
Efficient Symbolic Implementation of Graph
Automata with Applications to Invariant

Checking?

Christoph Blume, H. J. Sander Bruggink, Dominik Engelke, and Barbara König

Universität Duisburg-Essen, Germany
{christoph.blume,sander.bruggink,barbara koenig}@uni-due.de

Abstract. We introduce graph automata as a more automata-theoretic
view on (bounded) automaton functors and we present how automaton-
based techniques can be used for invariant checking in graph transforma-
tion systems. Since earlier related work on graph automata suffered from
the explosion of the size of the automata and the need of approximations
due to the non-determinism of the automata, we here employ symbolic
bdd-based techniques and recent antichain algorithms for language in-
clusion to overcome these issues. We have implemented techniques for
generating, manipulating and analyzing graph automata and perform an
experimental evaluation.

1 Introduction

Regular languages and (word) automata are the cornerstone of several verification
techniques (for example [9]). Similarly, tree automata [11] have been used in
regular model-checking [8]. Challenges in the analysis of dynamic graph-like
structures, such as pointer structures on the heap, object graphs or evolving
networks, naturally lead to the question whether graph languages and graph
automata can serve the same purpose. There is indeed an established theory of
recognizable graph languages by Courcelle [12], although substantial work needs
to be done before this theory can be put to good use in complex verification
scenarios.

In order to close this gap, we here give a very concrete variant of graph
automata accepting a subclass of the recognizable graph languages à la Courcelle.
Furthermore we reformulate our own earlier work on invariant checking [7] in
this setting. However, our main motivation is to fight state explosion, which is
a major problem when working with graph automata. Graph automata cannot
input all graphs but only graphs up to a certain width (in our case: path width),
which is a restriction on the interface size of the alphabet of “building blocks” of
graphs. However the size of the automaton typically grows exponentially when
this bound is raised. This is a major problem that forced earlier work such as [16],
based on the algorithms in [14], [20] and [13] to restrict to very small interface

? This work is supported by the dfg-project GaReV.

sizes. Recent work abstains from a representation of the automaton, but pursues
a game-based approach, obtaining much better runtime results [18].

However, all these approaches have a different focus than ours, in that they
concentrate on solving the membership problem: given a description of the
language (often specified by a formula in monadic second-order graph logic) and
a graph, check whether the graph is in the language. Courcelle’s theorem shows
that for a fixed formula this can be done in linear time for graphs of bounded
treewidth (or path width). However the large constants involved lead to severe
efficiency problems when the automata are represented directly.

Here we are less interested in solving the membership problem: with the
applications that we have in mind we are interested in designing an automaton
tool suite that treats automata as representatives of languages that can be
suitably manipulated and analyzed. However, we have to face the same problem
as the other approaches: the sheer size of the automata involved. Hence we
are using symbolic bdd-based techniques to represent the set of states and the
transition function, which enable us to generate non-deterministic automata
for large interface sizes. To avoid determinization, our earlier work [7] used an
approximation, but this approach will not be used in this paper. In order to
perform useful analyses, needed for instance for invariant checking as mentioned
above, we have to solve the language inclusion problem, which is pspace-complete.
Our new approach uses recent methods based on antichains as introduced in [21, 1].
We have implemented our techniques and we perform an extensive experimental
evaluation, which shows a clear improvement over earlier work.

The structure of the paper is as follows. In Sect. 2 we will introduce preliminary
definitions such as cospans, hypergraphs and binary decision diagrams. In Sect. 3
we will take a look at graph automata and the connection between them and
automaton functors of bounded size. Then in Sect. 4 we will show how techniques
for solving the language inclusion problem can be used to perform invariant
checking and in Sect. 5 we will present implementation details about the Raven
tool suite which implements language inclusion algorithms for invariant checking.
Furthermore we will present results about our case studies. Finally, we will
conclude in Sect. 6.

2 Preliminaries

By Nk we denote the set {1, . . . , k}. The set of finite sequences over a set A is
denoted by A∗. If f : A→ B is a function from A to B, we will implicitly extend
it to subsets and sequences; for A′ ⊆ A and a = a1 . . . an ∈ A∗ : f(A′) = {f(a) |
a ∈ A′} and f(a) = f(a1) . . . f(an). By |a| we denote the length of a ∈ A∗. By
℘(A) we denote the powerset of A.

Categories and Cospans. We presuppose a basic knowledge of category theory.
For an arrow f from A to B we write f : A → B and define dom(f) = A and
cod(f) = B. For arrows f : A→ B and g : B → C, the composition of f and g is
denoted (f ; g) : A→ C. The category Rel has sets as objects and relations as
arrows.

