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Abstract: We generalize the order-theoretic variant of the Myhill-Nerode theorem
to graph languages, and characterize the recognizable graph languages as the class
of languages for which the Myhill-Nerode quasi order is a well quasi order. In the
second part of the paper we restrict our attention to graphs of bounded interface
size, and use Myhill-Nerode quasi orders to verify that, for such bounded graphs,
a recognizable graph property is an invariant of a graph transformation system. A
recognizable graph property is a recognizable graph language, given as an automaton
functor. Finally, we present an algorithm to approximate the Myhill-Nerode ordering.

Keywords: graph transformation, recognizable graph languages, Myhill-Nerode
theorem, invariants

1 Introduction

Regular languages and well quasi orders have proven to be useful analysis techniques in the field
of string rewrite systems. In particular, the Myhill-Nerode well quasi order of a regular language
L, which is strongly related to the well-known Myhill-Nerode equivalence, has nice properties
[EHR83, LV94]: the left and right concatenation are monotone w.r.t. the order and the regular
language L used to define it is upward-closed with respect to it. Let a string rewrite system .&
be given. From the first property it follows that if r is greater (with respect to the order) than ¢
for every rewrite rule ¢/ — r of ., then it holds that v is greater than w for each word v reachable
from w. The second property means, that for each word v that is greater than w, it holds thatv € L
if w € L. Together, these two properties ensure that it is decidable whether a property, described
as a regular language containing exactly the words satisfying the property, is an invariant of a
string rewrite system.

Since the late 1980s several notions of regular graph languages — in this context called recog-
nizable graph languages — have been introduced [BC87, Cou90, BK06, BK0O8b], which all turned
out to be equivalent. Recognizable graph languages have found many applications, especially in
the field of complexity theory.

In the light of the above observations it is natural to ask how results from regular languages,
such as Myhill-Nerode equivalences, can be transferred and used for recognizable graph languages.
While Myhill-Nerode equivalences are typically used to show that a language is not regular, we
use them in a different way and study Myhill-Nerode quasi orders in order to verify that a specified
property is an invariant of a graph transformation system.

The definition of recognizable graph language we use in this paper is based on the notion
of automaton functor introduced in [BKO8b], a category-based generalization of finite (word)
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automata. Like finite automata in the word case, automaton functors provide an operational
view on recognizable graph languages, which allows one to define a ‘“Myhill-Nerode”’-order
on automaton states rather than on graphs directly. This is convenient, because states typically
represent an infinite class of graphs. Still, automaton functors are in general infinite structures,
due to the unboundedness of graph interfaces. In Section 2 we briefly define recognizable graph
languages, automaton functors, and the category-theoretic notions at the heart thereof.

In Section 3 we generalize the order-theoretic variant of the Myhill-Nerode theorem to (recog-
nizable) graph languages; that is, we define the Myhill-Nerode quasi order on graph languages
and characterize recognizable graph languages as the class of languages for which this order is a
well quasi order.

In the second part of the paper we focus on the application of the Myhill-Nerode quasi order
in practice. First, in Section 4 we show that we need only define the automaton functor for a
restricted set of so-called atomic cospans, so that we do not need consider all cospans when
calculating the order.

As indicated above, the quasi order typically cannot be represented in a finite way, due to
the unboundedness of graph interfaces. In Section 5 therefore, we restrict our attention to
graphs which can be constructed with atomic cospans of bounded interface sizes, and we present
an algorithm which approximates (and in the case of deterministic automaton functors even
computes) the Myhill-Nerode quasi order of an automaton functor. Finally, we illustrate the
work with a short example in Section 6. The full version with the proofs can be found at
http://www.ti.inf.uni-due.de/publications/blume/invcheck.pdf

2 Preliminaries

In this section we briefly recall some concepts of category theory and recognizable graph lan-
guages. We presuppose a basic knowledge of category theory and order theory.

2.1 Category Theory and Recognizable Graph Languages

First we review and fix some notations. The category which has sets as objects, relations as arrows
and relation composition as composition operator is denoted by Rel. The subcategory which has
total functions as arrows instead of relations is denoted by Set. The composition of two arrows
f and g will be denoted by ; where ;¢ = go f indicates the arrow which is obtained by first
applying the arrow f and then the arrow g.

Let ¥ be a category with pushouts. A cospan c¢: J —c*— C «c*— K is a pair of % -arrows
with the same codomain. Here, J and K are the domain (or inner interface) and codomain (or
outer interface) of the cospan c, respectively. The identity cospan for an object E is the cospan
consisting of twice the identity arrow of E. Let ¢: J —c*—»C«c*~K and d: K —d"— D «d*~M be
cospans (where the codomain of ¢ equals the domain of ). The composition of ¢ and d is obtained
by taking the pushout of c® and d%. A semi-abstract cospan is an equivalence class of cospans,
where we take the middle object of the cospan up to isomorphism. Now, the cospan category
Cospan(%) is defined as the category which has the objects of € as objects, and semi-abstract
cospans as arrows. If the middle object is not important, a cospan c: J — C « K (an arrow in the
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cospan category from J to K) will be denoted as ¢: J &~ K.

Let a set X of labels be given. A hypergraph G, later also simply called graph, is a four-tuple
(Vg,Eg,attg,labg), where Vi is a finite set of vertices (or nodes) of G, Eg is a finite set of
edges of G, attg: Eg — Vj; is the attachment function and labg : Eg — X is the labeling function.
Here, V; denotes the set of finite sequences of elements of V. A hypergraph morphism f is a
structure-preserving map between two hypergraphs. A discrete graph is a graph which does not
contain any edges. The discrete graph with n nodes is denoted by D,,. The empty graph is denoted
by 0 instead of Dy. The category of graphs and graph morphisms is denoted by HGraph.

