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Abstract. Behavioural equivalences can be characterized via bisimula-
tion, modal logics, and spoiler-duplicator games. In this paper we work
in the general setting of coalgebra and focus on generic algorithms for
computing the winning strategies of both players in a bisimulation game.
The winning strategy of the spoiler (if it exists) is then transformed into
a modal formula that distinguishes the given non-bisimilar states. The
modalities required for the formula are also synthesized on-the-fly, and
we present a recipe for re-coding the formula with different modalities,
given a separating set of predicate liftings. Both the game and the gen-
eration of the distinguishing formulas have been implemented in a tool
called T-Beg.
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1 Introduction

There are many contexts in which it is useful to check whether two system states
are behaviourally equivalent respectively bisimilar. In this way one can compare
a system with its specification, replace a subsystem by another one that is be-
haviourally equivalent or minimize a transition system. Here we will concentrate
on methods for explaining that two given states in a transition system are not
bisimilar. The idea is to provide a witness that guarantees non-bisimilarity. Such
a witness can be used to explain (to the user) why an implementation does not
conform to a specification and give further insights for adjusting it.

The standard definition says that two states are bisimilar if they are related
by a bisimulation relation. But this does not provide us with a immediate witness
for non-bisimilarity, since we would have to enumerate all relations including
that particular pair of states and show that they are not bisimulations. Hence,
we have to resort to other characterizations of bisimilarity: bisimulation games
[19], also known as spoiler-duplicator games, and modal logic. In the former case
a proof of the non-bisimilarity of two states is given by a winning strategy of
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the spoiler. In the latter case the Hennessy-Milner theorem [10] guarantees for
image-finite labelled transition systems that, given two non-bisimilar states x, y,
there exists a modal logic formula ϕ such that one of the states satisfies ϕ and
the other does not. The computation of such distinguishing formulas is explained
in [5].

While the results and techniques above have been introduced for labelled
transition systems, we are here interested in the more general setting of coalge-
bras [17], which encompass various types of transition systems. Here we concen-
trate on coalgebras living in Set, where an endofunctor F : Set→ Set specifies
the branching type of the coalgebra (non-deterministic, probabilistic, etc.).

Modal logics have been extensively studied for coalgebras and it has been
shown that under certain restrictions, modal coalgebraic logic is expressive, i.e.,
it satisfies the Hennessy-Milner theorem [16, 18]. However, to our knowledge, no
explicit construction of distinguishing formulas has yet been given.

Games have been studied to a lesser extent, we mainly refer to [2], where the
game is based on providing partial bisimulation relations, our own contribution
[14], on which this article is based, and [12], which considers games from an
abstract, fibrational perspective.

We combine both the game and the logic view, by first describing how to
compute the winning strategies of the players. Then we show how one can con-
struct a distinguishing formula based on the spoiler strategy. The modalities for
the formula are not provided a priori, but are synthesized on-the-fly as so-called
cone modalities while generating the formula. Furthermore we show under which
conditions one can re-code a formula with such modalities into a formula with
different modalities, given by a separating set of predicate liftings.

Both the game and the generation of the distinguishing formulas have been
implemented in a generic tool called T-Beg3, where the functor is provided as a
parameter. In particular, using this tool, one can visualize coalgebras, play the
game (against the computer), derive winning strategies and convert the winning
strategy of the spoiler into a distinguishing formula.

Since the development of the tool was our central aim, we have made design
decisions in such a way that we obtain effective algorithms. This means that
we have taken a hands-on approach and avoided constructions that potentially
iterate over infinitely many elements (such as the set of all modalities, which
might be infinite).

The partition refinement algorithm presented in the paper distinguishes states
that are not behaviourally equivalent by a single equivalence class, similar to
known algorithms for checking bisimilarity in labelled transition systems [11, 15].
This requires a certain assumption on the endofunctor specifying the branching
type (dubbed separability by singletons). In particular [15] has already been gen-
eralized to a coalgebraic setting in [6], using the assumption of zippability. Here
we compare these two assumptions.

After presenting the preliminaries (Section 2), including the game, we de-
scribe how to compute the winning strategies in Section 3. In Section 4 we

3 Available at: https://www.uni-due.de/theoinf/research/tools tbeg.php
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describe how to construct and re-code distinguishing formulas, followed by a
presentation of the tool T-Beg in Section 5. Finally, we conclude in Section 6.
The proofs can be found in Appendix A.

2 Preliminaries

Equivalence relations and characteristic functions: Let R ⊆ X×X be an equiva-
lence relation, where the set of all equivalence relations on X is given by Eq(X).
For x ∈ R we denote the equivalence class of x by [x]R = {y ∈ X | (x, y) ∈ R}.
By E(R) we denote the set of all equivalence classes of R. Given Y ⊆ X, we
define the R-closure of Y as follows: [Y ]R = {y ∈ X | ∃x ∈ X (x, y) ∈ R}.

For Y ⊆ X, we denote its predicate or characteristic function by χY : X →
{0, 1}. Furthermore, given a characteristic function χ : X → {0, 1}, its corre-
sponding set is denoted χ̂ ⊆ X.

We will sometimes overload the notation and for instance write [p]R for the
R-closure of a predicate p. Furthermore we will write p1 ∩ p2 for the intersection
of two predicates.

Coalgebra: We restrict our setting to the category Set, in particular we assume
an endofunctor F : Set → Set, intuitively describing the branching type of
the transition system under consideration. We assume that F preserves weak
pullbacks.

A coalgebra [17], describing a transition system of this branching type, is given
by a function α : X → FX. Two states x, y ∈ X are behaviourally equivalent
(x ∼ y) if there exists a coalgebra homomorphism f from α to some coalgebra
β : Y → FY (i.e., a function f : X → Y with β ◦ f = Ff ◦ α) such that f(x) =
f(y).

Preorder lifting: Furthermore we need to lift preorders under a functor F . To this
end, we use the lifting introduced in [1] (essentially the standard Barr extension
of F [3, 20]), which guarantees that the lifted relation is again a preorder provided
that F preserves weak pullbacks: Let ≤ be a preorder on Y , i.e. ≤ ⊆ Y × Y .
We define the preorder ≤F⊆ FY × FY as follows: given t1, t2 ∈ FY , it holds
that t1 ≤F t2 whenever there exists some t ∈ F (≤) such that Fπi(t) = ti,
where πi : ≤ → Y with i ∈ {1, 2} are the usual projections. More concretely, we
consider in this paper the order ≤ = {(0, 0), (0, 1), (1, 1)} over 2 = {0, 1} and its
corresponding liftings ≤F .

Note that applying the functor is monotone wrt. the lifted order:

Lemma 1 ([14]). Let (Y,≤) be an ordered set and let p1, p2 : X → Y be two
functions. Then p1 ≤ p2 implies Fp1 ≤F Fp2 (with both inequalities read point-
wise).

Predicate liftings: In order to define the modal logic, we need the notion of
predicate liftings (also called modalities). Formally, a predicate lifting for F is
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a natural transformation λ : P̂ ⇒ P̂F , where P̂ is the contravariant powerset
functor. It transforms every subset P ⊆ X into λ(P ) ⊆ FX.

In this paper we use the fact that predicate liftings are in one-to-one corre-
spondence with functions of type λ : F2 → 2 (which specify subsets of F2 and
will also be called evaluation maps) [18]. We view subsets P ⊆ X as predicates
p = χP and lift them via p 7→ λ ◦ Fp. In order to obtain expressive logics, we
also need the notion of a separating set of predicate liftings.

Definition 2. A set Λ of evaluation maps is separating for a functor F : Set→
Set whenever for all sets X and t1, t2 ∈ FX with t1 6= t2 there exists λ ∈ Λ and
p : X → 2 such that λ(Fp(t1)) 6= λ(Fp(t2)).

This means that every t ∈ FX is uniquely determined by the set {(λ, p) | λ ∈
Λ, p : X → 2, λ(Fp(t)) = 1}. Such a separating set of predicate liftings exists iff
(Fp : FX → F2)p : X→2 is jointly injective.

Here we concentrate on unary predicate liftings: If one generalizes to polyadic
predicate liftings, separation can be shown for every accessible functor [18].

Separating sets of monotone predicate liftings and the lifted order on F2 are
related as follows:

Proposition 3 ([14]). Let λ : F2 → 2 be an evaluation map, mapping to
(2,≤). It induces a monotone predicate lifting (p : X → 2) 7→ (λ ◦Fp : FX → 2)
iff λ : (F2,≤F )→ (2,≤) is monotone.

