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Abstract

We will revisit the categorical notion of cospan decompositions of graphs and
compare it to the well-known notions of path decomposition and tree decomposi-
tion from graph theory. More specifically, we will define several types of cospan
decompositions with appropriate width measures and show that these width
measures coincide with pathwidth and treewidth. Such graph decompositions of
small width are used to efficiently decide graph properties, for instance via graph
automata. Hence we will give an application by defining graph-accepting tree
automata, thus integrating previous work by Courcelle into the setting of cospan
decompositions. Furthermore we will show that regardless of whether we consider
path or tree decompositions, we arrive at the same notion of recognizability.

Keywords: cospans, graph decompositions, pathwidth, treewidth, tree
automata

1. Introduction

In graph rewriting the notion of cospan plays a major role: cospans can be
seen as graphs equipped with an inner and an outer interface and they can be
used as (atomic) building blocks for constructing or decomposing larger graphs.
Furthermore cospans are a means to cast graph rewriting into the setting of
reactive systems [1, 2].

In graph theory there are different notions for decomposing graphs: path and
tree decompositions [3], which at first glance seem to have a very different flavour
than cospan decompositions. These notions lead to width measures such as
pathwidth and treewidth and they are used to specify how similar a graph is to
a path or a tree. Treewidth plays a major role in complexity theory: for instance
Courcelle’s theorem [4] states that every graph property that can be specified
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in monadic second-order graph logic can be checked in linear time on graphs
of bounded treewidth. Furthermore there are intuitive game characterizations
(robber and cops games) for treewidth.

In this paper we show that, when seen from the right perspective, graph
decompositions based on cospans are in fact very similar to path and tree
decompositions. In order to be able to state this formally we classify several
types of cospan decompositions, which are sequences of cospans (with varying
additional conditions). Obtaining the decomposed graph amounts to taking
the colimit of the resulting diagram. We define width measures based on such
decompositions and show that the width measures all coincide with pathwidth. In
the second part of the paper the results are repeated for tree-like decompositions
and treewidth, where the tree-like decompositions are trees where the edges are
labeled with spans or cospans, and the decomposed graph is again obtained by
taking the colimit.

Additionally, we define automata for such decompositions. For cospan de-
compositions we use automaton functors [5], which in [6] were used to check
invariants of graph transformation systems. Automaton functors work by de-
composing a graph into (atomic) cospans, and then running a finite automaton
on the sequence. This approach is an extension of the work by Courcelle and
others on recognizable graph languages [4], which are in turn equivalent to the
notion of inductive graph properties [7].

For tree-like decompositions, we define consistent tree automata. These
automata input so-called term decompositions, which are tree-like decompositions
in the form of first-order terms. They are usual tree automata [8, 9] with the
additional requirement that their behaviour and acceptance are the same for
different term decompositions of the same graph. A main result of the paper is
that automaton functors and consistent tree automata accept the same language
class, namely the class of recognizable graph languages.

As far as we know there have been only few investigations into the notions
of pathwidth and treewidth in the context of graph rewriting. We are mainly
aware of the relation between context-free (or hyperedge replacement) grammars
and bounded treewidth that is discussed in [10, 11, 12]. It is shown that the
language generated by a context-free grammar has always bounded treewidth,
that is, there is an upper bound for the treewidth of every graph in the language.
This also implies the well-known result that the language of all graphs is not
context-free.

Interest in the relation between tree decompositions and graph rewriting
seems to have declined since, but in our opinion this area has a lot of potential for
an increased interaction of graph transformation and graph theory, since graph
decompositions and width measures are still of central interest to the graph theory
community. As far as we are aware, the relation between cospan decompositions
and tree and path decompositions has never been formally investigated and
while the main ideas are fairly straightforward it turns out that there are some
subtle issues to consider when translating one representation into the other. For
instance, we found that there is more than one possible translation and more
than one width measure.
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The paper is organized as follows: In Section 2 we will introduce the pre-
liminaries such as cospans, graph decompositions and tree automata. Then in
Section 3 we will have a closer look at cospans, identifying also atomic cospans
as building blocks. Then in Section 4 we will compare cospan decompositions
with path decompositions and in Section 5 we will define graph automata as
automaton functors for the category of cospans of graphs. In Section 6 we com-
pare tree-like cospan decompositions with tree decompositions, and in Sections 7
and 8 we define term decompositions and tree automata operating on the them.
Finally we will conclude with Section 9.

This article is based on [13]. Sections 3, 4 and 6, in which the correspondence
of the various types of decomposition is discussed, correspond to that paper;
Sections 5, 7 and 8, which address (tree) automata, are new.

2. Preliminaries

By Nk we denote the set {1, . . . , k}. The set of finite sequences over a set A,
including the empty sequence ε, is denoted by A∗. Composition of two sequences
~a and ~b is denoted by juxtaposition, that is by ~a~b.

If f : A→ B is a function from A to B, we will implicitly extend it to subsets
and sequences; for A′ ⊆ A and ~a = a1 . . . an ∈ A∗: f(A′) = {f(a) | a ∈ A′} and
f(~a) = f(a1) . . . f(an).

2.1. Categories and Cospans

We presuppose a basic knowledge of category theory. For an arrow f from A
to B we write f : A→ B and define dom(f) = A and cod(f) = B. For arrows
f : A→ B and g : B → C, the composition of f and g is denoted (f ; g) : A→ C.
The category Rel has sets as objects and relations as arrows. Its subcategory
Set has only the functional relations (functions) as arrows.

An initial object of a category C is an object 0, such that for each object
K ∈ C there exists a unique morphism from 0 to K, which is denoted by
!K : 0→ K.

Let C be a category in which all pushouts exist. A concrete cospan in C is
a pair 〈cL, cR〉 of C-arrows with the same codomain: J −cL�G�cR−K. Two
concrete cospans are isomorphic if their middle objects are isomorphic (such
that the isomorphism commutes with the component morphisms of the concrete
cospan). A cospan is an isomorphism class of concrete cospans. In the following
we will confuse cospans and concrete cospans, in the sense that we represent
cospans by giving a representative of the isomorphism class.

Composition of two cospans 〈cL, cR〉, 〈dL, dR〉 is computed by taking the
pushout of the arrows cR and dL. Cospans are the arrows of so-called cospan
categories. That is, for a category C with pushouts, the category Cospan(C) has
the same objects as C. The isomorphism class of a cospan c : J −cL�G�cR−K
in C is an arrow from J to K in Cospan(C) and will be denoted by c : J

#
K.

Spans are the dual notion of cospans, that is, they are (equivalence classes
of) pairs of morphisms with the same domain.
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Colimits can be seen as “generalized” pushouts. Given a collection (diagram)
D of objects {A1, . . . , An} and morphisms between them, the colimit of D is an
object B together with morphisms µi : Ai → B such that the diagram commutes,
and for each object B′ and morphism µ′i : Ai → B′ where the diagram commutes,
it holds that there exists a unique h : B → B′ such that everything commutes.
We will write Colim(D) = B in this case.

2.2. Graphs and Decompositions

A hypergraph over a set of labels Σ (in the following also simply called graph)
is a structure G = 〈V,E, att , lab〉, where V is a finite set of nodes, E is a finite
set of edges, att : E → V ∗ maps each edge to a finite sequence of nodes attached
to it, and lab : E → Σ assigns a label to each edge. The size of the graph G,
denoted |G|, is defined to be the cardinality of its node set, that is |G| = |V |. A
discrete graph is a graph without edges; the discrete graph with node set Nk is
denoted by Dk. We denote the empty graph by ∅ instead of D0.

A graph morphism from a graph G = 〈VG, EG, attG, labG〉 to a graph H =
〈VH , EH , attH , labH〉 is a pair of maps f = 〈fV , fE〉, with fV : VG → VH and
fE : EG → EH , such that for all e ∈ EG it holds that labG(e) = labH(fE(e)) and
fV(attG(e)) = attH(fE(e)). The category of graphs and graph morphisms is
denoted by Graph. Recall, that the monomorphisms (monos) and epimorphisms
(epis) of the category Graph are the injective and surjective graph morphisms,
respectively. The empty graph is the initial object of Graph.