A cospan of graphs (an arrow in the category Cospan(#Graph)) can be seen as a graph with an
inner (left) and an outer (right) interface. Intuitively, the interfaces designate the parts of the graph
which can be “touched” from the outside. With [G]: @ — G < 0 we denote the cospan consisting
of a graph G with empty inner and outer interfaces.

Cospans of graphs are closely related to graph transformation systems, in particular to the
double-pushout (DPO) approach to graph rewriting [SS05]. A DPO rewrite rule p: L+«p.—1—pr—
R can be considered as a pair of cospans £: ) — L«p—1 and r: O — R «pr—1, which will in the
following be called left- and right-hand side, respectively. Then it holds that G =, H if and only
if [G] = ¢;c and [H| = r;c, for some cospan c.

We define recognizable graph languages by using automaton functors on the category of
cospans of graphs, as in [BK08b].

Definition 1 (Automaton functor, recognizability) Let a category ¢ with initial object @ be
given. An automaton functor is a functor <7 : ¥ — Rel, which maps every object X of € to a finite
set &7 (X) of states of X and every arrow f: X — Y to arelation o7 (f) C o7 (X) x <7 (Y), together
with two distinguished sets I C o7 (0) and F¥ C o7 (0) of initial and final states, respectively.

An automaton functor is deterministic if every relation o7 (f) is a function and every I/
contains exactly one element.

An arrow f: 0 — 0 is accepted by an automaton functor .7, if (s,t) € .o (f), for some s € I
and t € F”. The language L(.<7) of an automaton functor contains exactly those arrows which
are accepted by it. A language L of arrows from 0 to 0 is a recognizable language if L = L(</),
for some automaton functor o7

The intuition behind the definition is to have a mapping into a (locally) finite domain. The func-
tor property guarantees that decomposing an object in different ways does not affect acceptance in
any way. This is different from word languages, where there is essentially one way to decompose
an object into subobjects.

Familiar constructions on finite automata, such as the determinization construction, can be
easily generalized to automaton functors. Also, it was shown in [BKOS8b], that restricting to
discrete interfaces does not affect the expressiveness of the formalism. Due to the latter result, we
shall restrict to discrete interfaces in the rest of this paper.

The above definition can easily be generalized to accept languages between arbitrary objects.
However, in our setting we require only languages from the initial object to the initial object.

A characterization of recognizable graph languages can be obtained in terms of recognizable
languages in Cospan(HGraph):
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Definition 2 (Recognizable graph language) A set L of graphs is a recognizable graph language,
if [L] ={[G]: 0 — G < 0| G € L} is a recognizable language in Cospan(HGraph).

In the following we will not distinguish between L, a language of graphs, and [L], a language
of (cospans of) graphs with empty interfaces.

2.2 Orders on categories

One of the basic concepts in checking invariants of regular languages is the notion of (well) quasi
orders. First, we review the definition of (well) quasi orders on arbitrary sets (see also [LV94]).

A quasi order (qo) is a binary relation Ty, on a set M if Ty is reflexive and transitive. A quasi
order Ty on M is called well-quasi order (wqo) whenever if my,my, ... is an infinite sequence of
elements of M, then there exist integers i, j such that 0 < i < j and m; C m;. In the following we
will write C instead of T, if M is clear from the context.

Next, we consider a semigroup (M, *) and a quasi order C on M. We say that C is left-monotone
(resp. right-monotone) if for all m|,my,m € M the following condition is satisfied:

my Cmy = mxmy Cmxmy (resp. my CTmy = my*xmC mp+m).

In the following we will define orders on the homsets of a category. More specifically, two
arrows f, g can only be related by a quasi order C if they have the same source and target objects.
Alternatively we could consider C as a family of quasi orders, one for each homset.

The notion of order in categories is also present in enriched categories [GMM94, Kel82]. Note
however that unlike in enriched categories we do not necessarily require that the order is always
preserved by composition (f C f/ and g C g’ implies f;¢ C f;g’), since we will usually only
require right-monotonicity as defined above.

3 A Generalization of the Myhill-Nerode Theorem

In this section we generalize the theorem of Myhill-Nerode to graph languages. This theorem
says that a language is regular if and only if it is the union of equivalence classes of a monotone
(or right-monotone) congruence on words of finite index. There is an order-theoretic variant
of this theorem given in [EHR83, LV94] saying that a language is regular if and only if it is
upward-closed with respect to a monotone well quasi order.

In order to state this theorem in our framework we first need the notion of Myhill-Nerode
quasi order. Note that while the word or string variant of this theorem uses orders that are both
left-monotone and right-monotone, here we work only with right-monotone orders. Intuitively
this is sufficient since we start with the empty interface and attaching any cospan on the left can
always be simulated by attaching an appropriate cospan on the right.

Definition 3 (Myhill-Nerode quasi order) Let L be a graph language over Cospan(HGraph). A
quasi order <; on Cospan(HGraph) is called Myhill-Nerode quasi order (relative to L), if for
arbitrary cospans a,b: 0 &~ D, the following condition is satisfied:

a<pb iff VY(c:D,d0): ((a;c) eL = (b;c)€L).
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Based on <; we can define the Myhill-Nerode equivalence =; on cospans a,b: @ & D,, as
follows:

a=.b iff a<,banda>.b

The Myhill-Nerode equivalence is called locally finite, if for every cospans a: @ &~ D, the
equivalence class of a is a finite set.

One can prove that the Myhill-Nerode quasi order is in fact a quasi order on Cospan(HGraph).
It also possesses two other properties which will be important in the following. (Note that all
proofs can be found in the appendix.)