Proposition 4 ([14]). F has a separating set of monotone evaluation maps iff
≤F⊆ F2×F2 is anti-symmetric and (Fp : FX → F2)p : X→2 is jointly injective.

Coalgebraic modal logics: Given a cardinal κ and a set Λ of evaluation maps
λ : F2→ 2, we define a coalgebraic modal logic Lκ(Λ) via the grammar:

ϕ ::=
∧
Φ | ¬ϕ | [λ]ϕ where Φ ⊆ Lκ(Λ) with card(Φ) < κ and λ ∈ Λ.

The last case describes the prefixing of a formula ϕ with a modality [λ]. Given
a coalgebra α : X → FX and a formula ϕ, the semantics of such a formula is
given by a map JϕKα : X → 2, where conjunction and negation are interpreted
as usual and J[λ]ϕKα = λ ◦ F JϕKα ◦ α.

For simplicity we will often write JϕK instead of JϕKα. Furthermore for x ∈ X,
we write x |= ϕ whenever JϕK(x) = 1. As usual, whenever JϕKα = JψKα for all
coalgebras α we write ϕ ≡ ψ. We will use derived operators such as tt (empty
conjunction), ff (¬tt) and

∨
(disjunction).

The logic is always sound, i.e., two behaviourally equivalent states satisfy
the same formulas. Furthermore whenever F is κ-accessible and the set Λ of
predicate liftings is separating, it can be shown that the logic is also expressive,
i.e., two states that satisfy the same formulas are behaviourally equivalent.
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Game characterizing behavioural equivalence: We will now present the rules for
a behavioural equivalence game, see [14]. At the beginning of a game, two states
x, y are given. The aim of the spoiler (S) is to prove that x � y, the duplicator
(D) attempts to show the opposite.

– Initial situation: A coalgebra α : X → FX and two states x, y ∈ X.
– Step 1: S chooses s ∈ {x, y} and a predicate p1 : X → 2.
– Step 2: D takes t ∈ {x, y}\{s} if x 6= y and t = s otherwise and has to

answer with a predicate p2 : X → 2 satisfying Fp1(α(s)) ≤F Fp2(α(t)).
– Step 3: S chooses pi with i ∈ {1, 2} and some state x′ ∈ X with pi(x

′) = 1.
– Step 4: D chooses some state y′ ∈ X with pj(y

′) = 1 where i 6= j.

After one round the game continues in Step 1 with the pair (x′, y′) of states
in the case i = 1 and with (y′, x′) if i = 2. D wins if the game continues forever
or if S has no move at Step 3. In all other cases, i.e. D has no move at Step 2
or Step 4, S wins.

The game characterizes behavioural equivalence for functors that are weak
pullback preserving and for which the lifted order ≤F is anti-symmetric. Then it
holds that x ∼ y if and only if D has a winning strategy from the initial situation
(x, y). As already shown in [14], in the case of two non-bisimilar states x � y we
can convert a modal logic formula ϕ distinguishing x, y, i.e., x |= ϕ and y 6|= ϕ,
into a winning strategy for the spoiler. Furthermore we can extract the winning
strategy for the duplicator from the bisimulation relation.

However, in [14] we did not yet show how to directly derive the winning
strategy of both players or how to construct a distinguishing formula ϕ.

3 Computation of Winning Strategies

In the rest of the paper we will fix a coalgebra α : X → FX with finite X for
a weak pullback preserving endofunctor F : Set→ Set. Furthermore we assume
that F has a separating set of monotone predicate liftings, which implies that
≤F , the lifted order on 2, is anti-symmetric, hence a partial order.

We first present a simple but generic algorithm to derive the winning strategy
for the spoiler (S) and duplicator (D) for a given coalgebra α : X → FX. This
is based on a fixpoint iteration that determines those pairs of states (x, y) ∈
X × X for which D has a winning strategy, i.e., those pairs of states that are
behaviourally equivalent. In particular we consider the greatest fixpoint of the
following monotone function Fα : Eq(X)→ Eq(X) on equivalence relations:

Fα(R) = {(x, y) ∈ R | ∀P ∈ E(R) : FχP (α(x)) = FχP (α(y))}

As shown in [14], the relation

Wα = {(x, y) ∈ X ×X | there exists a winning strategy of D for (x, y)}

coincides with behavioural equivalence ∼.
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We will in the following prove that the greatest fixpoint of Fα (i.e. νFα)
coincides with Wα and hence gives us bisimilarity. One direction of the proof
deals with deriving a winning strategy for S for each pair (x, y) /∈ νFα. In order
to explicitly extract such a winning strategy for S – which will also be important
later when we construct the distinguishing formula – we will slightly adapt the
algorithm based on fixpoint iteration. Before we explain this, we formally define
and explain the strategies of D and S.

We start with the winning strategy of the duplicator in the case where the two
given states are bisimilar. This strategy has already been presented in [14], but
we describe it here again explicitly. The duplicator only has to know a suitable
coalgebra homomorphism.

Proposition 5 (Strategy of the duplicator, [14]). Let α : X → FX be a
coalgebra. Assume that D, S play the game on an initial situation (x, y) with
x ∼ y. This means that there exists a coalgebra homomorphism f : X → Z from
α to a coalgebra β : Z → FZ such that f(x) = f(y).

Assume that in Step 2 D answers with p2 = [p1]ker(f), i.e., p2 is the ker(f)-
closure4 of the predicate p1. (In other words: p2(x) = 1 iff there exists y ∈ X
such that f(x) = f(y) and p1(y) = 1.)

Then the condition of Step 2 is satisfied and in Step 4 D is always able to
pick a state y′ with pj(y

′) = 1 and f(x′) = f(y′).

We give a short summary why this winning strategy is valid: since f is a
coalgebra homomorphism we have Ff(α(x)) = β(f(x)) = β(f(y)) = Ff(α(y)).
By construction p2 factors through f , that is p2 = p′1◦f for some p′1 : Z → 2. This
implies Fp2(α(x)) = Fp′1(Ff(α(x))) = Fp′1(Ff(α(y))) = Fp2(α(y)). Since p1 ≤
p2 it follows from monotonicity (Lemma 1) that Fp1(α(x)) ≤F Fp2(α(x)) =
Fp2(α(y)). Hence p2 satisfies the conditions of Step 2. Furthermore if the spoiler
picks a state x′ in p1 in Step 3, the duplicator can pick the same state in p2 in
Step 4. If instead the spoiler picks a state x′ in p2, the duplicator can at least
pick a state y′ in p1 which satisfies f(x′) = f(y′), which means that the game
can continue.

We now switch to the spoiler strategy that can be used to explain why the
states are not behaviourally equivalent.

Definition 6 (Strategy of the spoiler). A strategy for the spoiler is given by
the following pair of functions:

I : X ×X → N0 ∪ {∞} and T : (X ×X)\νFα → X × PX.

Here I(x, y) denotes the first index where x, y are separated in the fixpoint
iteration of Fα. More precisely, i is the least least index i such that (x, y) /∈
F iα(X × X). If two states x, y are never separated, i.e., (x, y) ∈ νFα we set
I(x, y) =∞.

The second component T tells the spoiler what to play in Step 2. In particular
whenever T (x, y) = (s, P1), S will play s and p1 = χP1

.

4 For a function f : X → Y , ker(f) = {(x1, x2) | x1, x2 ∈ X, f(x1) = f(y2)} ⊆ X ×X.
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Such a winning strategy for the spoiler can be computed during the fixpoint
iteration, see Algorithm 1. Assume that the algorithm terminates after n steps
and returns Rn. It is easy to see that Rn coincides with νFα: as usual for a
partition refinement algorithm, we start with the coarsest relation R0 = X ×X.
Since ≤F is, by assumption, anti-symmetric FχP1

(α(x)) ≤F FχP1
(α(y)) and

FχP1
(α(y)) ≤F FχP1

(α(x)) are equivalent to FχP1
(α(x)) = FχP1

(α(y)) and
the algorithm removes a pair (x, y) from the relation iff this condition does not
hold.

Every relation Ri is finer than its predecessor Ri−1 and, since Fα preserves
equivalences, each is an equivalence relation. Since we are assuming a finite set
X of states, the algorithm will eventually terminate.