A cospan J −cL�G�cR−K in Graph can be viewed as a graph (G) with two
interfaces (J and K), called the inner interface and outer interface respectively.
Informally said, only elements of G which are in the image of one of the interfaces
can be “touched”. By [G] we denote the trivial cospan ∅→ G← ∅, the graph
G with two empty interfaces.

For the use in definitions we need a second kind of graph. A simple graph is a
pair 〈V,E〉 where V is a finite set of nodes and E ⊆ {{t1, t2} | t1, t2 ∈ V, t1 6= t2}
the set of edges.1 In the following, v, w will range over nodes of hypergraphs,
e over edges of hypergraphs, t over nodes of simple graphs and b over edges
of simple graphs. In all cases, subscripts may also be used. A tree is a simple
graph in which there exists exactly one path between each pair of nodes. A
path graph2 is a tree in which each node is connected to either one or two other
nodes. Simple graphs, and in particular trees and path graphs, are only used to
define tree and path decompositions. All objects we are decomposing will be
hypergraphs.

Definition 1 (Tree decomposition). Let G = 〈V,E, att , lab〉 be a graph. A
tree decomposition of G is a pair T = 〈T,X〉, where T is a tree and X =
{Xt1 , . . . , Xtn} is a family of subsets of V (which are called bags in the literature)
indexed by the nodes of T , such that:

1Note that, by definition, a simple graph is undirected, loopless and has at most one edge
between each pair of nodes.

2In literature, path graphs are sometimes also called string graphs or paths.
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(b) Path Decomposition of GP

Figure 1: The graph GP and one of its path decompositions

• for each node v ∈ V , there exists a node t of T such that v ∈ Xt;

• for each edge e ∈ E, there is a node t of T such that all nodes v attached
to e are in Xt;

• for each node v ∈ V , the simple graph induced by the nodes {t | v ∈ Xt}
is a subtree of T .

The width of a tree decomposition T = 〈T,X〉 is wd(T ) =
(
maxt∈T |Xt|

)
− 1.

A tree decomposition T = 〈T,X〉 is a path decomposition if T is in fact a path
graph.

Now, the pathwidth pwd(G) and the treewidth twd(G) of a graph G are
defined as follows:

• pwd(G) = min{wd(P) | P is a path decomposition of G},

• twd(G) = min{wd(T ) | T is a tree decomposition of G}.

Example 1. As examples we consider only unlabeled directed graphs, that is
we take Σ = {�} as alphabet and |att(e)| = 2 for every edge e. Let GP be the
graph shown in Figure 1a. Obviously, the pathwidth of this graph is 2 since it
contains a 3-clique (all nodes of which have to be together in at least one bag)
and we have a path decomposition P of width 2 which is shown in Figure 1b.

As an example for a tree decomposition we consider the unlabeled graph GT
of Figure 2a. The treewidth of this graph is 2 due to the fact that it contains a
3-clique and that the tree decomposition T shown in Figure 2b has width 2.

Note that the decrement in the definition of wd(T ) above is chosen so
that trees have treewidth 1. Furthermore discrete graphs have pathwidth and
treewidth 0 and an n-clique has both pathwidth and treewidth n − 1 [14].
Intuitively one measures how similar a graph is to a tree or to a path. Naturally
it holds that twd(G) ≤ pwd(G) for all graphs G, where the pathwidth might be
substantially larger than the treewidth. For instance, trees can have arbitrarily
large pathwidth.

2.3. Many-Sorted Terms and Tree Automata

Tree automata are a generalization of finite automata from strings to first-
order terms. They are often defined in terms of algebraic structures [9] or term
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(b) Tree Decomposition of GT

Figure 2: The graph GT and one of its tree decompositions

rewrite systems of a certain kind [8]. Here, we give a more automata-theoretic
definition. Additionally, we extend the formalism to many-sorted terms.

Let S be a set of sorts. An S-type is a pair 〈~s, s0〉, where ~s ∈ S∗ is a sequence
of input sorts and s0 ∈ S is the output sort. We will usually denote a type 〈~s, s0〉,
where ~s = s1 . . . sn, by ~s→ s0 or 〈s1, . . . , sn〉 → s0, or simply by s0 if n = 0.

An S-typed set M is a set M0 together with a map type : M0 → S∗×S which
assigns a type to each element of M . We will write (f : τ) ∈M (or simply f : τ
if M is clear from the context) to denote the facts that f ∈M0 and type(f) = τ .

The terms we need are supposed to be linear, that is, every variable occurs at
most once. In order to make linearity an inherent part of the definition, we use
holes, denoted by 2s, where s is the sort of the hole, instead of named variables.
For an S-typed set Σ of function symbols (we call Σ the signature) we inductively
define an S-typed set T (Σ) of terms over Σ as follows:

• for s ∈ S it holds that (2s : s→ s) ∈ T (Σ);

• if (f : 〈s1, . . . , sn〉 → s0) ∈ Σ and (t1 : ~r1 → s1), . . . , (tn : ~rn → sn) ∈ T (Σ),
then (f(t1, . . . , tn) : ~r1 · · ·~rn → s0) ∈ T (Σ).

Note that the second of the above inductive constructions acts as base case if
n = 0.

If t is a term of type 〈s1, . . . , sn〉 → s0 and t1, . . . , tn are terms of types ~r1 →
s1, . . . , ~rn → sn, respectively, then t(t1, . . . , tn) is a term of type ~r1 · · ·~rn → s0

which is constructed by replacing the left-most hole 2s1 by t1, the second
left-most hole 2s2 by t2, etc.

Definition 2 (Tree automaton). An S-sorted (non-deterministic, bottom-
up) tree automaton is a tuple M = 〈Q,Σ,∆, I, F 〉, where

• Q = (Qσ)σ∈S is a family of finite sets of states indexed by S;

• Σ is an S-signature;
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• ∆ = (∆f )f∈Σ is a family of transition functions indexed by function
symbols, where, for f : 〈σ1, . . . , σn〉 → τ , ∆f : Qσ1 × · · · ×Qσn → ℘(Qτ );

• I = (Iσ)σ∈S is a family of sets of initial states, such that Iσ ⊆ Qσ for all
σ ∈ S; and

• F = (Fσ)σ∈S is a family of sets of accepting states, such that Fσ ⊆ Qσ for
all σ ∈ S.

We define ∆̂ = (∆̂t)t∈T (Σ) as a family of transition functions indexed by terms,
such that, for t : 〈s1, . . . , sm〉 → s0,

∆̂t : ℘(Qs1)× · · · × ℘(Qsm)→ ℘(Qs0)

Let ∆ be defined as ∆f (S1, . . . , Sn) =
⋃
{∆f (q1, . . . , qn) | q1 ∈ S1, . . . , qn ∈ Sn}.

Then ∆̂ is defined as follows:

∆̂2s(S) = S

∆̂f(t1,...,tn)(S1, . . . , Sm) = ∆f (∆̂t1(~U1), . . . , ∆̂tn(~Un)),

where ~U1 . . . ~Un = S1 . . . Sm and the length of each ~Ui is the same as the number
of arguments required by ∆̂ti .

A term t : 〈s1, . . . , sm〉 → s0 is accepted byM, if ∆̂t(Is1 , . . . , Ism)∩Fs0 6= ∅.
The language of M, denoted L(M), is the set of all terms accepted by M.

3. Cospans as Building Blocks for Graphs

Cospans of graphs can be viewed as operations on graphs with interfaces
(in the sense of Courcelle [4, 15]). Let G be a graph with external nodes, as
defined in [4] – which itself can be represented by a cospan g : ∅ → G ← I,
where the interface I represents the external nodes – and let c : I → H ← K be
a cospan. By composing g and c we obtain a cospan (g ; c) : ∅ → GH ← K,
where GH is the pushout object of G← I → H. Recall, that taking a pushout
in the category of graphs amounts to constructing the disjoint union of G and
H, and subsequently fusing just enough nodes and edges to make the pushout
diagram commute. That is, by composing with a cospan we can add new nodes
and edges, fuse existing nodes and change the interface of a graph.

There exists a finite set of cospans (called atomic cospans) from which,
together with disjoint union, all graphs with interfaces can be built; see for
example [16] and [17]. Since we do not have disjoint union, we have to settle
for finitely many atomic cospans per pair of inner and outer interface (of which
there are infinitely many). Here, we use the following atomic cospans. Let n ∈ N
be the size of the inner interface.

