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Abstract

The aim of this thesis is to provide verification techniques based on formal language
theory and graph theory for graph transformation systems. Graph transformation
systems can be used in a large number of application areas. In many cases it is very
natural to model concurrent and distributed systems or other systems, where evolving
graph-like structures play a role, by means of graph transformation systems. However,
systems which are modelled by graph-like structures usually have an additional level of
complexity compared to rule-based systems where states have either a word or tree
structure. But since these latter structures have a well-established theory which can
be used for several verification techniques, it is natural to ask for an adaption to the
setting of graph-like structures. Especially the regular word and tree languages have
been studied with great success.

In this work we will study regular graph languages – often called recognizable graph
languages – as introduced by Courcelle. For this purpose, we will generalize finite
automata and tree automata to obtain automata which accept graphs. But similar
to decompositions of words into letters in the case of finite automata, these graph-
accepting automata depend on so-called cospan decompositions of graphs. Hence, we
investigate the connection between cospan decompositions and the well-known notions
of path and tree decompositions.
Subsequently, we introduce different notions of graph-accepting automata: the cat-

egorial notion of automaton functors presented by Bruggink and König, consistent
tree automata as generalization of tree automata (accepting tree-like decompositions
of graphs) and graph automata as a more automaton-theoretic view on automaton
functors (accepting path-like decompositions of graphs). Due to the acceptance of path-
like decompositions graph automata are of special interest to us, since this automaton
model is highly comparable to finite automata. Therefore, many techniques for finite
automata can be adapted to the setting of graph automata. Precisely, we study how
recent automaton-based techniques solving the language inclusion problem for finite
automata can be adapted for graph automata and can be used for invariant checking in
graph transformation systems. But since graph automata suffer from a combinatorial
explosion in the size of the maximally permitted pathwidth, we develop techniques to
symbollically represent graph automata by means of binary decision diagrams.
Finally, we introduce the prototype implementation of a tool suite, called Raven,

for creating and manipulating graph automata. We use this tool for a number of
experiments and discuss the runtime results.
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“The belief in a certain idea gives to the researcher the
support for his work. Without this belief he would be
lost in a sea of doubts and insufficiently verified proofs.”

Konrad Zuse (1910 – 1995)

1
Introduction

1.1. Context
Formal language theory has a long history in computer science in which it has been
extensively studied. Beside other classes of languages in the Chomsky hierarchy the class
of regular languages has a well-established theory with a great number of applications,
which range from the design of electronic circuits [67] and the design of communication
protocols [16] over language parsing [87] to different analysis techniques, e. g. regular
model checking [26], termination analysis [76] and reachability analysis [71]. From Büchi,
Elgot and Trakhtenbrot [38, 65, 125] it is well-known that there is a strong connection
between monadic second-order logic and regular languages. Monadic second-order logic
is an extension of first-order logic which allows quantification over both objects and
sets of objects.

In addition to the classical work on regularity for word languages a lot of effort has
been spent on lifting the theory from words to other, more general kinds of structures.
Therefore, the notion of regularity has been studied not only for the case of words,
but also for the more general case of trees. This has opened the possibility to define
regular tree languages and tree automata – similar to regular word languages and finite
automata [39]. Straightforwardly, many results of regular word languages have been
lifted to regular tree languages, which includes closure properties and constructions
such as minimization and determinization of tree automata. Similar to the case of word
languages, this gives rise to different applications, e. g. verification techniques [25, 104].

Due to these successful and promising results, it is a natural question to ask for an
extension of the notion of regularity to the setting of graphs – since graphs generalize
trees just as trees generalize words. In the last 30 years several notions of regular
graph languages (also called recognizable graph languages) have been introduced [28,
44, 48, 80, 110, 127, 130], but in each case a slightly different notion of regularity
(respectively recognizability) is studied. The most established theory for recognizable
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graph languages is the one of Courcelle, who has made many important contributions
to this topic in recent years, e. g. different algebras to compose graphs from a finite
number of graph operations, an investigation of the connection between the monadic
second-order logic of graphs and recognizable graph languages, or a special kind of
graph transformation, which is called monadic second-order transduction [7, 42, 44,
48].

One of his most important individual results is the well-known Courcelle’s Theorem
[44], which states that every problem definable in monadic second-order logic of graphs
is solvable in linear time for graphs of bounded treewidth. This is especially important,
because many NP-hard problems on graphs can be defined in monadic second-order
graph logic. For the class of trees it is long-known [38, 65, 123, 124] that there exist
efficient algorithms to solve problems that are NP-hard in the general case. But due to
Courcelle’s Theorem one can solve these problems efficiently even on graphs that are
not trees, but are only “tree-like” [4, 5, 18, 24, 44]. The “tree-likeliness” of a graph is
measured by the treewidth of the graph, which is a parameter introduced by Robertson
and Seymour in their seminal work on graph minors [113, 114, 116], e. g. trees and
forests have a treewidth of 1 and the n-clique or the (n× n)-grid have a treewidth of
n− 1. The definition of treewidth is based on the notion of tree decompositions of a
graph G. The idea is that a tree decomposition consists of a tree in which each tree
node is annotated with a bag, i. e. a set of vertices of G, such that certain properties
hold. To each tree decomposition a width is assigned by taking the size of the biggest
bag. The connection between treewidth and tree decomposition is as follows: If some
graph G has a treewidth of at most k, then there exists some tree decomposition of G
with width at most k.

Decomposing graphs into fragments connected via small interfaces is the basis of
many efficient dynamic programming methods for graphs [19] and a prerequisite for
graphs to be used as input for an automaton. There are several heuristics for obtaining
tree decompositions that work well in practice [20]. By Courcelle’s results one can obtain
an automaton-theoretic approach solving the aforementioned monadic second-order
definable problems on graphs with small treewidth. However, there are also some other
approaches, e. g. [4, 41, 50, 51, 56, 72, 103], which are less common. The original idea
is of the following form: Let a monadic-second order formula ϕ which describes the
problem to be solved and a tree decomposition of a graph G of width at most k be
given. First a finite tree automaton depending on the formula ϕ and the width k is
generated. Then the membership problem is solved for the tree decomposition of G
using the tree automaton computed before. However, even if this approach yields a
positive theoretical result, it is hard to exploit in practice, due to the huge (exponential)
number of states in the resulting automata. Initial work has been presented by Klarlund
et al. and Soguet [89, 122], where Klarlund et al. developed a tool, named Mona1,
that encodes monadic second-order logic on trees into tree automata. In [77] Gottlob et
al. showed how to reduce different problems which originate from the area of artificial
intelligence to the model checking problem of monadic second-order graph logic. To
solve these model checking problems they used Mona. However, this thesis does not
focus on efficient solutions to the membership problem, i. e. answering the question
whether a graph is accepted by a given automaton, but on the use of graph-accepting
automata for verification problems.

1Available at http://www.brics.dk/mona/
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1.2. Publications

1.2. Publications
In this section the publications of the author are summarized. The thesis is based on
the following papers:

• Christoph Blume, H. J. Sander Bruggink, and Barbara König. “Recognizable
Graph Languages for Checking Invariants”. In: Proceedings of GT-VMT 2010
(Workshop on Graph Transformation and Visual Modeling Techniques). Vol. 29.
Electronic Communications of the EASST. 2010.

• Christoph Blume. “Recognizable Graph Languages for the Verification of Dy-
namic Systems”. In: Proceedings of ICGT ’10 (International Conference on
Graph Transformation), Proceedings of the Doctoral Symposium. Ed. by Hart-
mut Ehrig, Arend Rensink, Grzegorz Rozenberg, and Andy Schürr. Vol. 6372.
Lecture Notes in Computer Science. Springer, 2010, pp. 384–387.

• Christoph Blume. “Efficient Implementation of Automaton Functors for the
Verification of Graph Transformation Systems”. In: Proceedings of ICGT ’10
(International Conference on Graph Transformation), Proceedings of the Doc-
toral Symposium. Ed. by Hartmut Ehrig, Arend Rensink, Grzegorz Rozenberg,
and Andy Schürr. Vol. 38. Electronic Communications of the EASST. 2010.

• Christoph Blume, H. J. Sander Bruggink, Martin Friedrich, and Barbara König.
“Treewidth, Pathwidth and Cospan Decompositions”. In: Proceedings of GT-
VMT 2011 (Workshop on Graph Transformation and Visual Modeling Tech-
niques). Vol. 41. Electronic Communications of the EASST. 2011.

• Christoph Blume, H. J. Sander Bruggink, Dominik Engelke, and Barbara König.
“Efficient Symbolic Implementation of Graph Automata with Applications to
Invariant Checking”. In: Graph Transformations. Ed. by Hartmut Ehrig, Gregor
Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg. Vol. 7562. Lecture Notes
in Computer Science. Springer, 2012, pp. 264–278.

• Christoph Blume, H. J. Sander Bruggink, Martin Friedrich, and Barbara König.
“Treewidth, Pathwidth and Cospan Decompositions with Applications to Graph-
accepting Tree Automata”. In: Journal of Visual Languages & Computing 24.3
(2013), pp. 192–206.

1.3. Contributions
The thesis can be split in two parts. The goal of the first part is to provide an
automaton-theoretic view on automaton functors, introduced by H. J. Sander Bruggink
and Barbara König [33], and to present how classical automaton-based techniques can
be used for invariant checking in graph transformation systems (see Figure 1.1). The
second part aims at the development of a (prototype) implementation of the techniques
that emerged in the first part, which make use of symbolic Bdd-based techniques to
handle the state space explosion problem.

In paper [15] the author of this thesis in cooperation with H. J. Sander Bruggink and
Barbara König proposed an approximation-based approach for solving the invariant
checking problem. This first approach is based on the Myhill-Nerode quasi-order [60]
lifted to the setting of recognizable graph languages. But it suffers from the fact that

3
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Graph Transformation System Graph property
(Graph automaton)

Check invariant

84

Figure 1.1.: The invariant checking problem

the computation of the Myhill-Nerode quasi-order requires the determinization of
the underlying automata. To overcome this state space explosion, the Myhill-Nerode
quasi-order has been approximated by a simulation-based approach. Since this modified
approach still suffers from the huge size of the involved automata and due to one-sided
errors which were caused by the approximation, the main part of this thesis takes a
different approach.
The papers [11] and [9] summarize the research project of this thesis and give a

further outlook of possible approaches which are realized in this thesis.
In the papers [13] and [14] H. J. Sander Bruggink, Martin Friedrich, Barbara König and

the author have presented several categorial notions of so-called cospan decompositions
of graphs. More specifically, we have defined several types of cospan decompositions with
appropriate width measures and have shown that these width measures coincide with
the well-established notions of pathwidth and treewidth. Such cospan decompositions
of small width play an important role to efficiently decide graph properties specified
by a graph-accepting automaton. Furthermore the authors have shown that the same
notion of recognizability is obtained regardless of whether path-like or tree-like cospan
decompositions are considered.
Finally, in paper [12] graph automata have been introduced as a more automaton-

theoretic view on automaton functors by the author together with H. J. Sander Bruggink,
Dominik Engelke and Barbara König. This new approach has been used to establish
different techniques from classical automaton theory to the setting of graph automata.
Since earlier related work, see paper [15], suffered from the explosion of the size of
the automata and the need of approximations due to the non-determinism of the
automata, we have employed symbolic Bdd-based techniques and recent antichain
algorithms for language inclusion to overcome the previous issues. Furthermore, the
presented techniques have been implemented in a software-tool which is used to generate,
manipulate and analyze graph automata and to perform experimental evalutions called
Raven.

4
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1.4. Structure of this thesis
The structure of this thesis is as follows (see also the dependency graph in Figure 1.2
on page 7):

Chapter 2 – Foundations
In this chapter we fix notations and recall some of the basic notions of regular
language theory. Later on, in Chapter 6, we adapt and generalize most of the
results for regular languages to the setting of recognizable graph languages.
Furthermore, we give a brief introduction of terms and tree automata, which
will play a role in Chapters 5 and 6. In order to establish the theory needed
behind these concepts, we also give a short introduction to the basic structure of
category theory at the end of this chapter.

Chapter 3 – Graphs and Graph Transformation Systems
This chapter introduces the several kinds of graphs which will be used throughout
this thesis. Furthermore, we recall the algebraic approach to graph transformation
and show the connection to reactive systems.

Chapter 4 – Boolean Functions and Binary Decision Diagrams
The fourth chapter gives a short introduction to Boolean functions which will be
needed later on in Chapter 7 in order to represent the huge graph automata. In
addition, a short overview over binary decision diagrams is given which are an
efficient data structure for representing (large) Boolean functions. Binary decision
diagrams are therefore one of the keys to the efficient implementation of Raven.

Chapter 5 – Tree, Path and Cospan Decompositions
In this chapter we generalize the notions of path and tree decompositions of
graphs to so-called (path-like and tree-like) cospan decompositions. We will
see that, in contrast to the setting of path and tree decompositions, we obtain
different variants (of each type) of cospan decompositions. But the main results
of this chapter show that all these different variants of cospan decompositions
coincide with the well-established notions of path and tree decompositions.

Chapter 6 – Recognizable Graph Languages
This chapter presents recognizable graph languages, which were first investigated
by Courcelle and are introduced here in terms of automaton functors: a categori-
cal notion introduced by Bruggink and König to represent recognizable graph
languages (and more general languages). We will see that many properties of
regular word languages can be generalized to recognizable graph languages. Next,
we study a more automaton-theoretic view of automaton functors called graph
automata, which are also used in the tool suite Raven (see Chapter 8). Graph au-
tomata cannot read all graphs but only graphs up to a certain width (in our case:
pathwidth). The second part of this chapter deals with the connection between
the well-known monadic second-order logic on graphs and recognizable graph
languages. Furthermore, a new logic, called linear cospan logic, is introduced,
which is used to automatize the creation of new graph automata.

Chapter 7 – Symbolically Represented Graph Automata
In the seventh chapter we explain how graph automata, whose state spaces

5
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typically grow exponentially in the size of the maximum permitted width, can
be efficiently encoded in a symbolic fashion using binary decision diagrams.
Furthermore, we investigate different variants of symbolic encodings for the
various types of graph automata, since this is the keystone to develop an efficient
tool like Raven. Afterwards we present three different recent approaches, which
can be used to solve the language inclusion problem for non-deterministic finite
automata, and explain how these approaches can be generalized in order to work
with graph automata.

Chapter 8 – Raven – A Verification Tool Suite Based on Recognizability
This chapter gives an overview over the tool suite Raven which is developed
during and based on the theory of this thesis. The main goal of Raven is
to provide a tool suite to handle and manipulate graph automata (introduced
in Chapter 6) up to a bounded interface size (respectively up to a bounded
pathwidth). After an explanation of the underlying system structure of Raven,
we give a short introduction into the use of the software. Subsequently, we compare
Raven to other tools used to verify dynamic systems.

Chapter 9 – Experimental Results
In this chapter we present different case studies and give benchmark results which
we have obtained for these examples by the tool suite Raven. The list of case
studies includes a simple multi-user file system, different languages which are
invariants for several graph transformation rules and some statements from graph
theory. Besides the comparison of the different algorithms which are presented in
Chapter 7, we also give counterexamples which are computed by Raven in cases
the result of the invariant or language inclusion check respectively is negative.

Chapter 10 – Conclusion
In the last chapter we discuss related work and draw some conclusions. In the
end we provide thoughts on potential connection points for future work.

6
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Part I.

Preliminaries





“If I have seen further it is by standing on the shoulders
of giants.”

Isaac Newton (1642 – 1726)

2
Foundations

In this chapter, we introduce some basic notations which will be used throughout the
whole thesis. In the first section we fix and repeat definitions about sets, relations
and functions. In the second section we give a short review on finite automata and
regular languages. The third section deals with terms and tree automata and in the
fourth section a brief introduction to category theory is given. Especially, the notions
of pushouts, cospans and other categorial notions which play a fundamental role in the
presented theory are introduced.

2.1. Sets, Relations, Orders
By N we denote the set of natural numbers, , i. e. {0, 1, 2, . . .} and by Nk we denote the
set {0, 1, 2, . . . , k − 1}. The set of (finite) sequences over a set A is denoted by A∗. Let
~a ∈ A∗ be a sequence. By |~a| we denote the length of ~a and by ~a[i] the i-th element in
the sequence ~a. The powerset of A is denoted by ℘(A) and, for n ∈ N, An = A×· · ·×A
denotes the n-ary cartesian product of A.
Let A be an arbitrary set and R ⊆ A×A be a (binary) relation on A. The inverse

relation of R is denoted by R−1. The relation R is said to be reflexive if and only if
for all a ∈ A we have that 〈a, a〉 ∈ R; it is symmetric if and only if for all 〈a, b〉 ∈ R
it holds that 〈b, a〉 ∈ R; it is antisymmetric if and only if for all 〈a, b〉 ∈ R such that
〈b, a〉 ∈ R it holds a = b; it is transitive if and only if for all 〈a, b〉, 〈b, c〉 ∈ R it also
holds that 〈a, c〉 ∈ R.
Let an arbitrary set A, a relation R ⊆ A × A and n ∈ N be given, we define the

relation Rn by

Rn =
{
{〈a, a〉 | a ∈ A}, if n = 0
R ; Rn−1, otherwise

where ; denotes the composition of relations. The reflexive and transitive closure of
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R is the relation R∗ =
⋃
i∈NR

i. The transitive closure of R can then be defined as
R+ =

⋃
i∈N\{0}R

i.
A function f from A to B is written as f : A → B and we implicitly extend it

to subsets and sequences as follows: for A′ ⊆ A and ~a = a1 . . . an ∈ A∗ we set
f(A′) = {f(a) | a ∈ A′} and f(~a) = f(a1) . . . f(an).

Definition 2.1 (Quasi-Order, Equivalence, Partial Order). Let A be an arbitrary
set. A quasi-order v on A is a binary relation on A which is reflexive and transitive.
A quasi-order v is total if for all a, b ∈ A either a v b or b v a (or both) holds.

If v is symmetric it is called an equivalence.
If v is antisymmetric it is called a (partial) order.

Let ≡ be an equivalence on an arbitrary set A, then [[a]]≡ denotes the equivalence
class of a (w. r. t. ≡), i. e.

[[a]]≡ = {a′ | a ≡ a′}.
and we call a a representative of this equivalence class. By A/ ≡ we denote the quotient
set of all equivalence classes of A by ≡. For convenience, if the equivalence ≡ is clear
from the context, we usually write [[a]] instead of [[a]]≡. The equivalence has a finite
index if and only if the quotient set A/ ≡ contains only finitely many equivalence
classes.
Let v be a quasi-order on A and let B ⊆ A. An upper bound (or lower bound

respectively) of B is an element a ∈ A such that for all b ∈ B it holds that b v a (or
a v b respectively). The least upper bound (or greatest lower bound respectively) of B is
the upper bound (lower bound) a such that for every other upper bound (lower bound)
a′ it holds that a v a′ (a′ v a). We denote the least upper bound (greatest lower bound)
of B by

⊔
B (or

d
B respectively). But note that the least upper bound (greatest lower

bound) need not always exist. An element a ∈ B is minimal (or maximal respectively)
in B with respect to v if for all b ∈ B the condition a v b (or b v a respectively) holds.
The set of all minimal (maximal) elements of B with respect to v is denoted by bBc
(dBe).
B is called a chain if and only if v limited to B is total. The dual notion is an

antichain, i. e. for all a, b ∈ B neither a v b nor b v a holds. The subset B is upward-
closed, or simply closed, with respect to v, if the following condition holds for all
a, b ∈ A: (

a ∈ B and a v b
)

=⇒ b ∈ B.
A (possibly infinite) sequence a0, a1, a2, . . . ∈ A is ascending if and only if for all

i ∈ N it holds that ai v ai+1. The quasi-order v satisfies the ascending chain condition
if and only if for all ascending sequences a0, a1, a2, . . . ∈ A there exists an index m ∈ N
such that ai = ai+1 holds for all i ≥ m. The notions of descending sequences and
descending chain condition are defined symmetrically.
Finally, we define the notion of well-quasi-orders which are quasi-orders with an

additional property:

Definition 2.2 (Well-Quasi-Order). A quasi-order v on an arbitrary set A is
a well-quasi-order if a0, a1, a2, . . . is an infinite sequence in A, then there exist

12



2.2. Formal Languages and Finite Automata

indices 0 < i < j such that ai v aj .

Besides the definition above, there are many other equivalent definitions of well quasi-
order which states the following proposition due to [83].

Proposition 2.3. Let v be a quasi-order on an arbitrary set A. The following
conditions are equivalent:

(i) v is a well-quasi-order,

(ii) the ascending chain condition holds for the closed subsets of A (ordered by
inclusion),

(iii) every infinite sequence of elements of A has an infinite ascending subsequence,

(iv) every non-empty subset B ⊆ A has at least one minimal element but not
more than a finite number of (non-equivalent) minimal elements.

(v) there exists neither an infinite strictly descending sequence in A, nor an
infinite number of pairwise incomparable elements of A

Finally, we give two properties of well-quasi-orders which will come in handy for
some proofs in the following chapters.

Lemma 2.4. Let v1 ⊆ v2 be quasi-orders on a set A. If v1 is a well-quasi-order
on A, then v2 is as well.

Proof. By Proposition 2.3, every infinite sequence a1, a2, . . . in A contains an infinite
ascending subsequence a′1, a′2, . . ., i. e. ai v1 aj for i < j. Since v1 ⊆ v2 , it holds that
ai v2 aj for i < j. Again by Proposition 2.3, we obtain that v2 is a well-quasi-order.

Lemma 2.5. Let ≡ be an equivalence on some set A. The equivalence ≡ has a
finite index (i. e. it has finitely many equivalence classes), if and only if ≡ is a
well-quasi-order on A.

Proof. Trivial.

2.2. Formal Languages and Finite Automata
In this section, we review the formalism of finite automata and regular languages. A
detailed introduction to the theory of regular languages and finite automata can be
found in [86].

An alphabet Σ is a non-empty finite set. The elements of σ ∈ Σ are called letters. A
word w (over Σ) is a sequence w = σ0 . . . σn−1, where each σi is a letter from Σ. By
|w| we denote the length of w, i. e. |w| = n. The empty word, i. e. the word of length 0,
is denoted by ε. The set of all words over Σ is denoted by Σ∗. A language L (over Σ)

13



2. Foundations

is a (possibly infinite) set of words over Σ, i. e. L ⊆ Σ∗. The empty language is denoted
by ∅.

One class of word languages with nice properties is the class of regular languages. In
this thesis we will define this class as the languages accepted by finite automata:

Definition 2.6 (Non-deterministic finite automaton). A non-deterministic finite
automaton (Nfa) is a 5-tuple A = 〈Q,Σ, δ, I,F〉 consisting of

• a finite set of states Q,

• a finite input alphabet Σ,

• a transition function δ : Q×Σ→ ℘(Q) which maps a state q for some letter
σ to the set of successor states,

• a set I ⊆ Q of initial states, and

• a set F ⊆ Q of final states.

