
User manual T-Beg: A Tool for Behavioural
Equivalence Games?

Barbara König1, Christina Mika-Michalski1, and Lutz Schröder2

1 University of Duisburg-Essen, Germany
2 Friedrich-Alexander-Universität Erlangen-Nr̈nberg

{barbara koenig,christina.mika-michalski}@uni-due.de,
lutz.schroeder@fau.de

1 Introduction

Behavioural equivalences can be characterized via bisimulation, modal logics,
and spoiler-duplicator games. In T-Beg we work in the general setting of coal-
gebra and focus on generic algorithms for computing the winning strategies of
both players in a bisimulation game. The winning strategy of the spoiler (if it
exists) is then transformed into a modal formula that distinguishes the given
non-bisimilar states. The modalities required for the formula are also synthe-
sized on-the-fly, and we present a recipe for re-coding the formula with different
modalities, given a separating set of predicate liftings (for theoretical details we
refer to [6, 5]).

In the next section we give an overview of the tool and the main design deci-
sions. After that we explain based on an example how to use the tool including
a brief description how T-Beg has been tested. Finally, we give an outlook on
the optimization of T-Beg.

2 T-Beg: A Generic Tool for Games and the Construction
of Distinguishing Formulas

2.1 Overview

A tool for playing bisimulation games is useful for teaching, for illustrating ex-
amples in talks, for case studies and in general for interaction with the user.
There are already available tools, providing visual feedback to help the user
to understand why two states are (not) bisimilar, such as The Bisimulation
Game Game3 or Bisimulation Games Tools4 [3]. Both games are designed
for labelled transition systems and [3] also covers branching bisimulation.

Our tool T-Beg goes beyond labelled transition system and allows to treat
coalgebras in general (under the restrictions that we impose), that is, we exploit
the categorical view to create a generic tool.

? Supported by the project BEMEGA funded by the DFG.
3 http://www.brics.dk/bisim/
4 https://www.jeroenkeiren.nl/blog/on-games-and-simulations/



2 Barbara König and Christina Mika-Michalski and Lutz Schröder

A generic algorithm given by the coalgebraic game: We will now present the rules
for a behavioural equivalence game (if you are not familiar with the underlying
concepts, we refer to [6, 5]).

At the beginning of a game, two states x, y are given. The aim of the spoiler
(S) is to prove that x � y, the duplicator (D) attempts to show the opposite.

– Initial situation: A coalgebra α : X → FX and two states x, y ∈ X.
– Step 1: S chooses s ∈ {x, y} and a predicate p1 : X → 2.
– Step 2: D takes t ∈ {x, y}\{s} if x 6= y and t = s otherwise and has to

answer with a predicate p2 : X → 2 satisfying Fp1(α(s)) ≤F Fp2(α(t)).
– Step 3: S chooses pi with i ∈ {1, 2} and some state x′ ∈ X with pi(x

′) = 1.
– Step 4: D chooses some state y′ ∈ X with pj(y

′) = 1 where i 6= j.

As shown in [5], the coalgebraic game defined in [6] provides us with a generic
algorithm to compute the winning strategies and distinguishing formulas. This
algorithm computes the greatest fixpoint of Fα : Eq(X)→ Eq(X) on equivalence
relations (where E(R) denotes the set of all equivalence classes over R, F is
a functor representing the branching type and χP denotes the characteristic
function of a subset P ⊆ X):

Fα(R) = {(x, y) ∈ R | ∀P ∈ E(R) : FχP (α(x)) = FχP (α(y))}

In Algorithm 1 I(x, y) denotes the first index where x, y are separated in
the fixpoint iteration of Fα. More precisely, i is the least least index i such that
(x, y) /∈ F iα(X ×X). If two states x, y are never separated, i.e., (x, y) ∈ νFα we
set I(x, y) =∞.

The second component T tells the spoiler what to play in Step 2. In particular
whenever T (x, y) = (s, P1), S will play s and p1 = χP1

.
Such a winning strategy for the spoiler can be computed during the fixpoint

iteration, see Algorithm 1. (for details we refer to [5]).

Generic in use: The user can either slip into the role of the spoiler or of the
duplicator, playing on some coalgebra against the computer. The tool computes
the winning strategy (if any) and follows this winning strategy if possible. We
have also implemented the construction of the distinguishing formula for two
non-bisimilar states.

The genericity over the functor is in practice achieved as follows: The user
either selects an existing functor F , or implements his/her own functor by pro-
viding the code of one class with nine methods (explained below). Everything
else, such as embedding the functor into the game and the visualization are au-
tomatically handled by T-Beg. In the case of weighted systems, T-Beg even
handles the creation of the graphical representation.