– Add a node: vertexnk : Dn
#
Dn+1, where 1 ≤ k ≤ n+ 1. This cospan is

defined as:

vertexnk = Dn
φ−→Dn+1

id←− Dn+1, where φ(x) =

{
x if x < k

x+ 1 if x ≥ k.
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– Remove a node from the interface: resnk : Dn
#

Dn−1, where n ≥ 1 and
1 ≤ k ≤ n. This cospan is defined as

resnk = Dn
id−→Dn

φ←− Dn−1, where φ(x) =

{
x if x < k

x+ 1 if x ≥ k.

– Add an edge: connectnA,θ : Dn
#

Dn, where A ∈ Σ is a label and
θ : Nar(A) → Nn is a function which specifies how the new edge is con-
nected to the nodes in the interface. This cospan is defined as

connectnA,θ = Dn
id′−−→G

id′←−− Dn,

whereG = 〈V,E, att , lab〉 with V = Nn, E = {e}, att(e) = θ(1) . . . θ(ar(A))
and lab(e) = A; and id ′(x) = x for x ≤ n.

– Permute the order of the nodes in the interface: permn
π : Dn

#
Dn. This

cospan is defined as

permn
π = Dn

id−→Dn
π←− Dn,

where π : Nn → Nn is a permutation (that is, it is bijective).3

The atomic cospans are graphically depicted in Figure 3. In the following, we
will use the convention that interfaces will be depicted as white-filled rectangles
and center graphs will be depicted as gray-filled rectangles. Note that, for each
atomic cospan c = J −cL�G�cR−K, the cospan c′ = K −cR�G�cL−J , which is
obtained by “flipping” c, is also an atomic cospan: the flipped version of vertexnk
is resn+1

k and vice versa, flipping connectnA,θ has no effect and flipping permn
π

results in permn
π−1 .

Lemma 1. Let c = J −cL�G�cR−K be a cospan such that J,K are discrete
and cL, cR are monos. Then there exist atomic cospans a1, . . . , an such that
c = a1 ; · · · ; an.

In fact, there exist such atomic cospans a1, . . . , an such that the following
condition holds: Let ai = Ii−1 → Hi ← Ii, for 1 ≤ i ≤ n. It holds that |Ii| ≤ |G|
for all 0 ≤ i ≤ n and |Hi| ≤ |G| for all 1 ≤ i ≤ n.

Proof. Let J = Dk, K = Dm and G = 〈V,E, att , lab〉. We can assume without
loss of generality that VG = N|G| and cL(v) = v for every node v of Dk. Assume
furthermore that E = {e1, . . . , en} and define Ai = lab(ei).

3It suffices to consider only the permutations that swap two nodes, but we do not need this
restriction later on.
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Figure 3: Graphical representations of the atomic cospans.

We construct c using the following atomic cospans:

vertexkk ; vertexk+1
k+1 ; · · · ; vertex

|V |−1
|V |−1 ; add enough nodes to the graph

connect
|V |
A1,θ1

; · · · ; connect
|V |
An,θn

; connect nodes with edges

perm |V |π ; move nodes of outer interface
to the front

res
|V |
|V | ; res

|V |−1
|V |−1 ; · · · ; res

|V |−m+1
|V |−m+1 remove appropriate nodes

where the θi are functions θi : {1, . . . , |att(ei)|} → {1, . . . , |V |} where θi(j) returns
the j-th node attached to edge ei. Furthermore π is a bijection on {1, . . . , |V |}
with π(j) = f(j) for 1 ≤ j ≤ m and is arbitrary otherwise.

The second condition of the lemma also holds for the above atomic cospans.
2

4. Path-like Decompositions: Cospan Decompositions

In this section we explore “path-like” cospan decompositions of graphs. Such
decompositions are naturally defined as sequences of cospans, which are composed
to a graph by taking the colimit of the emerging diagram. Equivalently, the
cospans can be iteratively composed into a single cospan, where finally the
interfaces are ignored.

Definition 3 (Cospan decomposition). Let G be a graph and ~c = c1, . . . , cn
be a sequence of composable cospans in the category Graph. The sequence ~c is
a cospan decomposition of G, if Colim(~c) = G.

Note that we now have three related notions: cospan decompositions, which
are sequences of cospans; the single cospan (“graph with interfaces”) which is
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the result of composing the cospans in a cospan decomposition; and the center
graph of this cospan.

We consider the following types of cospan decompositions. The first two
correspond to path decompositions in two different ways: in graph-bag decompo-
sitions the center graphs in the cospans correspond to the bags of Definition 1,
whereas in interface-bag decompositions the interfaces play the role of bags. In
order to make the relation between path and cospan decompositions clearer, we
will only consider decompositions into cospans of injective morphisms in this
paper.

Definition 4 (Type of cospan decomposition). Let ~c be a cospan decom-
position of the graph G.

(i) ~c is a graph-bag decomposition, if all cospans have discrete interfaces and
consists of injective morphisms.

(ii) ~c is an interface-bag decomposition, if it is a graph-bag decomposition,
consist of pairs of jointly node-surjective morphisms4 and it holds for all
edges e of G, with att(e) = v1 . . . vm, that v1, . . . , vm occur together in
some interface.5

(iii) ~c is an atomic cospan decomposition, if it consists only of atomic cospans.

It is clear that the various types of cospan decomposition are strictly contained
in one another, that is:

Atomic ⊂ Interface-bag ⊂ Graph-bag ⊂ All.

Definition 5 (Graph-bag size, interface-bag size). Let c : J → G ← K
be a cospan. We define the graph-bag size and interface-bag size of c as follows:

|c|gb := |VG|
|c|ib := max{|VJ |, |VK |}

Observe, that for all atomic cospans c it holds that |c|gb = |c|ib. For conve-
nience later on, we define |c|at := |c|gb ( = |c|ib).

Now we are ready to define, for all three types of cospan decomposition, a
width:

Definition 6 (Width of cospan decomposition).

4Two morphisms f : A → G and g : B → G are jointly node-surjective, if each node of G
has a pre-image in A or B (along f or g, respectively).

5More formally: let I1, . . . , In be the interfaces of the cospans in ~c and let fj : Ij → G be
the morphisms generated by the colimit. Then there exists an index j and nodes w1, . . . , wm

in Ij such that fj(wi) = vi for i ∈ {1, . . . ,m}.
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• Let ~c = c1, . . . , cn be a cospan decomposition. We define the graph-bag
and interface-bag width of ~c as follows:

wdgb(~c) := max{|ci|gb | 1 ≤ i ≤ n} − 1

wdib(~c) := max{|ci|ib | 1 ≤ i ≤ n} − 1

• Let G be a graph. The graph-bag (cpwdgb(~c)), interface-bag (cpwd ib(~c))
and atomic cospan width (cpwdat(~c)) of G are defined as:

cpwdgb(G) := min{wdgb(~c) | ~c is a graph-bag decomposition of G}
cpwd ib(G) := min{wdib(~c) | ~c is an interface-bag decomposition of G}
cpwdat(G) := min{wdib(~c) | ~c is an atomic cospan decomposition of G}

The main theorem of this section is that, for a given graph, the three notions
of cospan pathwidth are the same, and moreover are the same as the pathwidth
of the graph. First, we show how to transform (cospan) path decompositions
into each other:

Lemma 2.

(i) Let P be a path decomposition of a graph G. There exists a graph-bag
decomposition ~c of G such that wdgb(~c) = wd(P).

(ii) Let ~c be a graph-bag decomposition of G. There exists an interface-bag

decomposition ~d of G such that wdib(~d) = wdgb(~c).

(iii) Let ~c be a graph-bag decomposition of G. There exists an atomic cospan

decomposition ~d of G such that wdat(~d) ≤ wdgb(~c).

(iv) Let ~c be an interface-bag decomposition of G. There exists a path decompo-
sition P of G such that wd(P) = wdib(~c).

Proof.

(i) Let P = 〈P,X〉, with P = 1− · · ·−n and G = 〈V,E, att , lab〉. We construct
the cospan path decomposition ~c = c1, . . . , cn (where ci = Ji−1 → Gi ← Ji,
for 1 ≤ i ≤ n) as follows:

Let Gi = 〈Vi, Ei, att i, labi〉 be the graph which contains the nodes in Xi

and all edges of G which are connected only to nodes of Xi and are not
in some Gj , with j < i. Furthermore, let J0 := ∅ and Jn = ∅ and, for
1 ≤ i < n, let Ji be the discrete graph with node set Vi ∩ Vi+1.