Proposition 1 Ler L be a graph language over Cospan(#HGraph). The Myhill-Nerode quasi
order (relative to L) is right-monotone and the language L is upward-closed with respect to <.

This proposition is the key to invariant checking. We say that a graph language L is an invariant
forarule pif G€ Land G =, H always implies H € L.

Imagine a rule p is given by a pair of cospans ¢,r: @ &~ I and it holds that ¢ <; r. If G is
rewritten to H via p we have that [G] = ¢;c and [H]| = r; ¢ for some cospan c: I ¢ 0. Now £ <, r
implies [G] < [H] (right-monotonicity) and if G is contained in L, then H is contained in L as
well (upward-closure). Hence L is an invariant w.r.t. p. Furthermore if £ £; r, there is a cospan ¢
violating the condition of Definition 3 and L is no invariant w.r.t. p. Hence we have that L is an
invariant for p if and only if £ < r.

Similar to the case of word languages we can characterize the recognizable graph languages in
terms of congruence classes as shown in [BKO8b]. Furthermore Ehrenfeucht et al. [EHR83] give
a generalization of the Theorem of Myhill-Nerode by characterizing regular languages in terms of
well quasi orders instead of equivalence classes of finite index. As an important result we can lift
this theorem to the case of recognizable graph languages.

Theorem 1 (Generalized Myhill-Nerode Theorem) Let a graph language L over Cospan(HGraph)
be given. The following statements are equivalent:

(i) Lis a recognizable graph language,
(ii) =y is locally finite and L is the union of (finitely many) equivalence classes of =p.
(iii) L is upward closed with respect to some right-monotone well quasi order Cj.

(iv) The Myhill-Nerode quasi order <y is a well quasi order.

4 Atomic Cospans

In this section we introduce atomic graph operations which play the role of letters in the case of
words. These atomic graph operations are based on the algebra of graphs originally described by
Courcelle [BC87]. Each atomic graph operation is given by an atomic cospan, so that applying the
graph operation to a cospan (a graph with interfaces) amounts to composing the cospan with the
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atomic cospan of the operation. In the following, we will distinguish between graph operations
and atomic cospans used to define them.

We assume that the set of nodes of each discrete graph D, is Vp, = {vo,...v,—1}. Weset N, =
{0,...,n— 1} and we denote the disjoint union of two graphs G| and G, by G| ® G,. We assume
that G and G, are disjoint. Furthermore we define the disjoint union f ®g: G1 ® G, — H G H»
of two graph morphisms f: G| — Hy and g: G» — H, where H| and H, are disjoint as follows:

flv), ifveVg,
gv), ifveVg,

fle), ifeckEg,
gle), ifecEg,

(fegv) = { and  (f@©g)(e) = {

Definition 4 (Atomic graph operations)  Restriction of the outer interface: Let p: D,_1 — D,
with p(v;) = v; be an arrow between two discrete graphs. We define the cospan res, as
follows: res,,: D,, —idp,— D, «<p—D,,_;.

Permutation of the outer interface: Let a permutation 7: N, — N, with 7(i) =i+ 1 for 0 <
i<n—1land t(n—1)=0and an arrow o: D, — D,, with v; — Vz(i) between two discrete
graphs be given. We define the cospan perm,, as follows: perm,,: D, —idp,— D,, <-6—D,,.

Transposition of the outer interface: Let a transposition 7: N, — N, with 7(0) =1, (1) =0
and (i) =ifor2 <i<n-—1andanarrow o: V,, — V, with v; — V(i) between two discrete
graphs be given. We define the cospan trans,, as follows: trans,: D, —idp,— D,, «<0c—D,,.

Fusion of two nodes of the outer interface: Let n > 1 and an equivalence relation 6 = idy, U
{(vo,v1),(v1,v0)}, an arrow 6,,,, which maps every node of D, to its 0-equivalence class,
and an arrow @: D,_; — D with v; — [vi1] g, where D is the discrete graph with node set
{[V]e | v € Vi }, be given. We define the cospan fuse, as follows: fuse,: D, —6up— D «—o—
D,_;.

Connection of a single hyperedge: Let an edge label A € £, m € N with 0 <m < n and a
hypergraph H which consists of a single hyperedge / with arity m and labeled with A be
given. We define the cospan con nectﬁ’m as follows: con nectﬁ’m :D,—e>H®D,_,,<¢—D,
with e(v;) = att;(h) for 0 <i < m and e(v;) = v;_p, otherwise.

Disjoint union with a single node: We define the cospan vertex,, as follows: vertex, : D, —d"—
Dy «idp,,,— Dy 41 with dX =idp, @iandi: 0 — Dy.

The intuitions behind these atomic graph operations are as follows (see Figure 1): With the
cospan res,, we can hide the last node of the outer interface of a precomposed cospan. The cospan
fuse, glues the first two nodes of the outer interface of a precomposed cospan and afterward
restricts the second node of this outer interface.

The cospans trans, and perm, permute the outer interface of a precomposed cospan. The
former maps the nodes of the outer interface in such a way that only the first two nodes are
transposed. The latter permutes the nodes of the outer interface such that every node is mapped to
its successor node.

In order to be able to construct new graphs the cospans vertex, and con nectﬁ,"m can be used to
generate new nodes and edges. By composing vertex, with an arbitrary cospan c: 0 — G «— D,,
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Figure 1: Graph operations

we add a single, isolated node to G and extend the outer interface of ¢ to D, 1, such that the last
node of the extended outer interface is mapped to the new node. The cospan con nects™ adds an
A-labeled hyperedge with arity m in such a way to G that the first m nodes of the outer interface
are mapped to the m nodes of the hyperedge /.