Then, he/she enters or loads a coalgebra α : X → FX (with X finite), stored
as csv (comma separated value) file. Now the user can switch to the game view
and start the game by choosing one of the two roles (spoiler or duplicator) and
selecting a pair of states (x, y), based on the the visual graph representation.



A Tool for Behavioural Equivalence Games 3

Algorithm 1 Computation of νFα and the winning strategy of the spoiler

1: procedure Compute the winning moves for S
2: for all (x, y) ∈ X ×X do
3: I(x, y)←∞
4: i← 0, R0 ← X ×X
5: repeat
6: i← i+ 1, Ri ← Ri−1

7: for all (x, y) ∈ Ri−1 do
8: for all P ∈ E(Ri−1) do
9: if FχP (α(x)) �F FχP (α(y)) then

10: T (x, y)← (x, P ), I(x, y)← i, Ri ← Ri \ {(x, y)}
11: else
12: if FχP (α(y)) �F FχP (α(x)) then
13: T (x, y)← (y, P ), I(x, y)← i, Ri ← Ri \ {(x, y)}
14: until Ri−1 = Ri

15: return Ri, T, I

Next, the computer takes over the remaining role and the game starts: In
the game overview, the user is guided through the steps by using two colors to
indicate whether it is spoiler’s (violet) or duplicator’s (cyan) turn (see Figure 1).

In the case of two non-bisimular states, the tool will display a distinguishing
formula at the end of the game.

Fig. 1: Screenshot of the graphical user interface with a game being played.



4 Barbara König and Christina Mika-Michalski and Lutz Schröder

2.2 Design

We now give an overview over the design and the relevant methods within the
tool. We will also explain what has to be done in order to integrate a new functor.

T-Beg is a Windows tool offering a complete graphical interface, developed
in Microsoft’s Visual Studio using C#, especially Generics. The program is
divided into the following five components: Model, View, Controller, Game and
Functor. We have chosen MVC (Model View Controller) as a modular pattern,
so modules can be exchanged. Here we have several Model〈T 〉 managed by the
Controller , where the functor in the sense of a Functor class, which always
implements the Functor Interface, is indicated by the parameter 〈T 〉.

While the tool supports more general functors, there is specific support for
functors F with FX = V GX where V specifies a semiring and GX is finite
(whenever X finite). That is, F describes the branching type of a weighted
transition system, where for instance GX = A×X + 1 (introducing labels and
termination). Coalgebras are of the form X → V GX or – via currying – of the
form X × GX → V , which means that they can be represented by X × GX-
matrices (matrices with index sets X, GX). In the implementation V is the
generic data type of the matrix entries. In the case of the powerset functor we
simply have V = 2 and GX = X.

If the transition system can not simply be modelled as a matrix, there is
an optional field that can be used to specify the system, since Model〈T 〉 calls
the user-implemented method to initialize the transition system instance. The
implementation of the bisimulation computation described in 1 can be found in
Game〈T, V 〉, representing the core of the tool’s architecture.

Functor Interface As mentioned previously, the user has to provide nine meth-
ods in order to implement the functor: two are needed for the computation, two
for rendering the coalgebra as a graph, one for creating modal logical formulas,
another two for loading and saving, and two more for customizing the visual
matrix representation.

We would like to emphasize here that the user is not expected to formally
implement the functor in the sense of the categorical definition. In particular,
we do not need the application of the functor to arrows, but we need methods
that evaluate the conditions necessary for the game.

Within MyFunctor , which implements the interface Functor〈F ,V 〉, the user
defines the data structure F for the branching type of the transition system (e.g.,
a list or bit vector for powerset functor, or the corresponding function type in
the case of the distribution functor). Further, the user specifies the type V that
is needed to define the entries of X × GX (e.g. a double value for a weight or
0, 1 to indicate the existence of a transition).

Then the following nine methods have to be provided:

Matrix 〈F ,V 〉InitMatrix (. . . ): This method is necessary to initialize the transi-
tion system with the string-based input of the user. The information about
the states and the alphabet is provided via an input mask in the form of a



A Tool for Behavioural Equivalence Games 5

matrix. It is strongly recommended to add a try{}catch{} block like in the
available examples.

bool CheckDuplicatorsConditionStep2 (. . . ): given two states x, y and two pred-
icates p1, p2, this method checks whether

Fp1(α(x)) ≤F Fp2(α(y)).