Algorithm 1 Computation of νFα and the winning strategy of the spoiler

1: procedure Compute greatest fixpoint of Fα and winning moves for S
2: for all (x, y) ∈ X ×X do
3: I(x, y)←∞
4: i← 0, R0 ← X ×X
5: repeat
6: i← i+ 1, Ri ← Ri−1

7: for all (x, y) ∈ Ri−1 do
8: for all P ∈ E(Ri−1) do
9: if FχP (α(x)) �F FχP (α(y)) then

10: T (x, y)← (x, P ), I(x, y)← i, Ri ← Ri \ {(x, y)}
11: else
12: if FχP (α(y)) �F FχP (α(x)) then
13: T (x, y)← (y, P ), I(x, y)← i, Ri ← Ri \ {(x, y)}
14: until Ri−1 = Ri
15: return Ri, T, I

In addition, T (x, y) and I(x, y) are updated in every step, where we distin-
guish whether Fp(α(x)) �F Fp(α(y)) or the other inequality hold. We will now
show that Algorithm 1 indeed computes a winning strategy for the spoiler.

Proposition 7. Assume that Rn = νFα, T, I have been computed by Algo-
rithm 1. Furthermore let (x, y) /∈ Rn, which means that I(x, y) <∞ and T (x, y)
is defined. Then the following constitutes a winning strategy for the spoiler:

– Let T (x, y) = (s, P1). Then in Step 1 S plays a predicate p1 = χP1 and
s ∈ {x, y}.

– Assume that in Step 2 D answers with a state t and a predicate p2 such that
Fp1(α(s)) ≤F Fp2(α(t)).

– Then, in Step 3 there exists a state y′ ∈ X such that p2(y′) = 1 and
I(x′, y′) < I(x, y) for all x′ ∈ X with p1(x′) = 1. S will hence select p2
and this state y′.

– Next, in Step 4 D selects some x′ with p1(x′) = 1 and the game continues
with (x′, y′) /∈ Rn.
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Finally we show that νFα coincides with Wα and therefore also with be-
havioural equivalence ∼ (see [14]). For this we need one further requirement on
the functor:

Definition 8. Let F : Set → Set be an endofunctor on Set. We say that F is
separable by singletons for a set X if the following holds: for all t1 6= t2 with
t1, t2 ∈ FX, there exists p : X → 2 where p(x) = 1 for exactly one x ∈ X (i.e.,
p is a singleton) and Fp(t1) 6= Fp(t2).

It is separable by singletons if it is separable by singletons for all sets X.

It is obvious that separability by singletons implies the existence of a sepa-
rable set of predicate liftings, however the reverse implication does not hold as
the following example shows.

Example 9. In this paper we will frequently consider the finite powerset functor
Pf and the finitely supported probability distribution functor D (which are both
ω-accessible and hence yield a logic with only finite formulas.) In addition, both
are separable by singletons.

A functor that does not have this property, but does have a separating set
of predicate liftings, is the neighbourhood functor N = P̌P̌ [7], the composition
of the contravariant powerset functor with itself. Consider X = {a, b, c, d} and
two elements t1, t2 ∈ NX where t1 = {{a, b}}, t2 = {{c, d}}. For any singleton
predicate p the image of P̌p : P2 → PX does not contain a two-element set,
hence P̌P̌p(t1) = ∅ = P̌P̌p(t2) and t1, t2 can not be distinguished.

However, this functor is ruled out anyway in our setting, since it does not
preserve weak pullbacks.

We are now ready to prove the following theorem.

Theorem 10. Let α : X → FX be a coalgebra where F is separable by single-
tons. It holds that νFα = Wα, i.e., it contains exactly the pairs (x, y) ∈ X ×X
for which the duplicator has a winning strategy.

We now give an example for the application of the algorithm that also illus-
trates the differences between our generic game and the classical bisimulation
game for labelled transition systems [19].

Example 11. Consider the transition system in Figure 1, which depicts a coal-
gebra α : X → Pf (A×X). Clearly x � y.

x

1

3 4

a a

y

2

5

6 7 8 9

a

a b a b

Fig. 1: Spoiler has a win-
ning strategy at (x, y).

First consider the classical game where one pos-
sible winning strategy of the spoiler is as follows: he
moves x = 1

a→ 4, which must be answered by the
duplicator via y = 2

a→ 5. Now the spoiler switches
and makes a move 5

a→ 8, which can not be answered
by the duplicator.

In our case the corresponding game proceeds as
follows: the spoiler chooses s = x and p1 = χ{4}. Now
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the duplicator takes t = y and can for instance answer
with p2 = χ{5}, which leads to

Fp1(α(x)) = {(a, 0), (a, 1)} ≤F {(a, 1)} = Fp2(α(y))

Regardless of how S and D choose states, the next game situation is (4, 5).
Now the spoiler is not forced to switch, but can choose s = 4 and can

play basically any predicate p1, which leads to either Fp1(α(4)) = {(b, 1)} or
Fp1(α(4)) = {(b, 0)}. D has no answering move, since Fp2(α(5)) will always
contain tuples with b and c, which are not in ≤F -relation with the move of S
(see also Figure 2, which depicts F2 and its order).

If we execute Algorithm 1, we first use the predicate χX to separate {1, 2, 3}
(with value {(a, 1)}) from {4} (with value {(b, 1)}), {5} (with value {(a, 1), (b, 1)}
and {6, 7, 8, 9} (with value ∅). In the second step the predicate χ{4} is employed
to separate {1} (with value {(a, 0), (a, 1)}) from {2}(with value {(a, 0)}). Simi-
larly {3} can be separated from both {1} and {2} with the predicate χ{6,7,8,9}.
This also determines the strategy of the spoiler explained above.

The notion of separability by singletons is needed, since the partition re-
finement algorithm which we are using separates two states based on a single
equivalence class of their successors, whereas other partition refinement algo-
rithms such as [13] consider all equivalence classes. As shown in Example 9 this
is indeed a restriction, however such additional assumptions seem necessary if
we want to adapt efficient bisimulation checking algorithms such as the ones by
Kanellakis/Smolka [11] or Paige/Tarjan [15] to the coalgebraic setting. In fact,
the Paige/Tarjan algorithm already has a coalgebraic version [6] which operates
under the assumption that the functor is zippable. Here we show that the related
notion of m-zippability is very similar to separability. (The zippability of [6] is
in fact 2-zippability.)

Definition 12 (zippability). A functor F is m-zippable if for arbitrary sets
A1, . . . , Am the following morphism is injective:

F (A1 + · · ·+Am)
〈F (f1),...,F (fm)〉−−−−−−−−−−−→ F (A1 + 1)× · · · × F (Am + 1)

where fi = idAi
+ !, with ! : A1+ · · ·+Ai−1+Ai+1+ · · ·+Am → 1, is the function

mapping all elements of Ai to themselves and all other elements to • (assuming
that 1 = {•}).

Lemma 13. Assume that F : Set→ Set is a functor preserving injections. We
have that if F is separable by singletons, it is m-zippable. Furthermore if F is
m-zippable, then it is separable by singletons for all sets X with |X| ≤ m.

Runtime Analysis If X is finite our algorithm always terminates and has a
polynomial runtime. If |X| = n, the algorithm makes at most n iterations, since
there can be at most n splits of equivalence classes. In each iteration we consider
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up to n2 pairs of states and in order to decide whether a pair can be separated,
we have to consider up to n equivalence classes.

Hence a naive implementation of the algorithm has a runtime of O(n4).
We expect however that there are optimizations based on the algorithms by
Kanellakis and Smolka [11] and Paige and Tarjan [15]. In particular, it would
be interesting to incorporate the generalization of the Paige-Tarjan algorithm to
the coalgebraic setting [6].

4 Construction of Distinguishing Formulas

Next we illustrate how to derive a distinguishing modal logic formula from the
winning strategy of S computed by Algorithm 1. The other direction (obtaining
the winning strategy from a distinguishing formula) has been covered in [14].

4.1 Cone Modalities

We focus on an on-the-fly extraction of relevant modalities, to our knowledge a
new contribution, and discuss the connection to the minimal set of separating
predicate liftings.

