
Electronic Communications of the EASST
Volume X (2011)

Proceedings of the
Tenth International Workshop on

Graph Transformation and
Visual Modeling Techniques

(GTVMT 2011)

Treewidth, Pathwidth and Cospan Decompositions

Christoph Blume, H. J. Sander Bruggink, Martin Friedrich and Barbara König

13 pages

Guest Editors: Fabio Gadducci, Leonardo Mariani
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Treewidth, Pathwidth and Cospan Decompositions

Christoph Blume, H. J. Sander Bruggink, Martin Friedrich and Barbara König∗

Universität Duisburg-Essen, Germany
christoph.blume@uni-due.de, sander.bruggink@uni-due.de, martin.friedrich@stud.uni-due.de,

barbara koenig@uni-due.de

Abstract: We will revisit the categorical notion of cospan decompositions of graphs
and compare it to the well-known notions of path decomposition and tree decompo-
sition from graph theory. More specifically, we will define several types of cospan
decompositions with appropriate width measures and show that these width measures
coincide with pathwidth and treewidth. Such graph decompositions of small width
are used to efficiently decide graph properties, for instance via graph automata.

Keywords: cospans, graph decompositions, pathwidth, treewidth

1 Introduction

In graph rewriting the notion of cospan plays a major role: cospans can be seen as graphs
equipped with an inner and an outer interface and they can be used as (atomic) building blocks
for constructing or decomposing larger graphs. Furthermore cospans are a means to cast graph
rewriting into the setting of reactive systems [LM00, SS05].

In graph theory there are different notions for decomposing graphs: path and tree decomposition
[RS86], which at first glance seem to have a very different flavour. These notions lead to width
measures such as pathwidth and treewidth and they are used to specify how similar a graph is
to a path or a tree. Treewidth plays a major role in complexity theory: for instance Courcelle’s
theorem [Cou90] states that every graph property that can be specified in monadic second-order
graph logic can be checked in linear time on graphs of bounded treewidth. Furthermore there are
intuitive game characterizations (robber and cops games) for treewidth.

In this paper we show that, when seen from the right angle, graph decompositions based on
cospans are in fact very similar to path and tree decompositions. In order to be able to state this
formally we classify several types of cospan decompositions, which are sequences of cospans
(with varying additional conditions). Obtaining the decomposed graph amounts to taking the
colimit of the resulting diagram. We define width measures based on such decompositions and
show that the width measures all coincide with pathwidth. In the second part of the paper the
results are repeated for tree-like decompositions and treewidth, where the tree-like compositions
are trees where the edges are labeled with spans or cospans, and the decomposed graph is again
obtained by taking the colimit.

Our interest in this area stems from our work on recognizable graph languages [BK08], which
in [BBK10] were used to check invariants of graph transformation systems. In this context we
proposed automaton functors as an automaton model for accepting graph languages. Automaton

∗ This work is supported by the DFG-project GaReV.

1 / 13 Volume X (2011)

mailto:christoph.blume@uni-due.de
mailto:sander.bruggink@uni-due.de
mailto:martin.friedrich@stud.uni-due.de
mailto:barbara_koenig@uni-due.de

Treewidth, Pathwidth and Cospan Decompositions

functors work by decomposing a graph into a sequence of smaller graphs with interfaces (formally
cospans in the category of graphs, and therefore such sequences are called cospan decompositions),
and then running a finite automaton on the sequence. This approach is an extension of the work
by Courcelle and others on recognizable graph languages [Cou90], which are equivalent to the
notion of inductive graph properties [HKL93].

In order to represent such structures in a computer, the interface size of the decompositions
must be bounded. We suspected for some time that this bound was strongly related to the notion
of pathwidth, but the relation was never formally investigated.

As far as we know there have been only few investigations into the notions of pathwidth
and treewidth in the context of graph rewriting. We are mainly aware of the relation between
context-free (or hyperedge replacement) grammars and bounded treewidth that is discussed in
[Hab92, Lau88, Lau91]. It is shown that the language generated by a context-free grammar has
always bounded treewidth, that is, there is an upper bound for the treewidth of every graph in
the language. This also implies the well-known result that the language of all graphs is not
context-free.