Note that for an automaton A the successor state of some state q ∈ Q according to
some letter σ ∈ Σ must not be unique. Due to the non-determinism of the automaton
q may have one, two, or more successors (or even no successor) according to σ.
Let A = 〈Q,Σ, δ, I,F〉 be an Nfa, X ⊆ Q be a set of states. By X we denote the

complement of the state set X, i. e. X = Q \X. Furthermore, let w ∈ Σ∗ be a word.
We extend the transition function to X and w in the following way:

δ̂ : ℘(Q)× Σ∗ → ℘(Q),

δ̂(X,w) =
{
X, if w = ε

δ̂(δ(X,σ), w′), if w = σw′, σ ∈ Σ

We say that the set X is accepting if it contains at least one final state, i. e. X ∩ F 6= ∅.
The language accepted by some state q ∈ Q, denoted by L(q), is defined as

L(q) = {w ∈ Σ∗ | δ̂(q, w) ∩ F 6= ∅}.

The language accepted by a state set X ⊆ Q, denoted by L(X), is defined as L(X) =⋃
q∈X L(q). The language which is accepted by some automaton is the set of words for

which the automaton, starting in some initial state, can reach a final state.

Definition 2.7 (Accepted language, Regular language). The language accepted
by a non-deterministic finite automaton A = 〈Q,Σ, δ, I,F〉 is

L(A) = L(I) = {w ∈ Σ∗ | δ̂(I, w) ∩ F 6= ∅}.

A language L is regular if and only if it is accepted by some non-deterministic
finite automaton A, i. e. L = L(A).

14



2.2. Formal Languages and Finite Automata

If we replace the transition function in Definition 2.6 by δ : Q× Σ→ Q and allow
only a single initial state, we obtain another type of finite automata: deterministic
finite automata (Dfa). The language accepted by a Dfa is defined in the obvious way.

A well-known fact is that non-deterministic finite automata and deterministic finite
automata accept the same class of languages. To build a Dfa which accepts the same
language as a given Nfa we use the so-called subset construction which we introduce
here:

Definition 2.8 (Subset Construction). Let a non-deterministic finite automaton
A = 〈QA,Σ, δA, IA,FA〉 be given. We define a deterministic finite automaton
B = 〈QB,Σ, δB, iB,FB〉 as follows:

• QB = ℘(QA),

• δB : QB × Σ→ QB with δB(S, σ) =
⋃
s∈S δA(s, σ),

• iB = IA,

• FB = {S ∈ QB | S ∩ FA 6= ∅}

Proposition 2.9. Let L be an arbitrary language. L can be accepted by some
Nfa if and only if it can be accepted by some Dfa.

Proof. See for example [86].

In the rest of this section we give some very important properties of regular languages.
One of them is the theorem of Myhill-Nerode which gives an alternative characterization
of regular languages in terms of the union of equivalence classes of a monotone (or
right-monotone) congruence of finite index. In [60, 102], a generalized order-theoretic
variant of the theorem is given which states that a language is regular if and only if it
is upward-closed with respect to a monotone well-quasi-order.

But before we go to this important theorem, we will introduce two special relations
on arbitrary (word) languages which play an important role for regular languages:

Definition 2.10 (Myhill-Nerode Quasi-Order, Syntactical Congruence). Let L ⊆
Σ∗ be a language. The Myhill-Nerode quasi-order ≤L (relative to L) is defined as

x ≤L y ⇐⇒
(
∀u, v ∈ Σ∗ : uxv ∈ L =⇒ uyv ∈ L

)
.

The syntactical congruence ≈L (relative to L) is defined as

x ≈L y ⇐⇒
(
∀u, v ∈ Σ∗ : uxv ∈ L ⇐⇒ uyv ∈ L

)
.

As one can easily verify, both the Myhill-Nerode quasi-order and the syntactical
congruence (with respect to L) are monotone and L is upward-closed w. r. t. the
Myhill-Nerode quasi-order and the syntactical congruence.

15
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As stated above, besides the characterization of a regular language in terms of
finite automata, we can give another, equivalent definition of regular languages due to
Ehrenfeucht et al. [60]:

Proposition 2.11 (Generalized Myhill-Nerode Theorem). Let L ⊆ Σ∗ be a
language. The following statements are equivalent:

(i) L is regular,

(ii) L is upward-closed with respect to some monotone well-quasi-order v on Σ∗,

(iii) the Myhill-Nerode quasi-order ≤L is a well-quasi-order,

(iv) the syntactical congruence ≈L has only a finite index.

In Chapter 6 we will generalize this result to recognizable graph languages.
Finally, we give some of the closure properties which hold for regular languages (the

proofs can be found for example in [86]).

Proposition 2.12 (Closure under Boolean Operators). If L1 and L2 are two
regular languages, then L1 (the complement of L1), L1 ∩ L2 (the intersection of
L1 and L2) and L1 ∪ L2 (the union of L1 and L2) are also regular languages.

Proposition 2.13 (Closure under Concatenation). If L1 and L2 are two regular
languages, then L1 ; L2 (the concatenation of L1 and L2) is also a regular language.

These closure properties will be extended to recognizable graph languages in Chap-
ter 6.

2.3. Many-Sorted Terms and Tree Automata
Tree automata are a generalization of finite automata from strings to first-order terms.
They are often defined in terms of algebraic structures, e. g. by Gécseg and Steinby
[75], or term rewrite systems of a certain kind, e. g. by Comon et al. [39]. Here, we
give a more automata-theoretic definition. Additionally, we extend the formalism to
many-sorted terms. Hence, we consider sorted tree-automata here. The necessity for
this extension will become clear in Chapter 6.
Let S be a set of sorts. An S-type is a pair 〈~s, s0〉, where ~s ∈ S∗ is a sequence of

input sorts and s0 ∈ S is the output sort. We will usually denote a type 〈~s, s0〉, where
~s = s1 . . . sn, by ~s→ s0 or 〈s1, . . . , sn〉 → s0, or simply by s0 if n = 0.

An S-typed set M is a set M0 together with a map type : M0 → S∗×S which assigns
a type τ to each element of M . We will write (f : τ) ∈M (or simply f : τ if M is clear
from the context) to denote the facts that f ∈M0 and type(f) = τ .

The terms we need are supposed to be linear, that is, every variable occurs at most
once. In order to make linearity an inherent part of the definition, we use holes, denoted
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by 2s, where s is the sort of the hole, instead of named variables. For an S-typed set
Σ of function symbols (we call Σ the signature) we inductively define an S-typed set
T (Σ) of terms over Σ as follows:

• for s ∈ S it holds that (2s : s→ s) ∈ T (Σ);

• if (f : 〈s1, . . . , sn〉 → s0) ∈ Σ and (t1 : ~r1 → s1), . . . , (tn : ~rn → sn) ∈ T (Σ), then
(f(t1, . . . , tn) : ~r1 · · ·~rn → s0) ∈ T (Σ).

Note that the second of the above inductive constructions acts as base case if n = 0.
If t is a term of type 〈s1, . . . , sn〉 → s0 and t1, . . . , tn are terms of types ~r1 →

s1, . . . , ~rn → sn, respectively, then t(t1, . . . , tn) is a term of type ~r1 · · ·~rn → s0 which
is constructed by replacing the left-most hole 2s1 by t1, the second left-most hole 2s2

by t2, etc.

Definition 2.14 (Tree automaton). An S-sorted (non-deterministic, bottom-up)
tree automaton is a tupleM = 〈Q,Σ,∆, I,F〉, where

• Q = (Qσ)σ∈S is a family of finite sets of states indexed by S,

• Σ is an S-signature,

• ∆ = (∆f )f∈Σ is a family of transition functions indexed by function symbols,
where, for f : 〈σ1, . . . , σn〉 → τ , ∆f : Qσ1 × · · · ×Qσn → ℘(Qτ ),

• I = (Iσ)σ∈S is a family of sets of initial states, such that Iσ ⊆ Qσ for all
σ ∈ S,

• F = (Fσ)σ∈S is a family of sets of accepting states, such that Fσ ⊆ Qσ for
all σ ∈ S.

We define ∆̂ = (∆̂t)t∈T (Σ) as a family of transition functions indexed by terms,
such that, for t : 〈s1, . . . , sm〉 → s0,

∆̂t : ℘(Qs1)× · · · × ℘(Qsm)→ ℘(Qs0)

Let ∆ be defined as ∆f (S1, . . . , Sn) =
⋃
{∆f (q1, . . . , qn) | q1 ∈ S1, . . . , qn ∈ Sn}.

Then ∆̂ is defined as follows:

∆̂2s(S) = S

∆̂f(t1,...,tn)(S1, . . . , Sm) = ∆f (∆̂t1(~U1), . . . , ∆̂tn(~Un)),

where ~U1 . . . ~Un = S1 . . . Sm and the length of each ~Ui is the same as the number
of arguments required by ∆̂ti .
A term t : 〈s1, . . . , sm〉 → s0 is accepted byM, if ∆̂t(Is1 , . . . , Ism) ∩ Fs0 6= ∅.

The intuition of tree automata is as follows: Given a term t which can be seen as tree,
the automaton starts at the leaves of the tree and moves upwards to the root of the
tree. On the run of the automaton to each node (representing a sub-term of the input
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term) a state is assigned – in case of the leaves these states are all initial. The state of
the current term now depends on the states of all sub-terms of the current term and
on the current term itself. The input term is accepted if the state assigned to the root
node is final.

Definition 2.15 (Accepted Language, Regular Tree Language). Let an S-sorted
tree automatonM be given. The language ofM, denoted L(M), is the set of all
terms accepted byM.
A language L is a regular tree language if it is the language of some tree

automatonM, i. e. L = L(M).

The notion of tree automata will play a role in Chapter 6.

2.4. Basic Category Theory
In this section, we will give a short introduction to the basics of category theory which
is needed in this thesis. One of the most fundamental notions of this thesis are cospans
and cospan categories which we will study throughout the rest of this thesis. For a
more detailed introduction to category theory one can take a look at [96] or [109].

Definition 2.16 (Category). A category is a 6-tuple

C = 〈O,M, dom, cod, id, ;〉

consisting of

• a class O of C-objects,

• a classM(A,B) of C-morphisms, dom(f) = A and codomain (also called
C-arrows) for each pair of C-objects 〈A,B〉 called hom-class,

• two functions dom and cod assigning to each morphism A −f�B ∈M the
domain dom(f) = A and codomain cod(f) = B respectively,

• for every C-object A the identity (morphism) A −idA�A,

• the composition associating to each two C-morphisms A−f�B and B −g�C
a morphism A −f ;g� C, in this case f and g are said to be composable,

which satisfies the following conditions:

• the composition of three C-morphisms A −f�B, B −g� C and C −h�D is
associative, i. e. it holds (f ; g) ; h = f ; (g ; h),

• the identity is the neutral element with respect to composition, i. e. for each
C-morphism A −f�B it holds that idA ; f = f and f ; idB = f .

Note that in the above definition the morphisms of some category C need not be
functions, but can be more general associations of elements. But in most of our cases,
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the morphisms of the studied categories will be (structure preserving) functions.

Example 2.17. The category Rel has sets as objects and relations as morphisms.
The composition of relations defined in Section 2 is the composition operator of this
category. Its subcategory Set has only the functional relations (functions) as morphisms
and the composition of functions as composition operator.

Any monoid 〈M, e, ◦〉1 forms a category with a single object X. The morphisms from
X −m�X are precisely the elements m ∈M , the identity morphism of X is the identity
e of the monoid, and the composition of morphisms is given by the monoid operation ◦.

Next, we overload the definition of quasi-orders and equivalences given above by
extending the notion of equivalences to categories. On this we consider only locally small
categories, i. e. categories such that for every two objects the class of corresponding
morphisms between them is a set:

Definition 2.18 (Quasi-Order, Well-Quasi-Order). Let C be a category. A family
of relations

vR = {RC,D | C,D are objects in C}

is called quasi-order (on C), if every component RC,D is a quasi-order on C-
morphisms from C to D.

A quasi-order on C is called (right-)monotone if and only if for all C-morphisms
C −f�D, C −g�D and D −h� E it holds that f vR g implies (f ; h) vR (g ; h).

A subclassM ⊆M is called vR-upward closed if and only if for all C-morphisms
C −f�D, C −g�D it holds that f ∈M and f vR g implies g ∈M .
A quasi-order vR is called a well-quasi-order if every relation RC,D ∈ vR is a

well-quasi-order.

Note that orders in categories are also considered in enriched categories [74, 88]. But
in difference to enriched categories, we do not require that the order is preserved by
composition, i. e. f v f ′ and g v g′ implies f ; g v f ′ ; g′, since we will only require
right-monotonicity as defined above.
Analogously, we define equivalences and congruences on categories.

Definition 2.19 (Equivalence, Congruence). Let C be a category. A family of
relations

≡R = {RC,D | C,D are objects in C}

is called equivalence (on C), if every component RC,D is an equivalence relation on
C-morphisms from C to D. An equivalence ≡R is locally finite if each RC,D ∈ ≡R
is an equivalence relation of finite index.
An equivalence ≡R is called a (right) congruence if the following holds for all

morphisms c, c′ : C → D, d : D → E:

If c ≡R c′, then (c ; d) ≡R c′ ; d.

1A monoid 〈M, e, ◦〉 is a set M together with an identity e and an inner operation · which is
associative
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Since categories can be considered as a kind of (structured) objects, we can define
the category of categories (which has categories as its objects). The morphisms of this
category of categories, called functors, are structure-preserving morphisms between
these (object-)categories.

Definition 2.20 (Functor). Let C and D be two categories. A functor F from
C to D assigns to each C-object A a D-object F(A) and to each C-morphism
A −f�B a D-morphism F(A) −F(f)� F(B) and satisfies the following conditions:

(i) F preserves composition, i. e. for each pair of composable morphisms f and
g it holds that F(f ; g) = F(f) ; F(g), and

(ii) F preserves identities, i. e. for each C-object it holds that F(idA) = idF(A).

We will now define some special types of morphisms, namely monomorphisms,
epimorphisms and isomorphisms, which will play important roles in the further chapters.

Definition 2.21 (Monomorphism, Epimorphism, Isomorphism). Let C be a cate-
gory and A −f�B be a morphism.

• f is called monomorphism, or mono for short, if for all morphisms A′ −g1�A
and A′ −g2�A such that g1 ; f = g2 ; f it follows that g1 = g2.

• f is called epimorphism, or epi for short, if for all morphisms B −h1�B′ and
B −h2�B′ such that f ; h1 = f ; h2 it follows that h1 = h2.

• f is called isomorphism if there exists a morphism B −g� A such that
f ; g = idA and g ; f = idB .

In the following we will denote monomorphisms by A�−m�B, epimorphisms by A−e�B
and isomorphisms by A �−i�B.
Note that in many cases, for example for the category Set, shown above in Exam-

ple 2.17, the monomorphisms (epimorphisms) are exactly the injective (surjective)
functions.
Next, we will give the notion of pushouts which will play a central role in some

“gluing constructions” by which we will obtain new objects and morphisms out of known
objects and morphisms.

Definition 2.22 (Pushout). Let C be a category and A −f�B, A −g� C be two
morphisms. A pushout (of f along g) 〈D, f ′, g′〉 consists of a pushout object D
and two morphisms C −f ′� D and B −g′� D such that the following diagram
commutes:
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A B

C D

f

g g′

f ′

and for every two morphisms C−f̂ ′�D̂ and B−ĝ′�D̂ such that f ; ĝ′ = g ; f̂ ′ there
exists a unique morphism D −h� D̂ such that the following triangles commute:

A B

C D

D̂

f

g g′

ĝ′f ′

f̂ ′

h

We can “generalize” pushouts to the notion of colimits. Given a collection (diagram)
D of objects {A1, . . . , An} and morphisms between them, the colimit of D is an object
B together with morphisms Ai −µi� B such that the diagram commutes, and for
each object B′ and morphism Ai −µ′i� B′ where the diagram commutes, it holds
that there exists a unique h : B → B′ such that everything commutes. We will write
Colim(D) = B in this case.

Next, we define a special type of category: the cospan category. This type of category
will be very important for the theory of recognizable graph languages.

Definition 2.23 (Cospan, Cospan Category). Let C be a category in which all
pushouts exist. A concrete cospan in C is a pair 〈cL, cR〉 of C-morphisms with the
same codomain: J−cL�G�cR−K. The composition of two cospans 〈cL, cR〉, 〈dL, dR〉
is computed by taking the pushout of the arrows cR and dL.

K

J G (PO) G′ L

H

cR dL

cL

f g

dR

Two concrete cospans are isomorphic if their middle objects are isomorphic such
that the isomorphism commutes with the component morphisms of the concrete
cospan.
A cospan is an isomorphism class of concrete cospans. The cospan category

Cospan(C) has the same objects as C and C-cospans as morphisms, i. e. the
isomorphism class of a concrete cospan c : J −cL�G�cR−K in C is a morphism
from J to K in Cospan(C) and it will be denoted by c : J # K.

In the following we will confuse cospans and concrete cospans, in the sense that we
represent cospans by giving a representative of the isomorphism class. Furthermore, we
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introduce the notion of spans. Spans are the dual notion of cospans, that is, they are
(equivalence classes of) pairs of morphisms with the same domain.
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“In mathematics the art of asking questions is more valu-
able than solving problems.”

Georg Cantor (1845 – 1918)

3
Graphs and Graph Transformation

Systems

In the first section of this chapter we introduce different types of graphs. On the one
hand we have simple graphs and digraphs, which will be used in Chapters 4 and 5
to define some essential notions. On the other hand we define hypergraphs which are
the objects we want to decompose in Chapter 5 and which are processed by graph
automata introduced in Chapter 6. Finally, we introduce some sort of graph operations
which will be used to build all graphs together with disjoint union.

3.1. Simple Graphs
In this section we introduce simple graphs and simple digraphs. Note that these kinds
of graphs will only be used to give the notions of path and tree decompositions (defined
below) as well as the notion of binary decision diagrams (defined in Chapter 4).

Definition 3.1 (Simple Graph, Simple Digraph).

• A simple graph is a pair 〈V,E〉 where V is a set of nodes and E ⊆ {{t1, t2} |
t1, t2 ∈ V, t1 6= t2} is a finite set of edges.

• A simple digraph is a pair 〈V,E〉 where V is a set of nodes and E ⊆ {〈t1, t2〉 |
t1, t2 ∈ V, t1 6= t2} is a finite set of edges.

By definition, simple graphs and digraphs do not contain loops and have at most one
edge beetween each pair of nodes.
A rooted simple graph is a simple graph 〈V,E〉 with a distinguished node r ∈ V ,

called the root of the simple graph. A cycle in a simple graph 〈V,E〉 is a set of nodes
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{v1, . . . , vn} ⊆ V , such that {vi, vi+1} ∈ E and {vn, v1} ∈ E for 1 ≤ i < n. A simple
graph is called acyclic if it contains no cycle. These notions are also defined for simple
digraphs in the obvious manner.
A tree is a simple graph in which for each pair of nodes exactly one path between

them exists. A path graph is a tree in which each node is connected to either one or
two other nodes.

Simple graphs, and in particular trees and path graphs, are only used to define tree
and path decompositions in Chapter 5, whereas simple digraphs are only used to define
binary decision diagrams in Chapter 4.

3.2. Hypergraphs and Cospans of Hypergraphs
In this section another kind of graphs is introduced, so-called hypergraphs, which are
the type of structures we will investigate further in the next chapters.

Definition 3.2 (Hypergraph). A hypergraph over a set of labels Σ is a structure
G = 〈V,E, att, lab〉, where V is a finite set of nodes, E is a finite set of edges,
att : E → V ∗ maps each edge to a finite sequence of nodes attached to it, and
lab : E → Σ assigns a label to each edge.

In the following a hypergraph will be simply called graph. The size of the graph G,
denoted |G|, is defined to be the cardinality of the sum of its node and edge set, that
is |G| = |V |+ |E|. A discrete graph is a graph without edges; the discrete graph with
node set Nn is denoted by Dn. We denote the empty graph by ∅ instead of D0.

In this thesis, we use the following graphical notation for graphs: Nodes are depicted
as small filled circles, hyperedges are depicted as rectangles with their label in the
middle of the rectangle and lines between the rectangle and the incident nodes with
small numbers attached to indicate in which order the nodes are attached to the edge.
An example for this graphical notation is given below:

A

1

2
3

4
B

1
2

3

C
1

2

Furthermore, if the graph contains only edges of degree exactly two, we use the usual
notation for directed graphs, where the source node of the edge is the first node and
the target of the edge is the second node of the edge. For example

A
1 2 and A

denote the same graph.
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3.2. Hypergraphs and Cospans of Hypergraphs

Definition 3.3 (Hypergraph Morphism). A hypergraph morphism, or graph
morphism, f : G → H from a graph G = 〈VG, EG, attG, labG〉 to a graph H =
〈VH , EH , attH , labH〉 is a pair of maps f = 〈fV , fE〉, with fV : VG → VH and
fE : EG → EH , such that for all e ∈ EG it holds that labG(e) = labH(fE(e)) and
fV(attG(e)) = attH(fE(e)).

The set of all graphs together with the set of all graph morphisms establish the
category of graphs and graph morphisms, denoted by Graph. Note that the monomor-
phisms and epimorphisms of the category Graph are the injective and surjective graph
morphisms, respectively.

Definition 3.4 (Jointly Node-surjective). Let G, G′ and H be graphs. Two
morphisms f : G→ H and g : G′ → H are jointly node-surjective, if each node of
H has a pre-image in G or G′ (along f or g, respectively).

Next, we define the category of cospans of graphs as well as the category of output-
linear cospans of graphs.

A cospan c : I−cL�G�cR−J in Graph can be viewed as a graph G with two interfaces
I and J , called the inner interface and outer interface respectively. Informally said,
only elements of G which are in the image of one of the interfaces can be “touched”.
Remember that the middle graph G is only fixed up-to isomorphism, as defined in
Definition 2.23. An output-linear cospan c is a cospan whose right leg, i. e. the morphism
cR, is a monomorphism. By [G] we denote the trivial cospan ∅ → G← ∅, the graph G
with two empty interfaces. Remember that we will also write c : I # J if we are not
interested in the middle graph of c.

Now, the category of cospans of graphs denoted by Cospan(Graph) is the category
which has graphs as objects and cospans of graphs as morphisms. The category of
output-linear cospans of graphs OLCG (OLCGn) is the category which has discrete
graphs (of size at most n) as objects and output-linear cospans of graphs (with interfaces
of size at most n) as morphisms.
Example 3.5. Below, a cospan is depicted, which has as inner interface the graph
D2, as outer interface the graph D1 and as middle graph a 3-clique with binary edges
labeled with A and B, respectively. The edges are depicted as arrows from the first to
the second node of the edge. The nodes of the two interfaces are mapped to the middle
graph as indicated by the numbers 0, 1, 2. That is, the nodes of the inner interface are
mapped to the left and upper right node, respectively, and the single node of the outer
interface is also mapped to the upper right node.