We claim that ~c is a graph-bag cospan path decomposition of G with
wdgb(~c) = wd(P). By construction, there is an injection from every Ji and
Gi into G. Moreover, since P is a path decomposition of G, every node of
G appears in at least one Gi, while every edge appears in exactly one Gi.
Also, since the bags containing a node form a subpath, nodes that appear
in more than one Gi will be fused. Thus, Colim(~c) = G.

Also by construction, each Gi corresponds to some bag Xi. Thus, wd(P) =
wdgb(~c) directly follows.

11



(ii) Define, for a cospan c = J −cL�G�cR−K, the pair of cospans ĉ, č, where

• ĉ = J −c′L�G− �id−G− and

• č = G− −id′�G�cR−K.

where G− is the discrete graph with the same node set as G and c′L and id ′

describe the same mapping as cL and id , respectively, but have different
codomains. We observe that ĉ ; č = c.

Let ~c = c1, . . . , cn. We define ~d := ĉ1, č1, . . . , ĉn, čn. By the observation in
the previous paragraph, it holds that Colim(~c) = Colim(~d).

By construction, one interface of both ĉ and č consists of the nodes of G.
Therefore, both ĉ and č are jointly node-surjective, all nodes of each edge
occur together in some interface, and |ĉ|ib = |č|ib = |c|gb. From this it

follows, that ~d is an interface-bag decomposition and wdib(~d) = wdgb(~c).

(iii) Let ~c = c1, . . . , cn. By Lemma 1, there exist, for 1 ≤ i ≤ n, atomic cospan
decompositions ~ai = ai,1, . . . , ai,mi

such that ai,1 ; · · · ; ai,mi
= ci. Define:

~d = a1,1, . . . , a1,m1
, . . . , an,1, . . . , an,mn

.

It follows directly from the previous observations that Colim(~d) = Colim(~c).

From the second part of Lemma 1 it follows that wdat(~d) ≤ wdgb(~c).

(iv) Let ~c = c1, . . . , cn, where ci = Ji−1 → Gi ← Ji. By assumption,
Colim(~c) = G. Let fi : Ji → G (for 0 ≤ i ≤ n) and gi : Gi → G (for
1 ≤ i ≤ n) be the morphisms given by the colimit construction. We
construct the path decomposition P = 〈P,X〉 as follows: P = 0− · · ·−n,
with Xi = fi(VJi), for 0 ≤ i ≤ n.

This is a path decomposition by the following arguments: First of all, since
Colim(~c) = G and all cospans are jointly node-surjective, all nodes of G
must have a pre-image in some interface Ji along the morphism fi, and
therefore appear in the bag Xi. Since ~c is an interface-bag decomposition,
(the pre-images of) all nodes connected to a single edge must appear
together in some interface and therefore the nodes must appear together
in some bag. Finally, suppose there is a node v of G and bags Xp, Xq and
Xr with p < q < r, such that v has a pre-image in Xp and Xr (over fp
and fr, respectively). Since the colimit construction on graphs takes the
disjoint union and then factors through the smallest equivalence relation
which equates nodes that have a common pre-image, it must be the case
that Xq contains a pre-image of v (along fq).

From the facts that, by construction, Xi = fi(VJi), and all fi are injective,
it follows that wd(P) = wdib(~c). 2

Theorem 3. For every graph G,

pwd(G) = cpwdgb(G) = cpwd ib(G) = cpwdat(G).

12



Proof. First of all, because atomic cospan decompositions are also graph-bag
and interface-bag cospan decompositions, and it easy to check that for an atomic
cospan decomposition ~c, wdgb(~c) = wdib(~c), it follows for all graphs G that

cpwdgb(G) ≤ cpwdat(G) and cpwd ib(G) ≤ cpwdat(G).

Together with Lemma 2 (iii) it follows that

cpwdgb(G) ≥ cpwdat(G) ≥ cpwdgb(G). (1)

From Lemma 2 (i), (ii) and (iv) it follows that

pwd(G) ≥ cpwdgb(G) ≥ cpwd ib(G) ≥ pwd(G). (2)

The theorem follows directly from equations (1) and (2). 2

Example 2. As an example we take the graph GP and the corresponding path
decomposition P of Example 1. We use the path decomposition to construct
a graph-bag decomposition of GP . For each of the two bags in P we take a
cospan where the center graph of the first cospan is the 3-clique and the center
graph of the second cospan contains the edge from the third to the fourth node.
The inner interface of the first cospan and the outer interfaces of the second
cospan are both empty graphs, while the outer interface of the first cospan
(which is the inner interface of the second cospan) contains the third node which
is the intersection of both subgraphs. The resulting graph-bag decomposition
is depicted in Figure 4a. The graph-bag width of GP is 2, since the resulting
graph-bag decomposition has graph-bag size 2, and the graph-bag size of every
other graph-bag decomposition must have at least size 2 due to the 3-clique
which has to be contained in at least one center graph.

An interface-bag decomposition for the same graph is shown in Figure 4b.
Note that it indeed satisfies the conditions of Definition 4: specifically each
cospan is jointly node-surjective and all nodes attached to an edge live together
in at least one bag. The interface-bag width of GP is 2, due to the fact that
the given interface-bag decomposition has interface-bag width 2 and any other
interface-bag decomposition has to contain the nodes of the 3-clique in at least
one interface.

Please note that in both cases, the graph-bag and the interface-bag decompo-
sition, the bags of each decomposition (the center graphs in the first case and the
interfaces in the second case) correspond to the bags of the path decomposition
of GP .

To construct the atomic decomposition we decompose the cospans of the
graph-bag decomposition into atomic cospans. This is possible due to Lemma 1:

vertex 0
1 ; vertex 1

2 ; vertex 2
3 ; connect3

12 ; connect3
13 ; connect3

23 ;

res3
0 ; res2

0 ; vertex 1
2 ; connect2

12 ; res2
0 ; res1

0,

where we write connectnij for connectn�,θ with θ(1) = i, θ(2) = j.
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(a) Graph-bag decomposition of GP
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(b) Interface-bag decomposition of GP

Figure 4: Graph-bag and interface-bag decomposition of GP

5. Automata for Cospan Decompositions

In [5] an automaton model operating on decompositions in a general categor-
ical setting was defined: automaton functors. In order to compare the language
class accepted by them with the language class accepted by graph-accepting tree
automata later on, in this section we briefly recapitulate this notion, instantiated
to the category of cospans of graphs (we will call an automaton functor in this
category a graph automaton).

Definition 7 (Graph automaton). A graph automaton is a structure A =
〈A0, I, F 〉, where

• A0 : Cospan(Graph) → Rel is a functor which maps every graph G to
a finite set A0(G) (the state set of G) and every cospan c : G

#
H to a

relation A0(c) ⊆ A0(G)×A0(H) (the transition function of c),

• I ⊆ A0(∅) is the set of initial states and

• F ⊆ A0(∅) is the set of final states.

For a graph G or a cospan c we will, in the following, usually write A(G) and
A(c) instead of A0(G) and A0(c), respectively.

A cospan c : ∅ # ∅ is accepted by A, if 〈q, q′〉 ∈ A(c) for some q ∈ I and
q′ ∈ F . The language accepted by A, denoted by L(A), contains exactly the
cospans accepted by A. The graph language accepted by A is defined as

G(A) =
{

Colim(c) | c ∈ L(A)
}
.

The intuition behind the definition is to have a mapping into a finite domain
that respects compositionality and identities, that is, which is a functor. Note
that, if we replace the category Cospan(Graph) by the monoid over an alphabet
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Σ, the above definition exactly corresponds to finite (non-deterministic) word
automata. Whereas words have canonical decompositions into atomic words
(letters), this is not the case for graphs. The functor property ensures that
decomposing a cospan in different ways does not affect acceptance.

Note that proving that a given structure has the functor property is often
non-trivial. For a useful implementation we would need an input language that
enables the user to specify correct graph automata easily. As a first step in
this direction, in [18] a translation from logic formulas to graph automata was
defined.

