
Raven – A tool suite for computing and
manipulating graph automata

April 25, 2014

Contents

1 Introduction 5
1.1 History . 5
1.2 Raven today . 5

2 People 7

3 System and Software Requirements 9
3.1 The System Architecture . 9
3.2 The System Requirements . 12

4 Installation, Usage and Functionality 15
4.1 Installation . 15
4.2 Usage . 15
4.3 Functionality . 15

4.3.1 Preparations . 16
4.3.2 Creation of data structures 16
4.3.3 Algorithms of Raven . 23
4.3.4 Saving/Loading with Raven 26

5 File Formats 27
5.1 The Gxl Format for Graphs . 27
5.2 The Gxl Format for Cospans . 29
5.3 The Automaton File Format . 31
5.4 The Signature File Format . 31
5.5 The Cospan Decomposition File Format 31

1 Introduction

1.1 History
The implementation of Raven1 started in 2008 with a tool which implements
the graph automaton accepting all graphs containing a given subgraph [2]. The
application of this tool was to check whether the language (accepted by the
implemented graph automaton) is an invariant for a given graph transformation
rule by computing the Myhill-Nerode quasi-order and checking whether the left-
hand side of the transformation rule is related to the right-hand side (w. r. t. the
Myhill-Nerode quasi-order).

This tool had two main drawbacks which led to the development of Raven. On
the one hand the graph automaton had been implemented in an explicit fashion.
The number of states grows exponentially in the size of the maximum permitted
interface of the graph automaton, which has a direct impact on the size of the
explicit representation. As shown by practical examples, it was not possible to
compute graph automata which exceed a rather small maximum interface size.
On the other hand one needs to build the deterministic graph automaton to be
able to compute the Myhill-Nerode quasi-order. But since the computation of
the deterministic graph automaton (by the powerset construction) is not feasible
due to the exponential blow-up, the tool used the simulation quasi-order as an
over-approximation. This quasi-order had also been represented explicitly which
led to the problem that the simulation quasi-order had been computable only
for graph automata up to a maximum interface size of 4, even for rather simple
subgraphs [4].

1.2 Raven today
To overcome these issues the development of Raven has been started. The key to
an efficient new tool has been the usage of Bdds as data structures to represent
graph automata. The usage of a symbolical instead of an explicit representation
tries to prevent the exponential state space blow-up. In addition algorithms for
language inclusion checks, universality checks, emptiness checks, memberships
checks and algorithms to compute atomic cospan decompositions for a given cospan
(which includes graphs seen as cospans with empty inner and outer interfaces)
have been implemented.

1Available at http://www.ti.inf.uni-due.de/research/tools/raven/

http://www.ti.inf.uni-due.de/research/tools/raven/

2 People

The following people (in alphabetic order) are or were involved either in the
theoretical development or in the implementation of the tool:

• Christoph Blume (Universität Duisburg-Essen, Germany)

• H. J. Sander Bruggink (Universität Duisburg-Essen, Germany)

• Dominik Engelke (Universität Duisburg-Essen, Germany)

• Martin Friedrich (Universität Duisburg-Essen, Germany)

• Weixiang Guan (Universität Duisburg-Essen, Germany)

• Barbara König (Universität Duisburg-Essen, Germany)

• Dennis Nolte (Universität Duisburg-Essen, Germany)

• Laura Steinert (Universität Duisburg-Essen, Germany)

The current maintainer of the tool and the documentation is Christoph Blume.
The web site of Raven is at http://www.ti.inf.uni-due.de/research/tools/
raven/. Please address questions to christoph.blume@uni-due.de.

http://www.ti.inf.uni-due.de/research/tools/raven/
http://www.ti.inf.uni-due.de/research/tools/raven/
christoph.blume@uni-due.de

3 System and Software Requirements

3.1 The System Architecture

This section describes the system architecture of Raven which is depicted in
Figure 3.1.
The architecture of Raven can roughly be divided into six parts:

• the input components (depicted on the left) which are again split up into
two groups: the user interface and the file readers,

• the repository (depicted in the center) which is one of the core components
of Raven, that is a database for all current objects,

• the decomposer unit (depicted on the bottom) which is used to transform
graphs and cospans to equivalent atomic cospan decompositions,

• the goal components (depicted in the middle around the repository) which are
also core components providing different techniques to perform universality,
language inclusion, invariant, emptiness and membership checks,

• the algorithms unit (depicted on the top) which is used by the different goal
components

• the output components (depicted on the right) which are also split up into
two groups: the user interface and the file writers,

In the following the components are described in more detail.
The system starts by reading in the user’s input. Depending on which goals

the user wants to achieve different data structures must be provided. The data
structures which can be handled by Raven are:

• Graphs can either be directly created by the user via the user interface or
by loading a file in Gxl format1 (see Appendix 5),

• Signatures contain strings representing the letters connect∗, fuse, perm,
res, trans, vertex (also called atomic cospans, see Table 4.1 on page 17)
which are used to define the input alphabet of the different graph automata.
Signatures can also be created in the user interface or by loading a file in a
special line-oriented format,

• Cospans can be produced through the user interface or by loading a file in
Gxl format (see Appendix 5),

1Gxl is a Xml-based standard exchange language for different kinds of graphs widely spread in
the graph transformation community [12, 9, 8], see also http://www.gupro.de/GXL/

http://www.gupro.de/GXL/

3. System and Software Requirements

• (Atomic) Cospan Decomposition can either be generated by the user calling
the decomposer unit on a graph or a cospan, which will be explained in
detail below, or by loading a file in a special line-oriented format,

• Graph Automata can be created by choosing an automaton type (out of a list
of predefined automata) and defining the automaton’s properties, such as
the permitted inner, outer and maximum interface and some further specific
properties, or by loading a graph automaton from a file (see Appendix 5 for
further information).