One way of enabling the construction of formulas is to specify the separating
set of predicate liftings Λ in advance. But this set might be infinite and hard
to represent. Instead here we generate the modalities while constructing the
formula. We focus in particular on so-called cone modalities: given v ∈ F2 we
take the upward-closure of v as a modality. We also explain how logical formulas
with cone modalities can be translated into other separating sets of modalities.

Definition 14 (Cone modalities). Let v ∈ F2. A cone modality [↑v] is given
by the following evaluation map ↑v : F2→ 2:

↑v(u) = λ(u) =

{
1, if v ≤F u
0, otherwise

Obviously these evaluation maps yield a separating set of predicate liftings
(provided that the functor has such a set): if v1 6= v2 (for v1, v2 ∈ F2), either
v1 �F v2 or v2 �F v1, since we require that the lifted order is anti-symmetric
on F2. In the first case ↑v1(v1) = 1 and ↑v1(v2) = 0, in the second case ↑v2 is
the distinguishing evaluation map.

Example 15. We will discuss modalities respectively evaluation maps in more
detail for the functor FX = Pf (A ×X), which specifies the branching type of
labelled transition systems. In our example A = {a, b}. The set F2 with order
≤F is depicted as a Hasse diagram in Figure 2. For every element there is a cone
modality, 16 modalities in total. It is known from the Hennessy-Milner theorem
[10] that two modalities are enough: either 2a,2b (box modalities) or 3a,3b

(diamond modalities), where for v ∈ F2:
In Figure 2 2a respectively 3a are represented by the elements above the

two lines (solid respectively dashed).
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2a(v) =

{
1 if v ∩ {(a, 0)} = ∅
0 otherwise

3a(v) =

{
1 if (a, 1) ∈ v
0 otherwise

∅ {(a, 0)}

{(a, 0), (a, 1)}

{(a, 1)}

{(b, 0)}

{(b, 0), (b, 1)}

{(b, 1)}

{(a, 0), (b, 0)}

{(a, 0), (a, 1), (b, 0)} {(a, 0), (b, 0), (b, 1)}

{(a, 1), (b, 1)}

{(a, 0), (a, 1), (b, 0), (b, 1)}{(a, 1), (b, 0)} {(a, 0), (b, 1)}

{(b, 0), (b, 1), (a, 1)} {(a, 0), (a, 1), (b, 1)}

2a

3a

Fig. 2: Set F2 with order ≤F (for labelled transition systems). 2a and 3a are given by
all values above the drawn (dashed) lines.

Example 16. As a second example we discuss the functor FX = (DX + 1)A,
specifying probabilistic transition systems. The singleton set 1 = {•} denotes
termination. Again we set A = {a, b}.

Note that since D2 is isomorphic to the interval [0, 1], we can simply represent
any distribution d : 2→ [0, 1] by d(1). Hence F2 ∼= ([0, 1]+1)A. The partial order
is obtained pointwise and is depicted in Figure 3: it decomposes into four disjoint
partial orders, depending on whether both a, b, neither or one of them is mapped
to •. The right-hand part of this partial order consists of function [0, 1]A with
the pointwise order. We will also abbreviate a map [a 7→ p, b 7→ q] by 〈ap, bq〉.

[a 7→ •, b 7→ •] [a 7→ 0, b 7→ •]

...

[a 7→ 1, b 7→ •]

[a 7→ •, b 7→ 0]

...

[a 7→ •, b 7→ 1]

[a 7→ 0, b 7→ 0]

. . . . .
.

. .
. . . .

[a 7→ 1, b 7→ 1]

Fig. 3: F2 with order ≤F (for probabilistic transition systems).

4.2 From Winning Strategies to Distinguishing Formulas

We will now show how a winning strategy of S can be transformed into a dis-
tinguishing formula, based on cone modalities, including some examples.

The basic idea behind the construction is the following: Let (x, y) be a pair
of states separated during Step i of the partition refinement algorithm (Al-
gorithm 1). This means hat we have the following situation: FχP (α(x)) �F
FχP (α(y)) (or vice versa) for some equivalence class P of Ri−1. Based on
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v = FχP (α(x)) we define a cone modality λ =↑ v. Now assume that if we
can characterize P by some formula ψ, i.e., JψK = χP (we will later show that
this is always possible), we can define the formula ϕ = [λ]ψ. Then it holds that:

JϕK(x) = λ(F JψK(α(x))) = ↑v(FχP (α(x))) = 1

JϕK(y) = λ(F JψK(α(y))) = ↑v(FχP (α(y))) = 0

That is we have x |= ϕ and y 6|= ϕ, which means that we have constructed a
distinguishing formula for x, y.

First, we describe how a winning strategy for the spoiler for a pair (x, y) is
converted into a formula and then prove that this formula distinguishes x, y.

Definition 17. Let x � y (equivalently (x, y) /∈ Rn) and let (T, I) be the win-
ning strategy for the spoiler computed by Algorithm 1. We construct a for-
mula ϕx,y as follows: assume that T (x, y) = (s, P ) where s = x. Then set
v = FχP (α(x)), λ = ↑ v and define ϕx,y = [λ]ϕ, where ϕ is constructed in
the following way:

– I(x, y) = 1: ϕ = tt
– I(x, y) > 1: ϕ =

∨
x′∈P

( ∧
y′∈ X\P

ϕx′,y′
)

Whenever we have s = y we instead define v = FχP (α(y)) and ϕx,y = ¬[λ]ϕ.

This encoding is well-defined, because it always holds that I(x′, y′) < I(x, y)
(since P is an equivalence class of Ri where i = I(x, y)).

Proposition 18. Let α : X → FX be a coalgebra and assume that we have
computed Rn, T, I with Algorithm 1. Then, given (x, y) /∈ Rn, the construction
in Definition 17 yields a formula ϕx,y ∈ Lκ(Λ) such that x � ϕx,y and y 2 ϕx,y.

We next present an optimization of the construction in Definition 17, inspired
by [5]. In the case I(x, y) > 1 one can pick an arbitrary x′ ∈ P and keep only one
element of the disjunction. In order to show that this simplification is permissible,
we need the following lemma.

Lemma 19. Given two states (x, y) /∈ Rn and a distinguishing formula ϕx,y
based on Definition 17. Let (x′, y′) be given such that I(x′, y′) > I(x, y). Then
x′ � ϕx,y if and only if y′ � ϕx,y.

Now we can show that we can replace the formula ϕ from 17 by a simpler
formula ϕ′.

Lemma 20. Let (x, y) /∈ Ri and let P be an equivalence class of Ri−1. Further-
more let

ϕ′ =
∧

y′∈ X\P

ϕx′,y′

for some x′ ∈ P . Then Jϕ′K = χP .



Explaining Non-Bisimilarity in a Coalgebraic Approach 13

Finally, we can simplify our construction described in Definition 17 to only
one inner conjunction.

Corollary 21. We use the construction of ϕx,y as described in Definition 17
with the only modification that for I(x, y) > 1 the formula ϕ is replaced by the
formula ϕ′ from Lemma 19 for some x′ ∈ P . Then this yields a formula ϕx,y
such that x � ϕx,y and y 2 ϕx,y.

A further optimization takes only one representative y′ from every equiva-
lence class different from P .

Before we give an overview of the tool T-Beg that generates such formulas
in the next section, we explore two slightly more complicated examples.

Example 22. Take the coalgebra for the functor FX = (DX + 1)A depicted
in Figure 4. Note that A = {a, b} and X = {1, . . . , 5}. We have for instance
α(3) = [a 7→ δ3, b 7→ •] where δ3 is the Dirac distribution. This is visualized by
drawing an arrow labelled a, 1 from 3 to 3 and omitting b-labelled arrows.

We explain only selected steps of the construction: in the first step the par-
tition refinement algorithm (Algorithm 1) separates 1 from 3 (among other sep-
arations), where the spoiler strategy is given by T (1, 3) = (1, X). In order to
obtain a distinguishing formula we determine v = FχX(α(1)) = 〈a1, b1〉 (using
the abbreviations explained in Example 16) and obtain ϕ1,3 = [↑ 〈a1, b1〉]tt . In
fact, this formula also distinguishes 1 from 4, hence ϕ1,3 = ϕ1,4. If, on the other
hand, we would like to distinguish 3, 4, we would obtain ϕ3,4 = [↑〈a1, b•〉]tt .