This method is used when playing the game (in Step 2) and in the partition
refinement algorithm 1 for the case p1 = p2.
There are two different scenarios, where this method is used: in the game
when the duplicator makes his turn in Step 2. The method checks whether
the duplicator’s move is valid depending on the first move made by the
spoiler.
On the other hand, we need this method during the validation of the con-
dition ≤F described in [5]. There, for a given pair (x, y) ∈ X × X and a
predicate p over X one has to check whether Fp(α(x)) ≤F Fp(α(y)) holds.
If this is not fulfilled, as already described in Algorithm 1, the pair (x, y) is
removed from the current relation and T (x, y), I(x, y) are updated accord-
ingly. Note that in this case we have p1 = p2 = p, i.e., the method is used in
the specific case where the two predicates are equal.

TSToGraph(. . . ): This method handles the implementation of the graph-based
visualization of the transition system, via an external graph library5. In
the case of weighted systems the user can trust the default implementation
included within the Model. In this case, arrows between states and their
labels are generated automatically.

GraphToTS (. . . ): This method is used for the other direction, i.e. to derive the
transition system from a directed graph given by Graph.
(Analogous to the method before, in the case of weighted systems the user
can trust the default implementation included within the Model.)

string GetModalityToString(. . . ): This method is essential for the automatic
generation of the modal logical formulas distinguishing two non-bisimilar
states as described in [5]. In each call, the cone modality that results from
FχP (α(s)) with T (x, y) = (s, P ) is converted into a string.

SaveTransitionSystem(. . . ): In order to store a transition system in a csv file.
LoadTransitionSystem(. . . ): In order to load a transition system from a csv file.
GetRowHeadings(. . . ): T-Beg can visualize a transition system α : X → FX

as a X ×GX matrix within a DataGrid. For this purpose, the user needs to
specify how the RowHeaders are generated automatically.

ReturnRowCount(. . . ): This method returns the number of rows of the matrix
representing the coalgebra.

The last four methods are not of theoretical interest, but are needed to in-
crease the usability of the system.

In addition, T-Beg uses a graph library3, which in turn provides a GraphEd-
itor that allows for storing graphs as MSAGL files or as png and jpg files.

5 https://www.nuget.org/packages/Microsoft.Msagl.GraphViewerGDI



6 Barbara König and Christina Mika-Michalski and Lutz Schröder

3 A small tutorial

We now explain step by step the procedures that are needed to initialize a
game instance. Next we present a possible game sequence with the user as the
Duplicator. Finally we provide a small overview of how T-Beg has been tested.

After executing T-Beg by double-clicking on tbeg.exe a minimally configured
Windows Form is presented to the user. A click on View at the top left opens a
menu containing three items (see Figure 2).

Fig. 2: Getting started with T-Beg.

3.1 How to Use

Initialize a transition system and a game: To proceed please select the view Input
Transition System. Now, there are two ways to initialize a transition system.
First, we consider the more complex way known as ”typing manually some input
into some mask” illustrated in Figure 3.

Selecting a functor is the first action the user has to perform, this can be done
using the combobox at the top left of Figure 3. The desired number of states can
be set in the edit field to the right of ”Number of states”. To provide an alphabet
the user can utilize the edit field next to the label ”Alphabet”. Multiple symbols
are separated by ”,”. (Remark: If the user wants to work with a non-labelled
transition system then the field has to be blank. The tool will internally treat
this with ”NL”.)

In case of Powerset the user has to type ”1” at (x, (a, y)) to enable an x
a→ y

transition. How to use the datagrid in general strongly depends on the imple-
mentation of InitMatrix described in subsection 2.2.

To continue a name for the system has to be set in the edit field below the
”Enter transition system” button. After providing a name and pressing the ”En-
ter transition system” button, the ”Switch to Graph-View” button gets enabled.
A click on that button opens the game view as seen in Figure 5. (Remark: In case
some entries are wrong or the name is already in use, the user will be informed
so he or she can check the input.)

Another way of initializing a game is to load some already created and saved
transition systems (see Figure 4). For our scenario we selected an existing functor



A Tool for Behavioural Equivalence Games 7

Fig. 3: Manual initialization of a transition system for F = P(A×X).

Powerset. Pressing load given in the top left corner of the menu T-Beg auto-
matically opens the folder wrt. the selected functor in bin\Transitionsystems
\Powerset \. T-Beg also saves the transition system under the provided name
into this specific folder pressing save.

After a system has been properly initialized in one of the two ways described
above and the button ”Switch to Graph-View” has been enabled and pressed,
the user can now start to configure a game over this system.