After the data structures have been read, every object is stored under a certain
name in the repository. Later on, the user can use the objects in the repository
by handing over the names of the desired objects to the several goals.
Some of the goals, namely the membership and the invariant checking goal,

expect the user to input an atomic cospan decomposition. Hence, Raven provides
the opportunity to automatically decompose a graph or a cospan into such an
atomic cospan decomposition. This is done in several steps depending on the
object one wants to decompose:

• In case of graphs, the first step is to compute a tree decomposition of
the graph. This is done by two algorithms. The first one is a heuristic
which computes a list of the nodes of the graph depending on different
criteria [5] (see also Table 4.3). The second algorithm generates the actual
tree decomposition depending on the node list. The heuristic to find the
node list can either be chosen by the user or the default heuristic, called
GreedyDegree in the literature, is chosen.
In the second step, the tree decomposition (which is essentially a tree) is
traversed to obtain a linearization of the decomposition. In order to get a
path decomposition, one needs to perform further operations, since it could
be the case that the bags (of the linearization) containing a given node (of
the graph) do not form a path, which would be a violation of the definition
of a path decomposition. Therefore, it is checked for every graph node and
for every path from one bag to another bag which both contain the given
node, whether the node is also contained in all bags on the path. If this is
not the case, the node is added to all bags on the path which do not contain
the node. This yields a valid path decomposition of the graph.
In the last step, the path decomposition is transformed into an atomic cospan
decomposition. This is done in a “bag-wise” manner, i. e. the algorithm
processes the path decomposition bag by bag and transforms the contents
of each bag into an equivalent sequence of atomic cospans.

• In case of cospans, five different steps are required to obtain an atomic
cospan decomposition. The first step is to add a vertex-operation for each
node in the middle graph of the given cospan. Note that there are additional
nodes which are accessible from the inner interface (of the given cospan).
In the second step all edges of the middle graph are added by permuting
the incident nodes to the last position of the outer interface with the help
of shift- and trans-operations and a subsequent connect∗-operation, where
∗ is just a placeholder for the corresponding label. Next, in step three, the

10

3.1. The System Architecture

nodes added in step one are fused with the already existing nodes according
to the inner interface (of the given cospan). At this point the middle graph
obtained by the atomic cospan decomposition matches the middle graph of
the given cospan. Hence, in step four, we can permute the outer interface
(of the atomic cospan decomposition) by adding shift- and trans-operations
repeatedly such that the nodes which are not accessible by the outer interface
of the given cospan allocate the last positions of the outer interface of the
atomic cospan decomposition. Then, the fifth and last step is to remove
these last nodes from the outer interface by adding enough res-operations.
This yields the desired atomic cospan decomposition.

An object in the repository can be used as input to the different goal components:

• The universality method checks whether the given graph automaton is
universal, i. e. whether the accepted language of the 〈i, j〉-graph automaton
contains all cospans of the form c : Di

#
Dj . In case that the given graph

automaton is not universal, a counter-example is returned.

• The language inclusion goal expects two 〈i, j〉-graph automata and checks
whether the language of the first graph automaton is contained in the
language of the second graph automaton. In case the language inclusion
does not hold, each algorithm computes a counter-example and returns it
to the user.

• The invariant checking goal checks whether the language of a given 〈0, j〉-
graph automaton is an invariant for a graph transformation rule ρ = 〈`, r〉
given as two cospans of the form `, r : ∅# Di. The check is then based on
the language inclusion goal for the graph automata A[`] and A[r]. Again, if
the language of the given graph automaton is not an invariant for the given
transformation rule, a counter-example is computed and presented to the
user.

• The emptiness checking goal expects a graph automaton and checks whether
the language of the automaton is empty.

• The membership checking goal runs a given 〈i, j〉-graph automaton on a
given cospan of the form c : Di

#
Dj and checks whether the cospan is

accepted by the graph automaton.

If the language inclusion goal has been chosen, one of the algorithms solve the
language inclusion problem. Please note that in case of the simulation-based
antichain algorithm, the simulation pre-order for the given automata is computed
as a pre-processing step.
If the user has chosen the universality goal, there exist algorithms which are

essentially the same as for the language inclusion goal (see [13, 1, 6] for further
information about these universality algorithms).
If the invariant checking goal has been selected by the user, the input is

transformed as described above and afterwards the chosen language inclusion
algorithms is called.
The other two goals are directly implemented on top of the underlying data

structures, which are given as input, i. e. both the emptiness and the membership

11

3. System and Software Requirements

Library License URL
ANTLR ANTLR 4 License http://www.antlr.org/
BuDDy Public Domain http://buddy.sourceforge.net/

GraphViz Eclipse Public License 1.0 http://www.graphviz.org/
JAnsi Apache License 2.0 http://jansi.fusesource.org/

JavaBDD GNU LGPL 2.0 http://javabdd.sourceforge.net/
JDOM Apache-style License http://www.jdom.org/

JGoodies BSD 2-Clause License http://www.jdom.org/
JGraphX BSD 3-clause License http://www.jgraph.com/jgraph.html
LibTW Public Domain http://www.treewidth.com/

Table 3.1: Libraries on which Raven depends

check goal call methods which are implemented in the graph automaton data
structure. Therefore, no further algorithms are needed here.
At last, the system can either visualize the data structures contained in the

repository using the different viewers or write the data structures in the different
file formats which are described in Chapter 5.