0
1

0

1, 2
A

A

B
2

As a convention, we depict the interfaces of a cospan as rounded green-filled
rectangles and the middle graphs as rounded blue-filled rectangles.
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3. Graphs and Graph Transformation Systems

3.3. Graph Transformation Systems
In this section we will give a short introduction into the theory of graph transformation
systems, which was introduced by Ehrig, Pfender and Schneider in [64] to establish a
generalization from string grammars to graph grammars. The basic idea is to formulate
the rewriting step of one graph to another by some kind of “gluing construction”, which
is done by two pushouts. Therefore, this approach is called Double Pushout Approach
(Dpo) to graph transformation [40, 61–63].

Definition 3.6 (Graph Transformation Rule, Graph Transformation System).
A (graph) transformation rule ρ : L �`− I −r� R is a span consisting of three
graphs L, I and R, called the left-hand side, the interface and the right-hand side
respectively, and two monomorphisms ` and r which specify how the interface is
mapped to the left- and right-side respectively.
A graph transformation system (Gts) is a finite set R of transformation rules.

Example 3.7. As an example, we take the following graph transformation system with
three different transformation rules:

0 1S 0 1 0 1A S B

∅ ∅ S

0 1S 0 1 0, 1

The application of a transformation rule to some graph is defined as “gluing con-
struction”.

Definition 3.8 (Rule Application). Let ρ : L �`− I −r� R be a transformation
rule such that ` and r are monomorphisms. The rule ρ is applicable to some graph
G and rewrites it to a graph H if and only if there exist two morphisms m and
m′, called the match and co-match respectively, and an object C, such that (1)
and (2) in the following diagram are both pushouts.
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3.3. Graph Transformation Systems

L I R

(1) (2)

G C H

` r

m m′

The main idea of the rule application is that the parts of the left-hand side L (of some
transformation rule), which are not in the image `(I) of the interface I, are removed
from the graph G which yields the context graph C. Afterwards, the right-hand side
R is “glued” over the image r(I) of the interface into the context graph, yielding the
resulting graph H.
If a transformation rule ρ is applicable to a graph G by some match m, we denote

the direct derivation of G to H by G ρ,m===⇒H. If ρ and m are clear from the context we
will usually write G==⇒H.

Example 3.9. As an example we take a further look at the graph transformation
system depicted above. If we start with the empty graph, we can derive the following
graphs:

∅ S

0 1S 0 1A S B

0 1A S B 0 1A A S B B

0 1A A S B B 0, 1A A B B

Note that there is a close connection between the Dpo-approach and cospans (of
graphs) over reactive systems introduced by Leifner and Milner [98, 120]. Let c` : ∅# I
and cr : ∅# I be two output-linear cospans (called left-hand and right-hand side). The
pair ρ = 〈c`, cr〉 is called a reaction rule. A reactive system (over cospans of graphs)
consists of a set of reaction rules and a collection of so-called contexts, i. e. cospans
of the form d : I # ∅. Let ρ = 〈c`, cr〉 be a reaction rule. The rule ρ is applicable to
a graph G if and only if [G] = c` ; d for some context d : I → C ← ∅. In this case we
write G ρ,c`===⇒H, where H is the graph obtained from [H] = cr ; d.

The correspondence between graph transformation systems and reactive systems
over cospans can now be pointed out by the diagram depicted below:
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3. Graphs and Graph Transformation Systems

∅ L I R ∅

G C H

∅

` r

m m′

We observe that the two inner squares which consist of the morphisms I −`� L −m�G
and I → C → G – in case of the left square – and the morphisms I −r�R −m′�H and
I → C → H – in case of the second square – correspond to the double pushout diagram
of Definition 3.8. Hence, we can obtain the double pushout diagram of Definition 3.8
by omitting the empty graphs and the corresponding morphisms in the diagram given
above. On the other hand, we know that there is a unique morphism from the empty
graph ∅ to any other graph. Therefore, we can obtain the diagram shown above from
the diagram of Definition 3.8 by adding the missing unique morphisms. Altogether
we can conclude: the graph G can be rewritten to the graph H by the application of
the (Dpo) transformation rule ρ : L�`− I −r�R if and only if there exists a context
d : I → C ← ∅ such that [G] = c` ; d and [H] = cr ; d holds for the reaction rule
σ = (c` : ∅ → L�`− I, cr : ∅ → R�r− I).

3.4. Atomic Cospans
In this section, we will introduce atomic cospans, which will play the role of “atomic
building blocks” for graph automata (see Chapter 6) similar to letters in the case of
word automata.

In the rest of this thesis we assume that the set of nodes of each discrete graph Dn

is VDn = {v0, . . . vn−1}. We denote the disjoint union of two graphs G1 and G2 by
G1 ⊕G2. We assume that G1 and G2 are disjoint. Furthermore, we define the disjoint
union G1 ⊕ G2 −f⊕g�H1 ⊕H2 of two graph morphisms G1 −f�H1 and G2 −g�H2
where H1 and H2 are disjoint as follows:

(f ⊕ g)(v) =
{
f(v), if v ∈ VG1

g(v), if v ∈ VG2

and (f ⊕ g)(e) =
{
f(e), if e ∈ EG1

g(e), if e ∈ EG2

.

Now, we fix the following five (families of) atomic cospans, which are inspired by the
graph operations introduced by Bauderon and Courcelle in [7]:

Definition 3.10 (Atomic cospans).

Connection of a single hyperedge: Let an edge label A ∈ Σ with ar(A) ≤ n and a
function θ : Nar(N) → Nn be given. The function θ defines how the new edge
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3.4. Atomic Cospans

is connected to the nodes in the interface. We define the cospan as follows:

connectnA,θ : Dn
id′−−→G

id′←−− Dn,

where id ′(x) = x for x < n and G = 〈Nn, {e}, att, lab〉 with att(e) =
θ(1) . . . θ(ar(A)) and lab(e) = A.

Fusion of two nodes: Let 1 ≤ i, j ≤ n with i 6= j. We define the cospan as follows:

fuseni,j = Dn
φ−→Dn−1

id←− Dn−1,

where φ(x) : Dn → Dn−1 is defined as

φ(x) =


x if x < j

i if x = j

x− 1 if x > j.

Permutation of the outer interface: We define the cospan as follows:

permn
π : Dn

id−→Dn
π←− Dn,

where π : Dn → Dn is a permutation.

Restriction of the outer interface: Let k ∈ Nn+1 be given. We define the cospan
as follows:

resnk : Dn
id−→Dn

ρ←− Dn−1,

where ρ : Dn−1 → Dn is defined as

ρ(x) =
{
x, if x < k

x+ 1, if x ≥ k
.

Disjoint union with a single node: Let k ∈ Nn+1 be given. We define the cospan
as follows:

vertexnk : Dn
α−→Dn+1

id←− Dn+1,

where α : Dn → Dn+1 is defined as

α(x) =
{
x, if x < k

x+ 1, if x ≥ k
.

In Table 3.1 the five atomic cospans are depicted graphically.

Example 3.11. We can use atomic cospans in order to build more complex cospans.
For example the cospan depicted below (where all edges are labeled with some default
label �)
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3. Graphs and Graph Transformation Systems

connectnA,θ fuseni,j permn
π

1

n

A
θ

1

n

1

i

j

n

1

i

n− 1

1

n

1

n

π

resnk vertexnk
1

n

k

1

k

n− 1

1

n+ 1

k

1

k

n

Table 3.1.: Atomic Cospans

1
2
3 1

2

3

4

3
4

can be build by the following sequence of atomic cospans:

connect3
12 ; connect3

23 ; connect3
31 ; res3

2 ;
vertex2

3 ; connect3
13 ; res3

1 ; connect2
21 ; perm2

21

where we write connectnij for connectn�,θ with θ(1) = i, θ(2) = j and permn
i1...in

for
permn

π with θ(1) = i1, θ(n) = in.
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“All men are mortal. Socrates was mortal. Therefore, all
men are Socrates.”

Woody Allen (1935 – present)

4
Boolean Functions and Binary Decision

Diagrams

In this chapter we review the notion of Boolean functions and we introduce binary
decision diagrams as compact and symbolical graphical representation of Boolean
functions. We will see that there exists a special kind of binary decision diagrams
which can be used to implement both an equivalence check and the usual operations
on Boolean functions very efficiently.

4.1. Boolean Functions
In this section we will introduce Boolean functions, which will be used in Chapter 7 in
order to define and represent the graph automata introduced in Chapter 6. A further
introduction into the theory of Boolean logic can be found in the book of Crama and
Hammer [52].

Let B be the set of truth values, i. e. B = {0, 1}, where 1 denotes the value true and 0
denotes the value false respectively. By Bn we denote the set of all bit vectors of length
n.

Definition 4.1 (Boolean Variables, Boolean Formula). Let X = {x1, . . . , xn} be
given. The elements of X are called (Boolean) variables. A Boolean formula (over
X) is defined inductively:

(i) The constants >, ⊥ and the variables x1, . . . , xn are Boolean formulas,

(ii) if ϕ is a Boolean formula, then ¬(ϕ) is a Boolean formula,

(iii) if ϕ and ψ are Boolean formulas, then (ϕ ∧ ψ) is a Boolean formula.



4. Boolean Functions and Binary Decision Diagrams

Usually, we write ϕ(x1, . . . , xn) to express that ϕ is a Boolean formula in the
variables x1, . . . , xn. By Φ(X) we denote the set of all Boolean formulas over the
set X.

Beside the operations introduced above, we define the following binary operations
as abbreviations: or (∨), implication (→), biconditional (↔). These operations are
defined in the usual way.
Let ψ be an arbitrary Boolean formula, in which the Boolean variable xi does not

occur. We define the substitution of every occurrence of xi in a formula ϕ with ψ by
ϕ[xi/ψ]. Furthermore, we introduce the existential quantification (∃xi(ϕ)) and the
universal quantification (∀xi(ϕ)) of Boolean variable xi as the following formulas using
substitution:

∃xi(ϕ) = ϕ[xi/>] ∨ ϕ[xi/⊥] and ∀xi(ϕ) = ϕ[xi/>] ∧ ϕ[xi/⊥], .

After introducing the syntax, we give now the semantics of Boolean formulas.

Definition 4.2 (Valuation). Let X = {x1, . . . , xn}. A valuation (over X) η : X →
B assigns to each variable xi ∈ X a truth value η(xi). The (extended) valuation
J·Kη : Φ(X)→ B assigns to each Boolean formula (over X) a truth value by

J>Kη = 1 JxiKη = η(xi) Jϕ ∧ ψKη = min{JϕKη, JψKη}
J⊥Kη = 0 J¬ϕKη = 1− JϕKη.

Let η be a valuation over X, x ∈ X be a variable and t ∈ B be a truth value, by
η[x 7→ t] we denote the valuation defined as

η[x 7→ t] : X → B, y 7→

{
t, if y = x

η(y), else
.

This can be generalized to an arbitrary number of substitutions in the obvious manner.
Now we can define Boolean functions.

Definition 4.3 (Boolean Function). Let n ≥ 0. A Boolean function of n variables
is a function f : Bn → B. The Boolean function fϕ represented by a Boolean
formula ϕ over {x1, . . . , xn} is the unique Boolean function on Bn defined as
follows:

∀〈t1, . . . , tn〉 ∈ Bn : fϕ(t1, . . . , tn) = JϕKη[x1 7→t1,...,xn 7→tn].

Example 4.4. Let the following Boolean formula

ϕ = (x1 → ¬x2) ∧ (x2 ∨ ¬x3)

and the following valution

η : {x1, x2, x3} → B, x1 7→ 0, x2 7→ 1, x3 7→ 1.
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4.2. Binary Decision Diagrams: A Graphical Data Structure for Boolean Functions

be given. The formula can be evaluated as follows:

JϕK = J(x1 → ¬x2) ∧ (x2 ∨ ¬x3)K
= J(¬(x1 ∧ x2) ∧ ¬(¬x2 ∧ x3)K
= min {J¬(x1 ∧ x2)K, J¬(¬x2 ∧ x3)K}
= min {1− Jx1 ∧ x2K, 1− J¬x2 ∧ x3K}
= min {1−min {Jx1K, Jx2K} , 1−min {J¬x2K, Jx3K}}
= min {1−min {Jx1K, Jx2K} , 1−min {1− Jx2K, Jx3K}}
= min {1−min {η(x1), η(x2)} , 1−min {1− η(x2), η(x3)}}
= min {1−min {0, 1} , 1−min {0, 1}}
= min {1, 1}
= 1

4.2. Binary Decision Diagrams: A Graphical Data
Structure for Boolean Functions

Binary decision diagrams were first studied by Lee [97] and later improved by Akers [3].
In this section we will introduce binary decision diagrams as presented by Bryant [36,
37] which are an efficient data structure for the representation of Boolean functions.

Binary Decision Diagrams

Definition 4.5 (Binary Decision Diagram). Let X = {x1, . . . , xn} be a set of
Boolean variables. A binary decision diagram, or Bdd for short, (over X) is a
rooted, acyclic simple digraph B such that the following conditions are satisfied:

• B has exactly two distinguished leaves, called terminal nodes, which are
labeled with 0 and 1,

• every inner node of B is labeled with a variable in X,

• every inner node of B has exactly two distinguished outgoing edges, called
high edge and low edge,

• on every path in B from the root node to a terminal node every variable in
X occurs at most once.

By var(n) we denote the label of the node n. By hi(n) and lo(n) we denote the
children reachable by the outgoing high and low edges starting at the node n respectively.
Furthermore we evaluate a valuation for some formula given as Bdd by walking along
a path of the Bdd in the following way:

(1) Make the root of the Bdd the current node.

(2) If the current node is a terminal node go to step (4).
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4. Boolean Functions and Binary Decision Diagrams

(3) Let n be the current node. If the valuation assigns the value 0 to var(n), make the
low child lo(n) the current node, otherwise make the high child hi(n) the current
node. Then go to step (2).

(4) If the current node is the terminal labeled with 0 the given formula evaluates to
false, otherwise (if the terminal is labeled with 1) the given formula evaluates to
true.

As an example, we consider the following set M = {0000, 0011, 1100, 1111} of 4-bit
vectors. We assume that the bits of the bit vectors are numbered from b0 to b3 with
b0 the least significant bit. The Bdd representing this set of bit vectors is shown in
Figure 4.1. Variables are depicted as rounded gray filled nodes, terminals as blue and
red filled rectangular nodes. The high and low edges are depicted as blue solid and red
dashed lines respectively. The root of the Bdd is the node labeled with b0. For the sake
of clarity the node identities are omitted. Note that a bit vector b0 b1 b2 b3 is contained
in the set M if and only if there exists a path (according to the bit vector) in the Bdd
shown in Figure 4.1 that leads to the terminal labeled with 1. Hence, every bit vector
whose appropiate path leads to the terminal labeled with 0 is not contained in M .

b0

b1 b1

b2 b2 b2

b3 b3 b3 b3 b3

1 0

Figure 4.1.: Bdd for the set {0000, 0011, 1100, 1111}

In the further chapters we will use a special class of Bdds, but before we define
this special class we will have a look at the relationship between Bdds and Boolean
formulas.

Definition 4.6. Let B be a binary decision diagram over {x1, . . . , xn}. To every
node n in B we assign a Boolean formula ϕn inductively:

1. If n is a terminal node then ϕn =
{
⊥, if n is labeled with 0
>, otherwise
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2. If n is an inner node labeled with x ∈ X, then

ϕn = (x→ ϕhi(n)) ∧ (¬x→ ϕlo(n))

Note that the last identity is also called Shannon Expansion with respect to x in the
literature [121].

Now, we can identify a formula with a Bdd in the following way: Let B be a binary
decision diagram with root r. The Boolean formula represented by B is then the formula
ϕr. An (arbitrary) Boolean formula is represented by a binary decision diagram B
rooted at r if and only if it is equivalent to ϕr.

If we again take at look at the Bdd depicted in Figure 4.1, we can obtain the
represented formula (where unsatisfiable subformulas are omitted)

ϕr =
(
b0 →

(
b1 → ((b2 → b3) ∧ (¬b2 → ¬b3))

))
∧
(
¬b0 →

(
¬b1 → ((b2 → b3) ∧ (¬b2 → ¬b3))

))
.

Reduced and Ordered Binary Decision Diagrams
In the following we will define so-called reduced and ordered binary decision diagrams
(robdds). The difference of this class of Bdds to the general class of Bdds is that on
robdds an ordering on the variables (represented by the nodes of the Bdd) is imposed
and redundancy is eliminated.

Definition 4.7 (Reduced and Ordered Binary Decision Diagram). Let X =
{x1, . . . , xn} be a set of Boolean variables and v a total order on X. A reduced
and ordered binary decision diagram, or robdd for short, (over X) is a binary
decision diagram B which satisfies the following additional conditions:

• for every inner node n the two successor nodes of n are distinct, i. e. lo(n) 6=
hi(n),

• for every pair of inner nodes n,m the sub-Bdds rooted at n and m are not
isomorphic,

• for every inner node n of B labeled with xi and for every node m, labeled
with xj , in the subBdds rooted at n it holds xi v xj .

To find a good ordering of the variables of the robdd is essential. For two robdds
representing the same Boolean formula, but with two different variable orderings, the
difference of the size of these two robdds can be exponential in the number of Bdd
nodes.
For example we take a look at the formula: ψ = (x0 ∧ y0) ∨ (x1 ∧ y1) ∨ (x2 ∧ y2),

which is taken from Bryant [37]. In Figure 4.2 two robdds for this formula are depicted
based on two different variable orderings. The variable orderings imposed on the left
robdd, shown in Figure 4.2a, is x0 < y0 < x1 < y1 < x2 < y2. For the right robdd
the variable ordering is x0 < x1 < x2 < y0 < y1 < y2.
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x0

y0

x1

y1

x2

y2

0 1
(a)

x0

x1 x1

x2 x2 x2 x2

y0 y0 y0 y0

y1y1

y2

0 1
(b)

Figure 4.2.: Two robdds with different variable orderings for the formula ψ =
(x0 ∧ y0) ∨ (x1 ∧ y1) ∨ (x2 ∧ y2).

As we can easily observe the variable yi is strongly connected to the variable xi (for
i ∈ {1, 2, 3}) (and vice versa, since ∧ is commutative). This is due to the fact that
the formula ψ can be evaluated to true if and only if for at least one pair xi and yi
(i ∈ {1, 2, 3}) both variables are evaluated to true. Therefore, we can make the following
observations:

• If some variable y depends on a variable x, then we should choose a variable
ordering such that x < y.

• If a variable y depends on a variable x, but the variable y does not depend on
a variable z, then we should avoid a variable ordering such that x < z < y if
possible.

In Chapter 7 we will discuss the different variable orderings for the robdds used for
the implementation of the graph automata presented in this thesis. In that chapter we
will see, that a good variable ordering, i. e. a variable ordering such that the resulting
robdds are relatively small, is essential to be able to use our graph automata.
The great advantage of robdds over Bdds is, that, for a fixed variable ordering,

there exists only one robdd representing a given Boolean formula (up to isomorphism).
This property can be used for very efficient equivalence checks, since two Boolean
formulas, represented as robdds are equivalent if and only if the two robdds are equal
(up to isomorphism).

In the remaining parts of this thesis, we assume that the nodes of each Bdd are
ordered regarding to some ordering imposed on the variables of the Bdd. In order
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to transform an arbitrary Bdd B to an equivalent robdd we repeatedly apply the
following rules until the desired robdd is obtained:

Remove redundant nodes: If an inner node n ∈ B exists such that lo(n) = hi(n),
then remove the node n and redirect all incoming edges of n to lo(n).

Remove duplicate nodes: If two inner nodes m,n ∈ B exist such that var(m) =
var(n), lo(m) = lo(n) and hi(m) = hi(n), then remove the node m and redirect
all incoming edges of m to the node n.

Example 4.8. As an example we take the Bdd which is depicted in Figure 4.1 and
we use the following variable ordering: b0 < b1 < b2 < b3.

b0

b1 b1

b2 b2 b2

b3 b3 b3 b3 b3

1 0

(a) Initial Bdd, Next Step: Remove redundant
nodes

b0

b1 b1

b2 b2

b3 b3 b3 b3

1 0
(b) Bdd after removing redundant tests,

Next Step: Remove duplicate nodes

b0

b1 b1

b2 b2

b3 b3

1 0
(c) Bdd after first removal of

duplicate inner nodes, Next
Step: Remove duplicate nodes

b0

b1 b1

b2

b3 b3

1 0
(d) Resulting robdd

Figure 4.3.: The different Bdds which are obtained by the transformation of the Bdd
shown in Figure 4.1

In the first step we will remove inner nodes which are redundant, i. e. nodes n such
that hi(n) = lo(n). The two nodes within the rectangle depicted in Figure 4.3a are
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redundant and can be removed, resulting in the Bdd shown in Figure 4.3b. Now, we
will remove duplicate inner nodes, more precisely we eliminate a node n as long as
there exists a node m such that n and m have the same label and it holds hi(n) = hi(m)
and lo(n) = lo(m). All incoming edges of n will be redirected to be incoming edges of m.
The third and fourth node within the rectangle depicted in Figure 4.3b are duplicates of
the first and second node. Therefore, these two nodes can be removed, which will yield
the Bdd depicted in Figure 4.3c. In the third (and last step) another duplicate node
can be removed. The right node within the rectangle shown in Figure 4.3c is a duplicate
of the left node and can therefore also be eliminated. The resulting Bdd, shown in
Figure 4.3d, is the desired robdd for the set M and the ordering given above.

Note that we do not mention here how to obtain a Bdd from a given Boolean
function. For detailed algorithms which can be used to directly transform a Boolean
function into an equivalent robdd we refer to [37].

Relations And Binary Decision Diagrams
For the rest of this chapter, we assume that all sets and relations are finite. Let M
be an arbitrary set. We can identify the elements of M with bit vectors (of length
dlog2 |M |e1) in the obvious way. Therefore, we can restrict our attention to subsets of
and relations on Bn. Let R be an arbitrary binary relation on Bn. We represent the
relation R as a subset R′ of B2n in the following way:

〈b1 . . . bn, c1 . . . cn〉 ∈ R ⇐⇒ b1c1 . . . bncn ∈ R′

Note that the bit vectors are interleaved in the set R′. This is a rather “technical”
step to obtain smaller Bdds due to the fact that bits which store the same “piece
of information” (i. e. the bits bi and ci respectively, for 1 ≤ i ≤ n) are mapped to
consecutive nodes in the Bdd.

4.3. Conclusion
In this chapter we have introduced Boolean functions and binary decision diagrams. We
have seen that binary decision diagrams can be used to represent Boolean functions in
a very compact way. In Chapter 7 we will use Boolean functions, represented by binary
decision diagrams, as one of the keystones to efficiently represent and manipulate graph
automata, which we will introduce in Chapter 6.

1By d·e we denote the usual ceiling function.
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“You need to study other people’s work. Their approaches
to problem solving and the tools they use give you a
fresh way to look at your own work.”

