting vectors and the threshold to be checked against in case of
the threshold algorithm. Depending on the semiring of choice, questions regarding language equivalence
might not be decidable, leading to non-termination of the corresponding procedure in PAWS. In order
to deal with this problem and to allow abortion of an overlong computation, the actual computation is
delegated to a separate thread that can at any time be aborted by clicking a red button labelled “Abort”. In
that case all intermediate results are discarded.



B. König, S. Küpper & C. Mika 9

Note that only the two language equivalence-based algorithms can run into non-termination issues.
For the CTS bisimulation check, as well as the threshold problem on the tropical semiring of natural
numbers, termination is always guaranteed. However, the runtime of CTS bisimulation check can be
doubly exponential in the number of features under consideration – because the lattice is the set of
all possible configurations, which in turn are all possible conjunctions over the features. Using the
BDD-based implementation of lattices – which is particularly suited to the needs of CTS modelling –
this explosion is mitigated in many cases, but it can not be ruled out completely. On the other hand,
the BDD-based modelling only allows for special lattices to be modelled, i.e. those that arise as the
lattices built from a set of features and upgrade features, whereas the variant called FiniteLattice allows
for arbitrary (finite, distributive) lattices to be represented. In this case, lattices are represented via the
partial order of irreducible elements, using Birkhoff’s representation theorem [11].

Here we do not give any runtime results, but refer the reader to [4, 5] where we describe several case
studies and list runtime results.

4 GUI Overview of PAWS

In this section, we demonstrate the handling of the various features and options that PAWS offers. First, we
will present the semiring generator. In this case, we briefly explain a fully automated generation and the
even more complex case, in which, apart from the constructor, the user has to specify the implementations
on his or her own. We then illustrate the various possibilities to use the analysis component of PAWS in a
short overview.



10 Paws: Program for the Analysis of Weighted Systems

4.1 The Semiring Generator

First, we consider a fully automated generation demonstrated by the direct product input-mask (Figure 1
and 2). Then, in Figure 3 the console informs the user that the generated source code is compilable.
In case the user specifies some code on his or her own, the console will display suitable compile error
messages. Figures 4 and 5 depict the use of the input mask for user-dependent implementations.

Figure 1: Lower ellipse: Choose an input mask.
Top ellipse: Specify the name of the new semiring
class.

Figure 2: Specify a direct product, add semirings
as member fields to the class.

Figure 3: Pressing the button will generate the code visible in the right-hand text-box. The console at the
bottom informs the user, whether the source code was compiled and successfully added to the analysis
component of PAWS.

4.2 The Analysis Tool

In this section the use of the PAWS analysis component is presented in a brief overview. The illustrations
serve to explain our intuition behind the design and the use of PAWS.

In Figure 6 and 7 the first steps for creating a weigted transition system are illustrated. After generating
a matrix, the user can choose one of the available algorithms and wait until the result of the computation
is displayed inside the text area (Figure 10).



B. König, S. Küpper & C. Mika 11

Figure 4: Top ellipse: Specify the type of the class.
Bottom ellipse: Select write code to implement
the addition (+).

Figure 5: The text box for entering source code
will be enabled after selecting write code as shown
in Figure 4.

Figure 6: Top ellipse: First determine the name.
Bottom ellipse: Type in the number of states.

Figure 7: Choose the semiring.

With the PAWS analysis component, besides automata, also finite semirings can be generated and stored
for further semiring generation as well as for the analysis.

5 Conclusion, Future Work and Related Work

We have seen that PAWS is a flexible tool to analyse the behaviour of weighted automata and conditional
transition systems. The generic approach allows for adding new semirings with a varying degree of
support by the tool itself.

Concerning related approaches, we are not aware of analysis tools for language equivalence and the
threshold problem for weighted automata.

For the problem of generating semirings dynamically, there exists previous work for solving fixpoint
equations over semirings by Esparza, Luttenberger and Schlund [13]. In [13] FPSOLVE is described, a
C++ template based tool for solving fixpoint equations over semirings. That is, the tool has a different
application scenario. However, the tools share similarities since in FPSOLVE the user also has the
possibility to generate new semirings. For this, only the addition, multiplication and Kleene star must be
implemented. However, a string constructor must also be specified without automatic support and the
main method must be adjusted with the corresponding command-line. PAWS is designed to enable the



12 Paws: Program for the Analysis of Weighted Systems

Figure 8: After a semiring has been selected, a
description of the expected input is shown above
the input area for the matrix.

Figure 9: By pressing the button Generate Matrix,
the matrix is generated in the tool and listed ac-
cording to its form (Weighted automaton or CTS).

Figure 10: After starting one of the supported algorithms the information about the transition system will
be displayed in the bottom text area.

generation of new semirings for solving linear equations using a graphical user interface and does not
change already existing code, which is not part of a semiring class.