3.2 The System Requirements
The tool suite Raven has been implemented in the Java programming language2

and offers both a command-line and a graphical user interface. Furthermore,
Raven depends on a number of libraries/programs which are listed in the following:

• JavaBDD, a Java library for manipulating Bdds which offers an interface
to the well-known BuDDy library [11]

• BuDDy, a highly efficient Bdd library written in C [10]

• LibTW, a Java library for computing tree decompositions of graphs [7]

• ANTLR, a parser generator library written in Java,

• JDOM, a library for reading, manipulating and writing Xml documents
written in Java

• JGraphX, a Java library for visualizing graphs

• JAnsi, a library written in Java to use ANSI escape sequences to format
console outputs

• Graphviz, a program for automatically layouting graphs

All the libraries and programs given above are free software (see Table 3.1 for
further information). All the libraries are shipped with Raven. Since Raven as
well as many of the libraries above are written in Java and since BuDDy as well
as Graphviz are available for many platforms, Raven can be used on Linux,
MacOS and Windows.

2Raven depends on a Java Runtime Environment 1.7 or higher.

12

http://www.antlr.org/
http://buddy.sourceforge.net/
http://www.graphviz.org/
http://jansi.fusesource.org/
http://javabdd.sourceforge.net/
http://www.jdom.org/
http://www.jdom.org/
http://www.jgraph.com/jgraph.html
http://www.treewidth.com/

3.2. The System Requirements

G
ra
ph

C
re
at
or

Si
gn

at
ur
e

C
re
at
or

C
os
pa

n
C
re
at
or

C
sp
.
D
ec
om

p.
C
re
at
or

A
ut
om

at
on

C
re
at
or

G
xl

Fi
le

G
ra
ph

R
ea
de
r

Si
g.

Fi
le

Si
gn

at
ur
e

R
ea
de
r

C
sp
.

Fi
le

C
os
pa

n
R
ea
de
r

C
sD

.
Fi
le

C
sp
.
D
ec
om

p.
R
ea
de
r

A
ut
.

Fi
le

A
ut
om

at
on

R
ea
de
r

U
I

R
ea
de
rs

U
se
r

In
pu

t

A
nt
ic
ha

in
A
lg
or
ith

m
B
isi
m
ul
at
io
n
up

to
co
ng

ru
en
ce

A
lg
or
ith

m
Si
m
ul
at
io
n-
ba

se
d

A
nt
ic
ha

in
A
lg
or
ith

m

A
lg
or
ith

m
s

G
ra
ph

V
ie
w
er

Si
gn

at
ur
e

V
ie
w
er

C
os
pa

n
V
ie
w
er

C
sp
.
D
ec
om

p.
V
ie
w
er

A
ut
om

at
on

V
ie
w
er

G
ra
ph

W
rit

er
G

xl
Fi
le

Si
gn

at
ur
e

W
rit

er
Si
g.

Fi
le

C
os
pa

n
W
rit

er
C
sp
.

Fi
le

C
sp
.
D
ec
om

p.
W
rit

er
C
sD

.
Fi
le

A
ut
om

at
on

W
rit

er
A
ut
.

Fi
le

U
I

W
rit

er
s

U
se
r

O
ut
pu

t

R
ep

os
ito

ry
A
ut
om

at
on

C
om

pu
ta
tio

n
U
ni
t

Dat
a

St
ru

ct
ur

e

D
at

a
St

ru
ct

ur
e

D
at

a
St

ru
ct

ur
e

D
at

a
St

ru
ct

ur
e

Pr
op

er
tie

s

A
ut

om
at

on

Pa
th

D
ec
om

po
sit

io
n

A
lg
or
ith

m

Tr
ee

D
ec
om

po
sit

io
n

A
lg
or
ith

m

C
os
pa

n
D
ec
om

po
sit

io
n

A
lg
or
ith

m

Tr
ee

D
ec
.

Pa
th

D
ec
.

D
ec
om

po
se
r

G
ra

ph
,

C
os

pa
n

C
sp

.
D

ec
om

p.

U
ni
ve
rs
al
ity

4
8

La
ng

ua
ge

In
cl
us
io
n

4
8

In
va
ria

nt
C
he
ck
in
g

4
8

Em
pt
in
es
s

4
8

M
em

be
rs
hi
p

4
8

Autom
ato

n

Automata

Aut
om

at
on

,C
sp

.Dec
om

p.

Aut
om

at
on

Autom
ato

n, Csp. Deco
mp.

«c
al
ls»

«c
al
ls»

«u
se
s»

Figure 3.1: System Architecture of Raven

13

4 Installation, Usage and Functionality

4.1 Installation
After installing a Java Runtime Environment (JRE) Version 1.7 (or newer) and
installing the Graphviz graph visualization software1, no further installation is
necessary to run Raven. Please make sure, that Raven is allowed to create new
files and directories (in the directory where you installed Raven).