Play a game as Duplicator: At the beginning two states have to be selected via
the mouse. By pressing the ”CTRL” key more than one state can be selected
(GraphEditor is provided by 6). Or you can keep the left mouse button pressed
and span an area over the states to be selected. The selection has then to be
confirmed using the ”ok” button illustrated in Figure 6. The ”Swap” button
enables to switch the state pair. (In case x � y, T-Beg displays a formula
that is satisfied by y and not by x. Otherwise a formula satisfied by x will be
provided.)

6 https://www.nuget.org/packages/Microsoft.Msagl.GraphViewerGDI



8 Barbara König and Christina Mika-Michalski and Lutz Schröder

Fig. 4: Loading of classical introexample.ts for F = P(A×X).

Fig. 6: Selection of two states using the GraphEditor

The player mode is set by the two ”checkboxes” within the initialization
panel. To proceed our scenario we selected ”Duplicator” and started the game
by pressing the ”Start game” button (see Figure 7).



A Tool for Behavioural Equivalence Games 9

Fig. 5: Just opened game view of classical introexample.ts for F = P(A×X).

Fig. 7: Move of the Spoiler for a currently initialized and started game with user in the
role of Duplicator.

A note about the button ”Start game”: If the user has added or removed
nodes or transitions using the GraphEditor T-Beg will ask the user if she/he
wants to play on the previous transition system or the modified. If the user
chooses the modified system, T-Beg automatically generates a new name based
on the name of the original system and saves it to the corresponding folder
(in case all modifications leads to a valid graph wrt. functor). Otherwise the



10 Barbara König and Christina Mika-Michalski and Lutz Schröder

graph is set back to the previous version. The user has to be aware that graph
modifications are disabled during the game.

In Figure 7 the move T (1, 2) = (1, {3}) of the Spoiler is highlighted using
violet tones: The selection of state node 1 is visualized by a violet contour and
the states captured by the predicate P1 of the spoiler are filled with a purple
color. Furthermore, the duplicator has to continue with state node 2 indicated
by a cyan contour.

The information within the Dialog-Box in Figure 7 includes the value Fp1(α(s))
in F{0, 1}. This is the minimum value in F{0, 1} the user has to provide by choos-
ing a predicate P2 to satisfy the condition Fp1(α(s)) ≤F Fp2(α(t)) of step 2 in
the game (where α is the transition system (ts)). For more details we refer to
[5]). The selection of the states takes place here exactly as in the description
for the initialization of the game. With the difference that this time the button
”Go” must be pressed to confirm the choice.

In this specific example given in Figure 7 with F = P(A × X) the value
{(a, 0, (a, 1))} means that not all a-succesors of state 1 are included in the pred-
icate given by the Spoiler (T-Beg).

Fig. 8: In step 2 of the game the answer of the Duplicator (user) is highlighted by the
color cyan.

Therefore, the answer P2 = {6} illustrated in Figure 8 evaluating to the
value Fp2(α(2)) = {(a, 1)} given by the user is sufficient enough. In addition,
this answer means that all a-successors of state node 2 are captured. The game
is lost if a non-valid answer is provided by the Duplicator.

The colouring enables to distinguish the moves of each player. The node that
corresponds to the states that are part of the predicate resulted from a Duplicator



A Tool for Behavioural Equivalence Games 11

move are coloured with some cyan tone (see Figure 8 where the concrete answer
is {6}).

In addition, the next move of the Spoiler (T-Beg) for step 3 is already dis-
played in the corresponding field and Checkbox. Figure 8 shows that the Spoiler
(T-Beg) selected the first predicate and state 3. You can also see that the field
of step 4 is highlighted in cyan, which signals to the user that it is her/his turn
again.

The condition wrt. step 4 intends to select a state that is captured in the
remaining predicate. Which predicate is available to the user can be seen in the
unchecked checkbox at step 3 (see Figure 8). The user confirms her/his selection
with the ”Go” button. T-Beg initiates the next round if the selected state
node is included in the remaining predicate. Otherwise, the user is advised that
her/his state node does not meet the condition previously described.

Fig. 9: The next round has been started with the move (3, {1, 2, 3, 4, 5, 6, 7}) given by
the Spoiler.

In Figure 9 the checkboxes are updated to the selection (3, 6) according to
step 3 and step 4. T-Beg proceeds with the game and therefore the move
(3, {1, 2, 3, 4, 5, 6, 7}) given by the Spoiler is already visualized.



12 Barbara König and Christina Mika-Michalski and Lutz Schröder

Fig. 10: .

Every time T-Beg in the role of spoiler replies with the entire set of states,
as in Figure 9, this means that the duplicator has no way to satisfy the condition
of step 2. Therefore, in Figure 10 the game leads to an end and the information
whether the initial states are bisimilar or not are forwarded to the user. In case
x � y a distinguishing formula is also included in this Dialogbox.