Interest in the relation between tree decompositions and graph rewriting seems to have declined
since, but in our opinion this area has a lot of potential for an increased interaction of graph
transformation and graph theory, since graph decompositions and width measures are still of
central interest to the graph theory community. As far as we are aware of, the relation between
cospan decompositions and tree and path decompositions has never been formally investigated
and while the main ideas are fairly straightforward it turns out that there are some subtle issues to
consider when translating one representation into the other. For instance, we found that there is
more than one possible translation and more than one width measure.

In Section 2 we will introduce the preliminaries such as cospans and graph decompositions.
Then in Section 3 we will have a closer look at cospans, identifying also atomic cospans as building
blocks. Then in Section 4 we will compare cospan decompositions with path decompositions and
in Section 5 with tree decompositions. Finally we will conclude with Section 6. The proofs can
be found in the full version of this paper [BBFK11].

2 Preliminaries

By Nk we denote the set {1, . . . ,k}. The set of finite sequences over a set A is denoted A∗. If
f : A→ B is a function from A to B, we will implicitly extend it to subsets and sequences; for
A′ ⊆ A and~a = a1 . . .an ∈ A∗: f (A′) = { f (a) | a ∈ A′} and f (~a) = f (a1) . . . f (an).

2.1 Categories and Cospans

We presuppose a basic knowledge of category theory. For an arrow f from A to B we write
f : A→ B and define dom(f) = A and cod(f) = B. For arrows f : A→ B and g : B→ C, the
composition of f and g is denoted (f ; g) : A→ C. The category Rel has sets as objects and
relations as arrows. Its subcategory Set has only the functional relations (functions) as arrows.

A span in a category C is a pair 〈cL,cR〉 of C-arrows G �cL− I −cR� H. The dual notion to
a span is a cospan. Let C be a category in which all pushouts exist. A cospan in C is a pair

Proc. GTVMT 2011 2 / 13

ECEASST

〈cL,cR〉 of C-arrows J−cL�G�cR−K. Composition of two cospans 〈cL,cR〉,〈dL,dR〉 is computed
by taking the pushout of the arrows cR and dL.

Cospans (and spans) are isomorphic if their middle objects are isomorphic (such that the
isomorphism commutes with the component morphisms of the cospan). Isomorphism classes of
cospans are the arrows of so-called cospan categories. That is, for a category C with pushouts, the
category Cospan(C) has the same objects as C. The isomorphism class of a cospan c : J −cL�
G�cR−K in C is an arrow from J to K in Cospan(C) and will be denoted by c : J # K.

Colimits can be seen as “generalized” pushouts. Given a collection (diagram) D of objects
{A1, . . . ,An} and morphisms between them, the colimit of D is an object B together with mor-
phisms fi : Ai→ B such that the diagram commutes, and for objects B′ and morphisms f ′i : Ai→ B′

where the diagram commutes, it holds that there exists a unique h : B→ B′ such that the diagram
commutes. We will write Colim(D) = B in this case (where we allow D to be any representation
of a diagram, for example a sequence).

2.2 Graphs and Decompositions

A hypergraph over a set of labels Σ (in the following also simply called graph) is a structure
G = 〈V,E,att, lab〉, where V is a finite set of nodes, E is a finite set of edges, att : E→V ∗ maps
each edge to a finite sequence of nodes attached to it, and lab : E → Σ assigns a label to each
edge. The size of the graph G, denoted |G|, is defined to be the cardinality of its node set, that
is |G|= |V |. A discrete graph is a graph without edges; the discrete graph with node set Nk is
denoted by Dk. We denote the empty graph by /0 instead of D0.

A graph morphism is a structure preserving map between two graphs. The category of graphs
and graph morphisms is denoted by Graph. Recall, that the monomorphisms (monos) and
epimorphisms (epis) of the category Graph are the injective and surjective graph morphisms,
respectively.

A cospan J−cL�G�cR−K in Graph can be viewed as a graph (G) with two interfaces (J and
K), called the inner interface and outer interface respectively. Informally said, only elements of
G which are in the image of one of the interfaces can be “touched”. By [G] we denote the trivial
cospan /0→ G← /0, the graph G with two empty interfaces.