4.2 Usage
Raven offers both a graphical user interface (GUI) and a command-line interface
(CLI). The recommended way of using Raven is with the GUI. To start the
program with GUI the raven.jar can be directly executed or called from a shell
by:

java -jar raven.jar

If you want to start Raven with the command-line interface, you can call

java -jar raven.jar -c [scriptFile]

from a shell, where scriptFile is an optional parameter which indicates a Raven
script file contained in the script-directory. Please note, that the command-line
is not interactive if you pass the scriptFile-parameter to Raven, i. e. Raven
will be terminated after the execution of the given Raven script file.

4.3 Functionality
In this section we give a short introduction to the main features of Raven. For
this we first start Raven with GUI, which brings up the main window of Raven
(see Figure 4.1). This window consists of five main components:

¬ The goal panel on which the user can choose the different goals to use,

 The output panel which shows the user text-based status information about
Raven,

® The command-line input field which provides the user with the opportunity
to directly use console commands in the graphical use interface,

¯ The repository panel which presents a list of all data objects (signatures,
cospans, . . .) which are currently contained in the repository,

° The data information panel which gives detailed information about the
currently selected data object.

1Graphviz is available at http://www.graphviz.org/

http://www.graphviz.org/

4. Installation, Usage and Functionality

¬

®

¯

°

Figure 4.1: Raven GUI

4.3.1 Preparations

The first time we start Raven, there may pop up an information dialog as depicted
in Figure 4.2. If this is the case, we have to configure the correct path to the
Dot executable. To do so, first we choose Info -> Variables and properties,
which brings up the Variables and Properties dialog (see Figure 4.3). We can now
add new variables by pressing the button (:) labelled with a green plus sign or
remove non-default variables by pressing the button (y) labelled with a red minus
sign. There exists a default dot variable which needs to be configured by selecting
the key and pressing the button (b) labelled with the edit symbol. We have to
enter the full path of the Dot executable which is needed to layout the graphs
used by Raven. By closing the dialog all changes will be saved automatically.
Now we can start with the creation of data structures, which we will analyse with
some of the implemented algorithms.

4.3.2 Creation of data structures

We start by creating some data structures. First, we create a new graph and
add it to the repository. This can be done by choosing either Repository ->
Create graph from the main menu or the item Create graph which appears
when pressing the button (:) labelled with a green plus sign located on the
repository panel (¯, Figure 4.1). The visual graph creator component appears,
which is depicted in Figure 4.4. The use is rather intuitive. In the text field on

Figure 4.2: Raven Dot Executable not found

16

4.3. Functionality

Figure 4.3: Raven Variables and Properties

the top side of the window, the user has to define a (unique) name for the new
graph which is used to address the graph after it has been added to the repository.
By pressing the Add node button the user can add new nodes to the graph. A
click on the Add edge button brings up a new dialog window on which the user
can specify the (unique) name, the label and incident nodes of a new edge. The
graph is then added to the repository by pressing the Accept button.
Next, we want to add a graph automaton. But before we can do this, we

need to add a signature to define the automaton’s input alphabet. Again, we
either choose Repository -> Create signature from the main menu or the
item Create signature which appears when pressing the button (:) labelled
with a green plus sign located on the repository panel. The visual signature
creator appears, which is shown in Figure 4.5. First of all, the user has to define
a (unique) name for the new signature. Subsequently the user can add the letters
which should be contained in the signature by pressing the button (:) labelled
with a green plus sign. The available letters are given in the following table:

Letter Description
connect∗ Adds a new edge labelled with ∗
fuse Fuses the nodes accessible by the last two interface nodes
perm Shifts the complete interface by one node
res Restricts the last node from the interface
trans Transposes the first two interface nodes
vertex Adds a new node to the middle graph and to the outer interface

Table 4.1: Available letters for the input alphabet

Note that ∗ is a placeholder for an arbitrary label which can be determined by
the user. If the user wants to remove a letter, this can be done by selecting the
respective letter and pressing the button (y) labelled by a red minus sign. Once
all operations have been added to the signature, the user can press the Accept
button and add it to the repository.

17

4. Installation, Usage and Functionality

Figure 4.4: Raven Visual Graph Creator

Now, we can create a new graph automaton. As before, the visual automaton
creator dialog can be invoked either by the main menu, choosing Repository ->
Create graph automaton, or by pressing the button (:) labelled with a green
plus sign located on the repository panel and selecting the Create automaton
item. Either way the visual automaton creator, which is depicted in Figure 4.6, is
shown to the user. Analogously to the dialogs explained above, first of all the user
has to define a (unique) name for the new graph automaton. Next, the user can
choose the type of the graph automaton, which specifies the language accepted by
the automaton. The list consists of the following types:

Type Description
Colorability Graph automata which accept a cospan if and only if

the middle graph G of the cospan can be colored by
at most k colors, i. e. there exists a k-coloring such
that no adjacent nodes have the same color

Dominating Set Graph automata which accept a cospan if and only
if the middle graph G of the cospan contains a dom-
inating set of size at most k, i. e. a set D of nodes
of G with size at most k such that each node of G is
either in D or adjacent to a node in D

18

4.3. Functionality

Edge/Vertex Count-
ing

Graph automata which count the number of specific
edges or nodes of the middle graph of the input cospan
modulo a fixed divisor,

Link Graph automata which check that the middle graph of
the input cospan consists of an edge which is incident
to at least one node of the inner interface and to
at least one node of the outer interface of the input
cospan