Gary Kildall (1942 – 1994)

5
Tree, Path and Cospan Decompositions

In this chapter we will take a deeper look at cospan decompositions of (cospans of)
graphs and the relationship between this type of decompositions and the well-known
tree and path decompositions introduced by Robertson and Seymour in their seminal
work about graph minors [113, 114, 116]. The research on this topic in terms of cospan
decompositions has started as diploma thesis [73].
The results of this chapter are very important for the further chapters. Especially

the decompositions of (cospans of) graphs into atomic cospans play an important role,
since these atomic cospan decompositions are the equivalent concept for automaton
functors to input letters for word automata.

All objects we are decomposing will be hypergraphs whereby edges connect to each
node at most once. Note that this is the “hypergraph counterpart” to loop-free simple
graphs. Hence, we will slighty change the connectθ-cospan defined in Chapter 3, in
a way that θ must be injective. Furthermore, we abstain from the fuse-cospan. This
is due to the fact that we assume that there exists no node which is connected to
some edge more than once. Hence, we consider only cospans which are both input- and
output-linear1 in this chapter and therefore we do not need to fuse nodes. The other
atomic cospans introduced in Chapter 3 are used without any modification.
The contents of this chapter have been published in [13, 14].

5.1. Tree and Path Decompositions
In this section we give a short introduction to the notions of tree and path decomposi-
tions. Tree and path decompositions play an important role in many different areas of
computer science. For example Courcelle’s Theorem [44, 91] states that every property
definable in monadic second-order graph logic can be decided in linear time for graphs

1A cospan c : I −cL� G �cR− J is input- and output-linear (or linear for short) if both cL and cR are
injective morphisms.
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of bounded treewidth (pathwidth) (see also Section 6.2). Many algorithms use dynamic
programming to solve the desired problems on tree decompositions of the input graphs
[19, 22]. Furthermore, tree decompositions are used in the optimization of database
queries [68]. Other fields in which tree and path decompositions are involved include
the development of fast routing protocols [70] and the design of (potentially large)
circuits [106].

Definition 5.1 (Tree decomposition). Let G = 〈V,E, att, lab〉 be a graph. A tree
decomposition of G is a pair T = 〈T,X〉, where T is a tree and X = {Xt1 , . . . , Xtn}
is a family of subsets of V indexed by the nodes of T , such that:

• for each node v ∈ V , there exists a node t of T such that v ∈ Xt;

• for each edge e ∈ E, there is a node t of T such that all nodes v attached to
e are in Xt;

• for each node v ∈ V , the simple graph induced by the nodes {t | v ∈ Xt} is
a subtree of T .

A tree decomposition T = 〈T,X〉 is a path decomposition if T is in fact a path
graph.

The subsets Xt1 , . . . , Xtn are called bags. Now we can define the treewidth and
pathwidth of tree (path) decomposition respectively. Intuitively, the treewidth and
pathwidth measure how similar a graph is to a tree or to a path.

Definition 5.2 (Treewidth, Pathwidth). The width of a tree decomposition T =
〈T,X〉 is wd(T ) =

(
maxt∈T |Xt|

)
− 1.

Now, the pathwidth pwd(G) and the treewidth twd(G) of a graph G are defined
as follows:

• pwd(G) = min{wd(P) | P is a path decomposition of G},

• twd(G) = min{wd(T ) | T is a tree decomposition of G}.

Note that the decrement in the definition of wd(T ) above is chosen so that dis-
crete graphs have pathwidth and treewidth 0, trees have treewidth 1 and paths have
pathwidth 1. Furthermore, an n-clique has both pathwidth and treewidth n− 1 [115].
Naturally it holds that twd(G) ≤ pwd(G) for all graphs G, where the pathwidth

might be substantially larger than the treewidth. For instance, trees can have arbitrarily
large pathwidth [7].

Example 5.3. As examples we consider only unlabeled directed graphs, that is we take
Σ = {�} as alphabet and |att(e)| = 2 for every edge e. Let GP be the graph shown in
Figure 5.1a. Obviously, the pathwidth of this graph is 2 since it contains a 3-clique (all
nodes of which have to be together in at least one bag) and we have a path decomposition
P of width 2 which is shown in Figure 5.1b.
As an example for a tree decomposition we consider the unlabeled graph GT of

Figure 5.2a. The treewidth of this graph is 2 due to the fact that it contains a 3-clique
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Figure 5.1.: The graph GP and one of its path decompositions
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(b) Tree Decomposition of GT

Figure 5.2.: The graph GT and one of its tree decompositions

and that the tree decomposition T shown in Figure 5.2b has width 2.

5.2. Path-like Cospan Decompositions
In this section we explore “path-like” cospan decompositions of graphs which are the
equivalent concept of path decomposition in the category of graphs. The “tree-like”
equivalent to tree decompositions will be discussed in Section 5.3.
Cospan decompositions are naturally defined as sequences of cospans, which are

composed to a graph by taking the colimit of the emerging diagram. Equivalently, the
cospans can be iteratively composed into a single cospan, where finally the interfaces
are ignored.

Definition 5.4 (Cospan decomposition). Let G be a graph and ~c = c1, . . . , cn be
a sequence of composable cospans in the category Graph. The sequence ~c is a
cospan decomposition of G, if Colim(~c) = G.

Now we have three different notions which are closely related: cospan decompositions,
which are just sequences of cospans; by composing these cospans we obtain the single
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cospan (“graph with interfaces”); and if we “forget” the two interfaces we get the center
graph of this cospan which is just the colimit of the cospan decomposition.
In the following we are especially interested in cospan decompositions depending

on atomic cospans. Remember that we consider only a specific subset of the atomic
cospans defined in Chapter 3 due to the fact that we are only interested in linear
cospans here:

Lemma 5.5. Let c = J −cL�G�cR−K be a linear cospan, i. e. cL, cR are monos.
Then there exist atomic cospans a1, . . . , an such that c = a1 ; · · · ; an.

In fact, there exist such atomic cospans a1, . . . , an such that the following
condition holds: Let ai = Dni−1 → Hi ← Dni , for 1 ≤ i ≤ n. It holds that
|Dni | ≤ |G| for all 0 ≤ i ≤ n and |Hi| ≤ |G| for all 1 ≤ i ≤ n.

Proof. See Appendix A.1.

Note that, for each atomic cospan c = Dn −cL� G �cR− Dm, the cospan c′ =
Dm −cR�G�cL−Dn, which is obtained by “flipping” c, is also an atomic cospan: the
flipped version of vertexnk is resn+1

k and vice versa, flipping connectnA,θ has no effect
and flipping permn

π results in permn
π−1 .

Due to the fact that cospans (of graphs) are graphs with two equipped interfaces,
we have the free choice which part of a cospan corresponds to a single bag in a path
decomposition. Therefore, we consider the following types of cospan decompositions.

Definition 5.6 (Type of cospan decomposition). Let ~c be a cospan decomposition
of the graph G.

1. ~c is a graph-bag decomposition, if all cospans have discrete interfaces and
consist of injective morphisms.

2. ~c is an interface-bag decomposition, if it is a graph-bag decomposition, consists
of pairs of jointly node-surjective morphisms and it holds for all edges e of
G, with att(e) = v1 . . . vm, that v1, . . . , vm occur together in some interface2.

3. ~c is an atomic cospan decomposition, if it consists only of atomic cospans3.

The first two correspond to path decompositions in two different ways: in graph-bag
decompositions the center graphs in the cospans correspond to the bags of definition 5.2,
whereas in interface-bag decompositions the interfaces play the role of bags. In order
to make the relation between path and cospan decompositions clearer, we will only
consider decompositions into cospans of injective morphisms in this thesis.
It is clear that the various types of cospan decomposition are strictly contained in

one another, that is:

Atomic ⊂ Interface-bag ⊂ Graph-bag ⊂ All.
2More formally: let I1, . . . , In be the interfaces of the cospans in ~c and let fj : Ij → G be the

morphisms generated by the colimit. Then there exist an index j and nodes w1, . . . , wm in Ij such
that fj(wi) = vi for i ∈ {1, . . . , m}.

3 Remember that only the atomic cospans connectA, perm, res and vertex are permitted in this
chapter.
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Definition 5.7 (Graph-bag size, interface-bag size). Let c : J → G ← K be a
cospan. We define the graph-bag size and interface-bag size of c as follows:

|c|gb := |VG|
|c|ib := max{|VJ |, |VK |}

Observe, that for all atomic cospans c it holds that |c|gb = |c|ib. For convenience
later on, we define |c|at := |c|gb ( = |c|ib).
Now we are ready to define, for all three types of cospan decomposition, a width:

Definition 5.8 (Width of cospan decomposition).

• Let ~c = c1, . . . , cn be a cospan decomposition. We define the graph-bag and
interface-bag width of ~c as follows:

wdgb(~c) := max{|ci|gb | 1 ≤ i ≤ n} − 1
wdib(~c) := max{|ci|ib | 1 ≤ i ≤ n} − 1

• Let G be a graph. The graph-bag (cpwdgb(~c)), interface-bag (cpwd ib(~c)) and
atomic cospan width (cpwdat(~c)) of G are defined as:

cpwdgb(G) := min{wdgb(~c) | ~c is a graph-bag decomposition of G}
cpwd ib(G) := min{wdib(~c) | ~c is an interface-bag decomposition of G}
cpwdat(G) := min{wdib(~c) | ~c is an atomic cospan decomposition of G}

Similar to the case of path (and tree) width we decrement the width by one in order
to guarantee that discrete graphs have width 0 and paths have width 1.
The main theorem of this section is that, for a given graph, the three notions of

cospan pathwidth are the same, and moreover are the same as the pathwidth of the
graph. First, we show how to transform (cospan) path decompositions into each other:

Lemma 5.9.

1. Let P be a path decomposition of a graph G. There exists a graph-bag
decomposition ~c of G such that wdgb(~c) = wd(P).

2. Let ~c be a graph-bag decomposition of G. There exists an interface-bag
decomposition ~d of G such that wdib(~d) = wdgb(~c).

3. Let ~c be a graph-bag decomposition of G. There exists an atomic cospan
decomposition ~d of G such that wdat(~d) ≤ wdgb(~c).

4. Let ~c be an interface-bag decomposition of G. There exists a path decompo-
sition P of G such that wd(P) = wdib(~c).

Proof. See Appendix A.1.
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Theorem 5.10. For every graph G,

pwd(G) = cpwdgb(G) = cpwd ib(G) = cpwdat(G).

Proof. First of all, because atomic cospan decompositions are also graph-bag and
interface-bag cospan decompositions, and it is easy to check that for an atomic cospan
decomposition ~c, wdgb(~c) = wdib(~c), it follows for all graphs G that

cpwdgb(G) ≤ cpwdat(G) and cpwd ib(G) ≤ cpwdat(G).

Together with Lemma 5.9 (iii) it follows that

cpwdgb(G) ≥ cpwdat(G) ≥ cpwdgb(G). (5.1)

From Lemma 5.9 (i), (ii) and (iv) it follows that

pwd(G) ≥ cpwdgb(G) ≥ cpwd ib(G) ≥ pwd(G). (5.2)

The theorem follows directly from equations (5.1) and (5.2).

Example 5.11. As an example we take the graph GP and the corresponding path
decomposition P of Example 5.3. We use the path decomposition to construct a graph-
bag decomposition of GP . For each of the two bags in P we take a cospan where the
center graph of the first cospan is the 3-clique and the center graph of the second
cospan contains the edge from the third to the fourth node. The inner interface of
the first cospan and the outer interfaces of the second cospan are both empty graphs,
while the outer interface of the first cospan (which is the inner interface of the second
cospan) contains the third node which is the intersection of both subgraphs. The resulting
graph-bag decomposition is depicted in Figure 5.3a. The graph-bag width of GP is 2,
since the resulting graph-bag decomposition has graph-bag size 2, and the graph-bag size
of every other graph-bag decomposition must have at least size 2 due to the 3-clique
which has to be contained in at least one center graph.

An interface-bag decomposition for the same graph is shown in Figure 5.3b. Note
that it indeed satisfies the conditions of definition 5.6: specifically each cospan is jointly
node-surjective and all nodes attached to an edge live together in at least one bag. The
interface-bag width of GP is 2, due to the fact that the given interface-bag decomposition
has interface-bag width 2 and any other interface-bag decomposition has to contain the
nodes of the 3-clique in at least one interface.

Note that in both cases, the graph-bag and the interface-bag decomposition, the bags
of each decomposition (the center graphs in the first case and the interfaces in the
second case) correspond to the bags of the path decomposition of GP .

To construct the atomic decomposition we decompose the cospans of the graph-bag
decomposition into atomic cospans. This is possible due to Lemma 5.5:

vertex0
1 ; vertex1

2 ; vertex2
3 ; connect3

12 ; connect3
31 ; connect3

23 ;
res3

0 ; res2
0 ; vertex1

2 ; connect2
12 ; res2

0 ; res1
0,

where we write connectnij for connectn�,θ with θ(1) = i, θ(2) = j.
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Figure 5.3.: Graph-bag and interface-bag decomposition of GP

5.3. Tree-like Star and Costar Decompositions
In this section we repeat the work of Section 5.2 for “tree-like” cospan decompositions.
We define stars and costars as generalizations of spans and cospans, respectively. A
star S = Lf1, . . . , fnM is a finite sequence4 of morphisms with the same domain, while
a costar C = Lf1, . . . , fnM is a finite sequence of morphisms with the same codomain.
We will consider a cospan c : J −cL� G �cR− K as a special case of a costar, with
c = LcL, cRM.

I

G1

G2 G3

G

I1

I2 I3

Star Costar

Similar to cospans, costars can be seen as graphs with interfaces, of which in the
case of costars there can be arbitrarily many. Intuitively, two costars can be composed
over specific tentacles i and j which have the same interface K, by gluing their center
graphs together at K and removing the tentacles i and j. Formally:

Definition 5.12 (Costar composition). Let C = Lf1, . . . , fnM be a costar with
center graph G = cod(f1) and D = Lg1, . . . , gmM a costar with center graph
H = cod(g1). Furthermore, let 1 ≤ i ≤ n and 1 ≤ j ≤ m be given such that
dom(fi) = dom(gj). The composition of C and D over tentacles i and j, denoted
by C ;i,j D, is defined as:

C ;i,j D = Lf1 ; µC , . . . , fi−1 ; µC , fi+1 ; µC , . . . , fn ; µC ,
g1 ; µD, . . . , gj−1 ; µD, gj+1 ; µD, . . . , gm ; µDM,

where µC : G→ E and µD : H → E are obtained by taking the pushout of fi and

4We define stars and costars as sequences of morphisms so that a) one morphism can occur more
than once in the same star; and b) we can uniquely identify the tentacles of the star or costar by
specifying its index.
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gj , as shown in the following diagram:

G

K

H

fi gj

E
µC µD

(po)

where K = dom(fi) = dom(gj).

Note that the tentacles over which two costars are composed are hidden by the
composition operation. This has the effect that the indices of the other tentacles may
change. For example, let C = Lf1, f2, f3M and D = Lg1, g2M. Then C ;2,1 D = Lf1 ;
µC , f3 ; µC , g2 ; µDM. Here, the second tentacle corresponds to the third tentacle of C,
and the third tentacle corresponds to the second of D.

We define three types of tree-like decompositions: costar decompositions, star decom-
positions and atomic star decompositions. The names of the first two relate to the form
of the stars (joins) in the tree; the third one is a special case of the second. A costar
decomposition is a decomposition into costars, where costars are connected via the
interfaces in such a way that they form a tree. Note that the edges of this tree are spans.
On the other hand, a star decomposition is a decomposition into stars, where the edges
of the corresponding tree-like structure correspond to cospans (see also Figure 5.4). As
in the case of cospan decompositions, we restrict our attention to injective morphisms.

Definition 5.13 (Costar decomposition, star decomposition).

1. A costar decomposition is a tuple C = 〈T, τ〉, where T is a tree and τ is
function which maps each node t of T to a graph and each edge b = {t1, t2}
of T to a span of injective morphisms

τ(b) = τ(t1)
ϕb,t1←−−− Jb

ϕb,t2−−−→ τ(t2).

A costar decomposition C is a costar decomposition of G if Colim(C) = G.

2. A star decomposition is a tuple S = 〈T, τ〉, where T is a tree and τ is function
which maps each node t of T to a discrete graph J and each edge b = {t1, t2}
to a cospan

τ(b) = τ(t1)→ Gb ← τ(t2),

which consists of a pair of jointly node-surjective, injective morphisms.
A star decomposition C is a star decomposition of G if Colim(C) = G
and additionally it holds for all edges e of G, with att(e) = v1 . . . vm, that
v1, . . . , vm occur together in τ(t) for some t ∈ VT .

3. An atomic star decomposition is a star decomposition 〈T, τ〉 such that τ(b)
is an atomic cospan for all edges b of T .

In the case of cospan decompositions we had a clear hierarchy of the various decom-
position types. In the case of tree-like decompositions, however, this is not the case:
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the sets of star and costar decompositions are not related with respect to inclusion.
However, by definition, each atomic star decomposition is also a star decomposition.

Definition 5.14 (Width of (co)star decomposition). Let S = 〈T, τ〉 be a costar
decomposition or a star decomposition. The width of S is defined as

wd?(S) = max
v∈VT

|τ(v)| − 1.

Note that definition 5.14 bases the width of costar decompositions on the (non-
interface) graphs they contain, while it bases the width of star decompositions on the
interfaces. In both cases, however, the width of a decomposition depends on the size of
the graphs that are in the image of the nodes of the tree T .

Definition 5.15 (Costar width, star width). Let G be a graph. The costar width
(ctwdco?(G)), star width (ctwd?(G)) and atomic star width (ctwdat?(G)) of G are
defined as follows:

ctwdco?(G) = min{wd?(C) | C is a costar decomposition of G}
ctwd?(G) = min{wd?(S) | S is a star decomposition of G}

ctwdat?(G) = min{wd?(S) | S is an atomic star decomposition of G}

A fourth possibility would be to define a kind of star decomposition, which lacks the
requirement that the cospans on the edges are jointly node-surjective, but whose width
is measured by the sizes of the middle graphs of the cospans instead of the middle
graphs of the stars. This would result in the same notion of width. However, since this
would not result in a nice direct correspondence to tree decompositions, we have left it
out.

As in the previous section, the various notions defined in this section are equivalent
to the notion of treewidth.

Lemma 5.16.

1. Let T be a tree decomposition of G. There exists a star decomposition S of
G such that wd?(S) = wd(T ).

2. Let S be a star decomposition of G. There exists a costar decomposition C
of G such that wd?(C) = wd?(S).

3. Let C be a costar decomposition of G. There exists a tree decomposition T
of G such that wd(T ) = wd?(C).

4. Let S be a star decomposition ofG. There exists an atomic star decomposition
S ′ of G such that wd?(S ′) = wd?(S).

Proof. See Appendix A.1.
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Theorem 5.17. For every graph G,

twd(G) = ctwdco?(G) = ctwd?(G) = ctwdat?(G).

Proof. It follows from Lemma 5.16 (4) and the fact that every atomic star decomposition
is a star decomposition, that

ctwd?(G) = ctwdat?(G). (5.3)

Furthermore, from Lemma 5.16 (1)–(3), the following inequalities follow:

twd(G) ≥ ctwd?(G) ≥ ctwdco?(G) ≥ twd(G). (5.4)

The derived result follows directly from (5.3) and (5.4).

Example 5.18. We consider the graph GT and the tree decomposition T of Exam-
ple 5.3. In order to construct a star decomposition of GT , we take a cospan for each of
the four edges (of the tree) of T . The interfaces of these four cospans are the discrete
graphs corresponding to the bags. The center graph of each cospan is the subgraph con-
taining the nodes of both the inner and the outer interface of the cospan and (possibly)
edges connecting these nodes. It has to be ensured that each edge occurs exactly once.
This leads to the star decomposition shown in Figure 5.4a. Since the width of the given
star decomposition has size 2 and the nodes of the 3-clique has to be contained together
in at least one interface of any star decomposition, the star width of GT is 2.

The costar decomposition can be obtained from the star decomposition. Each of the
four cospans of the star decomposition is converted into a span. The inner and the
outer graph of each span contain the nodes of the corresponding cospan interfaces plus
additional edges. (Note that due to the conditions on star decompositions, each edge
can be “shifted” into at least one interface.) The center graph of the span is then the
discrete graph obtained by the intersection of the inner and the outer graphs of the
span. The resulting costar decomposition is shown in Figure 5.4b. The costar width of
GT is 2 due to the fact that the given costar decomposition has size 2 and that any
costar decomposition must contain the 3-clique in some graph of at least one span.

More details concerning the conversion of the various tree and star decompositions
into each other can be found in the proof of Lemma 5.16.

5.4. Term Decompositions
Our aim in the next chapter will be to define a special kind of tree automata that operate
on tree-like decompositions. On the one hand we have the tree-like decompositions
of Section 5.3. On the other hand, however, we have tree automata which operate on
terms rather than trees. Although there is a clear correspondence between trees and
terms, some gaps have to be filled. That is what we do in this section, by defining term
decompositions of graphs.
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(b) Costar decomposition of GT

Figure 5.4.: Star and costar decomposition of GT

Definition 5.19 (Graph term). The set of sorts we employ is the set of natural
numbers including zero, that is N = {0, 1, 2, . . .}. A graph term is a many-sorted
term over the signature Ops, which contains (with some overloaded notation) the
following function symbols:

• vertexnk : n→ n+ 1, for each n ∈ N and 1 ≤ k ≤ n+ 1;

• resnk : n→ n− 1, for each n ≥ 1 ∈ N and 1 ≤ k ≤ n;

• connectnA,θ : n→ n, for each label A ∈ Σ and each n ≥ ar(A) and function
θ : Nar(A) → Nn;

• permn
π : n→ n, for each n ∈ N and permutation π : Nn → Nn;

• joinn : 〈n, n〉 → n, for each n ∈ N.

The first four of the function symbols in Definition 5.19 correspond to the atomic
cospans; in the following we will implicitly convert between the cospans and the
functions symbols. The last one plays the role of stars in star decompositions: it allows
branching. Note that holes (2n) can also occur in graph terms.
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We will now define how to translate graph terms into costars. Note that for a term
t : 〈m1, . . . ,mn〉 → m0 the first morphism of the costar will correspond to the root of
the term (and has domain Dm0), whereas the remaining n morphisms will correspond
to the holes (and have domains Dmi).

Definition 5.20 (Term decomposition of a graph).

(i) Let t be a graph term. The costar of t, denoted Costar(t), is recursively
constructed as follows:

• If t = 2n, then Costar(t) = LidDn , idDnM.
• If t = f(t′), where f : m→ n and t′ : ~q → m, then

Costar(t) = f ;2,1 Costar(t′)

where f is the atomic cospan (see Section 3.4) corresponding to the
function symbol f (viewed as a costar).

• If t = joinn(t1, t2), then

Costar(t) =
(
LidDn , idDn , idDnM ;3,1 Costar(t1)

)
;2,1 Costar(t2).

(ii) A graph term t is a term decomposition of a graph G when G is the center
graph of Costar(t).