The recognizable languages are those graph languages which are accepted
by a graph automaton. Due to a result of [5] the notion of recognizability does
not change if we restrict Cospan(Graph) to discrete objects and cospans with
injective legs, that is, if we consider only nodes in the interface and those nodes
are mapped injectively to the center graph. (Hence each node is offered to the
environment only once.) In the following we will work in this restricted setting.

Example 3 (k-colorability). Let G be a graph. A k-coloring of G is a function
f : VG → Nk such that for all e ∈ EG and for all v1, v2 ∈ attG(e) it holds that
f(v1) 6= f(v2) if v1 6= v2. The following graph automaton C = 〈C0, I, F 〉
recognizes the k-colorable graphs:

• Every discrete graph J is mapped to C(J), the set of all valid k-colorings
of J . Since J is discrete, this amounts to the entire function space from
VJ to Nk: C(J) = NVJ

k .

• For a cospan c : J → G← K the relation C(c) relates two colorings fJ , fK ,
whenever there exists a valid coloring f for G such that f(cL(v)) = fJ(v)
for every node v ∈ VJ and f(cR(v)) = fK(v) for every node v ∈ VK .

Specifically we have that C(∅) = {∅} where ∅ is the empty coloring. Then in
order to accept all k-colorable graphs with empty interfaces we take I = F = {∅}:
a cospan c : ∅ # ∅ is accepted whenever the two empty mappings are related.

The graph automaton can be understood as follows: it sequentially reads
(a decomposition of) the graph. For each new node it encounters, it non-
deterministically chooses a color. The graph is k-colorable if this is possible until
the entire graph has been read.

In Figure 5, two states of the 3-colorability automaton functor are shown.
In the first state, node 1 is colored with the first color (indicated by a circle),
node 2 by the second color (indicated by a square) and node 3 by the third
color (indicated by a triangle). Assume that the next symbol is vertex 3

4. The
automaton non-deterministically goes into the next state, which has four nodes
in the interface. Nodes 1–3 are colored with the same colors as before, whereas
the new node can be colored by any of the colors (so there are three possible
successor states). Let us assume that the new node is “colored” square. Now, let
the next cospan of the input be connect4

14. This cospan is mapped to a relation
which relates the (current) state with itself, since the coloring of the current
state is also a valid coloring for the successor state, because the added edge is
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3

1 2

3 4

. . .
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vertex 3
4

vertex 3
4

vertex 3
4

connect4
24

connect4
24

Figure 5: Example of state transitions of the 3-colorability automaton functor

incident to the first and the forth interface node which have different colors. The
second input cospan, connect4

24, is mapped to a relation which does not relate
the state shown in Figure 5 to another state, since the second and the fourth
interface node which are incident to the added edge, have the same color. Hence,
there is no valid coloring.

When we restrict to graphs of bounded pathwidth, graph automata can be
explicitly represented as a (sometimes huge) finite automaton by taking the
atomic cospans as the alphabet and considering cospan decompositions as words
over this alphabet. See also [19, 20].

6. Tree-like Decompositions: Star and Costar Decompositions

In this section we repeat the work of Section 4 for tree-like “cospan”-
decompositions. We define stars and costars as generalizations of spans and
cospans, respectively. A star S = Lf1, . . . , fnM is a finite sequence6 of morphisms
with the same domain, while a costar C = Lf1, . . . , fnM is a finite sequence of mor-
phisms with the same codomain. We will consider a cospan c : J −cL�G�cR−K
as a special case of a costar, with c = LcR, cLM.

I

G1

G2 G3

G

I1

I2 I3

Star Costar

Similar to cospans, costars can be seen as graphs with interfaces, of which in
the case of costars there can be arbitrarily many. Intuitively, two costars can be
composed over specific tentacles i and j which have the same interface K, by

6We define stars and costars as sequences of morphisms so that a) one morphism can occur
more than once in the same star; and b) we can uniquely identify the tentacles of the star or
costar by specifying its index.
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glueing their center graphs together at K and removing the tentacles i and j.
Formally:

Definition 8 (Costar composition). Let C = Lf1, . . . , fnM be a costar with
center graph G = cod(f1) and D = Lg1, . . . , gmM a costar with center graph
H = cod(g1). Furthermore, let 1 ≤ i ≤ n and 1 ≤ j ≤ m be given such that
dom(fi) = dom(gj). The composition of C and D over tentacles i and j, denoted
by C ;i,j D, is defined as:

C ;i,j D = Lf1 ; µC , . . . , fi−1 ; µC , fi+1 ; µC , . . . , fn ; µC ,

g1 ; µD, . . . , gj−1 ; µD, gj+1 ; µD, . . . , gm ; µDM,

where µC : G → E and µD : H → E are obtained by taking the pushout of fi
and gj , as shown in the following diagram:

G

K

H

fi gj

E
µC µD

(po)

where K = dom(fi) = dom(gj).

Note that the tentacles over which two costars are composed are hidden by
the composition operation. This has the effect that the indices of the other
tentacles may change in an unexpected way. For example, let C = Lf1, f2, f3M
and D = Lg1, g2M. Then C ;2,1 D = Lf1 ; µC , f3 ; µC , g2 ; µDM. Here, the second
tentacle corresponds to the third tentacle of C, and the third tentacle corresponds
to the second of D.

We define three types of tree-like decompositions: costar decompositions,
star decompositions and atomic star decompositions. The names of the first two
relate to the form of the stars (joins) in the tree; the third one is a special case
of the second. Where a cospan can be seen as a graph with two interfaces, a
costar can be seen as a graph with an arbitrary number of interfaces. A costar
decomposition is a decomposition into costars, where costars are connected via
the interfaces in such a way that they form a tree. Note that the edges of this
tree are spans. On the other hand, a star decomposition is a decomposition into
stars, where the edges of the corresponding tree-like structure correspond to
cospans (see also Figure 6). As in the case of cospan decompositions, we restrict
our attention to injective morphisms.

Definition 9 (Costar decomposition, star decomposition).

(i) A costar decomposition is a tuple C = 〈T, τ〉, where T is a tree and τ is
function which maps each node t of T to a graph and each edge b = {t1, t2}
of T to a span of injective morphisms

τ(b) = τ(t1)
ϕb,t1←−−− Jb

ϕb,t2−−−→ τ(t2).

A costar decomposition C is a costar decomposition of G if Colim(C) = G.
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(ii) A star decomposition is a tuple S = 〈T, τ〉, where T is a tree and τ is
function which maps each node t of T to a discrete graph J and each edge
b = {t1, t2} to a cospan

τ(b) = τ(t1)→ Gb ← τ(t2),

which consists of a pair of jointly node-surjective, injective morphisms.

A star decomposition C is a star decomposition of G if Colim(C) = G
and additionally it holds for all edges e of G, with att(e) = v1 . . . vm, that
v1, . . . , vm occur together in τ(t) for some t ∈ VT .

(iii) An atomic star decomposition is a star decomposition 〈T, τ〉 such that τ(b)
is an atomic cospan for all edges b of T .

In the case of cospan decompositions we had a clear hierarchy of the various
decomposition types. In the case of tree-like decompositions, however, this is
not the case: the sets of star and costar decompositions are not related with
respect to inclusion. However, by definition, each atomic star decomposition is
also a star decomposition.

Definition 10 (Width of (co)star decomposition). Let S = 〈T, τ〉 be a
costar decomposition or a star decomposition. The width of S is defined as

wd?(S) = max
v∈VT

|τ(v)| − 1.

Note, that Definition 10 bases the width of costar decompositions on the (non-
interface) graphs they contain, while it bases the width of star decompositions
on the interfaces. In both cases, however, the width of a decomposition depends
on the size of the graphs that are in the image of the nodes of the tree T .

Definition 11 (Costar width, star width). Let G be a graph. The costar
width (ctwdco?(G)), star width (ctwd?(G)) and atomic star width (ctwdat?(F ))
of G are defined as follows:

ctwdco?(G) = min{wd?(C) | C is a costar decomposition of G}
ctwd?(G) = min{wd?(S) | S is a star decomposition of G}

ctwdat?(G) = min{wd?(S) | S is an atomic star decomposition of G}

A fourth possibility would be to define a kind of star decomposition, which
lacks the requirement that the cospans on the edges are jointly node-surjective,
but whose width is measured by the sizes of the middle graphs of the cospans
instead of the middle graphs of the stars. This would result in the same notion
of width. However, since this would not result in a nice direct correspondence to
tree decompositions, we have left it out.