After the first step, we obtain the partitions {1, 2, 5}, {3}, {4}. Now we con-
sider states 1, 2 which can be separated by playing T (2, 1) = (2, {1, 2, 5}), since
5 behaves differently from 3. Again we compute v = FχP (α(2)) = 〈a0.7, b0.8〉
(for P = {1, 2, 5}) and obtain ϕ2,1 = [↑ 〈a0.7, b0.8〉](ϕ1,3 ∧ ϕ1,4). Here we picked
1 as the representative of its equivalence class.

In summary, we obtain the following formula that is satisfied by 2, but not
by 1:

[↑〈a0.7, b0.8〉][↑〈a1, b1〉]tt .

1

3 4

b, 0.8
a, 0.7

a, 1

a, 0.3

2

5

a, 0.7

a, 1

b, 1

a, 0.3

b, 0.2

b, 0.2

b, 0.8

Fig. 4: Probabilistic transition sys-
tem

1 2

34 5

6 7 8 9

aa a

bbb
b

b

b

b

b

e c d f

Fig. 5: Non deterministic transi-
tion system.
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Example 23. We will now give an example where conjunction is required to
obtain the distinguishing formula. We work with a coalgebra for the functor
FX = Pf (A×X), which is depicted in Figure 5. Note that A = {a, b, c, d, e, f}
and X = {1, . . . , 9}.

We explain only selected steps: in the first step the partition refinement
separates 6 from 7 (among other separations), where the spoiler strategy is given
by T (6, 7) = (6, X). As explained above we determine v = FχX(α(6)) = {(e, 1)}
and obtain ϕ6,7 = [↑{(e, 1)}]tt . In fact, this formula also distinguishes 6 from all
other states, so we denote it by ϕ6,∗.

Next, we consider states 3, 4, where the possible moves of 3 are a strict
subset of the moves of 4. Hence the spoiler strategy is T (3, 4) = (4, {6}), i.e.,
the spoiler has to move to state 6 that is not reachable from 3. Again we
compute v = FχP (α(4)) = {(b, 1), (b, 0)} (for P = {6}) and obtain ϕ3,4 =
¬[↑ {(b, 1), (b, 0)}]ϕ6,∗. Note that this time we have to use negation, since the
spoiler moves from the second state in the pair.

Finally we regard states 1, 2 where the spoiler strategy is T (1, 2) = (1, {3}).
We compute v = FχP (α(1)) = {(a, 1)} (for P = {3}) and obtain ϕ1,2 = [↑
{(a, 1)}]

(∧
x∈{1,2,4,...,9} ϕ3,x

)
. In fact, here it is sufficient to consider x = 4 and

x = 5, resulting in the following distinguishing formula:

[↑{(a, 1)}]
(
¬[↑{(b, 0), (b, 1)}][↑{(e, 1)}]tt ∧ ¬[↑{(b, 0), (b, 1)}][↑{(f, 1)}]tt

)
.

4.3 Recoding Modalities

Finally, we will show under which conditions one can encode cone modalities
into generic modalities, given by a separating set of predicate liftings Λ, not
necessarily monotone. We first need the notion of strong separation.

Definition 24. Let Λ be a separating set of predicate liftings of the form λ : F2→
2. We call Λ strongly separating if for every t1 6= t2 with t1, t2 ∈ F2 there exists
λ ∈ Λ such that λ(t1) 6= λ(t2).

We can generate a set of strongly separating predicate liftings from every
separating set of predicate liftings.

Lemma 25. Let Λ be set of predicate liftings. Furthermore we denote the four
functions on 2 by id2, one (constant 1-function), zero (constant 0-function) and
neg (neg(0) = 1, neg(1) = 0).

Then
Λ′ = {λ, λ ◦ Fone, λ ◦ F zero, λ ◦ Fneg | λ ∈ Λ}

is a set of strongly separating predicate liftings.
Furthermore for every formula ϕ we have that

[λ ◦ Fone]ϕ ≡ [λ]tt [λ ◦ F zero]ϕ ≡ [λ]ff [λ ◦ Fneg ]ϕ ≡ [λ](¬ϕ)

This means that we can still express the new modalities with the previous
ones. Λ′ is just an auxiliary construct that helps us to state the following propo-
sition.
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Proposition 26. Assume that F2 is finite and let Λ be a strongly separating
set of predicate liftings. Let furthermore v ∈ F2 and let ϕ be a formula.

For a given u ∈ F2 we write Λu = {λ ∈ Λ | λ(u) = 1}. Then it holds that

[↑v]ϕ ≡
∨
v≤Fu

( ∧
λ∈Λu

[λ]ϕ ∧
∧
λ/∈Λu

¬[λ]ϕ
)

By performing this encoding inductively, we can transform a formula with
cone modalities into a formula with arbitrary modalities taken from Λ. The en-
coding preserves negation and conjunction, only the modalities are transformed.

Example 27. We come back to labelled transition systems and the functor FX =
Pf (A × X) with A = {a, b}. In this case the set {2a,2b,3a,3b} of predicate
liftings is strongly separating.

Now let v = {(a, 0), (b, 1)} ∈ Pf (A × 2) and we show how to encode the
corresponding cone modality using only box and diamond:

[↑v]ϕ ≡ (¬2aϕ ∧2bϕ ∧ ¬3aϕ ∧3bϕ) ∨ (¬2aϕ ∧2bϕ ∧3aϕ ∧3bϕ)

∨ (2aϕ ∧2bϕ ∧3aϕ ∧3bϕ)

The first term describes {(a, 0), (b, 1)}, the second {(a, 0), (a, 1), (b, 1)} and the
third {(a, 1), (b, 1)}.

Note that we can not directly generalize Proposition 26 to the case where
F2 is infinite. The reason for this is that the the disjunction over all u ∈ F2
such that v ≤F u might violate the cardinality constraints of the logic. Hence
we will consider an alternative, where the re-coding works only under certain
assumptions. We will start with the following example.

Example 28. Consider the functor FX = (DX + 1)A (see also Example 16) and
the corresponding (countable) separating set of (monotone) predicate liftings

Λ = {λ(a,q) : F2→ 2 | a ∈ A, q ∈ [0, 1] ∩Q} ∪ {λ(a,•) | a ∈ A}

where λ(a,q)(v) = 1 if v(a) ∈ R and v(a) ≥ q and λ(a,•) = 1 if v(a) = •. Here,
a modality [λ(a,q)] indicates that the probability of making an a-transition is
greater or equal than q and a modality [λ(a,•)] tells us that we terminate with a.

The disjunction
∨
v≤Fu in the construction of [↑ v]ϕ in Proposition 26 is in

general uncountable and may hence fail to satisfy the cardinality constraints of
the logic.

However, we can exploit certain properties of this set of predicate liftings, in
order to re-code modalities.

Lemma 29. Let F be the functor with FX = (DX + 1)A and let Λ be the
separating set of predicate liftings from Example 28. Furthermore let v ∈ F2.
Then it holds that:

↑v =
⋂

λ∈Λ,λ(v)=1

λ
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Note that this property does not hold for the 2 and 3 modalities for the
functor FX = Pf (A × X). This can be seen via Figure 2, where the upward
closure of {(b, 0)} contains three elements. However, {(b, 0)} is only contained
in the modality 2a (and no other modality), which does not coincide with the
upward-closure of {(b, 0)}.

Next we show the following proposition, which immediately gives us a recipe
for transforming cone modalities that satisfy the properties of Lemma 29 into
the given modalities.

Proposition 30. Given a set Λ′ ⊆ Λ of predicate liftings we have

[
⋂
λ∈Λ′

λ]ϕ ≡
∧
λ∈Λ′

[λ]ϕ.

An interesting question that we do not pursue further is whether it is possible
to extract a minimal set of (monotone) predicate liftings from the set F2 with its
order. How do we obtain “natural” modalities, such as 2 and 3? An additional
question is how these extracted predicate liftings can be presented.

5 T-Beg: A Generic Tool for Games and the Construction
of Distinguishing Formulas

5.1 Overview

A tool for playing bisimulation games is useful for teaching, for illustrating ex-
amples in talks, for case studies and in general for interaction with the user.
There are already available tools, providing visual feedback to help the user
to understand why two states are (not) bisimilar, such as The Bisimulation
Game Game5 or Bisimulation Games Tools6 [8]. Both games are designed
for labelled transition systems and [8] also covers branching bisimulation.