Similar to other types of decomposition we define the width of a term decomposition
and the term width of a graph as follows:

Definition 5.21.

(i) The width of a term decomposition t, denoted by wd(t), is the highest
type which occurs in it minus 1; formally wd(t) = hi(t)− 1, where hi(t) is
inductively defined by:

hi(2n) = n hi(resnk (t)) = max{n, hi(t)}
hi(joinn(t1, t2)) = max{n, hi(t1), hi(t2)} hi(connectnA,θ(t)) = max{n, hi(t)}

hi(vertexnk (t)) = max{n+1, hi(t)} hi(permn
π(t)) = max{n, hi(t)}

(ii) The term width of a graph G is defined as:

tmwd(G) = min{wd(t) | t is a term decomposition of G}.

Example 5.22. A term decomposition of the graph GT of Figure 5.2 is the following:

res1
1(res2

2(res3
3(connect3

12(connect3
23(connect3

31(vertex2
3(vertex1

2(
res2

1(connect2
12(vertex1

2(
join1(

res2
2(connect2

12(vertex1
1(res2

1(connect2
12(vertex1

1(vertex0
1(20)))))))
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,
res2

2(connect2
12(vertex1

1(res2
1(

join2(
res3

3(connect3
13(connect3

32(vertex2
1(vertex1

1(
vertex0

1(20))))))
,
res3

3(connect3
23(connect3

31(vertex2
1(vertex1

1(
vertex0

1(20))))))
)

))))
)

)))
)))))))
The width of this term decomposition is 2. As in earlier examples, we write connectnij
for connectn�,θ, where θ(1) = i and θ(2) = j.
Because of the natural correspondence between trees and terms, it is no surprise

that the notion of term width and the notion of atomic costar width introduced in
Section 5.3 are equivalent.

Proposition 5.23. For every graph G, tmwd(G) = ctwdat?(G).

Sketch. We prove the proposition by translating every term decomposition of size k
into an atomic star decomposition of size k and vice versa.
(⇒): To translate a term decomposition into an atomic star decomposition we

can proceed recursively and compose the results of the recursive calls similar to
Definition 5.20.
(⇐): Given an atomic star decomposition we can non-deterministically pick a root,

then turn every cospan in the tree so that its outer interface is pointed towards the
root (we can do this because, as observed on page 44, the inverse of each atomic cospan
is also an atomic cospan) and then recursively transforming all the subtrees into a
term.

Furthermore, we have that every graph has a term decomposition. By the idea given
in the proof sketch above we can transform a star decomposition, which we can obtain
for every graph, into an equivalent term decomposition. However, a graph may have
term decompositions of different types, for example one of type 〈0, 0〉 → 0 and one of
type 〈0, 0, 0〉 → 0.

5.5. Conclusion
In this chapter we have shown how to convert the graph-theoretical notion of path
decompositions into cospan decompositions, and tree decompositions into star or costar
decompositions. As we have seen there are indeed several possible choices, mainly
depending on whether we identify bags with interfaces or with the center graph in a
cospan. Furthermore, there is the notion of decompositions into atomic cospans, which
can be viewed as atomic building blocks.
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In the next chapter, we will use decompositions for recognizable graph languages
or – more specifically – for different automaton models acting as acceptors of graph
languages. Especially the decompositions into atomic cospans will play an important
role in this setting. But let us remark that we have not treated the question of how to
obtain such decomposition given a single graph. This is an NP-hard problem that has
been extensively studied by Bodlaender et al. [17–22]. Therefore, it is important to find
good heuristics to obtain atomic cospan decomposition of a given graph in practice. We
supervised a student to work on this in his master’s thesis [79]. The objective of that
thesis has been to develop and compare different algorithms used to compute atomic
cospan decompositions. These algorithms are based on both newly developed heuristics
and established heuristics for tree decompositions [20]. Furthermore, to perform the
comparison of the different algorithms a prototype tool has been implemented.
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“We can only see a short distance ahead, but we can see
plenty there that needs to be done.”

Alan Mathison Turing (1912 – 1954)

6
Recognizable Graph Languages

Regular (word) languages have many applications in theory as well as in practice. The
applications in which regular languages are used range from model-checking [26] and
termination analysis [76] to parsers and text editors [86]. The notion of regularity can
be generalized straightforwardly to languages of trees. Hence, it is natural to ask for the
notion of regular graph languages, or in this case called recognizable graph languages.
There have been several attempts to give a notion of recognizable graph languages

[44, 48, 110, 127, 130], of which the notion of Courcelle is widely accepted.
In this chapter we will introduce three different automaton models: automaton

functors, consistent tree automata and graph automata. Although the concept behind
these three automaton types is varying, we will show that they all accept the same
class of recognizable graph languages in the sense of Courcelle.

In addition, we will take a look at two different graph logics in the second section of
this chapter. The first logic is the well-known monadic second-order logic on graphs.
In this context of particular importance to us is the well-known Courcelle’s Theorem.
The second logic we will investigate is a new logic, called linear cospan logic, which is
introduced here for the first time. The scope of this logic is to enhance the construction
as well as the computation of graph automata and to automatically compute invariants.
Parts of this chapter have been published in [15], [14] and [12].

6.1. Automaton Models for Recognizable Languages
In this section we first define recognizable graph languages by using automaton functors,
as introduced by Bruggink and König [33], on the category of cospans of graphs. Secondly,
we present consistent tree automata which are introduced by Blume, Bruggink, Friedrich
and König in [14]. These automata can be seen as generalizations of tree automata,
introduced in Chapter 2, which are used to process term decompositions of graphs
introduced in Chapter 5. We show that the class of languages accepted by consistent
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tree automata coincides with the class of languages acceptable by automaton functors.
Furthermore, we give an overview over the properties of recognizable graph languages
and subsequently present another view on recognizable graph languages in terms of
so-called graph automata. This kind of automata can be seen as generalization of finite
automata used to accept “path-like” cospan decompositions of graphs.

6.1.1. Automaton Functor – A Categorical Automaton Model
Bruggink and König have introduced automaton functors as a (categorical) automaton
model for so-called recognizable arrow languages of an arbitrary (locally small1) category
C.

We give here the general definition for the sake of completeness, even if we are only
interested in recognizable graph languages.

Definition 6.1 (Automaton Functor, [33]). Let J and K be two arbitrary C-
objects. A 〈J,K〉-automaton functor is a structure A = 〈A0, I,F〉, where

• A0 : C → Rel is a functor, which maps every object X of C to a finite
set A0(X) (the set of states of X) and every arrow X −f� Y to a relation
A0(f) ⊆ A0(X)×A0(Y ) (the transition relation of f)

• I ⊆ A0(J) is the set of initial states

• F ⊆ A0(K) is the set of final states

An automaton functor is deterministic if every relation A0(f) is a function and
I contains exactly one element.
The language L(A) of A (which contains arrows from J to K) is defined as:

J −f�K is contained in L(A) if and only if states q ∈ I, q′ ∈ F exist,
which are related by A0(f).

A language L of arrows from J to K is a recognizable language if L = L(A), for
some automaton functor A.

For an object X or a cospan c we will, in the following, usually write A(X) and A(c)
instead of A0(X) and A0(c), respectively.
The intuition behind the definition is to have a morphism into a (locally) finite

domain which guarantees that the acceptance is not affected by different decompositions
of a morphism in any way. For instance, as seen in Chapter 5, the decomposition of a
cospan of graphs is not unique, but the automaton functor has to ensure that if one
decomposition of a cospan of graphs is accepted, all other decompositions of the same
cospan must also be accepted. This is different from word languages, where there is
essentially one way to decompose an object into smaller objects.

Note that the notion of automaton functors can be seen as a generalization of finite
automata in the following way: Let Σ be the alphabet of an arbitrary non-deterministic
finite automatonM and let Σ∗ be the free monoid of Σ (see also Example 2.17). Then

1See definition on page 19
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6.1. Automaton Models for Recognizable Languages

the automatonM is isomorphic to the automaton functor which maps the object X
to the state set ofM and every morphism, i. e. every word, to its respective transition
function inM.

Since this thesis is about recognizable graph languages we fix the category C for the
rest of this thesis to be OLCG (or one of its subcategories), as defined in Chapter 3.
Remember that OLCG is the category of (atomic) cospans which have a discrete inner
interface and an injective discrete outer interface. Furthermore, we will usually write
〈s, t〉-automaton functor instead of 〈Ds, Dt〉-automaton functor or, if the (size of the)
interfaces Ds and Dt are obvious from the context, we simply write automaton functor.
Then we define the class of recognizable graph languages as follows:

Definition 6.2 (Recognizable Language). A graph language G is recognizable if
the language

L = {[G] : ∅ → G← ∅ | G ∈ G}

is the language of a 〈0, 0〉-automaton functor A.

This notion of recognizability coincides with the notion of Courcelle. For a detailed
comparison between the algebraic view of Courcelle and the categorial view presented
here (and for a proof of this statement), we refer to [33].

The restriction to output-linear cospans instead of arbitrary cospans of graphs does
not affect the expressiveness of the formalism, which is due to the following robustness
result inspired by results of Bruggink and König [33]:

Proposition 6.3 (Robustness). Let a class L of output-linear cospans with discrete
interfacesDs andDt be called output-linear-recognizable whenever L is recognizable
in OLCG. Then L is recognizable in Cospan(Graph) if and only if it is output-
linear-recognizable.

Proof. See Appendix A.2.

Before we go on to introduce more notions we take a look at some examples of
recognizable graph languages:
Example 6.4 (k-Colorability, [33]). Let G be a graph. A k-coloring of G is a function
f : VG → Nk such that for all e ∈ EG and for all v, w ∈ attG(e) it holds that f(v) 6= f(w)
if v 6= w. We show that the language C(k) of all k-colorable graphs is recognizable, by
considering the automaton functor AC(k) : OLCG→ Rel:

• Every graph J is mapped to AC(k)(J), the set of all valid k-colorings of J , i. e.

AC(k)(J) = {f : VJ → Nk | f is a valid k-coloring of J}.

• For a cospan c : J −cL� G �cR− K the relation AC(k)(c) relates two colorings
fJ and fK if and only if there exists a coloring
f for G such that the following diagram de-
picted on the right commutes, i. e. it holds that
f(cL(v)) = fJ(v) for every node v ∈ VJ and
f(cR(v)) = fK(v) for every node v ∈ VK .

VJ G VK

Nk

cL

fJ
f

cR

fK
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As an example we take a look at the cospan2 c : D2 −cL� G �cR− D3 which is
depicted in the figure below.

1

2

1

2

3
4
5

A

A
B

A

A

A

3
4
5

c

D2 G D3

The interfaces D2 and D3 could, for instance, be mapped to the colorings depicted
by the following figure.

A

A
B

A

A

A

AC(k)(c)

fD2 fD3

The coloring for the inner interface assigns to the nodes of the inner interface
the colors and , respectively. The coloring for the outer interface assigns the
colors , and , respectively, to the outer interface nodes. Since there exists
a coloring for the middle graph G (also depicted in the figure above) which is
compatible with the colorings fD2 and fD3 , the colorings fD2 and fD3 are related
by AC(k)(c).

• The set of initial and final states is the set I∅ = F∅ = {∅}, where ∅ denotes the
empty coloring.

Note that a graph (seen as a cospan with empty interfaces) is accepted whenever the
two empty colorings are related.

Example 6.5 (Vertex Cover). Let G be a graph. A vertex cover of G is a set C ⊆ VG
such that for every edge e ∈ EG it holds that there exists an index ie ∈ {1, . . . , |att(e)|}
with att(e)[ie] ∈ C. A vertex cover C has a size of at most k if |C| ≤ k. We show that
the language V(k) of all graphs with a vertex cover of a size of at most k is recognizable,
by considering the automaton functor AV(k) : OLCG→ Rel:

• Every graph J is mapped to AV(k)(J), the set of all pairs containing a subset of
VJ (of arbitrary size) and an integer i ≤ k, i. e.

AV(k)(J) = {〈CJ , i〉 | CJ ⊆ VJ and i ≤ k}.

2For convenience the integers indicating in which order the nodes are attached to the several edges
are omitted.
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The set CJ indicates which nodes of the graph J are mapped to the vertex cover.
The integer i indicates the number of nodes contained in the vertex cover which
have already been seen.

• For a cospan c : J −cL�G�cR−K the relation AV(k)(c) relates two pairs 〈CJ , iJ〉
and 〈CK , iK〉 if and only if the following conditions hold:

– cL(CJ) = cL(VJ) ∩ CG,
– cR(CK) = cR(VK) ∩ CG and
– iK = iJ + |CG \ cR(CK)|,

where CG is a vertex cover of G. In the figure below an example of a cospan3

c : D3 −cL�G�cR−D2 is given.

1
2
3

1
2
3

4

5

B

A

A

B

A

B

B

A

A

4

5

c

D3 G D2

A possible state to which the inner and the outer interface of the cospan c could
be mapped by the automaton functor AV(k) is depicted by the figure below. The
corresponding integers iD3 and iD2 are not shown.

B

A

A

B

A

B

B

A

B

AV(k)(c)

CD3 CD2

The white-filled rectangular nodes indicate the nodes which belong to the vertex
cover of G. Since all the vertex cover nodes belong to VG \ cL(CD3) we have
that cL(CD3) = ∅ must hold, which is obviously true. Furthermore, we have that
the vertex cover CD2 contains only the right-most white-filled rectangular node
depicted in the figure above. Hence, we have iD2 = iD3 + 3.

• The set of initial states is the set I∅ = {〈∅, 0〉} and the set of final states is the
set F∅ = {〈∅, i〉 | i ≤ k}.

3For convenience the integers indicating in which order the nodes are attached to the several edges
are omitted.
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6.1.2. Consistent Tree Automata – An Automaton Model
Processing Tree Decompositions

In this subsection we define a notion of automata which accept graph languages via
their term decompositions. Hence, we adapt the notion of tree automata which has been
introduced in Chapter 2 and fix the input alphabet to be Ops, the set containing the
function symbols vertexnk , resnk , connectnA,θ, permn

π and joinn (see also Definition 5.19).
The idea of using tree automata to accept graphs and graph languages has also been
considered by Courcelle and Durand [45–47]. We also show that the class of languages
accepted by the consistent tree automata presented below is exactly the class of
recognizable graph languages.

Definition 6.6 (Consistent Tree Automaton). A consistent tree automaton is a
structureM = 〈Q,∆, I,F〉, such that 〈Q,Ops,∆, I,F〉 is an N-sorted tree automa-
ton and the following conditions apply:

• for all terms t1, t2 ∈ T (Ops) of the same type it holds that ∆̂t1 = ∆̂t2 if
Costar(t1) = Costar(t2) (structural consistency),

• for all term decompositions4 t1 : 〈0, . . . , 0〉 → 0 and t2 : 〈0, . . . , 0〉 → 0 such
that Colim(Costar(t1)) = Colim(Costar(t2)) it holds that t1 ∈ L(M) if and
only if t2 ∈ L(M) (semantic consistency) and

• all initial and final states are in Q0, i. e. Ik = ∅ and Fk = ∅ for all k ≥ 1.

Analogous to automaton functors, the graph language of a consistent tree automa-
tonM is defined as G = {Colim(t) | t ∈ L(M)}.

The structural consistency condition corresponds to the functor property of au-
tomaton functors in Definition 6.1: it says that the automaton behavior for a graph
with interfaces does not depend on the way the graph is decomposed into a term
decomposition. In the case of automaton functors the functor property is sufficient
because all cospans have exactly two interfaces, therefore we only have to test whether
∅ → G← ∅ is accepted. However, a graph may have term decompositions of different
types, for example one of type 〈0, 0〉 → 0 and one of type 〈0, 0, 0〉 → 0. The semantic
consistency condition is needed to make sure that in this case the acceptance of a graph
does not depend on its specific term decomposition.

As with automaton functors, checking that a given structure satisfies the consistency
conditions is non-trivial. Supplying building blocks that enable users to easily specify
consistent tree automata is subject to ongoing research.

Example 6.7. Let k ∈ N be given. Consider the automaton functor accepting k-
colorable graphs of Example 6.4. We define the consistent tree automaton M =
〈Q,Ops,∆, I,F〉 as follows:

• Qn = {f : Nn → Nk | f is a valid k-coloring of Dn}, i. e. Qn is the set of all
k-colorings of the discrete graph with n nodes.

4Note that the types of t1 and t2 are not necessary equal, i. e. the lengths of the 0-sequences may be
different.
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• I = F = Q0, i. e. all states in Q0 are both initial and final states.

• For f ∈ Ops \ {joinn | n ∈ N}, ∆f = AC(k)(cf ), where AC(k) is the automaton
functor from Example 6.4 and cf is the atomic cospan which corresponds to f .

• ∆joinn(q, q) = {q} and ∆joinn(q, q′) = ∅ for q 6= q′.

Now,M recognizes k-colorable graphs.

In the remainder of this subsection we prove the following theorem, which relates the
notion of consistent tree automata to the notion of automaton functors of Definition 6.1.

Theorem 6.8. Let L be a graph language. L is accepted by a consistent tree
automaton if and only if L is accepted by an automaton functor.

The left-to-right case of the theorem is easily proved, because (modulo some tech-
nicalities) an automaton functor can be obtained from a consistent tree automaton
by “forgetting” the transition functions for join. For the proof of the other direction
we require some auxiliary machinery. First, we need an operation which composes
two cospans in parallel by gluing over their common interface, that is, for cospans
c1, c2 : ∅# J , we need to glue them together over J but keep J as the interface.

Definition 6.9. Let c1 : ∅−e1�G1�a1−J and c2 : ∅−e2�G2�a2−J be two cospans,
where J is a discrete graph. We define the cospan

c1 // c2 : ∅ → G← J = 〈e, a1 ; a′1〉

by constructing a pushout as follows:

J

G1 G2

G

∅ ∅

∅

(po)

a1

a′1

a2

a′2

e1 e2

e

We define, for a given automaton functor A, the equivalence relation ≡A as follows:
c1 ≡A c2 if A(c1) = A(c2).

Lemma 6.10. The equivalence relation ≡A is a congruence, that is, if c1 ≡A c′1
and c2 ≡A c′2 then:

1. c1 ; c2 ≡A c′1 ; c′2 and

2. c1 // c2 ≡A c′1 // c′2.
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Proof. Let A = 〈A0, I, F 〉.

1. Follows directly from the fact that A0 is a functor.

2. Define, for a cospan d : ∅ # J with d = 〈dL, dR〉, the cospan d̂ : J # J by
d̂ = 〈dR, dR〉.
Consider the diagram of definition 6.9. It is the case that c1 ; ĉ2 = 〈e1 ; a′1, a2 ; a′2〉.
Furthermore, c1 // c2 = 〈e, a1 ; a′1〉 = 〈e, a2 ; a′2〉. Since the graph morphism
from ∅ to G is unique, it holds that c1 // c2 = c1 ; ĉ2. Now assume c1 ≡A c′1 and
c2 ≡A c′2. Note also that the definition of c1 // c2 is completely symmetrical, and
thus c1 // c2 = c2 // c1. Now we have:

c1 // c2 = c1 ; ĉ2 ≡A c′1 ; ĉ2 = c′1 // c2 = c2 // c
′
1 = c2 ; ĉ′1

≡A c′2 ; ĉ′1 = c′2 // c
′
1 = c′1 // c

′
2,

as required.

The translation from automaton functors to consistent tree automata is carried out
by the following construction. Note that it follows the same pattern as the construction
of a finite automaton from the Myhill-Nerode equivalence classes of a language. In our
case the equivalence is provided by the automaton functor A and is used to define
equivalence classes of cospans of the form ∅# Di which then serve as states. Note that
for a fixed i the number of these equivalence classes is finite since A maps (interface)
graphs to finite (state) sets and there are only finitely many relations between two
given finite sets.

Definition 6.11. Let an automaton functor A = 〈A0, IA,FA〉 be given, and let [[c]]
denote the ≡A-equivalence class of c. We construct the consistent tree automaton
MA = 〈Q,∆, IM,FM〉 with:

• Qi = {[[c]] | c : ∅# Di}.

• IM = {[[id∅ : ∅# ∅]]}.

• FM = {[[c]] | c ∈ L(A)}.

• ∆2k([[c]]) = {[[c]]}, for c : ∅# Dk.

• For all f ∈ Ops \ {joinn | n ∈ N}, ∆f ([[c]]) = {[[c ; cf ]]}, where cf is the
cospan corresponding to the function symbol f .

• ∆joink([[c1]], [[c2]]) = {[[c1 // c2]]}, for c1, c2 : ∅# Dk.

The construction of Definition 6.11 is well-defined because ≡A is a congruence (see
Lemma 6.10). Observe that, by construction, ∆t is deterministic for all terms, that is,
it evaluates to a singleton.
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Definition 6.12. Let C = Lg, f1, . . . , fnM be a costar, where g : J → G and
fi : Ki → G (for i ∈ {1, . . . , n}). Furthermore, let c1, . . . , cn be cospans with
ci : ∅

#
Ki (for i ∈ {1, . . . , n}). We define the cospan

C(c1, . . . , cn) = ∅ !G′−−→G′
g′←− J,

where g′ : J → G′ is the first tentacle of the composed costar

Lg′, !G′ , . . . , !G′M = (· · · (C ;2,1 c1) · · · ) ;2,1 cn.

Lemma 6.13. Let A be an automaton functor and MA = 〈Q,∆, IM,FM〉 a
consistent tree automaton as constructed by Definition 6.11. Furthermore, let
t : 〈k1, . . . , kn〉 → k0 be a term decomposition and take Ct = Costar(t). For all
cospans c1, . . . , cn with ci : ∅

#
Dki (i ∈ {1, . . . , n}) it holds that

∆̂t([[c1]], . . . , [[cn]]) =
{q
Ct(c1, . . . , cn)

y}
.

Proof. By structural induction on t.

Proposition 6.14. Let A be an automaton functor. MA as defined in Defini-
tion 6.11 is a consistent tree automaton.

Proof. LetMA = 〈Q,∆, IM,FM〉. The structural consistency condition follows from
the fact that, by Lemma 6.13, the transition function ∆t depends only on Costar(t).
To show the semantical consistency condition, observe that for costars

C1 = Lf,

n times︷ ︸︸ ︷
!G, . . . , !GM and C2 = Lf,

m times︷ ︸︸ ︷
!G, . . . , !GM

where f : J → G, it holds that C1(id∅, . . . , id∅) = C2(id∅, . . . , id∅). Since, for term
decompositions t : 〈0, . . . , 0〉 → 0, the costar Costar(t) is of this form, the semantical
consistency condition follows from Lemma 6.13.

Now we have the necessary machinery to prove Theorem 6.8.

Proof of Theorem 6.8. (⇒): Let M = 〈Q,∆, I, F 〉 be a consistent tree automaton.
We observe that all function symbols of the signature except joinn are unary, and
therefore terms that do not contain joinn are isomorphic to cospan decompositions.
Thus, by Lemma 5.5, every graph has a term decomposition which does not contain
any occurrence of joinn.