Let C be a category in which all pushouts exist. A cospan in C is a pair
c = (cL, cR) of C-arrows J −cL� G �cR− K. Two cospans c, d are isomorphic
if their middle objects are isomorphic (such that the isomorphism commutes
with the component morphisms of the cospan). In this case we write c ' d.
Isomorphism classes of cospans are the arrows of so-called cospan categories.
That is, for a category C with pushouts, the category Cospan(C) has the same
objects as C. The isomorphism class of a cospan c : J −cL�G�cR−K in C is an
arrow from J to K in Cospan(C) and will be denoted by c : J

#
K. Composition

of two cospans (cL, cR) , (dL, dR) is computed by taking the pushout of the arrows
cR and dL. A cospan is called output linear if the right leg of the cospan is a
monomorphism.

Graphs and Output Linear Cospans. Let Λ be a set of labels and let ar : Λ→ N
be the function that maps each alphabet symbol to its arity.

A hypergraph over a set of labels Λ (in the following also simply called graph)
is a structure G = (V,E, att , lab), where V is a finite set of nodes, E is a finite
set of edges, att : E → V ∗ maps each edge to a finite sequence of nodes attached
to it, such that |att(e)| = ar(lab(e)), and lab : E → Λ assigns a label to each
edge. A discrete graph is a graph without edges; the discrete graph with node set
Nk is denoted by Dk. We denote the empty graph by ∅ instead of D0.

A graph morphism is a structure preserving map between two graphs. The
category of graphs and graph morphisms is denoted by Graph. Recall, that the
monomorphisms (monos) and epimorphisms (epis) of the category Graph are
the injective and surjective graph morphisms, respectively.

A cospan J −cL�G�cR−K (over a set of labels Λ) in Graph can be viewed
as a graph (G over Λ) with two interfaces (J and K), called the inner interface
and outer interface respectively. Informally said, only elements of G which are in
the image of one of the interfaces can be “touched”. By [G] we denote the trivial
cospan ∅ → G← ∅, the graph G with two empty interfaces.

The category of output linear cospans OLCGn has discrete graphs (of size at
most n) as objects and output linear cospans of graphs with discrete interfaces
(of size at most n) as arrows. Note that the middle objects of the cospans of the
category OLCGn can still be arbitrary graphs. The idea for using this category
is that we want to be able to fuse nodes via cospan composition, but we want to
avoid that nodes of the middle graph are shared in the outer interface.

Binary Decision Diagrams. A binary decision diagram (bdd) is a rooted, directed,
acyclic graph which serves as a representation of a boolean function. Every bdd
has two distinguished terminal nodes, called one and zero, representing the logical
constants true and false. The inner nodes are labeled by the variables of the
boolean formula represented by the bdd, such that on each path from the root
to the terminal nodes, every variable of the boolean formula occurs at most once.
Each inner node has exactly two distinguished outgoing edges, called high and
low, which represent the case that the variable of the inner node has been set to
true or false respectively. A boolean formula f(x1, . . . , xn) can be evaluated by
following the path from the root node to a terminal node.

b0

b1 b1

b2

b3 b3

1 0

Fig. 1. bdd for the set
{0000, 0011, 1100, 1111}

We will use a special class of bdds, called
reduced and ordered bdds (robdds), in which
the order of the variables occuring in the bdd is
fixed and redundancy is avoided, i.e. if both child
nodes of a parent node are identical, the parent
node is dropped from the bdd and isomorphic
parts of the bdd are merged. The great advan-
tage of robdds is that each boolean formula
can be uniquely represented by an robdd (if the
order of the variables is fixed). For a detailed
introduction of these bdds see [2].

As an example, we consider the following
set of 4-bit vectors: {0000, 0011, 1100, 1111}. We
assume that the bits of the bit vectors are num-
bered from b0 to b3 with b0 the least significant
bit. The robdd representing this set of bit vec-
tors is shown in Fig. 1. Variables are depicted as rounded nodes, terminals as
rectangular nodes. The high and low edges are depicted as solid and dashed lines
respectively.

3 Bounded Graph Automata

Recognizable graph languages are a generalization of regular (word) languages to
graph languages which were first investigated by Courcelle [3, 12]. In this section
we define bounded graph automata, which accept a subclass of the recognizable
graph languages due to the bound. Similar to word languages we define graph
languages based on an alphabet. Each letter of the alphabet represents an output
linear cospan such that the concatenation of these letters (or cospans respectively)
yields a graph (seen as a cospan with empty interfaces).

Let n ∈ N and a doubly-ranked alphabet Σ = (Σi,j)i,j≤n be given. The set of

(doubly-ranked) sequences SΣ = (Si,j)i,j≤n over a doubly-ranked alphabet Σ is
defined inductively:

– for every i ≤ n the empty sequence εi is in Si,i
– for every i, j ≤ n every letter σ ∈ Σi,j is in Si,j
– for every i, j, k ≤ n and for every σ ∈ Si,j , σ′ ∈ Sj,k the concatenation σ ; σ′

of σ and σ′ is in Si,k

The width of a sequence is the maximum rank of its letters. We will also write S
instead of SΣ if the underlying alphabet is clear from the context.