Our tool T-Beg goes beyond labelled transition system and allows to treat
coalgebras in general (under the restrictions that we impose), that is, we exploit
the categorical view to create a generic tool. As shown earlier in Sections 3 and 4,
the coalgebraic game defined in Definition 2 provides us with a generic algorithm
to compute the winning strategies and distinguishing formulas.

The user can either slip into the role of the spoiler or of the duplicator, playing
on some coalgebra against the computer. The tool computes the winning strategy
(if any) and follows this winning strategy if possible. We have also implemented
the construction of the distinguishing formula for two non-bisimilar states.

The genericity over the functor is in practice achieved as follows: The user
either selects an existing functor F , or implements his/her own functor by pro-
viding the code of one class with nine methods (explained below). Everything

5 http://www.brics.dk/bisim/
6 https://www.jeroenkeiren.nl/blog/on-games-and-simulations/
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else, such as embedding the functor into the game and the visualization are au-
tomatically handled by T-Beg. In the case of weighted systems, T-Beg even
handles the creation of the graphical representation.

Then, he/she enters or loads a coalgebra α : X → FX (with X finite), stored
as csv (comma separated value) file. Now the user can switch to the game view
and start the game by choosing one of the two roles (spoiler or duplicator) and
selecting a pair of states (x, y), based on the the visual graph representation.

Next, the computer takes over the remaining role and the game starts: In
the game overview, the user is guided through the steps by using two colors to
indicate whether it is spoiler’s (violet) or duplicator’s (cyan) turn (see Figure 6).

In the case of two non-bisimular states, the tool will display a distinguishing
formula at the end of the game.

Fig. 6: Screenshot of the graphical user interface with a game being played.

5.2 Design

We now give an overview over the design and the relevant methods within the
tool. We will also explain what has to be done in order to integrate a new functor.

T-Beg is a Windows tool offering a complete graphical interface, developed
in Microsoft’s Visual Studio using C#, especially Generics. The program is
divided into the following five components: Model, View, Controller, Game and
Functor. We have chosen MVC (Model View Controller) as a modular pattern,
so modules can be exchanged. Here we have several Model〈T 〉 managed by the
Controller , where the functor in the sense of a Functor class, which always
implements the Functor Interface, is indicated by the parameter 〈T 〉.

While the tool supports more general functors, there is specific support for
functors F with FX = V GX where V specifies a semiring and GX is finite
(whenever X finite). That is, F describes the branching type of a weighted
transition system, where for instance GX = A×X + 1 (introducing labels and
termination). Coalgebras are of the form X → V GX or – via currying – of the
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form X × GX → V , which means that they can be represented by X × GX-
matrices (matrices with index sets X, GX). In the implementation V is the
generic data type of the matrix entries. In the case of the powerset functor we
simply have V = 2 and GX = X.

If the transition system can not simply be modelled as a matrix, there is
an optional field that can be used to specify the system, since Model〈T 〉 calls
the user-implemented method to initialize the transition system instance. The
implementation of Algorithm 1 can be found in Game〈T, V 〉, representing the
core of the tool’s architecture.

Functor Interface As mentioned previously, the user has to provide nine meth-
ods in order to implement the functor: two are needed for the computation, two
for rendering the coalgebra as a graph, one for creating modal logical formulas,
another two for loading and saving, and two more for customizing the visual
matrix representation.

We would like to emphasize here that the user is not expected to formally
implement the functor in the sense of the categorical definition. In particular,
we do not need the application of the functor to arrows, but we need methods
that evaluate the conditions necessary for the game.

Within MyFunctor , which implements the interface Functor〈F ,V 〉, the user
defines the data structure F for the branching type of the transition system (e.g.,
a list or bit vector for powerset functor, or the corresponding function type in
the case of the distribution functor). Further, the user specifies the type V that
is needed to define the entries of X × GX (e.g. a double value for a weight or
0, 1 to indicate the existence of a transition).

Then the following nine methods have to be provided:

Matrix 〈F ,V 〉InitMatrix (. . . ): This method is necessary to initialize the transi-
tion system with the string-based input of the user. The information about
the states and the alphabet is provided via an input mask in the form of a
matrix.

bool CheckDuplicatorsConditionStep2 (. . . ): given two states x, y and two pred-
icates p1, p2, this method checks whether

Fp1(α(x)) ≤F Fp2(α(y)).

This method is used when playing the game (in Step 2) and in the partition
refinement algorithm (Algorithm 1) for the case p1 = p2.

TSToGraph(. . . ): This method handles the implementation of the graph-based
visualization of the transition system, via an external graph library7. In
the case of weighted systems the user can trust the default implementation
included within the Model. In this case, arrows between states and their
labels are generated automatically.

GraphToTS (. . . ): This method is used for the other direction, i.e. to derive the
transition system from a directed graph given by Graph.

7 https://www.nuget.org/packages/Microsoft.Msagl.GraphViewerGDI
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string GetModalityToString(. . . ): This method is essential for the automatic
generation of the modal logical formulas distinguishing two non-bisimilar
states as described in Definition 17. In each call, the cone modality that
results from FχP (α(s)) with T (x, y) = (s, P ) is converted into a string.

SaveTransitionSystem(. . . ): In order to store a transition system in a csv file.
LoadTransitionSystem(. . . ): In order to load a transition system from a csv file.
GetRowHeadings(. . . ): T-Beg can visualize a transition system α : X → FX

as a X ×GX matrix within a DataGrid. For this purpose, the user needs to
specify how the RowHeaders are generated automatically.

ReturnRowCount(. . . ): This method returns the number of rows of the matrix
representing the coalgebra.

In addition, T-Beg uses a graph library3, which in turn provides a GraphEd-
itor that allows for storing graphs as MSAGL files or as png and jpg files.

6 Conclusion and Discussion

Our aim in this paper is to give concrete recipes for explaining non-bisimilarity
in a coalgebraic setting. This involves the computation of the winning strategy
of the spoiler in the bisimulation game, based on a partition refinement algo-
rithm, as well as the generation of distinguishing formulas, following the ideas
of [5]. Furthermore we have presented a tool that implements this functionality
in a generic way. Related tools, as mentioned in [8], are limited to labelled tran-
sition systems and mainly focus on the spoiler strategy instead of generating
distinguishing formulas.

In the future we would like to extend our prototype implementation to an
efficient coalgebraic partition refinement algorithm, adapting the ideas of Kanel-
lakis/Smolka [11] or Paige/Tarjan [15, 6]. The latter method achieves runtime
O(n · log n), where n is the size of the system, by using so-called three-way-
splitting that chooses equivalence classes for splitting in a clever way.

For the generation of distinguishing formulas an option would be to fix the
modalities a priori and to use them in the game, similar to to the notion of
λ-bisimulation [9, 14]. However, there might be infinitely many modalities and
the partition refinement algorithm can not iterate over all of them. A possible
solution would be to find a way to check the conditions symbolically in order to
obtain suitable modalities.

Of course we are also interesting in whether can lift the extra asumptions
that were necessary in order to re-code modalities in Section 4.3.

We are also interested in studying applications where we can exploit the
fact that the distinguishing formula witnesses non-bisimilarity. For instance, we
see interesting uses in the area of differential privacy [4], for which we would
need to generalize the theory to a quantitative setting. That is, we would like
to construct distinguishing formulas in the setting of quantitative coalgebraic
logics, which characterizes behavioural distances.

Acknowledgements We thank Thorsten Wißmann for inspiring discussions on
efficient coalgebraic partition refinement and zippability.
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A Proofs

Proposition 7. Assume that Rn = νFα, T, I have been computed by Algo-
rithm 1. Furthermore let (x, y) /∈ Rn, which means that I(x, y) <∞ and T (x, y)
is defined. Then the following constitutes a winning strategy for the spoiler:

– Let T (x, y) = (s, P1). Then in Step 1 S plays a predicate p1 = χP1
and

s ∈ {x, y}.
– Assume that in Step 2 D answers with a state t and a predicate p2 such that
Fp1(α(s)) ≤F Fp2(α(t)).

– Then, in Step 3 there exists a state y′ ∈ X such that p2(y′) = 1 and
I(x′, y′) < I(x, y) for all x′ ∈ X with p1(x′) = 1. S will hence select p2
and this state y′.

– Next, in Step 4 D selects some x′ with p1(x′) = 1 and the game continues
with (x′, y′) /∈ Rn.