For the use in definitions we define a second kind graph. A simple graph is a tuple 〈V,E〉 where
V is a finite set of nodes and E ⊆ {{t1, t2} | t1, t2 ∈V, t1 6= t2} the set of edges.1 A tree is a simple
graph in which there exists exactly one path between each pair of nodes. A path graph2 is a tree
in which each node is connected to either one or two other nodes. Simple graphs, and in particular
trees and path graphs, are only used to define tree and path decompositions. All objects we are
decomposing will be hypergraphs.

Definition 1 Let G = 〈V,E,att, lab〉 be a graph. A tree decomposition of G is a pair T = 〈T,X〉,
where T is a tree and X = {Xt1 , . . . ,Xtn} is a family of subsets of V (which are called bags in the
literature) indexed by the nodes of T , such that:

– for each node v ∈V , there exists a node t of T such that v ∈ Xt ;

1 In the following, v,w will range over nodes of hypergraphs, e over edges of hypergraphs, t over nodes of simple
graphs and b over edges of simple graphs. In all cases, subscripts may also be used.
2 In literature, path graphs are sometimes also called string graph or path.

3 / 13 Volume X (2011)

Treewidth, Pathwidth and Cospan Decompositions

1

2 3 4

(a) Graph GP

1

2 3
3 4

(b) Path Decomposition of GP

Figure 1: The graph GP and one of its path decompositions

1

2 3 4

5
6

7

8

9

10

(a) Graph GT

1

2 3
3 4 7

4

5
6

7

8

9

8

9

10

(b) Tree Decomposition of GT

Figure 2: The graph GT and one of its tree decompositions

– for each edge e ∈ E, there is a node t of T such that all nodes v connected to e are in Xt ;
– for each node v ∈V , the simple graph induced by the nodes {t | v ∈ Xt} is a subtree of T .

The width of a tree decomposition T = 〈T,X〉 is wd(T) =
(
maxt∈T |Xt |

)
−1. A tree decomposi-

tion T = 〈T,X〉 is a path decomposition if T is in fact a path graph.
Now, the pathwidth pwd(G) and the treewidth twd(G) of a graph G are defined as follows:
– pwd(G) = min{wd(P) | P is a path decomposition of G},
– twd(G) = min{wd(T) | T is a tree decomposition of G}.

Example 1 As examples we consider only unlabeled directed graphs, that is we take Σ = {?} as
alphabet and |att(e)|= 2 for every edge e. Let GP be the graph shown in Figure 1a. Obviously,
the pathwidth of this graph is at least 2 since it contains a 3-clique (all nodes of which have to be
together in at least one bag) and we have a path decomposition P of width 2 which is shown in
Figure 1b.

As an example for a tree decomposition we consider the unlabeled graph GT of Figure 2a. The
treewidth of this graph is 2 due to the fact that it contains a 3-clique and that the tree decomposition
T shown in Figure 2b has width 2.

Note that the decrement in the definition of wd(T) above is chosen such that trees have
treewidth 1. Furthermore discrete graphs have pathwidth and treewidth 0 and an n-clique has both
pathwidth and treewidth n−1. Intuitively one measures how similar a graph is to a tree or to a
path. Naturally it holds that twd(G)≤ pwd(G) for all graphs G, where the pathwidth might be
substantially larger than the treewidth. For instance, trees can have arbitrarily large pathwidth.

Proc. GTVMT 2011 4 / 13

ECEASST

3 Cospans as Building Blocks for Graphs

Cospans of graphs can be viewed as operations on graphs with interfaces (in the sense of Courcelle
[Cou90, BC87]). Let G be a graph with external nodes (which itself can be represented by a
cospan g : /0→ G← I, where the interface I represents the external nodes) and c : I→ H ← K
a cospan. By composing g and c we obtain a cospan (g ; c) : /0→ GH← K, where GH is the
pushout object of G← I→ H. Recall, that taking a pushout in the category of graphs amounts to
constructing the disjoint union of G and H, and subsequently fusing just enough nodes to make
the pushout diagram commute. That is, by composing with a cospan we can add new nodes, fuse
existing nodes and change the interface of a graph.

