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The theory of regular word languages has a large number of applications
in computer science, especially in verification. The notion of regularity can be
straightforwardly generalized to trees and tree automata. Therefore it is natural
to ask for a theory of regular graph languages.

There exist several notions of regular graph languages [10, 7, 8] – in this context
called recognizable graph languages – which all turned out to be equivalent.
Especially the notion of Courcelle is widely accepted. Very roughly, one can
say that a property (or language) of graphs is recognizable whenever it can be
derived inductively via an (arbitrary) decomposition of the graph. Alternatively
recognizability can be defined via a family of Myhill-Nerode style congruences of
finite index, i.e., congruences with finitely many equivalence classes.

The notion of recognizability by Bruggink and König [8] is based on a categor-
ical definition of recognizability in terms of so-called automaton functors (AF),
which are a generalization of non-deterministic finite automata. An advantage
of this notion of recognizability is that many familiar constructions on finite
automata can be straightforwardly generalized to automaton functors.

Let Cospan(Graph) be the category which has arbitrary graphs as objects and
cospans of graphs which can be seen as a graph with a left and a right interface
as arrows. If automaton functors from the category Cospan(Graph) are considered
this yields exactly the notion of recognizable graph languages mentioned above.
Cospans of graphs are closely related to GTSs, in particular to the double-pushout
(DPO) approach to graph transformation [13]. A DPO rule ρ : L

ρL−→ I
ρR←− R can

be seen as a pair of cospans ` : ∅ → L
ρL−→ I, r : ∅ → R

ρR−→ I. Then it holds that
G ⇒ρ H iff ∅ → G← ∅ = c ◦ ` and ∅ → H ← ∅ = c ◦ r, for some cospan c.

In the following I will give a short overview of my research topics. The focus
is on verification techniques based on recognizable graph languages for dynamic
systems. Below I will briefly present some projects on which I am working:

Recognizability and Invariant Checking: One of the most straightforward
approaches to verification is to provide an invariant and to show that it is
preserved by all transformation rules. In the case of words, a language is an
invariant for a rule `→ r if it holds for all words u and v that u`v ∈ L implies
urv ∈ L. In the case of regular (word) languages the rule ` → r preserves the
language L iff `, r are ordered w.r.t. a monotone well-quasi order such that L
is upward-closed w.r.t this well-quasi order [12]. The coarsest such order is the
Myhill-Nerode quasi order of a language L which relates arbitrary words v and
w iff it holds for all words u and x that uvx ∈ L implies uwx ∈ L. This is the
coarsest monotone quasi order such that L is upward-closed w.r.t. this quasi



order and it can be computed by a fix-point iteration similar to the computation
of the minimal finite automaton.

The notion of the Myhill-Nerode quasi order and the result that a rule `→ r
preserves a languages iff `, r are ordered w.r.t. the Myhill-Nerode quasi order
can be lifted to recognizable graph languages (based on Cospan(Graph)) [4]. The
algorithm for computing the Myhill-Nerode quasi order can also be adapted to
the more general setting and there exists a prototype implementation to check
whether the language of all graphs containing a given subgraph is an invariant
according to a given graph transformation rule [3].

Regular Model Checking: Another approach for the verification of distributed
and infinite-state systems is regular model checking [6]. The main idea is to
describe (infinite) sets of states as regular languages, i.e. every state is represented
by a word, and transitions as regular relations which are represented by finite-
state transducers. Verification can then be done by performing a forward or
backward analysis. Note that in general the transitive closure of the application
of transitions is not guaranteed to be a regular language, therefore it can be
necessary to overapproximate the transitive closure in order to use this technique.

Since this approach has been extended to the setting of (regular) tree languages
[5] it is a logical step to generalize regular model checking to (recognizable)
graph languages. There already exists the notion of MSO-definable transductions
invented by Courcelle [11], but this notion does not seem to be that useful,
since these transductions are very complex and do not guarantee to preserve
the recognizability in general which is required for a forward analysis. It has to
be investigated how the notion of finite-state transducer can be generalized to
(some kind of) “transduction functors” similar to the generalization of finite-state
automata to automaton functors. The goal is to have a notion which is equivalent
to finite-state transducers when restricted to word languages. In the case of
words, there exists a characterization of transductions by Nivat [2, Chap. III,
Thm. 3.2] in terms of regular languages and morphisms of free monoids. This is
a possible starting point for the generalization, but it is not that obvious since
a graph – unlike a word – can be decomposed in several ways. I have already
invented a notion of transduction functor which is based on a category of sets
and labeled relations. In this category every tuple is labeled by an arrow which
indicates the output of the transduction functor according to the input. However,
in order to get a better understanding of these transductions functors, the study
of transductions between monoids which are not free is interesting.

Efficient Implementation of Automaton Functors: In general an automaton
functor consists of infinitely many finite state sets. But if only recognizable graph
languages of bounded path-width are allowed, it is possible to use automaton
functors of bounded size. However, the automaton functors might still be very
large. This is an important problem that has to be attacked in order to provide
tools based on recognizability.

There already exists a prototype implementation of an automaton functor [3]
(which is used for invariant checking) that uses an explicit representation of the
automaton functors leading to a high memory consumption. A possible solution
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to this problem is to find a good representation of the transition relations of the
automaton functors. One kind of data structure which is very suitable for the
compact representation of large relations are Binary Decision Diagrams (BDDs)
[1]. An implementation using BDDs is currently under development and the first
experiments have been very promising. One example which has been tested, is the
AF accepting all graphs containing a specific subgraph. Using the explicit-state
implementation it is only possible to compute this AF for interfaces of size up
to 8. If one uses the BDD-based implementation it is possible to compute this
automaton functor for interfaces of size up to 100.

Another problem is the determinization of automaton functors, which is
required for many constructions, since the direct computation of deterministic
automaton functors is not possible in practice due to the state explosion problem.
A possible solution is a technique which uses BDDs for the search in powerset
automata [9]. How this technique can be adapted to AFs has to be investigated.

The long-term goal is to provide a tool suite for the representation and
manipulation of (bounded) automaton functors. Moreover, this tool suite should
be usable to verify dynamic systems represented as graphs and GTSs.

The goal of my research is to suggest new directions in the verification of
dynamic systems based on recognizable graph languages as well as to investi-
gate how established analysis techniques for regular languages can be adapted
to recognizable graph languages. Furthermore, the results will be used for an
implementation to provide tools for verification based on automaton functors.
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