Maximum/Minimum
Edge/Vertex

Graph automata accepting only cospans whose middle
graph have a particular maximum (minimum) number
of edges or nodes,

No Isolated Nodes Graph automata which accept only those cospans
whose middle graphs do not contain any isolated
node

Path Graph automata which check that there exists an
〈S, T 〉-path in the middle graph of the input cospan,
where S is a subset of the inner interface and T is a
subset of the outer interface, i. e. there exists a path
starting at some node contained in S to some other
node contained in T

Product Graph automata whose accepted language is the inter-
section of the languages of two given graph automata,

Subgraph Graph automata which accept all cospans whose mid-
dle graphs contain a specific graph as a subgraph

Union Graph automata whose accepted language is the
union of the languages of two given graph automata,

Vertex cover Graph automata accepting a cospan if and only if the
middle graph G of the cospan has a vertex cover of
size at most k, i. e. there exists a set C of nodes of G
with size at most k such that each edge is incident to
at least one node of C

Furthermore, the user has to specify the signature used by the new graph
automaton as well as the inner, outer and maximum interface size of the cospans
accepted by the automaton. However, it is recommended to choose the maximum
interface size as low as possible, since the size (and therefore the time of computa-
tion) of a graph automaton depends exponentially on the maximum interface size.
At last, the user has to define some type-specific properties such as the number of
colors in case of the colorability type or the maximum size of the dominating set
in case of the dominating set type, et cetera. If all required properties have been
given, the user can start the computation of the new graph automaton by clicking
the Accept button. When the computation is finished, the graph automaton is
added to the repository.
The next data structure we want to create is a new cospan. For this purpose

the user has two possibilities in Raven. The first is to directly create a new
cospan by creating the middle graph of the cospan and defining which nodes are

19

4. Installation, Usage and Functionality

Figure 4.5: Raven Visual Signature
Creator

Figure 4.6: Raven Visual Automaton
Creator

in the inner and which ones are in the outer interface. The second is to give the
cospan in terms of an atomic cospan decomposition. The advantage of the latter
option is that the user has more influence on the cospan decomposition, since no
decomposition must be computed. The disadvantage is that the user has to know
the decomposition of the desired cospan. In order to create a new cospan the
user has to choose either Repository -> Create cospan from the main menu
or the button (:) labelled with a green plus sign located on the repository panel
and selecting the Create cospan item. The visual cospan creator dialog appears
which is shown in Figure 4.7. The use of this dialog is similar to the visual graph
creator. Therefore we omit the explanation of the visual cospan creator as far as
possible. The only difference is that the user can add nodes of the middle graph
to the inner and outer interface respectively. This can be done by selecting the
certain node and clicking on the buttons labelled with the different arrows. The
color of the nodes change with respect to the following criteria:

Color Criterion
Gray The node is accessible by no interface
Orange The node is accessible only by the inner interface
Green The node is accessible only by the outer interface
White The node is accessible by both, the inner and the outer interface

To create a new cospan decomposition the user has to choose the Create
cospan decomposition item instead of the Create cospan item. This brings
up the signature selection dialog, which can be seen in Figure 4.8. The user
can define the inner interface size and subsequently selects a signature which
defines the available atomic cospans for the cospan decomposition. If the user
has not created a signature, a default signature can be used. After accepting the
chosen settings, the visual cospan decomposition creator dialog shows up, which
can be seen in Figure 4.9. First of all, the user has to define the (unique) name

20

4.3. Functionality

Figure 4.7: Raven Visual Cospan Creator

of the cospan decomposition (±, Figure 4.9). Afterwards we can compose the
new atomic cospan decomposition out of the list of available atomic cospans by
selecting the desired atomic cospan and pressing the arrow buttons. The list of
available atomic cospans is depicted on the upper left of the dialog window (²,
Figure 4.9). Every time a new atomic cospan is added to the decomposition,
the cospan list, depicted in the middle, and the cospan view, depicted in the
bottom part (³, Figure 4.9) of the dialog, are updated. Furthermore, the user
is provided with the current (outer) interface of the cospan by the list on the
right. The user can switch between a cospan view and a decomposition view by
selecting the corresponding radio button under the view. Once, the atomic cospan
decomposition is complete, the user can click the Accept button such that the
decomposition is added to the repository.

Figure 4.8: Raven Signature Selector

21

4. Installation, Usage and Functionality

±

²

³

Figure 4.9: Raven Visual Cospan Decomposition Creator

An alternative way to create a cospan decomposition is to auto-generate it,
using the decomposition algorithms implemented in Raven. By selecting the
Decompose goal from the goal panel (¬, Figure 4.1), the decomposition panel
shown in Figure 4.10 is presented. We have to type in a name for the new cospan
decomposition we want to create. Then we have to choose one of the graph or
cospan data structures, created in an earlier step. If we want to decompose a
graph, we select one of the following algorithms to decompose it:

Type Description
Greedy Degree
Greedy Fill In
All Start Lex BFS
Lex BFS

Table 4.3: Graph Decomposition Heuristics

Note that the given graph must not contain loops2, since the given algorithms
only work on loop-free graphs. To create a decomposition which may also describe
a graph with loops and has a variable inner/outer interface size, the user has to
select a cospan data object. In that case there only exists one selectable algorithm,
which is an on-the-fly algorithm given as a default implementation. By pressing
the button (I) labelled with a green triangle, Raven decomposes the given data

2A loop in a hypergraph is an edge which is attached to some node more than once.