Proof. We have to show that whenever we reach Step 3 there always exists a
state y′ ∈ X such that p2(y′) = 1 and I(x′, y′) < I(x, y) for all x′ ∈ X with
p1(x′) = 1.

Let us first observe that p2 � p1. If this were the case, we would have
Fp1(α(s)) ≤F Fp2(α(t)) ≤F Fp1(α(t)). But {x, y} = {s, t} are separated at
Step I(x, y) = i precisely because this inequality does not hold for p1 which
represents one of the equivalence classes of Ri−1.

Hence there exists an y′ ∈ X such that p2(y′) = 1 and p1(y′) = 0.
Since the equivalence relations Ri are subsequently refined by the algorithm,

p1 – being an equivalence class of Ri−1 – is a union of equivalence classes of Rn.
So, since y′ is not contained in P1 = p̂1, it is not in Ri−1-relation to any x′ ∈ P1,
hence I(x′, y′) ≤ i− 1 for all such x′.

Since the index I(x, y) decreases after every round of the game, D will even-
tually not be able to find a suitable answer in Step 2 and will lose. ut

Theorem 10. Let α : X → FX be a coalgebra where F is separable by singletons.
It holds that νFα = Wα, i.e., it contains exactly the pairs (x, y) ∈ X × X for
which the duplicator has a winning strategy.

Proof.

“⊆” Assume that (x, y) ∈ νFα = Rn. We show that x ∼ y and with [14] it
follows that (x, y) ∈Wα. We do this by constructing a coalgebra homomor-
phism f with f(x) = f(y).
Let Y = E(Rn), the set of equivalence classes of Rn and we define f : X → Y ,
f(x) = [x]Rn

. In order to show that f is a coalgebra homomorphism, we have
to construct a coalgebra β : Y → FY such that β ◦ f = Ff ◦ α.
We define β([x]Rn) = Ff(α(x)) and it suffices to show that β is well-defined.
So let (x, y) ∈ Rn and assume by contradiction that t1 = Ff(α(x)) 6=
Ff(α(y)) = t2. Then, since F is separable by singletons, we have a singleton
predicate p with Fp(t1) 6= Fp(t2). By expanding the definition we get F (p ◦
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f)(α(x)) 6= F (p ◦ f)(α(y)). By construction p ◦ f = χP , where P is an
equivalence class of Rn. This is a contradiction, since Fα(Rn−1) = Rn =
Rn−1, which indicates that there can not be such a P .

“⊇” Whenever (x, y) /∈ νFα = Rn, we have shown in Proposition 7 that the
spoiler has a winning strategy, which implies (x, y) /∈Wα. Hence Wα ⊆ νFα.

ut

Lemma 13. Assume that F : Set→ Set is a functor preserving injections. We
have that if F is separable by singletons, it is m-zippable. Furthermore if F is
m-zippable, then it is separable by singletons for all sets X with |X| ≤ m.

Proof.

– Suppose that F is separable by singletons. We need to show that

F (A1 + · · ·+Am)
〈F (f1),...,F (fm)〉−−−−−−−−−−−→ F (A1 + 1)× · · · × F (Am + 1)

is injective. Hence let t1, t2 ∈ F (A1 + · · ·+Am) with

〈F (f1), . . . , F (fm)〉(t1) = 〈F (f1), . . . , F (fm)〉(t2)

be given. The situation is depited in Figure 7 below.
Now let xi ∈ Ai and consider the singleton predicate χ{xi} : A1+ · · ·+Am →
2, which decomposes as χ{xi} = hxi ◦ fi where hxi : Ai + 1 → 2 is the
characteristic function of xi on Ai + 1 (see Figure 8 below).

F (A1 + · · ·+Am)

∏
i∈{1,...,m}

F (Ai + 1)

F (A1 + 1) F (Am + 1). . .

〈F (f1), . . . , F (fm)〉
Ff1 Ffm

π1 πm

Fig. 7

A1 + · · ·+Am Ai + 1

2

fi

χ{xi} hxi

Fig. 8

Now we can proceed as follows:

πi(〈F (f1), . . . , F (fm)〉(t1)) = πi(〈F (f1), . . . , F (fm)〉(t2))

⇒ F (fi)(t1) = F (fi)(t2)

⇒ Fhxi
(F (fi)(t1)) = Fhxi

(F (fi)(t2))

⇒ Fχ{xi}(t1) = Fχ{xi}(t2)

Since this holds for all xi in A1 + · · ·+Am, and F is separable by singletons,
we can conclude that t1 = t2.
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– We first observe that every functor that is m-zippable is also m′-zippable
for m′ ≤ m (just set Ai = ∅ for some i). Hence it is sufficient to prove
that whenever F is m-zippable, then it is separable by singletons for all
sets X with |X| = m. So we can assume without loss of generality that
X = {x1, . . . , xm}.
We set Ai = {xi} and know from the premise that

F (A1 + · · ·+Am)
〈F (f1),...,F (fm)〉−−−−−−−−−−−→ F (A1 + 1)× · · · × F (Am + 1)

is injective (see Figure 7).
Let t1, t2 ∈ FX and t1 6= t2 be given. Due to the injectivity of the map
above, we know that there exists an index i such that Ffi(t1) 6= Ffi(t2).
Since Ai+1 ∼= 2, every fi is itself a singleton predicate and hence we witness
the inequality of t1, t2 via a singleton. ut

Proposition 18. Let α : X → FX be a coalgebra and assume that we have
computed Rn, T, I with Algorithm 1. Then, given (x, y) /∈ Rn, the construction
in Definition 17 yields a formula ϕx,y ∈ Lκ(Λ) such that x � ϕx,y and y 2 ϕx,y.

Proof. We prove this by induction over i = I(x, y):

i = 1 : x, y have been separated at Step 1, since FχX(α(x)) �F FχX(α(y)),
where T (x, y) = (x,X) (or vice versa), because X is the only equivalence
class so far. Note also that JttK = X.
We set v = FχX(α(x)), λ =↑v and we have

Jϕx,yK(x) = λ(F JϕK(α(x))) = λ(FχX(α(x))) = λ(t) = 1

Jϕx,yK(y) = λ(F JϕK(α(y))) = λ(FχX(α(y))) = 0

Hence x |= ϕx,y and y 6|= ϕx,y.
In the case where T (x, y) = (y,X), we have v = FχX(α(y)), λ =↑v and we
obtain

J[λ]ϕK(x) = λ(F JϕK(α(x))) = λ(FχX(α(x))) = 0

J[λ]ϕK(y) = λ(F JϕK(α(y))) = λ(FχX(α(y))) = λ(v) = 1

Hence again x |= ϕx,y and y 6|= ϕx,y.
i→ i+ 1 : Due to the induction hypothesis we can assume that the ϕx′,y′ are

distinguishing formulas for (x′, y′) with I(x′, y′) < i+ 1.
First, we show that JϕK = P .
– Let z ∈ P . Then there exists an x′ ∈ P (namely x′ = z) such that
z |= ϕx′,y′ for all y′ /∈ P . Furthermore, by construction of ϕx′,y′ it
holds that y′ 6|= ϕx′,y′ . This means that x |=

∧
y′∈X\P ϕx′,y′ and also

x |=
∨
x′∈P

∧
y′∈X\P ϕx′,y′ = ϕ.

– Let z /∈ P . Then for every x′ ∈ P there exists an y′ /∈ P (namely y′ = z)
such that z 6|= ϕx′,y′ . Hence z 6|=

∧
y′∈X\P ϕx′,y′ . Since this is true for

every such x′ we also have x 6|=
∨
x′∈P

∧
y′∈X\P ϕx′,y′ = ϕ.
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Assume that T (x, y) = (x, P ) (the case T (x, y) = (y, P ) can be handled
analogously as for i = 1). Hence we know that FχP (α(x)) �F FχP (α(y)).
We set v = FχP (α(x)), λ =↑v and we have

Jϕx,yK(x) = λ(F JϕK(α(x))) = λ(FχP (α(x))) = λ(v) = 1

Jϕx,yK(y) = λ(F JϕK(α(y))) = λ(FχP (α(y))) = 0

Hence x |= ϕx,y and y 6|= ϕx,y.
ut

Lemma 19. Given two states (x, y) /∈ Rn and a distinguishing formula ϕx,y
based on Definition 17. Let (x′, y′) be given such that I(x′, y′) > I(x, y). Then
x′ � ϕx,y if and only if y′ � ϕx,y.