As in the previous section, the various notions defined in this section are
equivalent to the notion of treewidth.
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Lemma 4.

(i) Let T be a tree decomposition of G. There exists a star decomposition S
of G such that wd?(S) = wd(T ).

(ii) Let S be a star decomposition of G. There exists a costar decomposition C
of G such that wd?(C) = wd?(S).

(iii) Let C be a costar decomposition of G. There exists a tree decomposition T
of G such that wd(T ) = wd?(C).

(iv) Let S be a star decomposition of G. There exists an atomic star decompo-
sition S ′ of G such that wd?(S ′) = wd?(S).

Proof.

(i) Let T = 〈T,X〉. We choose an arbitrary total ordering < on the edges
of T . We construct the star decomposition S = 〈T, τ〉, where T is the
tree component of T and τ is defined as follows: For each node t ∈ VT
of T , we define τ(t) = 〈Xt,∅,∅,∅〉, that is the discrete hypergraph
with node set Xt. For each edge b = {t1, t2} ∈ ET we define τ(b) =
τ(t1) −id′�Gb �id′′− τ(t2), where Gb is the graph with node set Xt1 ∪Xt2

which contains those edges of G which are not contained in (the center graph
of) some cospan τ(b′), where b′ < b, and id ′ and id ′′ are the respective
embeddings.

Now we need to show that S is a star decomposition of G. Let a graph
G′ and, for each node t ∈ VT and edge b = {t1, t2} ∈ ET of T , morphisms
ft : τ(t)→ G′ and fb : Gb → G′ be given. We define a mediating morphism
h : G→ G′.

Since the bags containing a node of G form a subtree of T , and every
node of G occurs in some bag, for each node v of G the set {v′ ∈ VG′ |
fx(v) = v′ for some x ∈ VT ∪ ET }7 must be a singleton (otherwise the
diagram does not commute). Let w be the only element of the singleton.
We must take h(v) := w (otherwise the diagram does not commute). By
construction, every edge e ∈ EG of G occurs in the domain of exactly one
fb. We must take h(e) := gb(e) (otherwise h is not a morphism). Now, h
is the desired morphism, and it is unique, so G = Colim(S).

Because the bags of T correspond one-to-one to (the node sets of) the
graphs τ(t) of T , it is clear that wd?(S) = wd(T ) and for all edges e ∈ VG
it holds that the nodes adjacent to e occur together in τ(t) for some t ∈ T .

(ii) Let S = 〈T, τS〉. We choose an arbitrary total ordering < on the nodes
of T ; let VT = {t1, . . . , tn}, with t1 < · · · < tn. Let ft : τS(t) → G and

7Note that, by construction, the node and edge sets of the graphs occurring in the tree
decomposition, are subsets of node and edge sets of G, respectively. Therefore, fx can actually
be applied to v.

19



fb : Gb → G, where τS(b) = J → Gb ← K, be the morphisms given by the
colimit construction.

First we define a “skeleton” costar decomposition B = 〈T, τB〉, where τB is
defined as follows:

• for all tree nodes t ∈ VT , τB(t) := τS(t);

• for all tree edges b = {t1, t2} ∈ ET , where τS(b) = J −φ�G�ψ−K,
we define τB(b) := J �φ′−G′ −ψ′�K, where G′ is obtained by taking
the pullback of φ and ψ.

Now, we construct the final costar decomposition C = 〈T, τC〉 by adding
the edges to appropriate graphs. For all t ∈ VT , τC(t) is built from τB by
adding all edges of G of which the adjacent nodes all have a pre-image
(along ft) in τC(t), but which have no pre-image in τC(t

′) for some t′ < t.

Since the “bags” of C correspond one-to-one to the “bags” of S, wd?(C) =
wd?(S). Furthermore, by construction, nodes of the graph τS(t) which
were mapped to the same node by the morphisms in the cospan τS(b), are
the image of the same node along the morphisms of the span τC(b). Since
all the edges of G are in the image of exactly one fb, it must be the case
that Colim(C) = Colim(S).

(iii) Let C = 〈T, τ〉. By assumption, G = Colim(C). Let, for each t ∈ VT and
{t1, t2} ∈ ET , ft : τ(t) → G and f{t1,t2} : J{t1,t2} → G be the morphisms
given by the colimit construction.

We construct the tree decomposition T = 〈T,X〉, where T is the tree from
C. If τ(t) = H, then we let Xt := ft(VH). We show that the structure thus
constructed is a tree decomposition of G.

First of all, since G = Colim(C), every node of G must have a pre-image
along some ft, thus every node of G occurs in some bag Xt. Since interfaces
are discrete, every edge of G occurs in the domain Gt of exactly one ft,
and thus the nodes adjacent to this edge occur together in Xt.

Furthermore, assume that for some node v the subgraph of bags of which v
is an element do not form a subtree of T . That is, there are tree nodes t, t′

and a tree node u on the path between t and t′ such that v ∈ Xt, v ∈ Xt′

but v /∈ Xu. Then we can show that G 6= Colim(C) in a similar way as in
the proof of Lemma 2 (iv).

(iv) By Lemma 1, we can transform any cospan with discrete interfaces and
injective morphisms into an atomic cospan decomposition. That is, we can
transform the edges of a star decomposition (labeled with cospans) into
paths labeled with atomic cospans. 2

Theorem 5. For every graph G,

twd(G) = ctwdco?(G) = ctwd?(G) = ctwdat?(G).
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Proof. It follows from Lemma 4 (iv) and the fact that every atomic star
decomposition is a star decomposition, that

ctwd?(G) = ctwdat?(G). (3)

Furthermore, from Lemma 4 (i)–(iii), the following inequalities follow:

twd(G) ≥ ctwd?(G) ≥ ctwdco?(G) ≥ twd(G). (4)

The derived result follows directly from (3) and (4). 2

Example 4. We consider the graph GT and the tree decomposition T of Ex-
ample 1. In order to construct a star decomposition of GT , we take a cospan for
each of the four edges (of the tree) of T . The interfaces of these four cospans are
the discrete graphs corresponding to the bags. The center graph of each cospan
is the subgraph containing the nodes of both the inner and the outer interface
of the cospan and (possibly) edges connecting these nodes. It has to be ensured
that each edge occurs exactly once. This leads to the star decomposition shown
in Figure 6a. Since the width of the given star decomposition has size 2 and the
nodes of the 3-clique has to be contained together in at least one interface of
any star decomposition, the star width of GT is 2.

The costar decomposition can be obtained from the star decomposition. Each
of the four cospans of the star decomposition is converted into a span. The
inner and the outer graph of each span contain the nodes of the corresponding
cospan interfaces plus additional edges. (Note that due to the conditions on
star decompositions, each edge can be “shifted” into at least one interface.) The
center graph of the span is then the discrete graph obtained by the intersection of
the inner and the outer graphs of the span. The resulting costar decomposition
is shown in Figure 6b. The costar width of GT is 2 due to the fact that the
given costar decomposition has size 2 and that any costar decomposition must
contain the 3-clique in some graph of at least one span.

More details concerning the conversion of the various tree and star decompo-
sitions into each other can be found in the proof of Lemma 4.

7. Term Decompositions

Our aim in the next section will be to define graph automata that operate on
tree-like decompositions. On the one hand we have the tree-like decompositions
of Section 6. On the other hand, however, we have tree automata which operate
on terms rather than trees. Although there is a clear correspondence between
trees and terms, some gaps have to be filled. That is what we do in this section,
by defining term decompositions of graphs.

Definition 12 (Graph term). The set of sorts we employ is the set of natural
numbers including zero, that is S = {0, 1, 2, . . .}. A graph term is a many-sorted
term over the signature Ops, which contains (with some overloaded notation)
the following function symbols:
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(b) Costar decomposition of GT

Figure 6: Star and costar decomposition of GT

• vertexnk : n→ n+ 1, for each n ∈ S and 1 ≤ k ≤ n+ 1;

• resnk : n→ n− 1, for each n ≥ 1 ∈ S and 1 ≤ k ≤ n;

• connectnA,θ : n→ n, for each label A ∈ Σ and each n ≥ ar(A) and function
θ : Nar(A) → Nn;

• permn
π for each n ∈ S and permutation π : Nn → Nn;

• joinn : 〈n, n〉 → n for each n ∈ S.