Let Λ be a set of labels. By Γ (Λ) we denote the doubly-ranked alphabet
containing the following letters:

Letter: connect iA fusei permi resi transi vertex i

Type: (i, i) (i, i− 1) (i, i) (i, i− 1) (i, i) (i, i+ 1)
Constraint: A ∈ Λ, i ≥ 2 i ≥ 3 i ≥ 1 i ≥ 2 −

ar(A) ≤ i

The meaning of these letters is given by the evaluation function defined
below. Note that res is a restriction of the interface, perm permutes the interface
and trans transposes the first two interface nodes. Due to the fact that for two
elements permutation and transposition are identical operations the constraint
of the letter permn is n ≥ 3.

Now we define an evaluation function which maps each letter of the alphabet
Γ (Λ) to an output linear cospan.

Definition 1 (Evaluation function). Let Λ be a set of labels.

(i) The evaluation function η : Γ (Λ)→ OLCGi maps each letter to an output
linear cospan as shown below:

fusei connect iA vertex i

Di Di Di−1

...

...
...

θmap ϕ

Di H Di

...

...

...

...

A
...

...

e Di Di+1 Di+1

...
...

...

dL

permi transi resi

Di Di Di

...
...

...

σ

Di Di Di

...
...

...

σ
Di Di Di−1

...
...

...

ρ

(ii) The extended evaluation function η̂ : SΓ (Λ) → OLCGi is defined as

η̂(σ) =


Dj → Dj ← Dj , if σ = εj ∈ Sj,j
η(σ), if σ = σ ∈ Γ (Λ)

η̂(σ1) ; η̂(σ2), if σ = σ1 ; σ2

We call the cospans which correspond to the six letters above atomic cospans.
Let c be an output-linear cospan. The width of c is the minimal width of all

σ such that η̂(σ) = c.
The following lemma shows that every graph (seen as an output linear cospan

with two empty interfaces) can be constructed by the alphabet Γ (Λ). Hence, we
will restrict ourselves to this alphabet in the following:

Lemma 1 ([7]). Let c be an output linear cospan over Λ. Then it holds that:

1. c can be constructed by a sequence c1, . . . , cm of atomic cospans, i.e. c can be
obtained as the decomposition c = c1 ; . . . ; cm.

2. There exists a sequence σ ∈ SΓ (Λ) such that η̂(σ) = c.

In the following we are considering graphs with an arbitrary inner interface
and an empty outer interface. We need the arbitrary inner interface in order to
state Theorem 2 below. We could, without major problems, also parametrize
over the outer interface, but this is not necessary for the theory.

Definition 2 (Bounded graph automaton). Let n ∈ N and k ≤ n be given.
An n-bounded graph automaton A = (Q,Σ, δ, I, F) from k, where Σ = Γ (Λ),
consists of

– Q = (Qi)i≤n the family of finite state sets,
– Σ = (Σi,j)i,j≤n the doubly-ranked input alphabet,

– δ = (δi,j)i,j≤n is a family of transition functions, where δi,j : Qi × Σi,j →
℘(Qj)

– I ⊆ Qk the set of initial states and
– F ⊆ Q0 the set of final states

such that the following condition holds for all q ∈ Q and σ1,σ2 ∈ Si,j:

if η̂(σ1) ' η̂(σ2) then δ̂i,j({q},σ1) = δ̂i,j({q},σ2), (?)

where δ̂i,j : ℘(Qi)× Si,j → ℘(Qj) is defined as follows:

δ̂i,j(R,σ) :=


R if σ = εi ∈ Σi,i and i = j

δ(R, σ) if σ = σ ∈ Σi,j
δ̂k,j(δi,k(R,σ1),σ2) if σ = (σ1 ; σ2),σ1 ∈ Si,k,σ2 ∈ Sk,j

.

A sequence σ ∈ Sk,0 over Σ is accepted by A if and only if δ̂k,0(I,σ) ∩ F 6= ∅.

The idea behind a graph automaton is to get a decomposition of an input graph
and to process it “piece by piece”. The condition (?) guarantees that the graph
automaton accepts an input graph independently of the decomposition of the
graph. Showing that this condition holds for some prospective graph automaton
is not trivial in general. A solution would be to automatically translate formulas
of monadic second-order logic to correct graph automata.

Definition 3 (Accepted language). Let an n-bounded graph automaton A
from k be given. The language accepted by A, denoted by L(A), contains exactly
the sequences accepted by A. The cospan language accepted by A is

G (A) =
{
c
∣∣ η̂(σ) = c for some σ ∈ L(A)

}
.