There exist finite sets of cospans (called atomic cospans) from which, together with disjoint
union, all graphs with interfaces can be built; see for example [GH97] and [BK06]. Since we do
not have disjoint union, we have to settle for finitely many atomic cospans per pair of inner and
outer interface (of which there are infinitely many). Here, we use the following atomic cospans.
Let n ∈ N be the size of the inner interface.

– Add a node: vertexn : Dn
Dn+1. This cospan is defined as

vertexn = Dn
id′−→Dn+1

id←− Dn+1,

where id′(x) = x for x≤ n.

– Remove a node from the interface: resn
k : Dn

Dn−1, where n ≥ 1 and 1 ≤ k ≤ n. This
cospan is defined as

resn
k = Dn

id−→Dn
φ←− Dn−1, where φ(x) =

{
x if x < k
x+1 if x≥ k.

– Add an edge: connectn
A,θ : Dn

Dn, where A ∈ Σ is a label and θ : Nar(A)→ Nn is a
function which specifies how the new edge is connected to the nodes in the interface. This
cospan is defined as

connectn
A,θ = Dn

id′−→G id′←− Dn,

where G= 〈V,E,att, lab〉with V =Nn, E = {e}, att(e) = θ(1) . . .θ(ar(A)) and lab(e) =A;
and id′(x) = x for x≤ n.

– Permute the order of the nodes in the interface: permn
π : Dn

Dn. This cospan is defined as

permn
π = Dn

id−→Dn
π←− Dn,

where π : Nn→ Nn is a permutation (that is, it is bijective).

The atomic cospans are graphically depicted in Figure 3.

Lemma 1 Let c = J−cL�G�cR−K be a cospan such that J,K are discrete and cL,cR are monos.
Then there exist atomic cospans a1, . . . ,an such that c = a1 ; · · · ; an.

Moreover, the following condition holds for this atomic cospan decomposition: Let ai = Ii−1→
Hi← Ii, for 1≤ i≤ n. It holds that |Ii| ≤ |G| for all 0≤ i≤ n and |Hi| ≤ |G| for all 1≤ i≤ n.

5 / 13 Volume X (2011)

Treewidth, Pathwidth and Cospan Decompositions

1

n

1

n
n+1

1

n

A
θ

1

n

vertexn connectn
A,θ

1

n

k

1

k

n−1

1

n

1

n

π

resn
k permn

π

Figure 3: Graphical representations of the atomic cospans.

4 Path-like Decompositions: Cospan Decompositions

In this section we explore “path-like” cospan decompositions of graphs. Such decompositions are
naturally defined as sequences of cospans, which are composed to a graph by taking the colimit of
the emerging diagram. Equivalently, the cospans can be iteratively composed into a single cospan,
where finally the interfaces are ignored.

Definition 2 Let G be a graph and~c = c1, . . . ,cn be a sequence of composable cospans in the
category Graph. The sequence~c is a cospan decomposition of G, if Colim(~c) = G.

Note that we now have three related notions: cospan decompositions, which are sequences of
cospans; the single cospan (“graph with interfaces”) which is the result of composing the cospans
in a cospan decomposition; and the center graph of this cospan.

We consider the following types of cospan decompositions. The first two correspond to
path decompositions in two different ways: in graph-bag decompositions the center graphs in
the cospans correspond to the bags of Definition 1, whereas in interface-bag decompositions
the interfaces play the role of bags. In order to make the relation between path and cospan
decompositions clearer, we will only consider decompositions into cospans of injective morphisms
in this paper.

Definition 3 Let~c be a cospan decomposition of the graph G.
(i) ~c is a graph-bag decomposition, if all cospans have discrete interfaces and consist of

injective morphisms.
(ii) ~c is an interface-bag decomposition, if it is a graph-bag decomposition, consist of pairs of

jointly node-surjective morphisms3 and it holds for all edges e of G, with att(e) = v1 . . .vm,
that v1, . . . ,vm occur together in some interface.

3 Two morphisms f : A→ G and g : B→ G are jointly node-surjective, if each node of G has a pre-image in A or B
(along f or g, respectively).

Proc. GTVMT 2011 6 / 13

ECEASST

(iii) ~c is an atomic cospan decomposition, if it consists only of atomic cospans.

It is clear that the various types of cospan decomposition are strictly contained in one another,
that is: Atomic⊂ Interface-bag⊂ Graph-bag⊂ All.