The first four of the function symbols in Definition 12 correspond to the atomic
cospans; in the following we will implicitly convert between the cospans and the
functions symbols. The last one plays the role of stars in star decompositions: it
allows branching. Note that holes (2n) can also occur in graph terms.

We will now define how to translate graph terms into costars. Note that for a
term t : 〈m1, . . . ,mn〉 → m0 the first morphism of the costar will correspond to
the root of the term (and has domain Dm0

), whereas the remaining n morphisms
will correspond to the holes (and have domains Dmi).

Definition 13 (Term decomposition of a graph).

(i) Let t be a graph term. The costar of t, denoted Costar(t), is recursively
constructed as follows:
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• If t = 2n, then Costar(t) = LidDn , idDnM.
• If t = f(t′), where f : m→ n and t′ : ~q → m, then

Costar(t) = f ;2,1 Costar(t′)

where f is the atomic cospan (see Section 3) corresponding to the
function symbol f (viewed as a costar).

• If t = joinn(t1, t2), then

Costar(t) =
(
LidDn

, idDn
, idDn

M ;3,1 Costar(t1)
)

;2,1 Costar(t2)

(ii) A graph term t is a term decomposition of a graph G when G is the center
graph of Costar(t).

Similar to other types of decomposition we define the width of a term
decomposition and the term width of a graph as follows:

Definition 14.

(i) The width of a term decomposition t, denoted by wd(t), is the highest
type which occurs in it minus 1; formally wd(t) = hi(t)− 1, where hi(t) is
inductively defined by:

hi(2n) = n hi(resnk (t)) = max{n, hi(t)}
hi(joinn(t1, t2)) = max{n, hi(t1), hi(t2)} hi(connectnA,θ(t)) = max{n, hi(t)}

hi(vertexnk (t)) = max{n+1, hi(t)} hi(permn
π(t)) = max{n, hi(t)}

(ii) The term width of a graph G is defined as:

tmwd(G) = min{wd(t) | t is a term decomposition of G}.

Example 5. A term decomposition of the graph GT of Figure 2 is the following:

res1
1(res2

2(res3
3(connect3

12(connect3
23(connect3

31(vertex 2
3(vertex 1

2(
res2

1(connect2
12(vertex 1

2(
join1(

res2
2(connect2

12(vertex 1
1(res2

1(connect2
12(vertex 1

1(vertex 0
1(20)))))))

,
res2

2(connect2
12(vertex 1

1(res2
1(

join2(
res3

3(connect3
13(connect3

32(vertex 2
1(vertex 1

1(
vertex 0

1(20))))))
,
res3

3(connect3
23(connect3

31(vertex 2
1(vertex 1

1(
vertex 0

1(20))))))
)

))))
)

)))
)))))))
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The width of this term decomposition is 2. As in earlier examples, we write
connectnij for connectn�,θ, where θ(1) = i and θ(2) = j.

Because of the natural correspondence between trees and terms, it is no
surprise that the notion of term width and the notion of atomic costar width
introduced in Section 6 are equivalent.

Proposition 6. For every graph G, tmwd(G) = ctwdat?(G).

Proof (Sketch). We prove the proposition by translating every term decom-
position of size k into an atomic star decomposition of size k and vice versa.

(⇒): To translate a term decomposition into an atomic star decomposition
we can proceed recursively and compose the results of the recursive calls similar
to Definition 13.

(⇐): Given an atomic star decomposition we can non-deterministically pick
a root, then turn every cospan in the tree so that its outer interface is pointed
towards the root (we can do this because, as observed on page 8, the inverse of
each atomic cospan is also an atomic cospan) and then recursively transforming
all the subtrees into a term. 2

8. Automata for Term Decompositions

In this section we define automata which define graph languages via their
term decompositions, and we show that they accept the same language class as
the graph automata defined in Section 5.

Definition 15 (Consistent tree automaton). A consistent tree automaton
is a structure M = 〈Q,∆, I, F 〉, such that 〈Q,Ops,∆, I, F 〉 is an N-sorted tree
automaton and the following conditions apply:

• for all terms t1, t2 ∈ T (Ops) of the same type it holds that ∆̂t1 = ∆̂t2 if
Costar(t1) = Costar(t2) (structural consistency);

• for all term decompositions t1 : 〈0, . . . , 0〉 → 0 and t2 : 〈0, . . . , 0〉 → 0 8 such
that Colim(Costar(t1)) = Colim(Costar(t2)) it holds that t1 ∈ L(M) if
and only if t2 ∈ L(M) (semantic consistency); and

• all initial and final states are in Q0, that is, Ik = ∅ and Fk = ∅ for all
k ≥ 1.

Analogous to graph automata, the graph language of a consistent tree automaton
M is defined as G(M) = {Colim(t) | t ∈ L(M)}.

8Note, that the types of t1 and t2 are not necessary equal, that is the lengths of the
0-sequences may be different.
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The structural consistency condition corresponds to the functor property of
graph automata in Definition 7: it says that the automaton behaviour for a graph
with interfaces does not depend on the specific way the graph is decomposed into
a term decomposition. In the case of the graph automata the functor property
was enough because all cospans have exactly two interfaces, so we only have
to test whether ∅ → G ← ∅ is accepted. However, a graph may have term
decompositions of different types, for example one of type 〈0, 0〉 → 0 and one of
type 〈0, 0, 0〉 → 0. The semantic consistency condition is needed to make sure
that also in this case the acceptance of a graph does not depend on its specific
term decomposition.

As with graph automata, checking that a given structure satisfies the consis-
tency conditions is non-trivial. Supplying building blocks that enable users to
easily specify consistent tree automata is ongoing research.

Example 6. Consider the graph automaton accepting k-colorable graphs of
Example 3. Let k ∈ N be given. We define the consistent tree automaton
M = 〈Q,Ops,∆, I, F 〉, as follows:

• Qn = NNn

k , that is, Qn is the set of all k-colorings of the discrete graph
with n nodes.

• I = F = Q0, that is, all states in Q0 are both initial and final states.

• For f ∈ Ops\{joinn | n ∈ N}, ∆f = C(cf ), where C is the graph automaton
from Example 3 and cf is the atomic cospan which corresponds to f .

• ∆joinn(q, q) = {q} and ∆joinn(q, q′) = ∅ for q 6= q′.

Now, M recognizes k-colorable graphs.

In the rest of this section we prove the following theorem, which relates
the notion of consistent tree automaton to the notion of graph automaton of
Definition 7.

Theorem 7. Let L be a graph language. L is accepted by a consistent tree
automaton if and only if L is accepted by a graph automaton.

The left-to-right case of the theorem is easily proved, because (modulo
some technicalities) a graph automaton can be obtained from a consistent tree
automaton by ‘forgetting’ the transition functions for join. For the proof of the
other direction we require some auxiliary machinery. First, we need an operation
which composes two cospans in parallel by gluing over their common interface,
that is, for cospans c1, c2 : ∅ #

J , we need to glue them together over J but
keep J as the interface.

Definition 16. Let c1 : ∅ −e1� G1 �a1− J and c2 : ∅ −e2� G2 �a2− J be two
cospans, where J is a discrete graph. We define the cospan

c1 // c2 : ∅→ G← J = 〈e, a1 ; a′1〉

by constructing a pushout as follows:
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J

G1 G2

G

∅ ∅

∅

(po)

a1

a′1

a2

a′2

e1 e2

e

We define, for a given graph automaton A, the equivalence relation ≡A as
follows: c1 ≡A c2 if A(c1) = A(c2).

Lemma 8. The equivalence relation ≡A is a congruence, that is, if c1 ≡A c′1
and c2 ≡A c′2 then:

(i) c1 ; c2 ≡A c′1 ; c′2 and

(ii) c1 // c2 ≡A c′1 // c′2.

Proof. Let A = 〈A0, I, F 〉.

(i) Follows directly from the fact that A0 is a functor.