22

4.3. Functionality

Figure 4.10: Raven Decomposition Goal Panel

structure and creates a new cospan decomposition object, which is saved in the
repository.
After the user has created some data structures, the user can get further

information about these objects by selecting them on the repository panel (¯,
Figure 4.1). The details about the selected object are then depicted on the
data information panel (°, Figure 4.1). For example, if the user selects a graph
automaton, the depicted details consist of properties which have been used during
the creation and of further information such as the number of (all/the initial/the
final) states of the automaton, the name of the Bdd encoding or the (visual
representation of the) Bdds used to encode the several transitions functions of the
graph automaton. For the other data structures the user can also get additional
information by selecting the certain object on the repository panel. In case the
user selected a cospan, the corresponding graph is shown in the information panel.
The user can save the graph in a scalable vector graphic file (Svg). In addition
there exist information about the inner interface and the outer interface.

4.3.3 Algorithms of Raven

Now, we turn to the analysis of the graph automaton created beforehand. We
assume that the user has created a graph with the help of the visual graph creator.
The goal panel (¬, Figure 4.1) consists of the following decision problems:

Decision Problem Description
Language Inclusion
Emptiness
Membership
Simulation
Invariant Checking
Decomposition
Universality

As an example we want to check whether the given graph is accepted by the
graph automaton, i. e. we want to solve the membership problem. To do so, the
user has to select the Membership goal from the goal panel (¬, Figure 4.1) first.
Then the desired graph automaton and the desired graph have to be selected from

23

4. Installation, Usage and Functionality

the respective lists which appear on the goal panel. To start the computation of
the underlying membership algorithm we have to press the button (I) labelled
with a green triangle. In a similar way, the other goals can be chosen and started.

During the whole runtime of Raven the output panel (, Figure 4.1) provides
the user with additional information about the status of the program. Once
the computation has finished, the result is displayed to the user. In case of
the membership check only a small text dialog is displayed which is used to
indicate whether the check has been successful or not. In case we have chosen the
universality, language inclusion or invariant check, Raven also displays a counter-
example if the result is negative and we have enabled the Compute Counterexample
option on the goal panel (¬, Figure 4.1). We will start with an example where
we want to check whether the language of all 4-colorable graphs is included in the
language of all 3-colorable graphs. First of all we create the respective automata
for these problems as it was shown in the earlier steps. Now we have to select the
Language Inclusion goal from the goal panel (¬, Figure 4.1). We can choose
one of the three algorithms Antichain Language Inclusion [13], Simulation-based
Antichain Language Inclusion [1] or Bisimulation up to congruence [6] to compute
whether the first automaton accepts a sub-language of the second automaton. If we
select the antichain language inclusion algorithm, we have also the choice between
a forward and a backward search variant. We select the Compute Counterexample
option and start the computation by clicking on the button (I) labelled with a
green triangle. After the computation has been finished, we will see the computed
counterexample shown in Figure 4.11. As expected the counterexample shows the
graph of the 4-clique which is 4-colorable, but not 3-colorable. We can switch
between the three different counterexample views Graph, CospanDecomposition
and Cospan by selecting the corresponding radion buttons in the bottom of the
dialog window.

The same kind of counterexample can be obtained if we check the universality
of a 2-colorability automaton. The counterexample is the 3-clique shown in the
cospan view in Figure 4.12 or shown in Figure 4.13 as a decomposition.

Figure 4.11: Raven Counterexample
Language Inclusion

Figure 4.12: Raven Counterexample
Universality

In case of an invariant check the counterexample consists of two graphs. The
left graph represents the previous state and the right graph represents the state
after applying the rule. As an example we want to check if the rule depicted in

24

4.3. Functionality

Figure 4.13: Raven Counterexample
Universality Decomposition

Figure 4.14 holds as an invariant for the 2-colorability automaton. To describe
the rule we start creating the two cospans, which describe the left-hand side and
the right-hand side of the rule. The cospans are depicted next to our rule in
Figure 4.14. Now we can select the Invariant Checking goal from the goal panel
(¬, Figure 4.1). The invariant check is performed by a language inclusion check
(for more information see [3]). The configurations are similar to the language
inclusion goal panel.

Again we can choose one of the three algorithms Antichain Invariant Checking,
Simulation-based Invariant Checking or Bisimulation up to congruence to compute
whether the given rule is an invariant for the automaton or not. First, we
have to choose an automaton which is used for the invariant check (in our case
we select the 2-colorability automaton). Then we have to choose a cospan or
cospan decomposition which describes the left-hand side of the transformation
rule and a cospan or cospan decomposition which describes the right-hand side
of the transformation rule. As already seen for the language inclusion check,
we have the choice between a forward and a backward search variant, if we
choose the antichain invariant checking algorithm. Again, we select the Compute
Counterexample option and start the computation by clicking on the button (I)
labelled with a green triangle. Once the computation is finished, we will see the
counterexample shown in Figure 4.15. The counterexample is a whitness that the
language of all 2-colorable graphs is not an invariant for the given transformation
rule. The graph containing two edges between to nodes where one of the edges

Figure 4.14: Raven Rule Example

25

4. Installation, Usage and Functionality

Figure 4.15: Raven Rule Counterexample

is rewritten into a new node which is adjacent to the former nodes. By this
rewriting step we get the 3-clique which is not 2-colorable. As we can see the
counterexample for rules consists of two graphs which describe two possible states
of our graph automaton. The first graph is accepted by the given automaton, since
it is 2-colorable. But by applying the transformation rule to the first graph we
obtain a new graph which is not accepted by the automaton. Hence, enabling the
counterexample option can help the user to understand the result of the analysis
performed by Raven.