We can restrict our attention to these atomic graph operations, because any graph G (seen as
a cospan of the form @ — G < () can be constructed by composing a finite number of them as
shown by the next proposition.

Proposition 2 Every cospan of the form c: D,, —¢"— G «¢f— D, where the right leg QX is
injective can be constructed by a sequence opy,...,0p; of atomic graph operations, i.e. ¢ can be
obtained as the composition ¢ = opy ;.. .;0p;.

5 A Decidable Variant

In this section we develop an algorithm — based on the Myhill-Nerode quasi order — for checking
invariants for recognizable graph languages. The algorithm takes as input an automaton functor
which accepts the given graph language. In general this automaton functor has infinitely many
states, since for every interface D,, (n € N) there exists a set of states. But for practical purposes
we need an automaton functor which is finite, i.e. has only a finite number of states.

In order to get automaton functors with a finite number of state sets, we only take cospans with
a bounded interface size into account.

Definition 5 (Bounded cospan) A cospan c: S d T is called bounded (by k), if there exist graph
operations opy,...,0p; such that ¢ = op, ;...;0p; and for every graph operation op;: Dy, &> Dy,
for 1 <i < jitholds that n;,m; <k.

Definition 6 (Bounded Myhill-Nerode quasi order) Let a natural number k € N and a graph
language L over Cospan(#Graph) be given. The quasi order <k on Cospan(#HGraph) is called
bounded Myhill-Nerode quasi order (relative to L), if for arbitrary k-bounded cospans a,b: @ ¢~ D,

7/19 Volume X (2010)



Recognizable Graph Languages for Checking Invariants E}

the following condition is satisfied:
a<kb iff Y(c:D,d 0, ck-bounded): ((a;c) €L = (bic)€L).

The bounded Myhill-Nerode quasi order defined above gives us an over-approximation of <;,
i.e., two cospans with a <y, b are for sure related by the relation <k but not necessarily vice versa.

Note that graphs with edges of arity more than k can not be constructed by cospans that are
bounded by k. Also for edges with smaller arity it is not guaranteed that they are constructible.
For example a k-grid consisting of binary edges needs interfaces of size at least k.

Since all automaton functors which accept only cospans of bounded interface size have a finite
representation, we are able to consider an algorithm which computes the Myhill-Nerode quasi
order relative to a given deterministic automaton functor similar to the algorithm for computing
the Myhill-Nerode equivalence by pairwise comparing two states with their successor states.

But for practical purposes the algorithm is not useful due to the fact, that in general the
deterministic automaton functor can be exponentially larger than the equivalent non-deterministic
automaton functor. Therefore we also allow non-deterministic automaton functors as input for
the algorithm. However this leads to some additional changes. Since the automaton functor
is non-deterministic, for a given state there exists a set of successor states instead of a unique
successor state and we cannot pairwise compare two states with their (unique) successor states. In
order to circumvent this difficulty, we allow an “one-sided error” by taking a stronger relation
than the Myhill-Nerode quasi order. Roughly, we are under-approximating language inclusion via
some form of simulation. A relation R on the states of an automaton functor .7 is a simulation, if
the following condition is satisfied:

s1Rs) = (sl cF’ =5 ¢ F—”) AVop: Vs, € o (op)(s1): 3sh € o (op)(s2): (5} Rsb).
A state rp, simulates a state t1, denoted by t; < fp, if f{ R t, holds for some simulation R.

Definition 7 (Bounded simulation) Let L be a graph language over Cospan(#HGraph) and o
an automaton functor, which accepts the language L. The quasi order gf;{ is called bounded
simulation (relative to L), if for arbitrary, k-bounded cospans a,b: 0 &~ D,, the following condition
is satisfied:

a<k, b iff Vs €/ (a)17): Iss € ' (b)(17): 51 < 52.

Replacing the (bounded) Myhill-Nerode quasi order by the (bounded) simulation relation
results in fact in an one-sided error, as the next proposition shows:

Proposition 3 Let n,k € N with n <k, a,b: 0 & D,, be cospans and </ be the automaton
functor which accepts the language L. If a szf b holds, then a Sf b holds. The inverse direction
holds if <f is deterministic.

Algorithm 1 on page 9 computes S’;{ as defined above. Note that this is a fixed-point algorithm
computing the greatest fixed-point. The relations <’ (one for each interface size) first contain all
possible pairs of states and are suitably refined in each step. First, we delete all pairs, where the
first state is final and the second is not. Then, for all pairs still in the relation we check whether
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each transition from the first state can be mimicked by the second such that the resulting states
are in the relation. If no more pairs can be deleted we have reached a fixed-point and terminate.
Then it is left to check whether

Algorithm 1 CheckSimRelated(a,b,k, o)
Input: Bounded cospans a,b: @ &~ D, with n < k, an automaton functor .27
Output: true, ifa S’;{ b and false, if a g_’;{ b
set X'= .o/ (D;) x o/ (D;) forall 0 <i <k
for all s) € F, 5, € «7(0) \F” do
delete (sg,s1) € <V
repeat
for all (s,s51) € <" with 0 <i <k do
for all op € {connect?’m,fusei, perm;res;, trans;, vertex; } do
for all s, € <7 (op)(so) do
if there exists no s} € &/’(op)(s1), such that (s, s}) € = then
delete (so,s1) from <’
until no deletion has been performed in the last iteration
for all i € I do
for all 59 € <7/ (a)(i) do
if there exists no state s; € <7 (b)(i), such that (sp,s1) € <" then
return false
return true

Theorem 2 Let an automaton functor o and two bounded cospans a,b: O &~ D, withn <k be
given. Then a S’;{ b holds, if and only if CheckSimRelated(a,b,k, <) returns t rue.