(ii) Define, for a cospan d : ∅ #
J with d = 〈dL, dR〉, the cospan d̂ : J

#
J by

d̂ = 〈dR, dR〉.
Consider the diagram of Definition 16. It is the case that c1 ; ĉ2 = 〈e1 ;
a′1, a2 ; a′2〉. Furthermore, c1 // c2 = 〈e, a1 ; a′1〉 = 〈e, a2 ; a′2〉. Since the
graph morphism from ∅ to G is unique, it holds that c1 // c2 = c1 ; ĉ2.
Now assume c1 ≡A c′1 and c2 ≡A c′2. Note also that the definition of
c1 // c2 is completely symmetrical, and thus c1 // c2 = c2 // c1. Now we
have:

c1 // c2 = c1 ; ĉ2 ≡A c′1 ; ĉ2 = c′1 // c2 = c2 // c
′
1 = c2 ; ĉ′1

≡A c′2 ; ĉ′1 = c′2 // c
′
1 = c′1 // c

′
2,

as required. 2

The translation from graph automata to consistent tree automata is carried
out by the following construction. Note that it follows the same pattern as the
construction of a finite automaton from the Myhill-Nerode equivalence classes of
a language. In our case the equivalence is provided by the graph automaton A
and is used to define equivalence classes of cospans of the form ∅ #

Di which
then serve as states. Note that for a fixed i the number of these equivalence
classes is finite since A maps (interface) graphs to finite (state) sets and there
are only finitely many relations between two given finite sets.

Definition 17. Let a graph automaton A = 〈A0, IA, FA〉 be given, and let [[c]]
denote the ≡A-equivalence class of c. We construct the consistent tree automaton
MA = 〈Q,∆, IM, FM〉 with:
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• Qi = {[[c]] | c : ∅ #
Di}.

• IM = {[[id∅ : ∅ # ∅]]}.

• FM = {[[c]] | c ∈ L(A)}.

• ∆2k
([[c]]) = {[[c]]}, for c : ∅ #

Dk.

• For all f ∈ Ops \ {joinn | n ∈ N}, ∆f ([[c]]) = {[[c ; cf ]]}, where cf is the
cospan corresponding to the function symbol f .

• ∆joink([[c1]], [[c2]]) = {[[c1 // c2]]}, for c1, c2 : ∅ #
Dk.

The construction of Definition 17 is well-defined because ≡A is a congruence
(see Lemma 8). Observe that, by construction, ∆t is deterministic for all terms,
that is, it evaluates to a singleton.

Definition 18. Let C = Lg, f1, . . . , fnM be a costar, where g : J → G and
fi : Ki → G (for i ∈ {1, . . . , n}). Furthermore, let c1, . . . , cn be cospans with
ci : ∅

#
Ki (for i ∈ {1, . . . , n}). We define the cospan

C(c1, . . . , cn) = ∅ !G′−−→G′
g′←− J,

where g′ : J → G′ is the first tentacle of the composed costar

Lg′, !G′ , . . . , !G′M = (· · · (C ;2,1 c1) · · · ) ;2,1 cn.

Lemma 9. Let A be a graph automaton andMA = 〈Q,∆, IM, FM〉 a consistent
tree automaton as constructed by Definition 17. Furthermore, let t : 〈k1, . . . , kn〉 →
k0 be a term decomposition and take Ct = Costar(t). For all cospans c1, . . . , cn
with ci : ∅

#
Dki (i ∈ {1, . . . , n}) it holds that

∆̂t([[c1]], . . . , [[cn]]) =
{q
Ct(c1, . . . , cn)

y}
.

Proof. By structural induction on t. 2

Proposition 10. Let A be a graph automaton. MA as defined in Definition 17
is a consistent tree automaton.

Proof. Let MA = 〈Q,∆, IM, FM〉. The structural consistency condition
follows from the fact that, by Lemma 9, the transition function ∆t depends only
on Costar(t).

To show the semantical consistency condition, observe that for costars

C1 = Lf,

n times︷ ︸︸ ︷
!G, . . . , !GM and C2 = Lf,

m times︷ ︸︸ ︷
!G, . . . , !GM

where f : J → G, it holds that C1(id∅, . . . , id∅) = C2(id∅, . . . , id∅). Since, for
term decompositions t : 〈0, . . . , 0〉 → 0, the costar Costar(t) is of this form, also
the semantical consistency condition follows from Lemma 9. 2
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Now we have the necessary machinery to prove Theorem 7.

Proof (of Theorem 7). (⇒): Let M = 〈Q,∆, I, F 〉 be a consistent tree
automaton. We observe that all function symbols of the signature except joinn

are unary, and therefore terms that do not contain joinn are isomorphic to cospan
decompositions. Thus, by Lemma 1, every graph has a term decomposition
which does not contain any occurrence of joinn.

Therefore we can build a graph automaton from M by mapping each cospan
c to the relation ∆̂(t), where t is a term (without joinn) isomorphic to c. Well-
definedness of this definition and functoriality of the resulting graph automaton
follow from the consistency condition on M.

(⇐): Let a graph automaton A = 〈A0, I, F 〉 be given and let MA =
〈Q,∆, IM, FM〉 be the consistent tree automaton constructed as in Definition 17.
By Proposition 10 MA is a consistent tree automaton which, in particular,
satisfies the structural and semantic consistency conditions. It remains to show
that MA and A accept the same language.

Let G be a graph, c : ∅ # ∅ a cospan decomposition of G and t : 〈0, . . . , 0〉 →
0 a term decomposition of G. Suppose c = c1 ; · · · ; cn. We define t′ =
cn(· · · (c1(20)) · · · ). By construction it holds that Costar(t′) = c (where the
cospan c is interpreted as a costar consisting of two tentacles). Because all the
interfaces of Costar(t) and of c are empty, and the center graph of both is G, it
must hold by the semantic consistency condition that t ∈ L(M) if and only if
t′ ∈ L(M). By construction it holds that ∆t′([[id∅]]≡) = {[[c]]≡}. Thus:

t ∈ L(MA)⇐⇒ t′ ∈ L(MA)⇐⇒ ([[id∅]]≡ ∈ I and [[c]]≡ ∈ F )⇐⇒ c ∈ L(A),

as required. 2

9. Conclusion

We have shown how to convert the graph-theoretical notion of path de-
compositions into cospan decompositions, and tree decompositions into star
or costar decompositions. As we have seen there are indeed several possible
choices, mainly depending on whether we identify bags with interfaces or with
the center graph in a cospan. Furthermore there is in addition the notion of
decomposition into atomic cospans, which can be viewed as atomic building
blocks. The investigations in this paper have their origin in a Master’s thesis
[21].

Since the notion of tree decomposition and treewidth has many applications
in graph theory, we expect that some of these applications are also useful in a
more graph transformation oriented setting. As exhibited by our application we
are specifically interested in using path and tree decompositions for recognizable
graph languages [4] or – more specifically – for graph automata acting as acceptors
of graph languages.

The idea of using (tree) automata for such purposes is not new, it has already
been advocated in the work of Courcelle [22]. Our contribution here is to recast
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those automata in a categorical cospan setting, closer to the algebraic theory
of graph rewriting. Furthermore one of our main results is that tree automata
do not accept more graph languages than word automata, hence the notion of
recognizability for path and tree decompositions coincides.

Still, working with tree decompositions can be profitable, since it allows
to consider smaller interfaces, thus reducing the size of the state sets which
grow exponentially in the width of the decomposition. On the other hand path
decompositions avoid the often costly join operation and hence often have a
benefit in practice.

For implementation purposes, we have to bound the width of the considered
decompositions – and thus the path width of the accepted graphs – in order
to obtain automata with a finite state set. We are currently working on an
implementation that is based on atomic cospan decompositions, meaning that we
work with (non-deterministic) finite automata which process sequences of atomic
cospans (see the atomic cospan decomposition of Example 2). Furthermore we
are using binary decision diagrams in order to fight state explosion.

Finally, let us remark that we did not treat the question of how to obtain
such path or tree decompositions, given a single, monolithic graph. This is a
non-trivial problem that has been studied by Bodlaender et al. [23, 24]. It can
be shown that for a fixed parameter k it can be checked in linear time (in the
size of the graph), whether the given graph has pathwidth or treewidth smaller
than k. Furthermore the respective decompositions can be obtained in linear
time. However, despite their good runtime behaviour in theory, these algorithms
are not really practical, which means that heuristics are used in practice.

Acknowledgements. We thank the anonymous referees for their valuable remarks
about the submitted version of this paper.
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