Therefore, we can build an automaton functor fromM by mapping each cospan c to
the relation ∆̂(t), where t is a term (without joinn) isomorphic to c. Well-definedness
of this definition and functoriality of the resulting automaton functor follow from the
consistency condition onM.
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(⇐): Let an automaton functorA = 〈A0, I, F 〉 be given and letMA = 〈Q,∆, IM, FM〉
be the consistent tree automaton constructed as in Definition 6.11. By Proposition 6.14
MA is a consistent tree automaton which, in particular, satisfies the structural and
semantic consistency conditions. It remains to show thatMA and A accept the same
language.
Let G be a graph, c : ∅ # ∅ a cospan decomposition of G and t : 〈0, . . . , 0〉 → 0 a

term decomposition of G. Suppose c = c1 ; · · · ; cn. We define t′ = cn(· · · (c1(20)) · · · ).
By construction it holds that Costar(t′) = c (where the cospan c is interpreted as a
costar consisting of two tentacles). Because all the interfaces of Costar(t) and of c are
empty, and the center graph of both is G, it must hold by the semantic consistency
condition that t ∈ L(M) if and only if t′ ∈ L(M). By construction it holds that
∆t′([[id∅]]≡) = {[[c]]≡}. Thus:

t ∈ L(MA)⇐⇒ t′ ∈ L(MA)⇐⇒ ([[id∅]]≡ ∈ I and [[c]]≡ ∈ F )⇐⇒ c ∈ L(A),

as required.

6.1.3. Properties of Recognizable Graph Languages
Now we want to restate some properties of recognizable graph languages which are not
very surprising. The proofs of most of the results are straightforward and can be found
in [33, 34]. Later on we will use these results for the logic presented in Section 6.2.2
and for the algorithms shown in Section 7.2.

Proposition 6.15 ([33]). Let s, t ∈ N and L be a graph language over OLCG,
containing cospans from Ds to Dt. Then L is recognizable if and only if there
exists a locally finite congruence ≡R such that L is the union of (finitely many)
equivalence classes of ≡R.

Proposition 6.16 (Determinisation [33]). For every automaton functor there
exists an equivalent deterministic automaton functor.

Proof Sketch. The construction is similar to the case of finite automata. Every state
set will be replaced by a powerset of states.

Proposition 6.17 (Closure under Boolean Operators [33]). Let G1 and G2 be two
recognizable graph languages. Then also

• G1 (the complement of G1),

• G1 ∩ G2 (the intersection of G1 and G2) and

• G1 ∪ G2 (the union of G1 and G2)

are recognizable.
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Proof Sketch. The constructions are similar to the case of finite automata.

As stated above, the constructions for the boolean operations are similar to the case
of finite automata. Therefore, it is possible to compute the intersection and the union
very efficiently, if the corresponding recognizable graph languages are given in terms of
automaton functors. In the case of the complement construction, this is only true if the
corresponding automaton functor is deterministic. Otherwise one needs to determinize
the given automaton functor first, which depends on a construction with exponential
space consumption (in the number of states of the automaton functor).
Note that the functoriality property of automaton functors still holds, i. e. the

acceptance behavior of the constructed automaton functors is still independent of the
concrete decomposition of a graph. Also note that the constructions for intersection
and union are implemented in Raven (see Chapters 7 and 8 for more details).

Now, we want to focus on the concatenation of two recognizable (graph) languages
over some common interface [34, 95]. Therefore, we do not only consider recognizable
graph languages, but languages of cospans (such that the outer interface of the first
language is equal to the inner interface of the second language).

Proposition 6.18 (Closure under Concatenation, [34]). Let LX,Y and LY,Z be
two recognizable languages (of linear5 cospans of the form c : X # Y and d : Y # Z
respectively). Then the language

LX,Y ; LY,Z = {c ; d | c ∈ LX,Y and d ∈ LY,Z}

(the concatenation of LX,Y and LY,Z) is recognizable, too.

Proof. The proof can be found in [34] for the general case of recognizable languages in
adhesive categories.

Note that functors play the role of monoid morphisms in classical monoid theory.
The following result is analogous to the well-known result that regular word languages
are closed under inverse morphism application.

Proposition 6.19 (Closure under Inverse Morphisms). Let F : OLCG→ OLCG
be a functor. If L is a recognizable graph language, then F−1(L) is a recognizable
graph language.

Proof. By composing F with the automaton functor for L, we obtain an automaton
functor for F−1(L).

Next, we will lift the generalized theorem of Myhill-Nerode (Proposition 2.11) from
the framework of word languages to our framework of graph languages [15]. But
first we need the notion of Myhill-Nerode quasi-order. Note that while the variant of
this theorem for word languages uses orders that are both left-monotone and right-
monotone, here we work only with right-monotone orders. Intuitively this is sufficient

5Remember that a cospan c : I −cL� G �cR− J is linear if both the left leg cL and the right leg cR
are injective.
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since we can assume that we start with the empty interface. This is possible because
we can “simulate” the left-composition of any cospan by a right-composition of another
equivalent cospan.

Definition 6.20 (Myhill-Nerode quasi-order). Let L be a graph language over
OLCG. A quasi-order ≤L on OLCG is called Myhill-Nerode quasi order (relative
to L), if for arbitrary cospans c, c′ : ∅# Dn the following condition is satisfied:

c ≤L c′ iff ∀(d : Dn
# ∅) : ((c ; d) ∈ L =⇒ (c′ ; d) ∈ L) .

Based on ≤L we can define the Myhill-Nerode equivalence ≡L on cospans c, c′ : ∅#
Dn as follows:

c ≡L c′ iff c ≤L c′ and c′ ≤L c.

One can prove that the Myhill-Nerode quasi-order is in fact a quasi-order on OLCG.
It also possesses two other properties which will be important in the following.

Proposition 6.21. Let L be a graph language over OLCG. The Myhill-Nerode
quasi-order (relative to L) is right-monotone and the language L is upward-closed
with respect to ≤L.

Proof.

• Right-monotone: Let arbitrary cospans a, b : ∅ # M with a ≤L b be given. By
definition, it holds that

∀(c : M # ∅) : (a ; c) ∈ L =⇒ (b ; c) ∈ L.

Now take cospans c′ : M #
N and c′′ : N # ∅ such that c = c′ ; c′′. Now

we have ((a ; c′) ; c′′) ∈ L =⇒ ((b ; c′) ; c′′) ∈ L. By definition, we have
(a ; c′) ≤L (b ; c′).

• Upward-closure: Let a, b : ∅# ∅ be arbitrary cospans such that a ∈ L and a ≤L b.
Then a = a ; e ∈ L implies b = b ; e ∈ L, where e is the empty cospan.

As an important result we now can re-state the generalized theorem of Myhill-Nerode
for our setting:

Theorem 6.22 (Generalized Myhill-Nerode Theorem, [15]). Let a graph language
L over OLCG be given. The following statements are equivalent:

(i) L is a recognizable graph language,

(ii) ≡L is locally finite and L is the union of (finitely many) equivalence classes
of ≡L,

(iii) L is upward closed with respect to some right-monotone well-quasi-order vL,
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(iv) The Myhill-Nerode quasi-order ≤L is a well quasi-order.

6.1.4. An axiomatization of Output-linear Cospans
In the following we give an axiomatization of the output-linear cospans in terms of
atomic cospans. The main advantage of the axiomization is to make it easier to verify
that the functoriality property of automaton functors holds for concrete examples. In
practice it is often very hard to check whether the functoriality property is satisfied
or not. By means of the axiomatization we can split up this problem such that one
needs to check only a small number of equations. We introduce a new normal form for
atomic cospans and prove the soundness and completeness of the axiomatization.

Definition 6.23. Let two sequences ~c, ~d of composable cospans in the category
OLCG be given. The sequences ~c and ~d are equivalent, ~c ≡ ~d, if and only if
Colim(~c) ' Colim(~d).

As an abbreviation, we extend the fuse-cospan to arbitrary equivalences in the
following way. Let δ be an arbitrary equivalence on Nn, then fusenδ denotes the sequence

fusenδ =


idn,n, if n ≤ 1
fusen−1

δ|Nn−1
, if n > 1 ∧ |[[n]]δ| = 1

fusenmin [[n]]δ,n ; fusen−1
δ|Nn−1

, if n > 1 ∧ |[[n]]δ| 6= 1
,

where idn,n denotes the identity cospan on Dn, i. e. idn,n : Dn −idn�Dn�idn−Dn, and
δ|Nn−1

is the restriction of δ to Nn−1, i. e. δ|Nn−1
= {〈m,n〉 ∈ δ | m,n ∈ Nn−1}.

The atomic cospan normal form can then be defined as follows:

Definition 6.24 (Atomic Cospan Normal Form). A sequence of composable
cospans ~c, with Colim(~c) = 〈V,E, att, lab〉, is in atomic cospan normal form if it
is of the following form:

vertexkk+1 ; vertexk+1
k+2 ; · · · ; vertexk+n−1

k+n ;
connectk+n

A1,θ1
; · · · ; connectk+n

A|E|,θ|E|
;

fusek+n
δ ;

permk+n−|V/δ|
π ;

resk+n−|V/δ|
k+n−|V/δ| ; · · · ; res`+1

`+1

where

• n ∈ N and k and ` are the sizes of the left-most and right-most interface of
~c, respectively,
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• Ai = lab(ei) for every edge ei ∈ E, θi is a function

θi : {0, . . . , |att(ei)| − 1} → {n, . . . |V |+ n− 1},

• δ is an equivalence on {1, . . . , |V |+ n− 1},

• π is a bijection on {0, . . . , k + n− |V/δ| − 1}.

Proposition 6.25. For every sequence of composable cospans in the category
OLCG exists an equivalent sequence of composable cospans which is in atomic
cospan normal form.

Proof. See Appendix A.2

In order to prove the completeness of the axiomatization we introduce a number of
algebraic properties which are satisfied by the atomic cospans defined in Chapter 3.
The list consists of the following 17 equation schemes:

vertexnk ≡ vertexnn ; permn+1
π , (6.1)

where π is defined as

π : Nn+1 → Nn+1, π(x) =


x, if x < k

n+ 1, if x = k

x− 1, if x > k

.

vertexnk ; vertexn+1
` ≡ vertexnf(`) ; vertexn+1

g(k), (6.2)

where f is defined as

f : Nn+1 → Nn, f(x) =
{
x, if x ≤ k
x− 1, if x > k

and g is defined as

g : Nn → Nn+1, g(x) =
{
x, if x < `

x+ 1, if x ≥ `
.

connectnA,θ ; vertexnk ≡ vertexnk ; connectn+1
A,θ′ , (6.3)

where θ′ is defined as

θ′ : Nar(A) → Nn+1, θ′(x) =
{
θ(x), if θ(x) < k

θ(x) + 1, if θ(x) ≥ k
.
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vertexnk ; fusen+1
i,k ≡ idDn , (6.4)

fuseni,j ; vertexn−1
k ≡ vertexnf(k) ; fusen+1

g(i),g(j), (6.5)
where f and g are defined as

f : Nn−1 → Nn, f(x) =
{
x, if x < j

x+ 1, if x ≥ j

and

g : Nn → Nn+1, g(x) =
{
x, if x < k

x+ 1, if x ≥ k
.

permn
π ; vertexnk ≡ vertexnk ; permn+1

π′ , (6.6)
where π′ is defined as

π′ : Nn+1 → Nn+1, π′(x) =



π(x), if x < k, π(x) < k

π(x) + 1, if x < k, π(x) ≥ k
k, if x = k

π(x− 1), if x > k, π(x− 1) < k

π(x− 1) + 1, if x > k, π(x− 1) ≥ k

.

resnk ; vertexn−1
` ≡ vertexnf(`) ; resn+1

g(k), (6.7)

where f and g are defined as

f : Nn−1 → Nn, f(x) =
{
x, if x < k

x+ 1, if x ≥ k

and

g : Nn → Nn+1, g(x) =
{
x, if x < `

x+ 1, if x ≥ `
.

connectnA,θ ; connectnA′,θ′ ≡ connectnA′,θ′ ; connectnA,θ, (6.8)

fuseni,j ; connectn−1
A,θ ≡ connectnA,θ′ ; fuseni,j , (6.9)

where θ′ is defined as

θ′ : Nar(A) → Nn, θ′(x) =
{
θ(x), if θ(x) < j

θ(x) + 1, if θ(x) ≥ j
.
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permn
π ; connectnA,θ ≡ connectnA,θ′ ; permn

π, (6.10)
where θ′ is defined as

θ′ : Nar(A) → Nn, θ′(x) = π(θ(x)).

resnk ; connectn−1
A,θ ≡ connectnA,θ′ ; resnk , (6.11)

where θ′ is defined as

θ′ : Nar(A) → Nn, θ′(x) =
{
θ(x), if θ(x) < k

θ(x) + 1, if θ(x) ≥ k
.

fuseni,j ; fusen−1
k,` ≡ fusenf(k),f(`) ; fusen−1

g(i),g(j) (6.12)
where f and g are defined as

f : Nn−1 → Nn, f(x) =
{
x, if x < j

x+ 1, if x ≥ j

and

g : Nn → Nn−1, g(x) =
{
x, if x < `

x− 1, if x ≥ `
.

permn
π ; fuseni,j ≡ fusenπ−1(i),π−1(j) ; permn−1

π′ , (6.13)
where π′ is defined as

π′ : Nn−1 → Nn−1, π′(x) =


π(x), if x < j, π(x) < j

π(x)− 1, if x < j, π(x) ≥ j
π(x+ 1), if x ≥ j, π(x+ 1) < j

π(x+ 1)− 1, if x ≥ j, π(x+ 1) ≥ j

.

permn
π ; permn

π′ ≡ permn
π′;π (6.14)

resnk ; permn−1
π ≡ permn

π′ ; resnk , (6.15)
where π′ is defined as

π′ : Nn+1 → Nn+1, π′(x) =



π(x), if x < k, π(x) < k

π(x) + 1, if x < k, π(x) ≥ k
k, if x = k

π(x− 1), if x > k, π(x− 1) < k

π(x− 1) + 1, if x > k, π(x− 1) ≥ k

.
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resnk ≡ permn
π ; resnn, (6.16)

where π is defined as

π : Nn → Nn, π(x) =


x, if x < k

x+ 1, if k ≤ x < n

k, if x = n

.

resnk ; resn−1
` ≡ resnf(`) ; resn−1

g(k) , (6.17)

where f is defined as

f : Nn−1 → Nn, f(x) =
{
x, if x < k

x+ 1, if x ≥ k

and g is defined as

g : Nn → Nn−1, g(x) =
{
x, if x ≤ `
x− 1, if x > `

.

Proposition 6.26 (Algebraic Properties of Atomic Cospans). The atomic cospans
defined in Definition 3.10 satisfy the equation schemes 6.1–6.17.

Proof. See Appendix A.2

Now we are able to establish the two main theorems of this subsection.

Theorem 6.27 (Soundness). If two sequences of composable cospans in the
category OLCG (with the same inner and outer interface) can be transformed
into each other via the equations schemes 6.1–6.17, they are equivalent.

Proof. See Appendix A.2

Theorem 6.28 (Completeness). If two sequences of composable cospans in the
category OLCG (with the same inner and outer interface) are equivalent, they
can be transformed into each other via the equation schemes 6.1–6.17.

Proof. See Appendix A.2

We can immediately derive the following corollary.
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Corollary 6.29. Two sequences of composable cospans in the category Graph
(with the same inner and outer interface) are equivalent if and only if they have
the same atomic cospan normal form.

Proof. The statement follows immediately from Proposition 6.25 and the Theorems 6.28
and 6.27.

6.1.5. Graph Automata – A More Automaton-theoretic Model
In this subsection we want to introduce another automaton model which has a much
more automaton-theoretic view on recognizable languages [12]. Furthermore, we will
restrict ourselves to finite structures by limiting the maximum width of the considered
cospans for the rest of this thesis, i. e. we only consider the category OLCGn. The
reason behind this decision is that we want to establish a theory of recognizable graph
languages which can be directly used as a basis for the tool implementation presented
in Chapter 8.

But before we give the definition of the new automaton model, we introduce a special
alphabet here. This alphabet is used as the input alphabet for the automaton model.
Each letter of the alphabet represents an atomic cospan such that the concatenation
of these letters (or cospans respectively) yields a graph (seen as a cospan with empty
interfaces).
Let n ∈ N and a doubly-ranked alphabet Σ = (Σi,j)i,j≤n be given. The set of

(doubly-ranked) sequences SΣ = (Si,j)i,j≤n over a doubly-ranked alphabet Σ is defined
inductively:

• for every i ≤ n the empty sequence εi is in Si,i
• for every i, j ≤ n every letter σ ∈ Σi,j is in Si,j
• for every i, j, k ≤ n and for every ~σ ∈ Si,j , ~σ′ ∈ Sj,k the concatenation ~σ ; ~σ′ of
~σ and ~σ′ is in Si,k

The width of a sequence is the maximum rank of its letters. We will also write S instead
of SΣ if the underlying alphabet is clear from the context.
Let Λ be a set of labels. By Sig = (Sigi)i≤n we denote the doubly-ranked alphabet

containing the letters6 as shown in Table 6.1:

Letter: connectiA fusei shifti resi transi vertexi
Type: (i, i) (i, i− 1) (i, i) (i, i− 1) (i, i) (i, i+ 1)
Constraint: A ∈ Λ, i ≥ 2 i ≥ 3 i ≥ 1 i ≥ 2 i < n

ar(A) ≤ i

Table 6.1.: Constraints for the letters of the alphabet Sig

The meaning of these letters is given by the evaluation function defined below which
maps each letter of the alphabet Sig to one of the atomic cospans7 defined in Chapter 3.

6In this thesis we have renamed the perm-operation introduced in [12] to shift to avoid confusion
with the perm-operation introduced in Chapter 3 and in [13, 14]

7Note that we have slightly changed the set of atomic cospans. Instead of the perm-cospan we have
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Definition 6.30 (Evaluation function). Let Λ be a set of labels.

1. The evaluation function η : Sig → OLCGn maps each letter to an output
linear cospan as shown below:

fusei connectiA (with ar(A) = m)

1

i− 2
i− 1

i

1

i− 2
i− 1

1

i−m
i−m+ 1

i

A

1

i−m
i−m+ 1

i

shifti transi

1
2

i

1

i− 1
i

1
2
3

i

1
2
3

i

resi vertexi

1

i− 1
i

1

i− 1

1

i

1

i

i+ 1

2. The extended evaluation function η̂ : SSig → OLCGn is defined as

η̂(~σ) =


Dj −id�Dj �id−Dj , if ~σ = εj ∈ Sj,j
η(σ), if ~σ = σ ∈ Sig
η̂(~σ1) ; η̂(~σ2), if ~σ = ~σ1 ; ~σ2

Note that the definition of the extended evaluation function is well-defined due to the
associativity of the cospan composition. Due to the fact that for two elements shifting
and transposition are identical operations the constraint of the letter shifti is i ≥ 3 as
seen in Table 6.1. Since every letter can be identified with an atomic cospan and vice
versa, we will not distinguish between the atomic cospan and the letter mapped to it.
Let c be an output-linear cospan. The width of c is the minimal width of all ~σ such
that η̂(~σ) = c.
Now we are able to introduce the notion of bounded graph automata. Note that

two other atomic cospans, namely shift and trans, which play the role of perm. The reason behind
this change lies in the implementation of Raven.
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the bound is introduced to obtain a finite model, i. e. graph automata only accept
graphs or copsans respectively up to a given maximum pathwidth. The main difference
between bounded graph automata and bounded automaton functors is that bounded
automaton functors are defined on all cospans of bounded size (of which there are
infinitely many), while graph automata are only defined for the letters of the input
alphabet defined above, which only correspond to the atomic cospans (of which there
are finitely many). But this is not a limitation, since we can adapt Proposition 6.25 to
the set of atomic cospans given in Definition 6.30. Hence, we are able to represent all
cospans of bounded size by a sequence of letters which are given in Table 6.1.

Definition 6.31 (Bounded graph automaton, [12]). Let n ∈ N and k, ` ≤ n be
given. An n-bounded 〈k, `〉-graph automaton A = 〈Q,Σ, δ, I,F〉 consists of

• Q = (Qi)i≤n the family of finite state sets,

• Σ = (Sigi)i≤n the doubly-ranked input alphabet (see Table 6.1),

• δ = (δi,j)i,j≤n the family of transition functions, where

δi,j : Qi × Σi,j → ℘(Qj),

• I ⊆ Qk the set of initial states and

• F ⊆ Q` the set of final states

such that the following consistency condition holds for all states q ∈ Q and
sequences ~σ1, ~σ2 ∈ Si,j :

if η̂(~σ1) ' η̂(~σ2) then δ̂i,j({q}, ~σ1) = δ̂i,j({q}, ~σ2), (?)

where δ̂i,j : ℘(Qi)× Si,j → ℘(Qj) is defined as follows:

δ̂i,j(R,~σ) :=


R if ~σ = εi ∈ Σi,i and i = j

δ(R, σ) if ~σ = σ ∈ Σi,j
δ̂k,j(δi,k(R,~σ1), ~σ2) if ~σ = (~σ1 ; ~σ2), ~σ1 ∈ Si,k, ~σ2 ∈ Sk,j

.

A sequence ~σ ∈ Sk,` over Σ is accepted by A if and only if δ̂k,`(I, ~σ) ∩ F 6= ∅.

Remember that the function η̂ denotes the evaluation function defined in Definition 6.30.
In contrast to automaton functors as defined in Section 6.1.1 a graph automaton does

not process the complete input graph at once but “piece by piece” in the following sense:
First, the input graph has to be given in terms of an atomic cospan decomposition (see
Chapter 5). Then, the graph automaton processes each atomic cospan one after another.
After finishing this process the graph automaton either accepts or rejects the given
atomic cospan decomposition and hence the given input graph. This is a difference
to automaton functors which can process the whole graph (seen as a cospan) at once.
The consistency condition (?) guarantees that the graph automaton accepts an input
graph independently of the decomposition of the graph and therefore corresponds to
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the functor property of automaton functors. Showing that this condition holds for
some prospective graph automaton is not trivial in general. One solution is to use the
axiomatization presented in Subsection 6.1.4, but still a number of equations have to
be checked. Another solution would be to automatically translate formulas of monadic
second-order logic to correct graph automata. This approach will be further discussed
in Section 6.2.2.

Definition 6.32 (Accepted language). Let an n-bounded 〈k, `〉-graph automaton
A be given. The language accepted by A, denoted by L(A), is

L (A) =
{
c : Dk

#
D` | η̂(~σ) = c for some ~σ accepted by A

}
.

The language of a bounded graph automaton contains cospans. Similar to the
situation for automaton functors, if we want to accept graphs, we can interpret the
cospan [G] as the graph G.