We implemented the algorithm in a naive way: our implementation explicitly stores the relations
<! in tables and iterates until no further changes occur. More details about the run-time and
memory requirement of the naive implementation are given in the next section; some ideas for
significant improvement are presented as future work in the conclusion.

6 Short Example

In this section we consider a multi-user file system where the access to the system is controlled by
several rules in order to guarantee some consistency properties. The case study was inspired by
[KMPO2]. As in most cases, the violation of these consistency properties can be modeled by the
occurrence of one or more forbidden graphs. Therefore, we first introduce a k-bounded automaton
functor <7, i.e. an automaton functor processing only k-bounded graphs, which accepts every
graph [G] which contains a specified subgraph U.

The idea behind this automaton functor is as follows: The automaton functor used in this
example contains a state set .o/ (D;) for every discrete interface D;, 0 < i < k. Every state in each
state set stores two kinds of information: on the one hand the subgraph U’ of U which has already
been read and on the other hand a partial function f from Vp, to Vi describing which vertices of
U’ are contained in the interface D;. By Proposition 2, we can restrict the automaton functor to
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accept only atomic graph operations (see Section 4), since every cospan [H| can be decomposed
to a sequence of atomic graph operations opy,...,op, such that [H] = op,;...;op,. For every
atomic graph operation op;: Dy, & D, with 1 < j </, m,n € {0,...,k} containing a subgraph
U" of U and a state (U', f) € <7 (Dy,) the successor state (U’ UU", f") € <7 (D,) is computed by
adding the new subgraph U” to the subgraph U’ and updating the partial function f according to
op; resulting in the partial function f " (see image below). Note that op ; might contain various
subgraphs U” and hence the automaton is heavily non-deterministic. More details concerning the
construction of this automaton functor can be found in [Blu0O8].

We can show that we obtain a functor which guarantees that the decomposition of the cospan
[H] does not affect the acceptance behavior of the automaton functor. The set of start states ¥
contains only the state (@,0) consisting of the empty graph and the empty partial function. The
set of acceptance states F contains only the state (U,0) consisting of the wanted subgraph and
the empty partial function.

Now we want to use this automaton functor
for the verification of the multi-user file system.
We consider two properties which describe when
the consistency of the multi-user file system is
violated. The system is in a consistent state as
long as these properties are not satisfied. The
first property is the double write access of a user
to a file (double access), i.e. a user has two times a write access to the same file at the same time.
The second property is the write access of two different users to the same file at the same time
(two users). These two properties can be modeled by the following two graphs, where nodes
labeled with u (resp. f) denote users (resp. files) and edges from a user-node to a file-node labeled
with w (resp. r) denote a write (resp. a read) access of that user to that file:

Note that it is not forbidden that a user has more than one read access to W
a file at the same time and that two or more users can have read access to
the same file at the same time even if one user has write access to that file. @C@

w

Since recognizable languages are closed under boolean operations and with

the considerations above we can now construct an automaton functor that N
recognizes all graphs violating one of the two properties, i.e., all graphs

that contain either of the two subgraphs.

Furthermore, the multi-user file system offers the usual operations such M
as adding and removing users, creating, deleting and requesting files as well
as switching, dispossessing and transferring access rights. In the following,
we will show with the rules “User creates new file” and “User requests file” how these file system
operations can be modeled as DPO rewrite rules. The rule “User creates new file” applied for
some user u creates a new file f and gives the user a write access to this file. It can be modeled by
the following span:

®
®
&
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The rule “User requests file” applied for some user u sets the write access of this user from the
current file to some other existing file. The following span models this rule:

S
O
®
S
O
@
O

_________________________________________________________

Since every rewrite rule can be considered as two cospans ¢ and r (see Subsection 2.1) which are
the left and right hand side of the corresponding rewrite rule, we can verify the consistency of this
multi-user file system by checking, if the language of all graphs containing none of the forbidden
subgraphs is an invariant for each rule. Since the automaton functor accepts the complement
of this language, i.e., all graphs that do contain one of the forbidden subgraphs, we perform a
backwards analysis on each rewrite rule and check whether r g’;/ £. If r is related to /, then
the original rewrite rule does not violate the consistency of the multi-user file system. After the
application of the rule the consistency of the system is violated only if it was already violated
before the rule application, hence the language is verified to be an invariant.

We now use the algorithm described in the previous section to check the rewrite rules mentioned
above. For all interface sizes that we checked the result of the algorithm is that the language
is an invariant w.r.t. the first rule, but not w.r.t. the second rule. This is clear, since a user can
request write access to a file, to which another user has already write access. Note also that, due
to the under-approximation by simulations, there are actually rules which are correct, but are not
recognized as such by the algorithm.

Although the example is rather small, the computed simulation relation becomes very large
quickly. Table 1 presents the size of the simulation relation (according to the number of pairs
contained in the relation) and the run-time of the implementation of Algorithm 1 for some interface
sizes. The tests were performed on a Linux machine with a Xeon Dualcore 5150 processor and 2
GB of available main memory.

Maximum interface size
o[ 1 [ 2 | 3 | 4
Size (in pairs) || 400 | 3.425 | 31.314 | 323.995 | =3,7- 10°
Run-time (in seconds) || <1s | <lIs <ls 2s 26s

Table 1: Size of the simulation relation and run-time of the algorithm

Note that for interfaces with a size more than 4 the size of the simulation relation exceeds
the amount of main memory. Nevertheless it is possible to verify all rewrite rules which have a
interface size up to 4.