3.2 Testing Report

So far, T-Beg is an α-prototype tool. The implementation of the bisimulation
computation (as the generation of distinguishing formulas) has been tested using
hundreds of randomly created transition systems α : X → FX. The focus was
to keep the probability of the following errors as low as possible. Mostly, the
following errors were identified:

– IndexOutOfRangeException
– ArgumentNullException
– Non terminating procedures

In order to exclude errors that could be caused by the implementation of the
functor, the tests were carried out using only one functor (Powerset). Therefore,
three parameters have been varied: number of states, size of the alphabet and
the probability of x

a→ y for each (x, y) ∈ X ×X and a ∈ A.
The tests for the game-flow were carried out manually and divided into three

phases.

– Phase 0: While implementing the methods of each functors a few small tran-
sition systems have been used for testing.



A Tool for Behavioural Equivalence Games 13

– Phase 1: For Powerset three examples (classical introexample, 3levels and
conjunction negation) and two instances (desh paper and exa paper) for
(DX + 1 )A were intensiveley tested from the spoiler and the duplicator per-
spective in order to detect unexpected or wrong behaviour within T-Beg.
Note that this is very time consuming since the number of possible moves
that a user can make depends exponentially on the number of states. How-
ever, at the same time the manual tests allows also to verify the feedback to
the user along with the verification ot the computed moves. (Note, it is not
trivial to create several automatic unit tests for this specific tasks.)

– Phase 2: Several randomly generated systems from the previous tests were
used to play the game.

Additional features like modifications on the graph or take a Step-Back in the
game have been only tested rarely on the fly.

4 Ongoing and Future work within T-Beg

4.1 Extending T-Beg

In the future we would like to extend our prototype implementation to an effi-
cient coalgebraic partition refinement algorithm, adapting the ideas of Kanel-
lakis/Smolka [4] or Paige/Tarjan [7, 2]. The latter method achieves runtime
O(n · log n), where n is the size of the system, by using so-called three-way-
splitting that chooses equivalence classes for splitting in a clever way.

We are also interested in studying applications where we can exploit the
fact that the distinguishing formula witnesses non-bisimilarity. For instance, we
see interesting uses in the area of differential privacy [1], for which we would
need to generalize the theory to a quantitative setting. That is, we would like
to construct distinguishing formulas in the setting of quantitative coalgebraic
logics, which characterizes behavioural distances.

Furthermore, T-Beg can be extended to include a feature for the automatic
generation of interesting game instances, more concretely in this context of non-
bisimilar processes, which is a challenging problem as well.

Finally, we are interested in creating a self-explaining web interface which
enables the use of the implemented functors. We also plan to extend T-Beg by
additional functors (e.g. Mealy Machines, Finite Deterministic Automata).

4.2 Stabilizing T-Beg

We are planning to automatize the verification process of the winning strategy
computation and the generation of the distinguishing formulas. Therefore, we
want to integrate self-testing of the winning strategy computations by verifying
automatically if a state satisfies such a generated formula.



14 Barbara König and Christina Mika-Michalski and Lutz Schröder

References

1. Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized Bisimulation
Metrics. In: Proc. of CONCUR ’14. Springer (2014), LNCS/ARCoSS 8704

2. Dorsch, U., Milius, S., Schröder, L., Wißmann, T.: Efficient Coalgebraic Parti-
tion Refinement. In: Proc. of CONCUR 2017. LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017)

3. de Frutos-Escrig, D., Keiren, J.J.A., Willemse, T.A.C.: Games for Bisimulations
and Abstraction. CoRR abs/1611.00401 (2016)

4. Kanellakis, P.C., Smolka, S.A.: CCS Expressions, Finite State Processes, and Three
Problems of Equivalence. Inf. Comput. 86, 43–68 (1990)

5. König, B., Mika-Michalski, C., Schröder, L.: Explaining Non-Bisimilarity in a Coal-
gebraic Approach: Games and Distinguishing Formulas. Website (2020), online
available http://www.ti.inf.uni-due.de/fileadmin/public/tools/tbeg/tbeg.pdf; last
access on 14th January.

6. König, B., Mika-Michalski, C.: (Metric) Bisimulation Games and Real-Valued
Modal Logics for Coalgebras. In: Proc. of CONCUR ’18. LIPIcs, vol. 118, pp. 37:1–
37:17. Schloss Dagstuhl – Leibniz Center for Informatics (2018)

7. Paige, R., Tarjan, R.E.: Three Partition Refinement Algorithms. SIAM J. Comput.
16(6), 973–989 (1987)