Since a graph automaton is bounded, it is a kind of non-deterministic finite automaton
(Nfa). Therefore, we can apply standard algorithms from formal language theory, such
as the subset construction and constructing the cross product of two automata. It
can be shown that these constructions preserve condition (?) of graph automata.
Thus, the languages accepted by n-bounded graph automata are closed under boolean
operations, and many important decision problems (such as the membership, emptiness
and language inclusion problems) are decidable. Note that the language inclusion
algorithm for Nfa is PSpace-complete, and thus no algorithms for the problem are
known, which always run in polynomial time.

Example 6.33. Let k ∈ N. We take another look at the k-colorability example (see
Example 6.4) and give a graph automaton accepting the language C(k) of all k-colorable
graphs of bounded pathwidth.

1

1

1

1 2 1 2

1 2

3

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

vertex0

vertex0

vertex0

vertex1

vertex1

vertex1

trans2

vertex2

vertex2

vertex2

connect3
A

Figure 6.1.: Excerpt of the n-bounded 〈0, 0〉-graph automaton accepting the language
C(3)

The idea of the graph automaton A(k) accepting all k-colorable graphs is as follows:
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Every state is a valid k-coloring of Di, i. e.

Qi = {f : VDi → Nk | f is a valid k-coloring of Di}.

The transition function δi,j maps a coloring f ∈ Qi and a letter σ ∈ Σ to a coloring
f ′ ∈ Qj if and only if the coloring of the inner nodes of η(σ) according to f and the
coloring of the outer nodes of η(σ) according to f ′ lead to a valid coloring of η(σ). In
Figure 6.1, a small excerpt of the 3-colorability 〈0, 0〉-graph automaton is shown. In the
left-most state, no node is colored since the interface is empty. Assume that the next
symbol is vertex0. The graph automaton non-deterministically goes into the next state,
which has one node in the interface. The new node can be colored by any of the colors
( , and ). So there are three possible successor states. Let us assume that the new
node is colored . Now, let the next cospan of the input be vertex1. The first node is
colored with the same color as before, whereas the new node can be colored by any of
the colors. This time, let us assume that that the new node is colored and let the
next cospan of the input be trans. This cospan only changes the order of the nodes in
the interface, therefore we color the first node with and the second node with . We
assume that the next symbol is vertex2. As before, the nodes 1 and 2 are colored with
the same colors as in the previous state. The color of the new third node can be chosen
non-deterministically. Here we assume that the color of the third node is . Let the last
cospan be connect3

A. This cospan is mapped to a relation which relates the (current)
state with itself, since the coloring of the current state is also a valid coloring for the
successor state, because the added edge is incident to the second and the third interface
node which have different colors.

More details on graph automata for coloring can be found in Section 7.1 and in
Appendix B.1.
Example 6.34. Second we consider the language LU of all graphs of bounded pathwidth
which contain a fixed subgraph U . The bounded graph automaton AU accepting this
language works as follows:

Every state in each of the state sets Qi contains two pieces of information. The first
piece of information states which parts of the subgraph have already been recognized.
The second piece of information is a function which maps every outer node to a node
which has already been recognized or to some “bottom element” to indicate that the
interface node is not mapped to a node of the wanted subgraph U .

f ′(Dn)

U
U ′ ∪ U ′′

DnDm cj

U ′′

The picture above shows an example of an input graph (the gray-filled area) seen as
cospan which is divided in three parts:

• the first part, starting with the empty interface on the left and ending with the
interface Dm, represents the piece of the input graph which has already been
processed,
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• the second part, starting with the interface Dm (depicted by the pink ellipse on
the left) on the left and ending with the interface Dn (depicted by the pink ellipse
on the right), represents the piece of the input graph which is currently processed
by the subgraph automaton,

• the last part, starting with the interface Dn on the left and ending with the empty
interface on the right, represents the piece of the input graph which has still to be
processed.

Before the cospan cj : Dm
#
Dn is processed as depicted in the picture above, the

automaton has already recognized the graph U ′ which is a subgraph of the wanted
subgraph U . The transition function “updates” this information according to the cospan
cj which is currently processed. Since the cospan cj contains the subgraph U ′′ which
is also a subgraph of U the found subgraph can be updated to U ′ ∪ U ′′. Note that the
function f ′(Dn) represents the part of subgraph U ′ ∪ U ′′ which is currently accessible
by the outer interface of the cospan cj.

Since the input graph might contain several parts which are isomorphic to the wanted
subgraph U , the bounded graph automaton is highly non-deterministic. More details
about the construction of this graph automaton can be found in [10].

Next, we compare graph automata with automaton functors. Therefore, we give a
slightly different notion of automaton functors, which are instantiated to the category
OLCGn. Hence, this type of automaton functors is also bounded.

Definition 6.35 (Bounded Automaton Functor). Let n ∈ N and k, ` ≤ n. An
n-bounded 〈k, `〉-automaton functor is a structure A = 〈A0, I, F 〉, where

• A0 : OLCGn → Rel is a functor which maps every discrete graph Di of
OLCG to a finite set A0(Di) (the state set of Di) and every output linear
cospan c : Di

#
Dj to a relation A0(c) ⊆ A0(Di)×A0(Dj) (the transition

relation of c),

• I ⊆ A0(Dk) is the set of initial states and

• F ⊆ A0(D`) is the set of final states.

For a discrete graph Di or a output linear cospan c we will, in the following,
usually write A(Di) and A(c) instead of A0(Di) and A0(c), respectively. A cospan
c : Dk

#
D` is accepted by A, if 〈q, q′〉 ∈ A(c) for some q ∈ I and q′ ∈ F.

The following theorem relates the notions of automaton functors and graph automata.

Theorem 6.36. Let L be a language of cospans from Dk to D`. Then L is the
language of an n-bounded 〈k, `〉-graph automaton if and only if it is the language
of an n-bounded 〈k, `〉-automaton functor.

Proof. (⇐): Let Λ be a set of labels and let B = 〈(Qi)i≤n ,Sig, δ, I′,F′〉 be an n-bounded
graph automaton. We construct an n-bounded automaton functor A = 〈A0, I,F〉
as follows:
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– A0(Di) = Qi

– Let c : J0 → G ← Jn (where J0 and Jn are discrete) be a cospan and
let c = c1 ; . . . ; cn, where c1, . . . , cn are atomic cospans. Assume that
ci : Ji−1 → Gi ← Ji (where Ji−1 and Ji are discrete). Then A0(c) =
δj0,j1(η−1(c1)) ; . . . ; δjn−1,jn(η−1(cn)) where ji is the size of Ji (0 ≤
i ≤ n). This is well-defined independent of the decomposition of c, since
the consistency condition (?) holds for B. Note that the identity cospan
idDi can be seen as the empty decomposition (in atomic cospans), hence
A0(idDi) = δi,i(εi).

Now we show that A0 is a functor. First, we observe that A preserves identities:

A0(idDi) = δi,i(εi)
Def. 6.31= idQi .

Next, we show that A preserves composition. Let c1 = c11 ; . . . ; c1n and c2 =
c21 ; . . . ; c2m be cospans, where c1i and c2j (1 ≤ i ≤ n, 1 ≤ j ≤ m) are atomic
cospans, such that c1 and c2 are composable. We choose the atomic building
blocks σ1

1 , . . . , σ
1
n, σ

2
1 , . . . , σ

2
m such that η(σ1

i ) = c1i and η(σ2
j ) = c2j (1 ≤ i ≤ n,

1 ≤ j ≤ m). Then we have

A0(c1) ; A(c2) = δj0,j1(σ1
1) ; . . . ; δjn−1,jn(σ1

n) ;
δjn,jn+1(σ2

1) ; . . . ; δjn+m−1,jn+m(σ2
m) = A0(c1 ; c2)

(⇒): Let Λ be a set of labels and let A = 〈A0, I,F〉 be an n-bounded automaton
functor. We construct an n-bounded graph automaton B = 〈Q,Σ, δ, I′,F′〉 as
follows:

– Q = (A0 (Di))i≤n
– Σ = Sig
– I′ = I
– F′ = F
– for all σ ∈ Σ, δ(σ) = Ao(c), where c is the atomic cospan corresponding to
σ, i.e. η(σ) = c

Now, we show that the “consistency condition” holds. Let ~σ1 = σ1
1 ; . . . ; σ1

n,
~σ2 = σ2

1 ; . . . ; σ2
m ∈ SΣ with η̂(~σ1) ' η̂(~σ2) and let c11, . . . , c1n, c21, . . . , c2m

be the atomic cospans corresponding to the atomic building blocks σ1
1 , . . . , σ

1
n,

σ2
1 , . . . , σ

2
m.

δ̂(~σ1) Def.= δ(σ1
1) ; . . . ; δ(σ1

n) Def.= A0(c11) ; . . . ; A0(c1n) (∗)= A0(c11 ; . . . ; c1n)
(∗∗)= A0(c21 ; . . . ; c2m) (∗)= A0(c21) ; . . . ; A0(c2m) Def.= δ(σ2

1) ; . . . ; δ(σ2
m) Def.= δ̂(~σ2)

The equation (∗) holds due to the functor property of A. The equation (∗∗) holds,
since the cospans c11 ; . . . ; c1n = η̂(~σ1) and c21 ; . . . ; c2m = η̂(~σ2) are isomorphic by
definition.
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In the remainder of this section we give an introduction to a straightforward approach
to verification which is based on recognizable graph languages. The main idea is to
provide an invariant and to check that it is preserved by all graph transformation rules
(see Definition 3.6).

Definition 6.37 (Invariant). A language L is an invariant with respect to a graph
transformation rule ρ if it holds for all graphs G and H with G ρ==⇒H that [G] ∈ L
implies [H] ∈ L.

If we assume that the language L is a recognizable graph language, we can make use
of Theorem 6.22. Hence, the recognizable graph language L is an invariant for some
graph transformation rule ρ = 〈`, r〉 if and only if ` and r are related w. r. t. a monotone
well-quasi-order such that L is upward-closed w. r. t. this well-quasi-order. The coarsest
such order is the Myhill-Nerode quasi-order of a language L and it can be computed
by a fixed-point iteration similar to the computation of the minimal finite automaton
[15]. The main disadvantage of this approach is that the algorithm for computing the
Myhill-Nerode quasi-order applies only to deterministic (graph) automata, whereas
in general our graph automata are highly non-deterministic. Determinization is not
an option because it would lead to an exponential blow-up of already huge automata.
Therefore, we had to settle for an approximation which even led to new difficulties [15].

But there is also another connection between invariants on the one hand and the
language inclusion problem on the other hand. Before we give the theorem, we need a
further definition. For an output-linear cospan c : Di

#
Dj and an n-bounded 〈i, k〉-

graph automaton A = 〈Q,Σ, δ, I,F〉 we obtain a new n-bounded 〈j, k〉-graph automaton
A[c] = 〈Q,Σ, δ, I′,F〉 with I′ = δ̂i,j(I, ~σ), where ~σ is some word over the alphabet Sig
such that η̂(~σ) = c. (If the width of c is larger than n, such a ~σ does not exist, and we
take I′ = ∅, such that L (A[c]) = ∅.) The initial states of the new automaton are all
states reachable from the initial states of the original automaton by processing c. Note
that I′ is independent of the specific decomposition of c into a sequence ~σ.

Theorem 6.38 (Invariant Checking). Let A be an n-bounded 〈0, k〉-graph au-
tomaton accepting the cospan language L, and let ρ = 〈`, r〉 be a transformation
rule. The cospan language L is an invariant of ρ if and only if L(A [`]) ⊆ L(A [r]).

Proof. Trivial.

The quintessence of the theorem is that we solve the language inclusion problem to
decide whether a language is an invariant for a given transformation rule. As already
mentioned before, we can see graph automata as (very large) non-deterministic finite
automata. Hence, we can use recent approaches to solve the language inclusion problem
for Nfas which still need exponential time in general, but in practice often achieve
better runtimes. In Chapter 7 we will explain how approaches to solve the language
inclusion problem for Nfas can be adapted to the setting of graph automata.
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6.2. Logic and Recognizability
The topic of this section is the strong connection between monadic second-order logic
and recognizable languages. Monadic second-order logic is an extension of first-order
logic, which allows quantification not only over individual elements, but also over sets
of elements. The quantification over arbitrary relations is not permitted, in contrast to
general second-order logic.
In their seminal work Büchi and Elgot [38, 65] and indepently Trakhtenbrot [126]

showed that the class of regular (word) languages is exactly the class of languages
definable in monadic second-order logic (on words), which is called the theorem of
Büchi-Elgot-Trakhtenbrot. Since the notion of recognizability can be straightforwardly
generalized to languages of trees, it is not surprising that the Büchi-Elgot-Trakhtenbrot
theorem can be carried over to the setting of trees, too [123, 124]. For the case of
recognizable graph languages we can only obtain the result that every set of graphs
definable in monadic second-order logic is recognizable, which is due to Courcelle [44].
The opposite direction does not hold due to the fact that there are only countably
many different monadic second-order definable sets of graphs but uncountably many
recognizable graph languages.

6.2.1. Monadic Second-Order Logic on Graphs
In this section, we introduce the monadic second-order logic on graphs, or Msogl for
short, [43, 44, 48], which is a fragment of the sorted second-order logic, used as one
of the most important specification logics for graphs. Especially Courcelle’s theorem
[44] says that every graph property definable in Msogl is decidable in linear time on
(finite) graphs of bounded treewidth (see also below). Note that we do not introduce
Msogl to use it as a specification language, but to compare it to the logic Lcl, which
is presented in Subsection 6.2.2.
The syntax of Msogl which is based on the two sorts v (for vertices) and e (for

edges) is defined as follows:

Definition 6.39 (Syntax of Msogl). Let V = {x1, x2, x3, . . . , X1, X2, X3, . . .} be
a set of variables where x1, x2, x3, . . . denote first-order variables andX1, X2, X3, . . .
denote second-order variables. We define the syntax inductively:

• x ∈ X, x = y and edgeA(x, y1, . . . , yar(A)) are formulas,

• if ϕ and ψ are formulas, then also ¬ϕ, ϕ ∧ ψ are formulas,

• if ϕ is a formula, then also (∃x : v)ϕ, (∃x : e)ϕ, (∃X : V )ϕ and (∃X : E)ϕ
are formulas,

where typing must be respected, that is, in formulas of the form x = y both
variables have the same type, in formulas of the form x ∈ X it holds that x is
a first-order vertex (edge) variable and X a second-order vertex (edge) variable
and in formulas of the form edgeA(x, y1, . . . , yar(A)) it holds that x is a first-order
edge variable and y1, . . . , yn are first-order vertex variables.
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As usual we define the following abbrevations:

x /∈ X := ¬(x ∈ X), x 6= y := ¬(x = y)
ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) ϕ→ ψ := ¬ϕ ∨ ψ
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)

(∀x : v)ϕ := ¬(∃x : v)¬ϕ (∀x : e)ϕ := ¬(∃x : e)¬ϕ
(∀x : V )ϕ := ¬(∃x : V )¬ϕ (∀x : E)ϕ := ¬(∃x : E)¬ϕ

Similar to Definition 4.2 we have a valuation for each variable (for which the valuation
is defined).

Definition 6.40 (Valuation). Let V = {x1, x2, x3, . . . , X1, X2, X3, . . .} be a set of
variables and let G = 〈VG, EG, attG, labG〉 be a graph. A V-valuation θ (in the
graph G) is a function assigning to each first-order variable xi ∈ V of type v (e) a
node θ(xi) ∈ VG (an edge θ(xi) ∈ EG) and to each second-order variable Xi ∈ V
of type V (E) a set of nodes θ(Xi) ⊆ VG (a set of edges θ(Xi) ⊆ EG).

Let θ be a V-valuation in the graph G, x ∈ V be a first-order variable of type v and
t ∈ VG be a node. By θ[x 7→ t] we denote the V-valuation defined as

θ[x 7→ t] : V → G, y 7→

{
t, if y = x

θ(y), else

The substitution for first-order edge variables and second-order variables is defined
analogously. This can be generalized to an arbitrary number of substitutions in the
obvious manner.
Now we can define the semantics of the monadic second-order logic of graphs:

Definition 6.41 (Semantics of Msogl). A graph G = 〈VG, EG, attG, labG〉 satis-
fies a formula ϕ, written G |= ϕ, if there exists a V-valuation θ such that G, θ |= ϕ,
where:

• G, θ |= x = y if θ(x) = θ(y) and G, θ |= x ∈ X if θ(x) ∈ θ(X).

• G, θ |= edgeA(x, y1, . . . , yn) if labG(θ(x)) = A and
attG(θ(x)) = θ(y1) . . . θ(yn).

• G, θ |= ϕ1 ∧ ϕ2 if G, θ |= ϕ1 and G, θ |= ϕ2.

• G, θ |= ¬ϕ if G, θ 6|= ϕ.

• G, θ |= (∃x : v)ϕ if there is a v′ ∈ VG such that G, θ[x 7→ v′] |= ϕ.

• G, θ |= (∃x : e)ϕ if there is a e′ ∈ EG such that G, θ[x 7→ e′] |= ϕ.

• G, θ |= (∃X : V )ϕ if there is a V ⊆ VG such that G, θ[X 7→ V ] |= ϕ.
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• G, θ |= (∃X : E)ϕ if there is a E ⊆ EG such that G, θ[X 7→ E] |= ϕ.

Let ϕ be an arbitrary Msogl-formula, by L(ϕ) we denote the language of ϕ, i. e.
the set of graphs satisfying the property ϕ, or more formally L(ϕ) = {G | G |= ϕ}.

Many NP-complete problems can be defined using Msogl. One example, the set of
all 3-colorable graphs, can be expressed by the following Msogl-formula:

Example 6.42.

(∃X1 : V ) (∃X2 : V ) (∃X3 : V )
(∀x : v) (x ∈ X1 ∨ x ∈ X2 ∨ x ∈ X3) ∧
(∀x : v) ((x /∈ X1 ∨ x /∈ X2) ∧ (x /∈ X1 ∨ x /∈ X3) ∧ (x /∈ X2 ∨ x /∈ X3)) ∧

(∀x1 : v) (∀x2 : v) (∀y : e)
(
edge?(y, x1, x2)→(

(x1 /∈ X1 ∨ x2 /∈ X1) ∧ (x1 /∈ X2 ∨ x2 /∈ X2) ∧ (x1 /∈ X3 ∨ x2 /∈ X3)
))

The first line defines the existence of three colors, the second and third line state that
every node has exactly one color and the last line guarantees that adjacent nodes have
different colors.

Other problems definable in Msogl are sets of graphs which are planar, which have
a Hamiltonian circuit8, a dominating set (of size less than some constant k)9, or a
vertex cover (of size less than k).

As already mentioned above, a well-known result about graph languages and monadic
second-order logic is the following famous theorem by Courcelle:

Theorem 6.43 (Courcelle’s Theorem [44]). Any property of graphs definable in
monadic second-order logic can be decided in linear time for graphs of bounded
treewidth.

The idea is to construct a tree automaton for a Msogl-formula ϕ and a bound on the
maximum treewidth w that accepts a tree decomposition of size at most w if and only
if the tree decomposition, corresponding to the input graph, satisfies the formula ϕ.
It directly follows that many problems, which are NP-complete, become linear-

time solvable if we restrict the input to graphs of bounded treewidth. However, the
result is only of theoretical interest, since the multiplicative constants in the running
time are usually exponential (or worse) in the treewidth. This is due to the fact
that for every negation occuring in the formula ϕ one has to first determinize the
tree automaton, which leads to an exponential blow-up, and afterwards build the
“complement automaton”.

Therefore, we will study another logic in the following section, for which we try to
avoid the issues above.

8A graph contains a Hamiltonian circuit if there exists a cycle which contains every node of the
graph exactly once.

9A dominating set (of size at most k) of a graph is a set D (of size at most k) such that every node
of the graph is either contained in D or adjacent to some node in D.
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6.2.2. Linear Cospan Logic
In this section, we introduce another logic which describes properties of cospans of
graphs and which has therefore a strong connection to the graph automata defined
above in Section 6.1.5.
The idea of a logic which “operates” in a more categorical setting and which has

the expressive power of monadic second-order logic has been inspired by the so-called
subobject logic of Bruggink and König [32]. The greatest problem of this logic is that
the construction of graph automata from a given subobject logic formula requires
exponential space (and time), even if the formula is rather small. This is due to the
powerset construction which is needed in case of negations.

To overcome this issue we introduce another logic called Linear Cospan Logic (Lcl).
The basic idea is to enrich this logic with a number of predefined properties, e. g.
k-colorability or planarity, which are handled as atomic formulas and to avoid the
cost-intensive negation (see below). This idea is similar to an approach by Courcelle
and Durand as well as Courcelle and Engelfriet [46, 48].
The syntax of Lcl is defined as follows:

Definition 6.44 (Syntax of Lcl). Let Π = (Πi,j)i,j∈N be a (doubly-ranked) set
of predicates. We define the syntax inductively:

Atomic Formulas: Every predicate π : i→ j with π ∈ Πi,j is a formula.

Negation and Conjunction: If ϕ : i → j and ψ : i → j are both formulas, then
¬ϕ : i→ j and ϕ ∧ ψ : i→ j are formulas.

Existential Quantification: If ϕ : i→ j and ψ : j → k are formulas, then (∃ϕ : ψ) : i→
k is a formula.

Existential Shift: If ϕ : i→ k and ψ : i→ j are formulas, then (ϕ↓∃ψ) : j → k is a
formula.

The set of all formulas of type i→ j over the alphabet Σ is denoted by ΦΣ
i,j . We set

ΦΣ
n =

⋃
i,j≤n ΦΣ

i,j and ΦΣ =
⋃

ΦΣ
n . If the alphabet is obvious from the context, we will

also write Φ.
The semantics of the logic can then be defined as follows, where we fix the category

OLCGn as universe and we assume that we have an graph automaton Aπ for each
predicate π ∈ Σ.

Definition 6.45 (Semantics of Lcl). The semantics are defined inductively:

JπK = L (Aπ) , for π : i→ j,

J¬ϕK =M(Di, Dj) \ JϕK, for ϕ : i→ j,

Jϕ ∧ ψK = JϕK ∩ JψK,
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J∃ϕ : ψK = JϕK ; JψK = {c : Di
#
Dk | ∃c′ : Di → Dj , c

′′ : Dj
#
Dk :

c = c′ ; c′′ ∧ c′ ∈ JϕK ∧ c′′ ∈ JψK}, for ϕ : i→ j, ψ : j → k,
r
ϕ↓∃ψ

z
= {c′ : Dj

#
Dk | ∃c : Di

#
Dj : c ∈ JψK ∧ c ; c′ ∈ JϕK}

for ϕ : i→ k, ψ : i→ j.

The idea of the shift operation is to partially evaluate a formula ϕ on a set of cospans
which satisfy ψ. Hence, the “shifted” formula describes exactly those cospans which
satisfy ϕ whenever these cospans are precomposed by a cospan satisfying ψ. This
originates from an operation for nested application conditions (for transformation
rules), introduced by Pennemann [108].