The cospan language of a bounded graph automaton contains cospans. When
we want to accept graphs, we can interpret the cospan [G] as the graph G.

Since a graph automaton is bounded, it is a kind of non-deterministic finite
automaton (nfa). Therefore, we can apply standard algorithms from formal
language theory, such as the subset construction and constructing the cross
product of two automata. It can be shown that these constructions preserve the
condition (?) of graph automata. Thus, the languages accepted by n-bounded
graph automata are closed under boolean operations, and many important
decision problems (such as the membership, emptiness and language inclusion
problems) are decidable. Note that the language inclusion algorithm for nfa is
pspace-complete, and thus no efficient algorithms for the problem exist yet.

Example 1. First we consider the language LU of all graphs which contain a
fixed subgraph U . The bounded graph automaton AU accepting this language
works as follows: Every state in each of the state sets Qi contains two pieces
of information. The first piece of information says which parts of the subgraph
have already been recognized. The second piece of information is a function
which maps every outer node to a node which has already been recognized or
to some “bottom element” to indicate that the interface node is not mapped
to a node of the wanted subgraph U . The transition function “updates” this
information according to the letter which is currently processed. Since the input
graph might contain several parts which are isomorphic to the wanted subgraph
U , the bounded graph automaton is highly non-deterministic. More details about
the construction of this graph automaton can be found in [5].

Example 2. Now we consider the language C(k) of all k-colorable graphs (for some
k ∈ N). A k-coloring of a graph G is a function f : VG → Nk such that for all edges
e ∈ EG and for all nodes v1, v2 ∈ attG(e) it holds that f(v1) 6= f(v2) if v1 6= v2.
The question whether a graph is k-colorable is essential in many applications,
for example in scheduling. The idea of the graph automaton A(k) accepting
all k-colorable graphs (as defined in [10]) is as follows: Every state is a valid
k-coloring of Di, that is Qi = {f : VDi

→ Nk | f is a valid k-coloring of Di}. The
transition function δi,j maps a coloring f ∈ Qi and a letter σ ∈ Σ to a coloring
f ′ ∈ Qj if and only if the coloring of the inner nodes of η(σ) according to f and
the coloring of the outer nodes of η(σ) according to f ′ leads to a valid coloring
of η(σ). More details on graph automata for coloring can be found in Sect. 5.1.

In the rest of the section we compare bounded graph automata to automaton
functors, which were introduced in [10], in particular to automaton functors for
the category OLCGi (bounded automaton functors). We show that they accept
the same class of language. The main difference between the two is that bounded
automaton functors are defined on all cospans of bounded size (of which there
are infinitely many), while graph automata are only defined for the letters of the
input alphabet, which correspond to only the atomic cospans (of which there are
finitely many).

Definition 4 (Bounded Automaton Functor). Let n ∈ N. An n-bounded
automaton functor from k is a structure A = (A0, I, F), where

– A0 : OLCGn → Rel is a functor which maps every discrete graph Di to
a finite set A0(Di) (the state set of Di) and every output linear cospan
c : Di

#
Dj to a relation A0(c) ⊆ A0(Di)×A0(Dj) (the transition relation

of c),
– I ⊆ A0(Dk) is the set of initial states and
– F ⊆ A0(∅) is the set of final states.

For a discrete graph G or a output linear cospan c we will, in the following,
usually write A(G) and A(c) instead of A0(G) and A0(c), respectively. A cospan
c : Dk

∅ is accepted by A, if (q, q′) ∈ A(c) for some q ∈ I and q′ ∈ F .

A

B

B

Fig. 2. Wanted subgraph D

0 1

=⇒

0 1

A A

Fig. 3. Transformation rule ρA

Definition 5 (Accepted language). Let A be an n-bounded automaton func-
tor. The language accepted by A, denoted by G (A), contains exactly the cospans
accepted by A.

Theorem 1. Let L be a language of cospans from Dk to ∅. Then L is the cospan
language of an n-bounded graph automaton from k if and only if it is the language
of an n-bounded automaton functor from k.

4 Invariant Checking and Language Inclusion

One of the applications of our approach is to automatically check invariants of
graph transformation systems (gtss). The following definition of graph transfor-
mation is equivalent to the well-known double-pushout approach [19], where we
have injective rule spans and not necessarily injective matches.

Definition 6 (Graph transformation).

(i) Let ` : ∅# Di and r : ∅# Di be two output linear cospans (called left-hand
and right-hand side). The pair ρ = (`, r) is called a (graph) transformation
rule. A graph transformation system is a finite set of transformation rules.