7 Conclusions

The notion of recognizable graph language used in this paper has been introduced in [BK08b] and
is strongly related to [Cou90, Gri03, BK06]. Especially the notion of recognizability considered
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here is equivalent to Courcelle’s notion. For a detailed comparison see [BK08b]. In [BK08a] a
weaker notion of graph automata is introduced.

Invariant checking for graph transformation rules has already been considered in several papers:
in [FL97, BPRO3] shape types and shapes are introduced in order to describe graph languages.
Both papers propose algorithms that analyze each rule and check whether (and how) it may change
the shape of a graph. In order to describe shapes the former uses context-free grammars whereas
the latter uses more expressive graph reduction systems, that are able to express properties such as
balancedness of trees. In [HPR06] a method for computing weakest preconditions of application
conditions, which are equivalent to first-order graph logic, is presented. This method can also
be used for invariant checking, by showing that for every rule the weakest precondition of the
invariant is implied by the invariant. Note that, in general, recognizable graph languages are more
expressive than first-order logic since every monadic second-order graph logic formula is known
to specify a recognizable graph language [Cou90]. Another related work [BBG'06] considers
graph patterns consisting of negative and positive components and shows that they are invariants
via an exhaustive search. Interestingly, this method made efficient by a symbolic algorithm based
on binary decision diagrams, an idea that we are trying to reuse in a somewhat different setting
(see remarks below).

We have not yet compared the effectiveness of our approach to these other approaches in detail,
but our method is different from all the others in that it is based on the Myhill-Nerode quasi order.

Our approach suffers from the restriction that we have to work with k-bounded cospans.
Especially we first over-approximate the relation <; by §’i (by introducing k-boundedness),
which is subsequently under-approximated by Sfy (by using simulation instead of language
inclusion). While it is difficult to imagine how to avoid the restriction to interfaces up to size &,
the determinization of the automaton functor o7, which would avoid the under-approximation,
should be achievable if we use a more succinct representation of automaton functors. We are
currently experimenting with the representation of automaton functors (which are basically very
large relations) with binary decision diagrams (BDDs), which are well-suited for the compact
representation of large (but finite) relations. Our experiments have so far been very promising.
With BDDs we can handle much larger interfaces and we expect to obtain less memory usage and
better run-times.

Finally, decomposing a graph into atomic cospans is basically equivalent to the path decompo-
sition of a graph and checking whether a graph is contained in the language is hence linear-time
for graphs of bounded pathwidth. For efficiency reasons it would be more suitable to consider
generalizations of tree automata that can handle tree decompositions of graphs, as it is similarly
done in the work by Courcelle. Hence we are currently investigating tree automata and their
generalization to graphs.
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A Proofs

3 A Generalization of the Myhill-Nerode Theorem

Proposition 1. Let L be a graph language over Cospan(HGraph). The Myhill-Nerode quasi order
(relative to L) is right-monotone and the language L is upward-closed with respect to <j.

Proof.

e Right-monotone: Let arbitrary €-arrows a,b: 0 &~ M with a <; b be given. By definition,
it holds that

V(c: Md>0): (a;c) e L = (b;c) € L.

Now take @ -arrows ¢': M &~ N and ¢”’: N &~ 0 such that ¢ = ¢’;¢”". Now we have
((a;c);c")e L = ((b;c);c") € L. By definition, we have (a;c’) <, (b;c’).

e Upward-closure: Let a,b: 0 &~ 0 be arbitrary %’-arrows such that ¢ € L and a <; b. Then
a=a;0 € Limplies b = b;0 € L, where 0 is the empty cospan.

Lemma 1 Let (M,C) be a quasi ordered set. The following statements are equivalent:

1. T is a well quasi order.

2. The ascending chain condition for the inclusion relation C holds for the C-closed subsets
of M.

3. Every infinite sequence of elements of M has an infinite ascending subsequence.

4. There exists neither an infinite strictly descending sequence in M, nor an infinite number of
pairwise incomparable elements in M.

Proof. [Hig52]. L]

Lemma 2 Let T, 5, be quasi order on M such that °; C Ty holds. If Ty is a well quasi order,
then T, is a well quasi order.

Proof. Straightforward from the definition of a well quasi order. O

Lemma 3 Let C be a well quasi order on M and let the equivalence relation ~ = (C NC~ 1)
on M be given. Then ~ has a finite index, if and only if T~ is a well quasi order.

Proof. (=) Letm,my,... be an infinite sequence of elements of M. Then there exists indices
0 <i < j such that m; ~ m, since ~ has finite index. Hence ~ is a well quasi order. Clearly
~ C C! holds and by Lemma 2 C—!isawell quasi order.
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(<) We assume that the index of ~ is infinite. Then there exists an infinite sequence m;,mo, ...
of elements of M, such that m; o* m; for i # j. By definition of ~, we have m; [Z m; or
miZ'm j fori# j. Since both T and C ! are well quasi orders, the number of pairwise
incomparable elements w.r.t. C and C ! has to be finite. Hence we have a contradiction.

O

Lemma 4 An equivalence relation ~ on M has a finite index, if and only if ~ is a well quasi
order on M.

Proof. (=) Letmj,my,... be an infinite sequence of elements in M. Since ~ has a finite index,
there exists indices 0 < i < j such that m; ~ m;. Hence, by definition ~ is a well quasi
order.

(<) Since ~ is an equivalence relation, we have ~ = ~~! and ~ = (~ N ~~!). By Lemma 3 ~
has a finite index.
O

Theorem 1. Let a graph language L over Cospan(HGraph) be given. The following statements
are equivalent:

(i) Lis a recognizable graph language,
(ii) =y is locally finite and L is the union of (finitely many) equivalence classes of =p.
(iii) L is upward closed with respect to some right-monotone well quasi order Cj.