4.3.4 Saving/Loading with Raven
After the user has created some data structures, he can save and load his work.
To avoid having a user create the same automaton, graph, cospan, signature or
decomposition again after closing raven, he can save each data structure which he
created in the repository. To do so the user has to choose File -> Save, or by
pressing the button labelled with the save sign located on the repository panel
and selecting one of the Save items. . . .

26

5 File Formats

5.1 The GXL Format for Graphs
In this section, we give an example of a graph represented in the Gxl-format which
is used to save graphs to .gxl-files. For a detailed description of the Gxl-format
see the website at http://www.gupro.de/GXL/.
For our example, we take the following graph:

where the edge from node n1 to node n2 is named e1, the edge from node n1 to
node n3 is named e2, and so on. The graph depicted above can then be represented
by the following Xml-file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE gxl SYSTEM "http://www.gupro.de/GXL/gxl-1.0.dtd">

<gxl>
<graph id="G" edgeids="true" edgemode="undirected"

hypergraph="true">
<node id="n1" />
<node id="n2" />
<node id="n3" />
<node id="n4" />
<node id="n5" />

<rel id="e1">
<attr name="label">

<string>A</string>
</attr>
<relend target="n1" role="vertex" startorder="0" />
<relend target="n2" role="vertex" startorder="1" />

</rel>

<rel id="e2">
<attr name="label">

<string>A</string>

http://www.gupro.de/GXL/

5. File Formats

</attr>
<relend target="n1" role="vertex" startorder="0" />
<relend target="n4" role="vertex" startorder="1" />

</rel>

<rel id="e3">
<attr name="label">

<string>A</string>
</attr>
<relend target="n1" role="vertex" startorder="0" />
<relend target="n5" role="vertex" startorder="1" />

</rel>

<rel id="e4">
<attr name="label">

<string>A</string>
</attr>
<relend target="n2" role="vertex" startorder="0" />
<relend target="n3" role="vertex" startorder="1" />

</rel>

<rel id="e5">
<attr name="label">

<string>A</string>
</attr>
<relend target="n2" role="vertex" startorder="0" />
<relend target="n5" role="vertex" startorder="1" />

</rel>

<rel id="e6">
<attr name="label">

<string>A</string>
</attr>
<relend target="n3" role="vertex" startorder="0" />
<relend target="n4" role="vertex" startorder="1" />

</rel>

<rel id="e7">
<attr name="label">

<string>A</string>
</attr>
<relend target="n4" role="vertex" startorder="0" />
<relend target="n5" role="vertex" startorder="1" />

</rel>
</graph>

</gxl>

28

5.2. The Gxl Format for Cospans

5.2 The GXL Format for Cospans
In this section, we give an example of a cospan represented in the Gxl-format
which is used to save cospans to .cos-files. The file format is very similar to that
used for graphs (see Section 5.1). The greatest difference is that we also need to
save inner and outer interface of the cospan.
For our example, we take the following cospan:

where the B-edge incident to the nodes n1 and n5 is named e1, the A-edge incident
to the nodes n1, n3 and n6 is named e2, the A-edge incident to the nodes n2, n4
and n7 is named e3 and the B-edge incident to the nodes n2 and n4 is named e4.
The graph depicted above can then be represented by the following Xml-file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE gxl SYSTEM "http://www.gupro.de/GXL/gxl-1.0.dtd">

<gxl>
<graph id="innerInterface">

<attr name="n1">
<string>"n1"</string>

</attr>
<attr name="n3">

<string>"n3"</string>
</attr>
<attr name="n4">

<string>"n4"</string>
</attr>

</graph>

<graph id="middleGraph" edgeids="true" edgemode="undirected"
hypergraph="true">

<node id="n1" />
<node id="n5" />
<node id="n4" />
<node id="n3" />

29

5. File Formats

<node id="n2" />
<node id="n7" />
<node id="n6" />

<rel id="e3">
<attr name="label">

<string>A</string>
</attr>
<relend target="n2" role="vertex" startorder="0" />
<relend target="n3" role="vertex" startorder="1" />
<relend target="n7" role="vertex" startorder="2" />

</rel>

<rel id="e2">
<attr name="label">

<string>A</string>
</attr>
<relend target="n3" role="vertex" startorder="0" />
<relend target="n6" role="vertex" startorder="1" />
<relend target="n1" role="vertex" startorder="2" />

</rel>

<rel id="e4">
<attr name="label">

<string>B</string>
</attr>
<relend target="n2" role="vertex" startorder="0" />
<relend target="n4" role="vertex" startorder="1" />

</rel>

<rel id="e1">
<attr name="label">

<string>B</string>
</attr>
<relend target="n1" role="vertex" startorder="0" />
<relend target="n5" role="vertex" startorder="1" />

</rel>
</graph>

<graph id="outerInterface">
<attr name="n5">

<string>"n5"</string>
</attr>
<attr name="n7">

<string>"n7"</string>
</attr>
<attr name="n4">

<string>"n4"</string>

30

5.3. The Automaton File Format

</attr>
<attr name="n6">

<string>"n6"</string>
</attr>

</graph>
</gxl>

5.3 The Automaton File Format
In this section, we briefly explain the .aut-file format which is used to save
automata to files. Every .aut-file is essentially a ZIP-file consisting of different
files depending on the automaton. Each .aut-file contains

• a file named general.obj which holds the serialized1 representation of the
corresponding automaton object,

• a file named states.bdd2 holding information about the Bdd representing
the set of all states,

• a file named initial.bdd holding information about the Bdd representing
the set of initial states,

• a file named final.bdd holding information about the Bdd representing
the set of final states,

• a file named nonFinal.bdd holding information about the Bdd representing
the set of non-final states

• depending on the input alphabet of the corresponding automaton a .bdd-file
for each atomic cospan of the input alphabet is contained: these .bdd-files
hold information about the Bdds representing the transition relations for
the particular atomic cospans.