Definition 4 Let c : J→ G← K be a cospan. We define the graph-bag size and interface-bag
size of c as follows:

|c|gb := |VG|
|c|ib := max{|VJ|, |VK |}

Observe, that for all atomic cospans c it holds that |c|gb = |c|ib. For convenience later on, we
define |c|at := |c|gb (= |c|ib).

Now we are ready to define, for all three types of cospan decomposition, a width:

Definition 5
– Let~c = c1 ; · · · ; cn be a decomposition. We define the graph-bag and interface-bag width

of~c as follows:

wdgb(~c) := max{|ci|gb : 1≤ i≤ n}−1

wdib(~c) := max{|ci|ib : 1≤ i≤ n}−1

– Let G be a graph. The graph-bag (cpwdgb(~c)), interface-bag (cpwdib(~c)) and atomic cospan
width (cpwdat(~c)) of G are defined as:

cpwdgb(G) := min{wdgb(~c) :~c is a graph-bag decomposition of G}
cpwdib(G) := min{wdib(~c) :~c is an interface-bag decomposition of G}
cpwdat(G) := min{wdib(~c) :~c is an atomic cospan decomposition of G}

The main theorem of this section is that, for a given graph, the three notions of cospan pathwidth
are the same, and moreover are the same as the pathwidth of the graph. First, we show how to
transform (cospan) path decompositions into each other:

Lemma 2
(i) Let P be a path decomposition of a graph G. There exists a graph-bag decomposition~c of

G such that wdgb(~c) = wd(P).
(ii) Let~c be a graph-bag decomposition of G. There exists an interface-bag decomposition ~d of

G such that wdib(~d) = wdgb(~c).
(iii) Let~c be a graph-bag decomposition of G. There exists an atomic cospan decomposition ~d

of G such that wdat(~d)≤ wdgb(~c).
(iv) Let~c be an interface-bag decomposition of G. There exists a path decomposition P of G

such that wd(P) = wdib(~c).

Theorem 1 For every graph G, pwd(G) = cpwdgb(G) = cpwdib(G) = cpwdat(G).

7 / 13 Volume X (2011)

Treewidth, Pathwidth and Cospan Decompositions

/0

1

2
3

3 3 4 /0

(a) Graph-bag decomposition of GP

1

2
3

1

2
3

3 3 4 3 4

(b) Interface-bag decomposition of GP

Figure 4: Graph-bag and interface-bag decomposition of GP

Example 2 As an example we take the graph GP and the corresponding path decomposition P
of Example 1. We use the path decomposition to construct a graph-bag decomposition of GP.
For each of the two bags in P we take a cospan where the center graph of the first cospan is the
3-clique and the center graph of the second cospan contains the edge from the third to the fourth
node. The inner interface of the first cospan and the outer interfaces of the second cospan are
both empty graphs, while the outer interface of the first cospan (which is the inner interface of the
second cospan) contains the third node which is the intersection of both subgraphs. The resulting
graph-bag decomposition is depicted in Figure 4a. The graph-bag width of GP is 2, since the
resulting graph-bag decomposition has graph-bag size 2 and the graph-bag size of every other
graph-bag decomposition must have at least size 2 due to the 3-clique which has to be contained
in at least one center graph.

An interface-bag decomposition for the same graph is shown in Figure 4b. Note that it indeed
satisfies the conditions of Definition 3: specifically each cospan is jointly node-surjective and all
nodes attached to an edge live together in at least one bag. The interface-bag width of GP is 2,
due to the fact that the given interface-bag decomposition has interface-bag width 2 and any other
interface-bag decomposition has to contain the nodes of the 3-clique in at least one interface.

To construct the atomic decomposition we decompose the cospans of the graph-bag decompo-
sition into atomic cospans. This is possible due to Lemma 1:

vertex0 ; vertex1 ; vertex2 ; connect3
A,θ 3

1,2
; connect3

A,θ 3
1,3

; connect3
A,θ 3

2,3
; res3

0 ; res2
0 ;

vertex1 ; connect2
A,θ 2

1,2
; res2

0 ; res1
0,

where θ n
i1,...,im : Nm→ Nn denotes the function which maps θ(1) = i1, . . . ,θ(m) = im.