(iv) The Myhill-Nerode quasi order <p is a well quasi order.

Proof. (i) = (iii) The first part of the proof is analogous to the proof of Proposition 3.6 in
[BKOSD].

Let &7 be the automaton functor which recognizes the language L. First, we construct a
congruence ~, as follows: Let a,a’: 0 &~ D, be HGraph-cospans. We define: a ~ d' if
and only if o7 (a) = <7 (d'). Since each state set is finite it is clear that ~, is an equivalence
relation of finite index. The fact that ~;, is a congruence follows from the fact that o7 is a
functor, and thus respects composition. Now we have that

L={a|a: 0 0and o/ (a)(17)NF #0}.

Next, we show that ~ is a right-monotone well quasi order and that L is upward closed
w.rt. ~;. By Lemma 4, we have that every ~ is well quasi order. The fact that ~
is right-monotone follows from the definition. Let a,a’: @ &~ D, and b: D, &~ D,, be
HGraph-cospans such that a ~; a’. We have

d(a;b) = o (a); A (b) = o (d); o (b) = o (d;b)
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and therefore (a;b) ~; (a';b) holds. The fact that L is upward closed w.r.t. ~ can be
shown as follows. Let a,a’: ® &~ @ and let a € L. We have to show that a’ € L:

a)=4(d')

A (a)17)NFY #0 " o(d)17)NEY 0,

Hence, @’ € L. Now, we have that ~; is a right-monotone well quasi order and L is upward
closed w.r.t ~p.

(iii) = (iv) Leta,b: 0 & D), be arbitrary HGraph-cospans. Since T is right-monotone, we have:
aCpb = Y(c: Dyd> Dy): (asc) Ty (bsc).

Furthermore, we have (a;c) € L = (b;c) € L, because L is upward closed w.r.t. C;. By
definition of the Myhill quasi order, we obtain a <; b. From Lemma 2, we can infer that
< is a well quasi order, since T is a well quasi order.

(iv) = (ii) Take the congruence ~; = (<, N <;'). We assume by contradiction that ~; is not
locally finite. Hence, there exists a sequence ay,as, ... of HGraphi-cospans from 0 to D,
such that —(a; ~p a j) for integers i < j. By Lemma 1, there exists a subsequence by, by, ...
of aj,az,... such that b; <; b; for integers i < j. By —(b; ~r b;) and b; < bj, we have
that ~(b; <; b;) for integers i < ;.

For arbitrary HGraph-cospans c: @ & D,, we define M(c) ={d: D, &~ 0| (c;d) € L}.
Since b; <1, b; holds for integers i < j and <, is right-monotone, we obtain for all #Graph-
cospans (c: D, &= 0): (bi;c) <p (bj;c). Furthermore, we can infer that (b;;c) € L implies
(bj;c) € L, since L is upward closed w.rt. <;. In combination with —(b; ~1 b;) for
integers i < j, we have M (b;) C M(b;) for integers i < j. Hence, M (b;) is an infinite
strictly ascending sequence of subsets of .oZrr(Cospan(HGraph)).

Next, we have to show that for all b; the sets M (b;) are upward closed for some well quasi

order C. Let ¢,d: D, 4~ 0 be arbitrary HGraph-cospans. We define a new quasi order C as
follows:

cCd iff ¢ '< d !,

(Note that the cospan ¢! is obtained from ¢ by “reversing” the cospan, i.e., exchanging
source and target interface.) We now show that C is a well quasi order: we assume that C is
no well quasi order. Then we can find an infinite sequence c1,c2,c3, ... of HGraph-cospans
from D), to @ such that ¢; £ ¢; for i < j. By definition of C, we obtain ci’l Lr c;l. However,
< is a well quasi order and hence there exist integers i < j such that ci’l <t c;l, which is
a contradiction.

Now, let arbitrary #Graph-cospans ¢ € M (b;) and (d: D, &~ 0) be given such that ¢ C d.
We show that d € M (b;) holds:

cCd &5 1< g TR (i < (@ b = (biie) T <p (bid) !

We have (b;;c) ! = (b;;c) and (b;;d)~! = (b;;d), since these cospans have an empty
source and target interface. Hence, we have (b;;¢) <r, (b;;d) and by definition of <;, we
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obtain: (b;;c) € L = (b;;d) € L. It follows that d € M (b;). But then we obtain an
infinite strictly ascending, C-upward closed sequence of subsets of <7rr( Cospan(HGraph)).

Hence, by Lemma 1 C is no quasi order, which is a contradiction.

Now, since L is upward-closed w.r.t. <; and hence also w.r.t. ~, L can be represented as a
union of equivalences classes as follows:

L= U [d

(a: 0=0)eL

(ii) = (i) [BKO8b]

4 Atomic Cospans

Proposition 2. Every cospan of the form c: D,, —¢*— G «¢*— D, where the right leg QX is
injective can be constructed by a sequence opy,...,0p; of atomic graph operations, i.e. ¢ can be
obtained as the composition ¢ = opy ;.. .;0p;.

Proof. First, we define some new graph operations based on the atomic graph operations.

° fuseg : Fusion of the vertices of D, according to some equivalence relation 0.

Am7,

e connect,”": Adds an A-labeled hyperedge e with arity m such that att;(e) = v(i), where 7
is a sequence of vertices such that |[V| = m.

° resﬁ,: Restricts the i-th vertex of the interface (for i < n).

e perm’: Permutation of the vertices of D, according to some permutation function 7.