(ii) Let ρ = (`, r) be a transformation rule. The rule ρ is applicable to a graph
G if and only if [G] = ` ; c for some output linear cospan Di

∅. In this
case we write G⇒ρ,c H, where H is the graph obtained from [H] = r ; c.

A language L is an invariant according to a graph transformation rule ρ if it
holds for all graphs G and H with G⇒ρ H that [G] ∈ L implies [H] ∈ L.

Example 3. As an example we take the graph D (which is depicted in Fig. 2) as
wanted subgraph. The language LD of all graphs containing D as a subgraph is
an invariant for the rule ρA (shown in Fig. 3) which “switches” an A-labeled edge.
Obviously, every graph which contains D as subgraph before the application of
ρA does contain D also after the rule application.

Example 4. The next example we consider is the language C(2) of all 2-colorable
graphs (see Ex. 2 for details about C(2)). This language is an invariant for the
transformation rule αn depicted in Fig. 4 which adds two new nodes between
two adjacent nodes on a path. That the language C(2) is an invariant for this
rule is clear since every path with an even number of nodes is 2-colorable.

0 1

=⇒

0 1

Fig. 4. Transformation rule αn

For an output linear cospan c : Dk
#
Dm and a n-bounded graph automaton

A = (Q,Σ, δ, I, F) from k we obtain a new n-bounded graph automaton A [c] =

(Q,Σ, δ, I ′, F) from m with I ′ = δ̂k,m(I,σ), where σ is some word from SΣ such
that η̂(σ) = c. (If the width of c is larger than n, such a σ does not exist, and
we take I ′ = ∅, such that L(A [c]) = ∅.) The new automaton has as new initial
states all states reachable from the original initial states by processing c. Note
that I ′ is independent of the specific decomposition of c into a sequence σ.

The following theorem easily follows from the observation that σ` ; σc ∈ L(A)
if and only if σc ∈ L(A [`])), where σ` and σc are sequences such that η̂(σ`) = `
and η̂(σc) = c.

Theorem 2 (Invariant checking). Let A be an n-bounded graph automaton
(from 0) accepting the cospan language L, and let ρ = (`, r) be a transformation
rule. The cospan language L is an invariant of ρ if and only if L(A [`]) ⊆ L(A [r]).

5 Implementation and Results

We implemented a language inclusion algorithm and invariant checking in the
Java-based tool Raven. In this section we examine some implementation details
of the tool and present results of case studies.

5.1 Representation of Automata with BDDs

Graph automata are represented by means of bdds. First, states of the automaton
are represented by a bit string, and secondly the transition relations for the
various atomic cospans (or letters respectively) are stored as a bdd which encodes
a relation on these bit strings.

As an example, we look at the encoding for the automaton which accepts
all k-colorable graphs (see Ex. 2). The state encoding has to take care of the
following information: the interface size (of the outer interface of the graph seen
so far) and the color of each node currently occurring in the outer interface.

A good ordering of the bits holding the information is essential to construct
compact bdds. We have experimented with different orderings, and found the
following to be the best. Let n be the maximum interface size and k the number
of colors. Furthermore, let m = dlog2 ne be the number of bits required to store
the interface size, and ` = dlog2(k + 1)e the number of bits to store one color
(we need an extra value to represent uncolored or unused nodes). A state is
encoded by the bit sequence b c1 . . . cn = b1 . . . bm(c1,1 . . . c1,`) . . . (cn,1 . . . cn,`),

where b = b1 . . . bm encodes the current interface size as a binary number and
ci = (ci,1 . . . ci,`) (for 1 ≤ i ≤ n) represents the color of the i-th interface node.

For each of the letters of Γ (Λ) we define a propositional formula describing
the transition relations – for all permitted interfaces – of the graph automaton.
These formulas can then be easily transformed into bdds which describe the
transition functions. (As usual with bdd representations of relations, the bits of
the domain and codomain states are interleaved.)

We present the formula fconnectiA as an example. To distinguish between the
bits for the current state and the bits for the successor state we indicate the
successor state encoding by b′c′1 . . . c

′
n. The formula consists of four parts (where

p = i− ar(A) + 1 is the index of the first node attached to the new edge):

f1 := (ar(A) ≤ i) ∧ (b = i) ∧ (b = b′) f3 :=

n∧
j=1

(cj = c′j)

f2 :=

n∧
j=i+1

(cj = 0) f4 :=

i∧
j=p

i∧
j′=p

(j 6= j′)→ (cj 6= cj′)

The subformula f1 expresses that the arity of the added edge is less than or
equal to the current interface and that the interface size of both the current state
and the successor state is i. The subformula f2 expresses that the nodes of the
encoding which do not belong to the current interface, that is the last n− i+ 1
nodes in the encoding, have not been colored. Next, f3 expresses that all nodes
have the same color in the source and the target state. Finally, f4 expresses that
the nodes which are connected by the new edge have different colors. Now, we
take fconnectA := f1 ∧ f2 ∧ f3 ∧ f4, that is, a transition q −connectiA� q′ is allowed
if and only if the above four conditions hold.