Proof. We have to distinguish two different cases for I(x′, y′)

I(x′, y′) = 1: this can not be true since we require I(x′, y′) > I(x, y) ≥ 1.
I(x′, y′) > 1: For any (x, y) with I(x, y) < I(x′, y′) we have x � ϕx,y and y 2

ϕx,y where ϕx,y = [λ]ϕ, λ = ↑ FχP (α(x)) and T (x, y) = (x, P ) (the case
T (x, y) = (y, P ) is analogous). Furthermore, the semantics of ϕ is JϕK = χP
(for details we refer to the proof of Proposition 18). Now, assume without
loss of generality that the following holds

1 = Jϕx,yK(x′) = λ(FχP (α(x′)))

0 = Jϕx,yK(y′) = λ(FχP (α(y′)))

Due to Proposition 4 λ is monotone. Therefore, the above assumption implies
FχP (α(x′)) �F FχP (α(y′)). But this yields a contradiction, since then x′, y′

would have been separated in a Step i ≤ I(x, y) < I(x′, y′). ut

Lemma 20. Let (x, y) /∈ Ri and let P be an equivalence class of Ri−1. Further-
more let

ϕ′ =
∧

y′∈ X\P

ϕx′,y′

for some x′ ∈ P . Then Jϕ′K = χP .

Proof. Clearly Jϕ′K ≤ JϕK = χP .
We now have to show that the other inequality holds as well, so let z ∈ P .

Furthermore let y′ be arbitrary such that y′ /∈ P . Since z, x′ ∈ P and y′ /∈ P ,
where P is an equivalence class, we know that I(z, x′) > I(x′, y′) (possibly even
I(z, x′) = ∞). Hence, by Lemma 19 we have that z |= ϕx′,y′ if and only if
x′ |= ϕx′,y′ . And since the latter holds, we have z |= ϕx′,y′ .

Hence z |=
∧
y′∈X\P ϕx′,y′ = ϕ. In summary, we get χP ≤ JϕK.

ut

Lemma 25. Let Λ be set of predicate liftings. Furthermore we denote the four
functions on 2 by id2, one (constant 1-function), zero (constant 0-function) and
neg (neg(0) = 1, neg(1) = 0).
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Then
Λ′ = {λ, λ ◦ Fone, λ ◦ F zero, λ ◦ Fneg | λ ∈ Λ}

is a set of strongly separating predicate liftings.
Furthermore for every formula ϕ we have that

[λ ◦ Fone]ϕ ≡ [λ]tt [λ ◦ F zero]ϕ ≡ [λ]ff [λ ◦ Fneg ]ϕ ≡ [λ](¬ϕ)

Proof. Let t1, t2 ∈ F2 with t1 6= t2. According to the definition of strong separa-
tion there must be a predicate p : 2→ 2 such that λ(Fp(t1)) 6= λ(Fp(t2)). Since
there are only four such functions, p must be one of id2, one, zero, neg and we
immediately obtain that Λ′ is strongly separating.

In addition we have that, given a coalgebra α : X → FX:

J[λ ◦ Fone]ϕK = λ ◦ Fone ◦ F JϕK ◦ α = λ ◦ F (one ◦ JϕK) ◦ α
= λ ◦ F JttK ◦ α = J[λ]ttK

J[λ ◦ F zero]ϕK = λ ◦ F zero ◦ F JϕK ◦ α = λ ◦ F (zero ◦ JϕK) ◦ α
= λ ◦ F Jff K ◦ α = J[λ]ff K

J[λ ◦ Fneg ]ϕK = λ ◦ Fneg ◦ F JϕK ◦ α = λ ◦ F (neg ◦ JϕK) ◦ α
= λ ◦ F J¬ϕK ◦ α = J[λ]¬ϕK

ut
Proposition 26. Assume that F2 is finite and let Λ be a strongly separating
set of predicate liftings. Let furthermore v ∈ F2 and let ϕ be a formula.

For a given u ∈ F2 we write Λu = {λ ∈ Λ | λ(u) = 1}. Then it holds that

[↑v]ϕ ≡
∨
v≤Fu

( ∧
λ∈Λu

[λ]ϕ ∧
∧
λ/∈Λu

¬[λ]ϕ
)

Proof. First observe that since Λ is strongly separating, every u ∈ F2 is charac-
terized uniquely by Λu.

Let α : X → FX be a coalgebra. We set ψu =
∧
λ∈Λu

[λ]ϕ∧
∧
λ/∈Λu

¬[λ]ϕ and
we first show that

x |= ψu ⇐⇒ u = F JϕK(α(x))

⇒: Assume that x |= ψu. This means that for every λ ∈ Λu we have that
λ(F JϕK(α(x))) = 1 and for every λ /∈ Λu we have that λ(F JϕK(α(x))) =
0. This means that u and F JϕK(α(x)) are both characterized by Λu and
from the strong separation property it follows that they are equal, i.e., u =
F JϕK(α(x)).

⇐: Assume that u = F JϕK(α(x)). Then for every λ ∈ Λu we have that J[λ]ϕK(x) =
λ(F JϕK(α(x))) = λ(u) = 1. For every λ /∈ Λu we obtain J[λ]ϕK(x) = 0. Ev-
erything combined, we have JψuK(x) = 1 and hence x |= ψu.

We can conclude the proof by observing that

x |= [↑v]ϕ ⇐⇒ v ≤F F JϕK(α(x)) ⇐⇒ ∃u :
(
v ≤F u ∧ u = F JϕK(α(x))

)
⇐⇒ ∃u :

(
v ≤F u ∧ x |= ψu

)
⇐⇒ x |=

∨
v≤Fu

ψu
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ut

Lemma 29. Let F be the functor with FX = (DX + 1)A and let Λ be the
separating set of predicate liftings from Example 28. Furthermore let v ∈ F2.
Then it holds that:

↑v =
⋂

λ∈Λ,λ(v)=1

λ

Proof.

“⊆” Let u ∈ F2 with t ∈↑ u, i.e., v ≤F u. Whenever λ(v) = 1 we also have
λ(u) = 1 due to the monotonicity of the predicate liftings (cf. Proposition 3)

and hence u ∈ λ̂. Since this holds for all such λ, we can conclude that
u ∈

⋂
λ∈Λ,λ(v)=1 λ̂.

“⊇” Now suppose by contradiction that we have u ∈ F2 with v �F u and

u ∈
⋂

λ∈Λ,λ(v)=1

λ̂.

There are three cases which may cause v �F u, in particular they are dis-
tinguished by a specific a ∈ A:
– v(a), u(a) ∈ R, but v(a) � u(a), which implies u(a) < v(a). However,

there exists q ∈ [0, 1]∩Q with u(a) < q ≤ v(a) and for the corresponding
modality λ(a,q) ∈ Λ we have λ(a,q)(u) = 0, λ(a,q)(v) = 1 and hence

u 6∈
⋂

λ∈Λ,λ(v)=1

λ̂.

– v(a) ∈ R, u(a) = •: Now take any q ∈ [0, 1] ∩ Q with q ≤ v(a). We use
the modality λ(a,q), for which we have λ(a,q)(u) = 0, λ(a,q)(v) = 1 and
the proof proceeds as before.

– v(a) = •, u(a) ∈ R: Now we take the modality λ(a,•), for which we have
λ(a,•)(u) = 0, λ(a,•)(v) = 1 and again the proof proceeds as before.

ut

Proposition 30. Given a set Λ′ ⊆ Λ of predicate liftings we have

[
⋂
λ∈Λ′

λ]ϕ ≡
∧
λ∈Λ′

[λ]ϕ.

Proof.

“⊆” Let x � [
⋂
λ∈Λ′ λ]ϕ, which implies that (

⋂
λ∈Λ′ λ)(F JϕK(α(x))) = 1. From

this we conclude that λ(F JϕK(α(x))) = 1 for all λ ∈ Λ′, x |= [λ]ϕ. And
finally we have x |=

∧
λ∈Λ′ [λ]ϕ.

“⊇” Let x �
∧
λ∈Λ′ [λ]ϕ, which means that x � [λ]ϕ for all λ ∈ Λ′. This implies

that λ(F JϕK(α(x))) = 1. Hence we obtain (
⋂
λ∈Λ′ λ)(F JϕK(α(x))) = 1 and

finally x � [
⋂
λ∈Λ′ λ]ϕ. ut