In contrast to this, work has already been done on an analysis tool for featured transition systems –
which are basically CTS without a notion of upgrades – to analyse software product lines wrt. simulation.
In their work [8], Cordy et al. have implemented their model using BDDs as well, yielding a similar speed
up as our own approach. The significant differences here lie in the notion of behaviour, since Cordy et
al. have focused on simulation relations, whereas we are concerned with bisimulations. Furthermore we
capture a notion of upgrade and thus support partial orders of products instead of just abritrary sets of
products.

We intend to develop PAWS further in several ways. We are looking for new classes of semirings
where solutions of linear equations can be effectively computed, in order to equip those semirings with an
improved support from PAWS. Furthermore, we are interested in analysing more extensive case studies,
where we will use PAWS to conduct all required analyses.

References
[1] Jiřı́ Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Milius & Alexandra Silva (2012):

A Coalgebraic Perspective on Minimization and Determinization. In: Proc. of FOSSACS ’12, Springer, pp.
58–73. LNCS/ARCoSS 7213.



B. König, S. Küpper & C. Mika 13

[2] Shaull Almagor, Udi Boker & Orna Kupferman (2011): What’s Decidable about Weighted Automata? In:
Proc. of ATVA ’11, Springer, pp. 482–491. LNCS 6996.

[3] Mariel-Pierre Béal, Slyvain Lombardy & Jacques Sakarovitch (2006): Conjugacy and Equivalence of Weighted
Automata and Functional Transducers. In: Prof. of CSR ’06, Springer, pp. 58–69. LNCS 3967.

[4] Harsh Beohar, Barbara König, Sebastian Küpper & Alexandra Silva (2016): Conditional Transi-
tion Systems: A Model for Software Product Lines with Upgrades. Unpublished, available from
http://www.ti.inf.uni-due.de/fileadmin/public/koenig/cts.pdf.

[5] Filippo Bonchi, Barbara König & Sebastian Küpper (2017): Up-To Techniques for Weighted Systems. In: Proc.
of TACAS ’17, Springer. LNCS, to appear.

[6] Filippo Bonchi & Damien Pous (2013): Checking NFA equivalence with bisimulations up to congruence. In:
Proc. of POPL ’13, ACM, pp. 457–468.

[7] Michele Boreale (2009): Weighted bisimulation in linear algebraic form. In: Proc. of CONCUR ’09, Springer,
pp. 163–177. LNCS 5710.

[8] Maxime Cordy, Andreas Classen, Gilles Perrouin, Pierre-Yves Schobbens, Patrick Heymans & Axel Legay
(2012): Simulation-based abstractions for software product-line model checking. In: Prof. of ICSE ’12, pp.
672–682.

[9] Raymond A. Cuninghame-Green (1979): Minimax algebra. Lecture Notes in Economics and Mathematical
Systems, Springer-Verlag.

[10] Abhijit Das & C. E. Veni Madhavan (2009): Public-Key Cryptography: Theory and Practice. Pearson
Education. pp. 295-296.

[11] Brian A. Davey & Hilary A. Priestley (2002): Introduction to lattices and order. Cambridge University Press.
[12] Manfred Droste, Werner Kuich & Heiko Vogler, editors (2009): Handbook of Weighted Automata. Springer.
[13] Javier Esparza, Michael Luttenberger & Maximilian Schlund (2014): FPsolve: A Generic Solver for Fixpoint

Equations over Semirings. In: Proc. of CIAA ’14, Springer, pp. 1–15. LNCS 8587.
[14] Stefan Kiefer, Andrzej S. Murawski, Joel Ouaknine, Bjoern Wachter & James Worrell (2011): Language

Equivalence for Probabilistic Automata. In: Proc. of CAV ’11, Springer, pp. 526–540. LNCS 6806.
[15] Barbara König & Sebastian Küpper (2016): A generalized partition refinement algorithm, instantiated to

language equivalence checking for weighted automata. Soft Computing, pp. 1–18, doi:10.1007/s00500-016-
2363-z. Available at http://dx.doi.org/10.1007/s00500-016-2363-z.

[16] Daniel Krob (1994): The equality problem for rational series with multiplicities in the tropical semiring is
undecidable. International Journal of Algebra and Computation 4(3), pp. 405–425.

[17] Christine Mika (2015): Ein generisches Werkzeug für Sprachäquivalenz bei gewichteten Automaten. Master’s
thesis, Universität Duisburg-Essen.

[18] Marcel-Paul Schützenberger (1961): On the Definition of a Family of Automata. Information and Control
4(2–3), pp. 245–270.

http://dx.doi.org/10.1007/s00500-016-2363-z
http://dx.doi.org/10.1007/s00500-016-2363-z
http://dx.doi.org/10.1007/s00500-016-2363-z

	Introduction
	Preliminaries: System Types and Decision Problems
	Design and Usage
	Design
	The Semiring Generator
	The Analysis Tool

	Usage
	The Semiring Generator
	The Analysis Tool


	GUI Overview of Paws
	The Semiring Generator
	The Analysis Tool

	Conclusion, Future Work and Related Work