Example 5. We consider the 3-colorability automaton with a maximum interface
size of 5. The size of the state encoding is 3 + (2 · 5) = 13 bits. Consider the state
q depicted in Fig. 5 (on the left): we have five nodes in the current interface,
colored with color 1, 2, 3, 2 and 3, respectively. The bit string which encodes this
state is given in Fig. 5 on the right.

01

1

10

2

11

3

10

4

11

5 b1 b2 b3 c1 c2 c3 c4 c5
1 0 1 01 10 11 10 11

Fig. 5. State q and its representation as bit string

Suppose that the graph automaton is currently in state q, and that the next
letter is connect5A, where A is a label with arity 2. Since the last two nodes of the
interface are colored differently, none of the nodes connected by the A-edge have
the same color. Hence the transition q −connect5A� q is in the transition relation.
Suppose on the other hand that the graph automaton is in state q and the next

operation is connect5B , where the arity of B is 3. Since the third and fifth node
of q’s interface have the same color, no state can be reached from q.

Apart from a graph automaton which accepts k-colorable graphs and one
which accepts graphs with a specific subgraph (see Ex. 1), we also implemented
graph automata for vertex cover and dominating set. A vertex cover of graph G
is a set C of nodes of G such that each edge is incident to at least one node of C.
A dominating set of a graph G is a set D of nodes of G such that each node of G
is either in D or adjacent to a node in D. The states of automata checking if the
input graph has a vertex cover of size k or if the input graph has a dominating
set of size k respectively need to encode the following pieces of information:

– Vertex cover: the interface size of the outer interface of the graph seen so far,
which nodes of the current interface are part of the vertex cover and the size
of the vertex cover (where nodes in the vertex cover are counted when they
are removed from the interface).

– Dominating set: the interface size of the outer interface of the graph seen so
far, which nodes of the current interface are part of the dominating set, which
nodes of the current interface are dominated by some node of the dominating
set and the size of the dominating set (where nodes in the dominating set
are counted when they are removed from the interface).

Note that we use bdds in a different way than other tools. In our case,
the alphabet is small and the state set is huge, and we use bdds to encode
a transition relation for each symbol. In other tools, such as Mona [17], the
state set is relatively small and the alphabet is huge. Thus Mona uses bdds
not to encode the transition relation for each symbol, but to encode the possible
transitions of each single state, that is for each state there is a bdd encoding all
transitions for each alphabet symbol starting at that specific state.

5.2 Checking Language Inclusion

In [7] we presented a technique for checking invariants based on the Myhill-Nerode
quasi-order. The main disadvantage of this approach is that the algorithm for
computing the Myhill-Nerode quasi-order applies only to deterministic (graph)
automata, whereas in general our graph automata are highly non-deterministic.
Determinization is not an option because it would lead to an exponential blow-up
of already huge automata. Therefore we had to settle for an approximation.

To overcome this problem, here we use the antichain-based algorithm from
[21] to check for language inclusion, which can be used to check invariants via
Theorem 2. In the worst case this approach can still need exponential time, but
in practise one can often achieve very good runtimes.

An antichain is a set of elements which are uncomparable with respect to
some ordering. What the elements look like and what ordering is used depends on
the application; here we present an antichain-based algorithm to decide language
inclusion. In this subsection, we forget typing information of the states and
consider bounded automata as regular finite automata.

Let A = (QA, Σ, δA, IA, FA) and B = (QB, Σ, δB, IB, FB) be n-bounded graph
automata. Let FB = QB \FB, that is, the set of B’s non-accepting states. We want
to decide whether L(A) ⊆ L(B). In particular, we are trying to falsify that claim

by finding a state q ∈ IA and a set of states S ⊆ IB such that δ̂A({q},σ)∩FA 6= ∅
and δ̂B(S,σ) ⊆ FB, for some word σ.

Let U = QA × ℘(QB). For (q1, S1) , (q2, S2) ∈ U , we define (q1, S1) ≤ (q2, S2)
if q1 = q2 and S1 ⊆ S2. Now, an antichain (for language inclusion) is a set K ⊆ U
such that for all p1, p2 ∈ K with p1 6= p2, it holds that neither p1 ≤ p2 nor
p2 ≤ p1. A pair p ∈ K is called maximal, if there is no p′ ∈ K such that p ≤ p′;
by dKe we denote the set of maximal elements of K. Minimal elements and the
set bKc of minimal elements are defined symmetrically.