More details concerning the conversion of the various cospan decompositions into each other
can be found in the proof of Lemma 2 in the full version of this paper [BBFK11].

5 Tree-like Decompositions: Star and Costar Decompositions

In this section we repeat the work of Section 4 for tree-like “cospan”-decompositions. We define
stars and costars as generalizations of spans and cospans, respectively. A star is a finite set of
morphisms with the same domain, while a costar is a finite set of morphisms with the same
codomain.

As in the case of (linear) cospan decompositions, we define three types of tree-like decomposi-
tions: costar decompositions, star decompositions and atomic star decompositions. The names

Proc. GTVMT 2011 8 / 13

ECEASST

of the first two relate to the form of the stars (joins) in the tree; the third one is a special case of
the second. Where a cospan can be seen as a graph with two interfaces, a costar can be seen as a
graph with an arbitrary number of interfaces. A costar decomposition is a decomposition into
costars, where costars are connected via the interfaces in such a way that they form a tree. Note
that the edges of this tree are spans. On the other hand, a star decomposition is a decomposition
into stars, where the edges of the corresponding tree-like structure correspond to cospans (see
also Figure 5). As in the case of cospan decompositions, we restrict our attention to injective
morphisms.

Definition 6
(i) A costar decomposition is a tuple C = 〈T,τ〉, where T is a tree and τ is function which

maps each node t of T to a graph and each edge b = {t1, t2} of T to a span of injective
morphisms

τ(b) = τ(t1)
ϕb,t1←−− Jb

ϕb,t2−−→ τ(t2).

A costar decomposition C is a costar decomposition of G if Colim(C) = G.
(ii) A star decomposition is a tuple S = 〈T,τ〉, where T is a tree and τ is function which maps

each node t of T to a discrete graph J and each edge b = {t1, t2} to a cospan

τ(b) = τ(t1)→ Gb← τ(t2),

which consists of a pair of jointly node-surjective, injective morphisms.
A star decomposition C is a star decomposition of G if Colim(C) = G and additionally it
holds for all edges e of G, with att(e) = v1 . . .vm, that v1, . . . ,vm occur together in τ(t) for
some t ∈VT .

(iii) An atomic star decomposition is a star decomposition 〈T,τ〉 such that τ(b) is an atomic
cospan for all edges b of T .

In the case of cospan decompositions we had a clear hierarchy of the various decomposition
types. In the case of tree-like decompositions, however, this is not the case: the sets of star and
costar decompositions are not related with respect to inclusion. (However, by definition, each
atomic star decomposition is also a star decomposition.)

Definition 7 Let S = 〈T,τ〉 be a costar decomposition or a star decomposition. The width of S
is defined as

wd?(S) = max
v∈VT
|τ(v)|−1.

Note, that Definition 7 bases the width of costar decompositions on the (non-interface) graphs
they contain, while it bases the width of star decompositions on the interfaces. In both cases,
however, the width of a decomposition depends on the size of the graphs that are in the image of
the nodes of the tree T .

9 / 13 Volume X (2011)

Treewidth, Pathwidth and Cospan Decompositions

Definition 8 Let G be a graph. The costar width (ctwdco?(G)), star width (ctwd?(G)) and
atomic star width (ctwdat?(F)) of G are defined as follows:

ctwdco?(G) = min{wd?(C) | C is a costar decomposition of G}
ctwd?(G) = min{wd?(S) | S is a star decomposition of G}

ctwdat?(G) = min{wd?(S) | S is an atomic star decomposition of G}

As in the previous section, the various notions defined in this section are equivalent to the
notion of treewidth.

Lemma 3
(i) Let T be a tree decomposition of G. There exists a star decomposition S of G such that

wd?(S) = wd(T).
(ii) Let S be a star decomposition of G. There exists a costar decomposition C of G such that

wd?(C) = wd?(S).
(iii) Let C be a costar decomposition of G. There exists a tree decomposition T of G such that

wd(T) = wd?(C).
(iv) Let S be a star decomposition of G. There exists an atomic star decomposition S ′ of G

such that wd?(S ′) = wd?(S).

Theorem 2 For every graph G, twd(G) = ctwdco?(G) = ctwd?(G) = ctwdat?(G).