It it obvious that the new graph operations can be defined in terms of the atomic graph operations.
Note that the atomic fuse,-operation fuses the first two vertices vy and v; and deletes the vertex
vy afterwards. Hence, for the description of the fuseg -operation it is necessary after each fuse,-
operation to re-map the vertices of 6 to the vertices of D,,_; (which is the interface which we
obtain after the fusion).

Next, we show how an arbitrary cospan c: D,, —¢"— G «¢*— D, where ¢ is injective can be
constructed only by atomic operations and the above defined graph operations. In the following,
we give a procedure to obtain a list of graph operations such that the composition of the graph
operations in this list constructs the cospan c. We start with an empty list of graph operations and
the inner interface D,,:

1. Fuse the vertices of D,, according to the following equivalence relation 8 on Vp_:

Vi 0v; = o (vi) = ¢"(v)).

This fusion can be obtained by adding the graph operation fusefn to the list of graph
operations. This yields a cospan of the form ¢’: D,,—¢'*— D, «<¢"*~D,, with u = |¢’ Lyl
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2. Add v — u vertices to the graph of ¢/, where u = |@%(D,,)| and v = |V;|. This can be done
by adding v — -times the graph operation vertex,, to the list of graph operations for each
new vertex. This yields a cospan of the form ¢’: D,, —¢'*— D,, «+¢'*— D,, where the right leg
is injective.

3. Now assume without loss of generality that the nodes in G are named as the nodes in Dy,.
We now add the edges of G to the graph of ¢’. This can be done by adding the graph
operation con nect'vab(e" )fatt(en)].ate(en) oy — |V to the list of graph operations for every
edge e; € Eg, 1 <i < |Eg|. This yields a cospan of the form ¢’: D,, —¢"*— G’ «<¢"*~ D,

where the right leg is injective.

4. Hide all vertices of Vi \ @®(D,). This restriction can be obtained by adding the graph
operation resjZ to the list of graph operations for each vertex v; € Vi \ @®(D,). This yields a
cospan of the form ¢’: D, —¢""— G’ «~¢"*~ D, where the right leg is injective.

5. Permute all vertices of D, according to a suitable permutation 7 such that @ (v;) =
m(¢"®(v;)) holds for all v; € D,,. This permutation can be obtained by adding the graph
operation perm? to the list of graph operations. This finally yields the cospan ¢: D,, —¢"—
G <"~ D, where the right leg is injective.

O

5 A Decidable Variant

Proposition 3. Let n,k € Nwithn <k, a,b: 0 &~ D, be cospans and <7 be the automaton functor
which accepts the language L. If a Sfi b holds, then a g’,j b holds. The inverse direction holds if
o is deterministic.

Proof. Leta,b: O &~ D, be arbitrary k-bounded cospans such that a S’;{ b holds. Then we have

a<t, b = sy e (a)(1¥): Isr € Z(b)(I7): 51 < 52
— (Vsl € o/ (a)(17): 35z € o (b)(17): Y(c: Dy & 0):
() s)NET 40 = o(c)(s2) NF 7&@)
= (V(c: Dyd>0): (a;c) eL = (b;c) €L)
— agfb

Note that the implication in the second linefollows from Proposition 2 and the definition of the
simulation relation <. Whenever s; < s, and a cospan c: D,, &> @ is given, ¢ can be decomposed
into atomic cospans opy,...,op,. Then, by the definition of a simulation, whenever we can reach
a state #; from s; with the operations, a state #, with #{ <, can be reached from s,. Now if #| is
final, #, must also be final.

Furthermore note that whenever .7 is deterministic simulation is exactly trace inclusion as for
deterministic automata on words. O
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Theorem 2. Let an automaton functor </ and two bounded cospans a,b: 0 & D,, with n < k be
given. Then a S’fi b holds, if and only if CheckSimRelated(a,b,k, <7 ) returns t rue.

For the correctness of the algorithm we consider the following sequence of relations <y, =<1, =2,...
We assume that =, is a family of relations consisting of the relations <°, ..., < obtained in the
n-th iteration of the repeat-loop of Algorithm 1. We show the following statements about this
sequence:

I. 202=212=22...
2. For all states so,s1 € </ (D;) (0 <i<k) it holds that sy <51 = so <p 51 foralln e N

3. 2 =201 = 2=Zpforallm>n
Proof.

1. By induction on the construction of <, with the observation that each =<, is obtained by
deleting pairs from the relation <,,.

2. By induction on n.

e Base case. Let states so € <7 (D;),s) € <7 (D;) for 0 <i < k be given. Then sy < 57
implies trivially sg <o s1, since

<0 = (o (Do) \F¥) x /(Do) and =} =.a/(D;)x o/ (D;) for j>0

and so € F” implies s; € F“ (by the definition of the simulation relation).

o Let states so € <7 (D;),s1 € & (D;) for 0 <i < k with s9 < 51 be given. Now, let op
be an arbitrary graph operation and let s{, be a state s;, € < (op)(sp). Since < is a
simulation relation and so < s1 holds, there exists a state s} € <7 (op)(s1) such that
sy = 1. By the induction hypothesis, it holds that s;, <, s|. Hence we have sg <41 s1.

3. It is left to show that <, is a simulation which implies <,C=, since < is the largest
simulation. Let states so € 7 (D;),s1 € <7 (D;) for 0 <i <k with sp <, 51 be given. Now
let op be an arbitrary graph operation and let s, be a state s, € .7 (op)(so). By definition
there exists a state s € <7 (op)(s;) such that s, <,,1 s}. We know that <, ;== and hence
we can infer that <, is a simulation.

O]
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