The algorithm searches through the automaton backwards. We define:

PreA,B(K) =
{

(q, S)
∣∣ ∃σ ∈ Σ : ∃(q′, S′) ∈ K : q′ ∈ δA(q, σ) ∧ δ̂B(S, σ) ⊆ S′

}
.

The function does the following: For each (q′, S′) ∈ K, we take the pairs (q, S)
such that, for some symbol σ, q is an σ-predecessor of q′ and S is the set of
states, from which a state in S′ is surely reached when reading σ.

Formally, the basic version of the algorithm, which returns true if and only if
L(A) 6⊆ L(B), works as follows:

input: A = (QA, Σ, δA, IA, FA) and B = (QB, Σ, δB, IB, FB)
K ← FA × {FB}
repeat

K ′ ← K
K ← dK ∪ PreA,B(K)e

until K = K ′

return there exist q ∈ IA and S ⊇ IB such that (q, S) ∈ K

The line K ← dK ∪ Pre(K)e adds new elements to the current antichain and
removes all but the maximal ones. At all times it holds that for all (q, S) ∈ K
there is a word σ such that δ̂A({q},σ) ∩ FA 6= ∅ and δ̂B(S),σ) ⊆ FB.

The basic algorithm can be optimized in various ways. First, only new elements
need to be processed in each step instead of all the elements in K. Second, since
the function is monotone, the algorithm can return true as soon as the final
condition is satisfied (meaning that L(A) 6⊆ L(B)). For a correctness proof of the
algorithm, we refer to [21].

Note that in the implementation that we used in the tool, both the automata
and the pairs in the antichains are represented symbolically as bdds. We also
tested a forward search variant of the algorithm, but do not include it here due
to poor runtimes.

5.3 Results

In this section we present results for several case studies. All tests were performed
on a 64-bit Linux machine with a Xeon Dualcore 5150 processor and 8 GB of
available main memory.

u f

w

w

u

f

u

w

w

Fig. 6. Forbidden subgraphs “Double Ac-
cess” and “Two Users”

u0 f 1

u2 f 3

=⇒
u0 f 1

u3 f 4

w

w

w

w

Fig. 7. Operation “Switch Write Access”
as transformation rule

In the following, we briefly describe the several examples for which we have
computed results for different interface sizes using our tool suite. For each of
these examples we used the backwards language inclusion algorithm to compute
our results.

3-Colorability and 4-Colorability. We checked C(3) ⊆ C(4) and C(4) 6⊆ C(3) (in
the case of non-inclusion a counter example is generated).

Triangle subgraph and 2-Colorability with path extension. These are the invariants
from Ex. 3 and Ex. 4, respectively.

Multi-user file system. We validate the file system example from [7]. In this
example, a system state is modelled as a graph: users and files are nodes, access
permissions (either “read” or “write”) are labelled, directed edges. The system
behaviour (add new user, change access permissions, . . .) is modelled as trans-
formation rules. The problem is to check whether the file system can reach at
least one of two forbidden states. These forbidden states are modelled as the
subgraphs depicted in Fig. 6: “Double Access” models the situation where a user
obtains double write access to a system resource and “Two Users” models the
situation where two users both have write access to the same system resource.

To validate this system we perform a “backwards invariant check”: we swap
the left- and right-hand sides of the rules and check whether the language of
all graphs which contain certain “forbidden subgraphs” is an invariant of this
reversed system. The idea is that a forbidden state is reachable (in the original
system) only if the system already started in a forbidden state.

Because in [5] a simulation relation was used to approximate the Myhill-
Nerode quasi-order, validating the operation “Switch Write Access” (see Fig. 7),
which switches the write access of two users, was unsuccessful, although the
language is an invariant w.r.t. this operation. Now we succesfully verified it.

Dominating Set and Vertex Cover. We computed results for the inclusion of
the language NonIso ∩D(k) of all graphs without isolated nodes which have a
dominating set of size at most k in the language V(k) of all graphs which have a
vertex cover of size at most k and the non-inclusion of the opposite direction.

In Table 1 the runtime results for the case studies are presented. We can handle
some non-trivial examples up to relatively large interface size (note that in
practical applications the width, and thus the interface size of graphs, is in
general relatively small). For example, the “triangle subgraph automaton” has
37 440 states in case of maximum interface 3 and 19 173 952 states in case of

Table 1. Case study runtimes (in seconds); to: timed out, om: out of memory, n.a.:
not applicable

Maximum Interface Size
Case study 3 4 5 6 7 8 9 10

C(3) ⊆ C(4) < 1 3 14 410 28 713 to – –
C(4) 6⊆ C(3) n.a. 9 270 63 065 to – – –

Triangle subgraph 4 15 123 1 978 om – – –

C(2) and path extension 2 2 3 5 13 53 385 4 193

Multi-user file system n.a. 19 217 om – – – –

NonIso ∩D(2) ⊆ V(2) n.a. 432 26 337 to – – – –
V(2) 6⊆ NonIso ∩D(2) n.a. 2 12 14 154 4 701 to –

interface size 6. From the first two and last two case studies, it is also apparent
that the runtimes are better when the first automaton is small (the automaton
for C(3) and V(2), respectively). This is unsurprising, because the states of the
first automaton are explicitly represented (more formally, as a bdd representing a
singleton set), whereas the (sets of) states of the second automaton are collectively
represented by a bdd.