Example 3 We consider the graph GT and the tree decomposition T of Example 1. In order to
construct a star decomposition of GT , we take a cospan for each of the four edges (of the tree) of
T . The interfaces of these four cospans are the discrete graphs corresponding to the bags. The
center graph of each cospan is the subgraph containing the nodes of both the inner and the outer
interface of the cospan and (possibly) edges connecting these nodes. It has to be ensured that each
edge occurs exactly once. This leads to the star decomposition shown in Figure 5a. Since the
width of the given star decomposition has size 2 and the nodes of the 3-clique has to be contained
together in at least one interface of any star decomposition, the star width of GT is 2.

The costar decomposition can be obtained from the star decomposition. Each of the four
cospans of the star decomposition is converted into a span. The inner and the outer graph of
each span contain the nodes of the corresponding cospan interfaces plus additional edges. (Note
that due to the conditions on star decompositions, each edge can be “shifted” into at least one
interface.) The center graph of the span is then the discrete graph obtained by the intersection
of the inner and the outer graphs of the span. The resulting costar decomposition is shown in
Figure 5b. The costar width of GT is 2 due to the fact that the given costar decomposition has size
2 and that any costar decomposition must contain the 3-clique in some graph of at least one span.

More details concerning the conversion of the various tree and star decompositions into each
other can be found in the proof of Lemma 2 in the full version of this paper [BBFK11].

6 Conclusion

We have shown how to convert the graph-theoretical notion of path decompositions into cospan
decompositions, and tree decompositions into star or costar decompositions. As we have seen

Proc. GTVMT 2011 10 / 13

ECEASST

1

2 3

1

2 3 4 7
3 4 7

3 4

5
6

7 4

5
6

3 4 7

8

9 7

8

9 7

8

9

10 8

9

10

(a) Star decomposition of GT

1

2 3
3 3 4 7

4
4
5
6

7

7

8

9

8

9

8

9

10

(b) Costar decomposition of GT

Figure 5: Star and costar decomposition of GT

there are indeed several possible choices, mainly depending on whether we identify bags with
interfaces or with the center graph in a cospan. Furthermore there is in addition the notion
of decomposition into atomic cospans, which can be viewed as atomic building blocks. The
investigations in this paper have their origin in a Master’s thesis [Fri10].

Since the notion of tree decomposition and treewidth has many applications in graph theory,
we expect that some of these applications are also useful in a more graph transformation oriented
setting. We are specifically interested in using path and tree decompositions for recognizable
graph languages [Cou90] or – more specifically – for graph automata acting as acceptors of graph
languages. In order to accept a graph, it is decomposed into atomic units and read – step by step –
by the automaton. Depending on whether the state of the automaton, after reading the entire graph,
is final, the graph is accepted. In general, decompositions of arbitrary width must be considered,
which leads to graph automata with an infinite number of states. For implementation purposes,
we have to restrict the width of the considered decompositions – and thus the path width of the
accepted graphs – in order to obtain automata with a finite state set. The size of the state set,
however, appears to grow exponentially in the size of the considered maximum width. Therefore
we are interested in path and tree decompositions of moderate size, so that graph automata can be
implemented efficiently.

We are currently working on an implementation that is based on atomic cospan decompositions,
meaning that we work with (non-deterministic) finite automata which process sequences of atomic
cospans (see the atomic cospan decomposition of Example 2). In the future we also plan to
consider automata working on star or costar decompositions by using tree automata [CDG+].

11 / 13 Volume X (2011)

Treewidth, Pathwidth and Cospan Decompositions

Tree automata have already been used for similar purposes in [CD10, GPW10].
Finally, let us remark that we did not treat the question of how to obtain such path or tree

decompositions, given a single, monolithic graph. This is a non-trivial problem that has been
studied by Bodlaender et al. [Bod96, BK96]. It can be shown that for a fixed parameter k it can
be checked in linear time (in the size of the graph), whether the given graph has pathwidth or
treewidth smaller than k. Furthermore the respective decompositions can be obtained in linear
time. However, despite their good runtime behaviour in theory, these algorithms are not really
practical (see also the investigations in [Küp10]), which means that heuristics are used in practice.