5.4 The Signature File Format
In this section, we briefly explain the .sig-file format which is used to save
signatures to files. Since a signature is just a set of atomic cospans (used as input
alphabet for graph automata) the file format is rather simple. The format is text-
and line-oriented, i. e. each line of the file consists of the name of exactly one
atomic cospan.

5.5 The Cospan Decomposition File Format
In this section, we briefly explain the .dec-file format which is used to save cospan
decompositions to files. Since a cospan decomposition is just a sequence of atomic
cospans the file format is rather simple. The format is text- and line-oriented,

1See http://docs.oracle.com/javase/7/docs/technotes/guides/serialization/ for fur-
ther information about serialization in Java.

2For a description of the file format used in the .bdd-files see the manual of the BuDDy-package.

31

http://docs.oracle.com/javase/7/docs/technotes/guides/serialization/

5. File Formats

i. e. each line of the file consists of the name of exactly one atomic cospan. With
one exception: the first line of the file indicates the size of the inner interface of
the resulting cospan. The size of the outer interface of the resulting cospan (and
all intermediate interface sizes) can then be computed by the sequence of atomic
cospans.

32

Bibliography

[1] Abdulla, P.A., Chen, Y.F., Holík, L., Mayr, R., Vojnar, T.: When simulation
meets antichains (on checking language inclusion of NFAs). In: Proc. of
TACAS ’10. pp. 158–174. LNCS 6015, Springer (2010)

[2] Blume, C.: Graphsprachen für die Spezifikation von Invarianten bei verteilten
und dynamischen Systemen. Master’s thesis, Universität Duisburg-Essen
(2008), (in German)

[3] Blume, C., Bruggink, H.J.S., Engelke, D., König, B.: Efficient symbolic
implementation of graph automata with applications to invariant checking.
In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Graph
Transformations. Lecture Notes in Computer Science, vol. 7562, pp. 264–278.
Springer (2012)

[4] Blume, C., Bruggink, H.J.S., König, B.: Recognizable graph languages for
checking invariants. In: Proceedings of GT-VMT 2010. ECEASST 29 (2010)

[5] Bodlaender, H.L., Koster, A.M.C.A.: Treewidth Computations I. Upper
Bounds. Tech. Rep. UU-CS-2008-032, Department of Information and Com-
puting Sciences, Utrecht University (September 2008)

[6] Bonchi, F., Pous, D.: Checking nfa equivalence with bisimulations up to
congruence. In: Proceedings of the 40th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. pp. 457–468. POPL’ 13,
ACM (2013)

[7] Thomas van Dijk, Jan-Pieter van den Heuvel, W.S.: Computing treewidth
with LibTW (November 2006), http://www.treewidth.com/docs/LibTW.
pdf, (online)

[8] Holt, R.C., Schürr, A., Sim, S.E., Winter, A.: GXL: A graph-based standard
exchange format for reengineering. Science of Computer Programming 60(2),
149–170 (2006)

[9] Kullbach, B., Riediger, V., Winter, A.: An overview of the GXL graph
exchange language. In: Diehl, S. (ed.) Software Visualization, Lecture Notes
in Computer Science, vol. 2269, pp. 324–336. Springer (2002)

[10] Lind-Nielsen, J.: Buddy – a binary decision diagram package, http://
sourceforge.net/projects/buddy, (online)

[11] Whaley, J.: Javabdd – java library for manipulating bdds, http://javabdd.
sourceforge.net/, (online)

http://www.treewidth.com/docs/LibTW.pdf
http://www.treewidth.com/docs/LibTW.pdf
http://sourceforge.net/projects/buddy
http://sourceforge.net/projects/buddy
http://javabdd.sourceforge.net/
http://javabdd.sourceforge.net/

Bibliography

[12] Winter, A.: Exchanging graphs with gxl. In: Mutzel, P., Jünger, M., Leipert,
S. (eds.) Graph Drawing, Lecture Notes in Computer Science, vol. 2265, pp.
485–500. Springer (2002)

[13] Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.F.: Antichains: A new
algorithm for checking universality of finite automata. In: Proceedings of
CAV 2006. pp. 17–30. LNCS 4144, Springer (2006)

34

	Introduction
	History
	Raven today

	People
	System and Software Requirements
	The System Architecture
	The System Requirements

	Installation, Usage and Functionality
	Installation
	Usage
	Functionality
	Preparations
	Creation of data structures
	Algorithms of Raven
	Saving/Loading with Raven

	File Formats
	The Gxl Format for Graphs
	The Gxl Format for Cospans
	The Automaton File Format
	The Signature File Format
	The Cospan Decomposition File Format