6 Conclusion

We gave a concrete variant of graph automata accepting recognizable languages.
The languages such graph automata can accept contain cospans which have a
bounded width, which means that we can only accept graphs with a bounded
path width [6]. We applied the approach to automatically checking whether the
language of one automaton is included in the language of the other and whether
a language is an invariant of a graph transformation system. Case studies show
that we can handle non-trivial examples in a relatively short time. However,
it seems that the size of the generated automata and the running times grow
exponentially with the interface size of the automaton.

Note that our approach differs from the approach in Mona [17], another tool
based on recognizable languages. Mona is suitable when the alphabet is large
(since bdds are used to encode the alphabet), whereas in our case the state space
is huge.

Another related work [4] considers graph patterns consisting of negative and
positive components and shows that they are invariants via an exhaustive search.

For further research, we would like to try more algorithms; in particular we
want to implement the simulation-based algorithm of [1] in our tool to see if
better results can be obtained. Also, an algorithm that can translate formulas of
monadic second-order logic into automata would be helpful. Finally, it is ongoing
research to see whether graph automata can help in proving termination of graph
transformation systems, much like in the case of string rewrite systems [15].

References

1. Abdulla, P.A., Chen, Y.F., Hoĺık, L., Vojnar, T.: When simulation meets antichains
(on checking language inclusion of NFAs). In: Proc. of TACAS ’10. pp. 158–174.
LNCS 6015, Springer (2010)

2. Andersen, H.R.: An introduction to binary decision diagrams. Course Notes (1997),
http://www.configit.com/fileadmin/Configit/Documents/bdd-eap.pdf

3. Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings. Mathematical
Systems Theory 20(2-3), 83–127 (1987)

4. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant ver-
ification for systems with dynamic structural adaptation. In: Proc. of ICSE ’06
(International Conference on Software Engineering). pp. 72–81. ACM (2006)

5. Blume, C.: Graphsprachen für die Spezifikation von Invarianten bei verteilten und
dynamischen Systemen. Master’s thesis, Universität Duisburg-Essen (2008)

6. Blume, C., Bruggink, S., Friedrich, M., König, B.: Treewidth, pathwidth and cospan
decompositions. In: Proc. of GT-VMT 2011 (2011)

7. Blume, C., Bruggink, S., König, B.: Recognizable graph languages for checking
invariants. In: Proc. of GT-VMT 2010. ECEASST 29 (2010)

8. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree
model checking of complex dynamic data structures. In: Proc. of SAS ’06. pp. 52–70.
LNCS 4134, Springer (2006)

9. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Proc. of CAV ’00. pp. 403–418. LNCS 1855, Springer (2000)

10. Bruggink, S., König, B.: On the recognizability of arrow and graph languages. In:
Proceedings of ICGT ’08. pp. 336–350. LNCS 5214, Springer (2008)

11. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez,
D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007),
http://www.grappa.univ-lille3.fr/tata, 12 October 2007

12. Courcelle, B.: The monadic second-order logic of graphs I. recognizable sets of finite
graphs. Inf. Comput. 85(1), 12–75 (1990)

13. Courcelle, B., Durand, I.: Verifying monadic second order graph properties with
tree automata. In: European Lisp Symposium (May 2010)

14. Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. Journal
of the ACM 49(6), 716–752 (2002)

15. Geser, A., Hofbauer, D., Waldmann, J.: Match-bounded string rewriting. Applicable
Algebra in Engineering, Communication and Computing 15(3–4), 149–171 (2004)

16. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of
knowledge representation and reasoning. Journal of Artificial Intelligence 174(1),
105–132 (2010)

17. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets.
International Journal of Foundations of Computer Science 13(4), 571–586 (2002)

18. Kneis, J., Langer, A., Rossmanith, P.: Courcelle’s theorem – a game-theoretic
approach. Discrete Optimization (2011)

19. Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Proc. of LICS ’05.
pp. 311–320. IEEE (2005)

20. Soguet, D.: Génération automatique d’algorithmes linéaires. Ph.D. thesis, Université
Paris-Sud (2008)

21. Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.F.: Antichains: A new algorithm
for checking universality of finite automata. In: Proceedings of CAV 2006. pp. 17–30.
LNCS 4144, Springer (2006)