Acknowledgements. We thank the anonymous referees for their valuable remarks about the
submitted version of this paper.

Bibliography

[BBFK11] C. Blume, S. Bruggink, M. Friedrich, B. König. Treewidth, Pathwidth and Cospan
Decompositions. Technical report, Abteilung für Informatik und angewandte Kogni-
tionswissenschaften, Universität Duisburg-Essen, 2011.

[BBK10] C. Blume, S. Bruggink, B. König. Recognizable Graph Languages for Checking
Invariants. In Proc. of GT-VMC 2010. 2010.

[BC87] M. Bauderon, B. Courcelle. Graph Expressions and Graph Rewritings. Mathematical
Systems Theory 20:83–127, 1987.

[BK96] H. L. Bodlaender, T. Kloks. Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. Journal of Algorithms 21(2):358–402, 1996.

[BK06] S. Bozapalidis, A. Kalampakas. Recognizability of graph and pattern languages. Acta
Informatica 42(8/9):553–581, 2006.

[BK08] S. Bruggink, B. König. On the Recognizability of Arrow and Graph Languages. In
Proc. of ICGT ’08. Springer, 2008. LNCS 5214.

[Bod96] H. L. Bodlaender. A Linear Time Algorithm for Finding Tree-Decompositions of
Small Treewidth. SIAM J. Comput. 25(6):1305–1317, 1996.

[CD10] B. Courcelle, I. Durand. Verifying monadic second order graph properties with tree
automata. In European Lisp Symposium. May 2010.

[CDG+] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
M. Tommasi. Tree Automata Techniques and Applications. Available from: http:
//www.grappa.univ-lille3.fr/tata. 12 October 2007.

[Cou90] B. Courcelle. The Monadic Second-Order Logic of Graphs I. Recognizable Sets of
Finite Graphs. Information and Computation 85:12–75, 1990.

Proc. GTVMT 2011 12 / 13

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

ECEASST

[Fri10] M. Friedrich. Baumautomaten und Baumzerlegungen für erkennbare Graphsprachen.
Master’s thesis, Universität Duisburg-Essen, July 2010.

[GH97] F. Gadducci, R. Heckel. An inductive view of graph transformation. In Proceedings
of WADT ’97. Pp. 223–237. 1997.

[GPW10] G. Gottlob, R. Pichler, F. Wei. Bounded treewidth as a key to tractability of knowledge
representation and reasoning. Journal of Artificial Intelligence 174(1):105–132, 2010.

[Hab92] A. Habel. Hyperedge Replacement: Grammars and Languages. Springer-Verlag,
1992. LNCS 643.

[HKL93] A. Habel, H.-J. Kreowski, C. Lautemann. A comparison of compatible, finite, and
inductive graph properties. Theoretical Computer Science 110(1):145–168, 1993.

[Küp10] S. Küpper. Algorithmen für Baum- und Pfadzerlegungen von Graphen. Bachelor’s
thesis, Universität Duisburg-Essen, October 2010.

[Lau88] C. Lautemann. Decomposition Trees: Structured Graph Representation and Efficient
Algorithms. In Proc. of CAAP ’88. Pp. 28–39. Springer, 1988. LNCS 299.

[Lau91] C. Lautemann. Tree Automata, Tree Decomposition and Hyperedge Replacement. In
Proc. of Graph-Grammars and Their Application to Computer Science ’90. Pp. 520–
537. Springer, 1991. LNCS 532.

[LM00] J. J. Leifer, R. Milner. Deriving Bisimulation Congruences for Reactive Systems. In
Proc. of CONCUR 2000. Pp. 243–258. Springer, 2000. LNCS 1877.

[RS86] N. Robertson, P. Seymour. Graph minors. II. Algorithmic aspects of tree width.
Journal of Algorithms 7:309–322, 1986.

[SS05] V. Sassone, P. Sobociński. Reactive systems over cospans. In Proc. of LICS ’05.
Pp. 311–320. IEEE, 2005.

13 / 13 Volume X (2011)

	Introduction
	Preliminaries
	Categories and Cospans
	Graphs and Decompositions

	Cospans as Building Blocks for Graphs
	Path-like Decompositions: Cospan Decompositions
	Tree-like Decompositions: Star and Costar Decompositions
	Conclusion