As stated above, we assume that automata for the predicates are given before. The
conjunction of two formulas can be obtained by computing the automaton for the
intersection of the underlying automata (see Proposition 6.17).
Furthermore, the automaton for the existential quantification can be efficiently

obtained from the underlying automata by computing the concatenation automaton
(see Proposition 6.18). The automaton Aϕ↓∃

ψ
for the existential shift is computed

by a construction which takes the automata Aϕ = 〈Qϕ,Σ, δϕ, Iϕ,Fϕ〉 for ϕ and
Aψ = 〈Qψ,Σ, δψ, Iψ,Fψ〉 for ψ. The set of states, the transition function and the
set of final states of Aϕ↓∃

ψ
are exactly those of Aϕ. The set of initial states of Aϕ↓∃

ψ
are

determined as follows: A state s ∈ Qϕ is an initial state of Aϕ↓∃
ψ
if and only if there

exists a sequence ~σ ∈ SΣ such that s ∈ δ̂ϕ(Iϕ, ~σ) and δ̂ψ(Iψ, ~σ) ∩ Fψ 6= ∅. For more
details of the construction of the automaton Aϕ↓∃

ψ
see also the proof of Theorem 6.52

below.
We assume that the automaton for the existential quantification can also be obtained

in an efficient manner. But it is planned for the future to find a more efficient construc-
tion. The computation of the “negation automaton” (for a negated formula) involves
the determinization of the automaton for the underlying formula which causes an expo-
nential blow up. Hence, this operation cannot be implemented efficiently. Therefore, we
try to avoid negations by transforming formulas containing negations. Further details
of this idea will be explained below.

If c : Di
#
Dj is a cospan and ϕ : i→ j is a formula, we will write c |= ϕ (c 6|= ϕ) if

and only if c ∈ JϕK (c /∈ JϕK). Furthermore, we define the following abbreviations:

ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) ϕ→ ψ := ¬ϕ ∨ ψ ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)

∀ψ : ϕ := ¬ (∃ψ : ¬ϕ) ϕ↓∀ψ := ¬
(
¬ϕ↓∃ψ

)
Similar to the existential shift above, we call the formula ϕ↓∀ψ universal shift.

Additionally, if c : Di
#
Dj is a cospan, C ⊆M(Di, Dj) is a (not neccessarily finite)

set of cospans and ϕ : i → k is a formula, then we define the formulas ∃c : ϕ, ∃C : ϕ
and ϕ↓c as follows

J∃c : ϕK = {d : Di
#
Dk | ∃c′ : Dj

#
Dk : d = c ; c′ ∧ c′ |= ϕ}

J∃C : ϕK = {d : Di
#
Dk | ∃c′′ ∈ C, c′ : Dj

#
Dk : d = c′′ ; c′ ∧ c′ |= ϕ}

Jϕ↓cK = {c′ : Dj
#
Dk | c ; c′ |= ϕ}

84



6.2. Logic and Recognizability

Note that the first two operations are just special cases of ∃ψ : ϕ, where JψK is a
single cospan or a fixed set of cospans respectively. The third operation is just a
special case of the existential or universal shift respectively, i. e. if JψK = {c}, then
Jϕ↓cK =

r
ϕ↓∃ψ

z
=
r
ϕ↓∀ψ

z
. Furthermore, the first two operations can be defined for

universal quantification in the obvious way.
For the modified shift operations we give the following proposition which can be

immediately obtained from the definitions:

Proposition 6.46. Let c : Di
#
Dj and d : Dj

#
Dk be cospans and let ϕ : i→ k

be a formula. Then
c ; d |= ϕ ⇐⇒ d |= ϕ↓c.

Proof. Trivial, by definition.

That the universal quantification and the universal shift can be seen as special cases
of the existential quantification and the existential shift respectively, is motivated by
the following two propositions.
The following lemma states that our definition of the universal quantification is

adequate.

Proposition 6.47. Let ϕ : i→ j and ψ : j → k be formulas. Then

J∀ϕ : ψK = {c : Di
#
Dk | ∀c′ : Di

#
Dj , c

′′ : Dj
#
Dk :

(c = c′ ; c′′ ∧ c′ |= ϕ) =⇒ c′′ |= ψ}.

Proof. See Appendix A.2.

The lemma below states the same result for the universal shift.

Proposition 6.48. Let ϕ : i→ k and ψ : i→ j be formulas. Then
r
ϕ↓∀ψ

z
= {c′ : Dj

#
Dk | ∀c : Di

#
Dj : c |= ψ =⇒ c ; c′ |= ϕ}.

Proof. See Appendix A.2.

The existential and the universal shift operations give rise to a very general invariant
checking technique. For this setting we use a very universal graph transformation
approach which differs from the approach presented in Chapter 3. Despite the replace-
ment of a fixed left-hand side by a fixed right-hand side the approach considered here
replaces a subgraph satisfying a formula ψ1 by a subgraph satisfying a formula ψ2.
Note that the subgraphs for the left-hand and the right-hand side can be somewhat
arbitrary (as long as the formulas are satisfied). Then the property specified by ϕ is
preserved by such a transformation rule if and only if

r
ϕ↓∃ψ1

z
⊆
r
ϕ↓∀ψ2

z
.

Another approach which is based on the shift operations and which can be used
for the automatic generation of invariants by computing weakest pre-conditions and
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strongest post-conditions will be presented below. Before we can introduce this approach
we first need some more machinary which is given below.

Next, we introduce the entailment relation on Lcl-formulas.

Definition 6.49 (Entailment Relation). We define the entailment relation |= ⊆
Φi,j × Φi,j as follows:

ϕ |= ψ ⇐⇒ JϕK ⊆ JψK

As usual we also write ϕ ≡ ψ if and only if ϕ |= ψ and ψ |= ϕ holds. It is easy to see
that Φi,j together with the entailment relation is a quasi-ordered set.
Additionally, we immediately obtain the following laws:

Proposition 6.50. Let ϕ1, ϕ2 : i→ k, ψ : i→ j and ξ1, ξ2 : j → k be formulas.

(ϕ1 ∧ ϕ2)↓∃ψ ≡ ϕ1↓∃ψ ∧ ϕ2↓∃ψ (ϕ1 ∧ ϕ2)↓∀ψ ≡ ϕ1↓∀ψ ∧ ϕ2↓∀ψ
(ϕ1 ∨ ϕ2)↓∃ψ ≡ ϕ1↓∃ψ ∨ ϕ2↓∃ψ (ϕ1 ∨ ϕ2)↓∀ψ ≡ ϕ1↓∀ψ ∨ ϕ2↓∀ψ
∃ψ : (ξ1 ∨ ξ2) ≡ ∃ψ : ξ1 ∨ ∃ψ : ξ2 ∀ψ : (ξ1 ∧ ξ2) ≡ ∀ψ : ξ1 ∧ ∀ψ : ξ2

Proof. See Appendix A.2.

Proposition 6.51. Let c : Di
#
Dj be a cospan and let ϕ : i→ k, ψ : j → k be

formulas. Then

ϕ |= ∃c : ψ ⇐⇒ ϕ↓c |= ψ ⇐⇒ ϕ |= ∀c : ψ.

Proof. Trivial, by definition.

Theorem 6.52. Let n ∈ N and let Π = (Πi,j)i,j∈N be a (doubly-ranked) set of
predicates. Then for every formula ϕ ∈ ΦΣ

n the language JϕK is recognizable.

Proof. We prove this proposition by induction over the structure of ϕ.

Base case: Let ϕ = π ∈ Σi,j . By definition we have JπK = L(Aπ) for some graph
automaton Aπ, therefore JπK is recognizable.

Inductive step:
• Let ϕ = ¬ψ. By induction, JψK is recognizable. By Proposition 6.17 the

recognizable languages are closed under complementation, hence we can
build a graph automaton for ϕ using the automaton for ψ.

• Let ϕ = ψ1 ∧ ψ2. By induction, Jψ1K and Jψ2K are recognizable. By Proposi-
tion 6.17 the recognizable languages are closed under intersection, hence we
can build a graph automaton for ϕ using the automata for ψ1 and ψ2.
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• Let ϕ = ∃ψ1 : ψ2. By induction, Jψ1K and Jψ2K are recognizable. By Propo-
sition 2.13 the recognizable languages are closed under concatenation.

• Let ϕ = ψ1↓∃ψ2
. By induction, Jψ1K and Jψ2K are recognizable by an 〈i, k〉-

graph automaton Aψ1 = 〈Qψ1 ,Σ, δψ1 , Iψ1 ,Fψ1〉 and a 〈i, j〉-graph automaton
Aψ2 = 〈Qψ2 ,Σ, δψ2 , Iψ2 ,Fψ2〉.
Now, we define a 〈j, k〉-graph automaton Aϕ which accepts the language
JϕK as follows:

Aϕ = 〈Qψ1 ,Σ, δψ1 , I,Fψ1〉

with

I = {q′1 | ∃~σ ∈ Si,j : ∃(q1, q2) ∈ Iψ1 × Iψ2 :
(q′1, q′2) ∈ δψ1×ψ2(q1, q2, ~σ) ∧ (q′1, q′2) ∈ Qψ1 × Fψ2} (6.18)

and

δψ1×ψ2 : Qψ1 ×Qψ2 × Σ→ ℘(Qψ1)× ℘(Qψ2)
(q1, q2, σ) 7→ (δψ1(q1, σ), δψ2(q2, σ)).

That Aϕ is a 〈j, k〉-graph automaton is obvious, since Aψ1 is 〈i, k〉-graph
automaton and Aψ2 is 〈i, j〉-graph automaton. We now show that L (Aϕ) =
JϕK, as follows:

L (Aϕ)
= {c : Dj

#
Dk | ∃~σ ∈ Sj,k,∃q ∈ I : η̂(~σ) = c ∧ δψ1(q, ~σ) ∩ Fψ1 6= ∅}

6.18= {c : Dj
#
Dk | ∃~σ ∈ Sj,k,∃~σ′ ∈ Si,j ,∃q1 ∈ Iψ1 ,∃q2 ∈ Iψ2 :

η̂(~σ) = c ∧ δψ1(q1, ~σ
′ ; ~σ) ∩ Fψ1 6= ∅ ∧ δψ2(q2, ~σ

′) ∩ Fψ2 6= ∅}
= {c : Dj

#
Dk | ∃~σ ∈ Sj,k,∃~σ′ ∈ Si,j : η̂(~σ) = c ∧

η̂(~σ′ ; ~σ) ∈ L
(
Aψ1

)
∧ η̂(~σ′) ∈ L

(
Aψ2

)
}

= {c : Dj
#
Dk | ∃~σ ∈ Sj,k,∃~σ′ ∈ Si,j : η̂(~σ′ ; ~σ) = c ∧

η̂(~σ′ ; ~σ) |= Jψ1K ∧ η̂(~σ′) |= Jψ2K}
= {c : Dj

#
Dk | ∃c′ : Di

#
Dj : c′ ; c |= Jψ1K ∧ c′ |= Jψ2K}

= JϕK

This completes the induction.

In the following, we investigate the properties of Lcl. The focus will be on properties
which can later on be used for the applications we have in mind, i. e. verification of
dynamically evolving systems (see Chapter 7 for more details). Since the construction of
an automaton accepting the language described by a property is usually not feasible we
try to avoid the construction of the complete automaton. Instead of that our approach is
to transform the property to an equivalent statement which can be checked more easily.
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Above we have already seen examples of such transformations. By Proposition 6.51 we
can avoid to construct the automata for the existential or the universal quantification
by transforming the statement to one depending only on a shift of a single cospan. As
seen before, the corresponding automaton can be constructed very easily.

Proposition 6.53. Let c : Di
#
Dj and c′ : Dj

#
Dk be cospans, ψ : i→ j and

ϕ : j → k be formulas. Then

(c |= ψ ∧ c ; c′ |= ∀ψ : ϕ) =⇒ c′ |= ϕ

Proof. Let c : Di
#

Dj and c′ : Dj
#

Dk be cospans, such that c |= ψ and c ; c′ |=
∀ϕ : ψ. We assume that c′ 6|= ϕ. By c ; c′ |= ∀ψ : ϕ we have that there exists no pair of
cospans d : Di

#
Dj and d′ : Dj

#
Dk such that c ; c′ = d ; d′, d |= ψ and d′ |= ¬ϕ.

Therefore, it must hold (if we choose c = d and c′ = d′) that c′ |= ϕ. But this is a
contradiction to our assumption.

Proposition 6.54. Let c : Di
#
Dj and c′ : Dj

#
Dk be cospans, ψ : i→ j and

ϕ : j → k be formulas. Then

(c |= ψ ∧ c′ |= ϕ↓∀ψ) =⇒ c ; c′ |= ϕ

Proof. Let c : Di
#
Dj and c′ : Dj

#
Dk be cospans, such that c |= ψ and c′ |= ϕ↓∀ψ.

We assume that c ; c′ 6|= ϕ. Since c′ |= ϕ↓∀ψ holds if and only if for all cospans
d : Di

#
Dj satisfying d |= ψ it holds that d ; c′ |= ϕ, we can conclude from c |= ψ that

c ; c′ |= ϕ. But this is a contradiction to our assumption.

In the following we introduce the notion of Galois connections. Our aim is to use
the theory of Galois connections in order to avoid impractical computations on graph
automata. How this can be achieved will be explained below.

Definition 6.55 (Galois Connection). Let 〈L,≤L〉 and 〈M,≤M 〉 be two partially
ordered sets. A Galois connection 〈α, γ〉 (between L and M) consists of two
functions α : L → M and γ : M → L, called abstraction and concretion, which
satisfy the following conditions:

• α and γ are monotone, i. e.

∀`1, `2 ∈ L : `1 ≤L `2 =⇒ α(`1) ≤M α(`2)

and
∀m1,m2 ∈M : m ≤M m =⇒ γ(m1) ≤L γ(m2)

• α ; γ is extensive and γ ; α is reductive, i. e.

∀` ∈ L : ` ≤L γ(α(`)) and ∀m ∈M : α(γ(m)) ≤M m

We can immediately obtain the following properties:
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Proposition 6.56 (Properties of Galois Connections). Let 〈α, γ〉 be a Galois
connection between two partially ordered sets L and M . Then the following
conditions hold:

(i) α(`) ≤M m ⇐⇒ ` ≤L γ(m)

(ii) γ(m) =
⊔
{` | α(`) ≤M m}

(iii) α(`) =
d
{α(`) | ` ≤L γ(m)}

(iv) α (
⊔
L′) =

⊔
{α(`) | ` ∈ L′}, for L′ ⊆ L

(v) γ (
d
M ′) =

d
{γ(m) | m ∈M ′}, for M ′ ⊆M

Proof. See Appendix A.2.

In order to make use of the laws given above, we introduce two concrete Galois
connections. For this we overload the entailment relation in the following sense: To
obtain a partially ordered set, we interpret the entailment relation |= on equivalence
classes of Lcl-formulas. Note that this yields a lattice where ∨ is the supremum and ∧
is the infimum of the lattice.

The laws presented above are very useful, especially if we take a further look at the
quantification and the shift defined above. The quantification, Qψ : ϕ, and the shift
ϕ↓Qψ , for Q ∈ {∀,∃}, can be seen as functions with two parameters, ψ and ϕ. Therefore,
if we fix the formula ψ we obtain two functions (in one parameter) which can be used as
abstractions and concretions forming a Galois connection as seen below. Hence, we can
use the above laws for Galois connections to transform (universal) quantifications and
(universal) shifts. This helps to avoid the costly determinization of the huge underlying
graph automata.

Proposition 6.57. Let n ∈ N, ψ : i → k be a formula and i, j, k ≤ n. The
functions

α∃ψ : Φk,j → Φi,j γ∀ψ : Φi,j → Φk,j
α∃ψ(ϕ) = ∃ψ : ϕ γ∀ψ(ϕ′) = ϕ′↓∀ψ

are a Galois connection between 〈Φk,j , |=〉 and 〈Φi,j , |=〉.

Proof. See Appendix A.2.

Proposition 6.58. Let n ∈ N, ψ : i → j be a formula and i, j, k ≤ n. The
functions

α∀ψ : Φj,k → Φi,k γ∃ψ : Φi,k → Φj,k
α∀ψ(ϕ) = ∀ψ : ϕ γ∃ψ(ϕ′) = ϕ′↓∃ψ
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are a Galois connection between 〈Φj,k, |=〉 and 〈Φi,k, |=〉.

Proof. See Appendix A.2.

Another application of the Lcl-logic is the automatic generation of invariants. For
this purpose we can use the machinery presented above to compute the weakest
pre-condition and the strongest post-condition for a given set of transformation rules.

Definition 6.59 (Hoare Triple, (Weakest) Pre-Condition, (Strongest) Post-Con-
dition). Let ρ = 〈`, r〉 be a transformation rule and let ϕ,ψ : 0→ j be formulas.
The triple 〈ϕ, ρ, ψ〉 is a Hoare Triple, also written as {ϕ} ρ {ψ}, if for all graphs
G and H such that [G] |= ϕ and G ρ==⇒H it holds that [H] |= ψ.
For a Hoare triple {ϕ} ρ {ψ}, ϕ is called a pre-condition for ρ and ψ and ψ is

called a post-condition for ϕ and ρ.
A formula ϕ is the weakest pre-condition for ρ and ψ, written as wp (ρ, ψ), if it

is a pre-condition for ρ and ψ and for every other pre-condition ϕ′ for ρ and ψ it
holds that ϕ′ |= ϕ. A formula ψ is the strongest post-condition for ϕ and ρ, written
as sp (ϕ, ρ), if it is a post-condition for ϕ and ρ and for every other post-condition
ψ′ for ϕ and ρ it holds that ψ |= ψ′.

To compute the weakest pre-condition (or strongest post-condition respectively),
we use a method similar to that presented by Bruggink, Cauderlier, Hülsbusch and
König [31]. The basic idea is as follows: The weakest pre-condition of a transformation
rule ρ = 〈`, r〉 and a formula ψ has to guarantee that for every occurrence of the
left-hand side the part of the post-condition ψ which is not affected by the right-hand
side is satisfied, i. e. every left-hand side must satisfy the formula ψ↓r. The strongest
post-condition of a formula ϕ and a transformation rule ρ = 〈`, r〉 has to guarantee
that there exists an occurrence of the right-hand side such that this right-hand side
satisfies the part of the pre-condition which is not affected by the left-hand side, i. e.
some right-hand side must satisfy the formula ϕ↓`.
This can be spelled out by the following proposition:

Proposition 6.60. Let ρ = 〈`, r〉 be a transformation rule and let ϕ,ψ : 0→ j be
formulas. It holds that

• wp (ρ, ψ) = ∀` : (ψ↓r)

• sp (ϕ, ρ) = ∃r : (ϕ↓`)

Proof.

• We show that wp (ρ, ψ) = ∀` : (ψ↓r) holds in two steps:

1. We prove that ∀` : (ψ↓r) is a pre-condition of ρ and ψ. Let G andH be graphs
such that [G] |= ∀` : (ψ↓r) and G ρ==⇒H. Hence, we have that [G] = ` ; c
and [H] = r ; c for some cospan c. By this we can follow that c |= ψ↓r. By
proposition 6.46 we then have [H] = r ; c |= ψ. Therefore, ∀` : (ψ↓r) is a
pre-condition of ρ and ψ.
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2. We show that ∀` : (ψ↓r) is the weakest pre-condition. Let ϕ′ be any pre-
condition for ρ and ψ and let G be a graph such that [G] |= ϕ′, which implies
that for every graph H with G ρ==⇒H we have that [H] |= ψ. This means
that for every cospan c such that [G] = ` ; c we have that [H] = r ; c |= ψ
holds which is equivalent to c |= ψ↓r by proposition 6.46. This implies that
[G] |= ∀` : (ψ↓r) and hence ∀` : (ψ↓r) is the weakest pre-condition.

• We show that sp (ϕ, ρ) = ∃r : (ϕ↓`) holds in two steps:

1. We prove that ∃r : (ϕ↓`) is a post-condition of ϕ and ρ. Let G and H be
graphs such that [G] |= ϕ and G ρ==⇒H. Hence, we have that [G] = ` ; c and
[H] = r ; c for some cospan c. By proposition 6.46 we immediately obtain
that c |= ϕ↓` and since [H] = r ; c we can conclude that [H] |= ∃r : (ϕ↓`).
Therefore, we have that ∃r : (ϕ↓`) is a post-condition of ϕ and ρ.

2. We show that ∃r : (ϕ↓`) is the strongest post-condition. Let ψ′ be any post-
condition for ϕ and ρ. Let H be a graph such that [H] |= ∃r : (ϕ↓`). This
implies that there exists a cospan c such that [H] = r ; c and c |= ϕ↓`. By
proposition 6.46 we have that ` ; c |= ϕ and if we set [G] = ` ; c, we have that
G

ρ==⇒H. Since ψ′ is any post-condition, this implies [H] |= ψ′. Hence, we
obtain ∃r : (ϕ↓`) |= ψ′. Therefore, ∃r : (ϕ↓`) is the strongest post-condition.

Now we can check whether a given set of graphs satisfies the weakest pre-condition
or strongest post-condition respectively. Such a method could serve as the basis for
automatic invariant generation.
Note that we have some potential for optimizations here. Let ρ = 〈`, r〉 be a

transformation rule and let ϕ,ψ : 0 → j be formulas. By Proposition 6.51 we can
optimize the check whether ϕ satisfies the weakest pre-condition of ρ and ψ and the
check whether ψ satisfies the strongest post-condition of ϕ and ρ in the following way:
We have that

ϕ |= wp (ρ, ψ) ⇐⇒ ϕ↓` |= ψ↓r ⇐⇒ sp (ϕ, ρ) |= ψ.

Hence, we can simplify both checks by computing the “shift automata” (of ϕ↓` and
ψ↓r) instead of computing the more costly “quantification automata”.

It remains future work to investigate the expressiveness of Lcl and the connection to
other well-known logics. But we assume that Lcl is equivalent to first-order logic if the
set of predicates is instantiated only to singletons. However, since we can instantiate
predicates with languages which are not Msogl-definable (but recognizable), it is
possible to express properties which cannot be defined in Msogl.

6.3. Conclusion
In this chapter we have introduced the notion of recognizable graph languages in terms
of three different automaton models. The first one has been the categorical notion of
automaton functors which accept the class of recognizable graph languages introduced
by Courcelle (when instantiated to the category of (cospans of) graphs). Since we are
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interested in a more automaton-theoretic view due to our applications (see Chapters 7
and 8) we have also introduced the notions of consistent tree automata and graph
automata which are closer to classical tree automata and finite automata respectively.
But we have shown that in the case of consistent tree automata we obtain the same
notion of recognizability. In the case of graph automata we have only considered
languages of graphs with a bounded pathwidth. Hence, we have shown that this class
of languages coincides with the class of languages accepted by bounded automaton
functors (which also accept only graphs with a bounded pathwidth, instead of graphs
with arbitrary path-/treewidth accepted by unbounded automaton functors). We have
introduced this bound in order to get finitely representable automata, which we will use
in the next chapters as basis for our tool-suite Raven. If we dropped this bound (and
allowed graphs with arbitrary pathwidth) the corresponding graph automata would
consist of an infinite number of finite state sets. Hence, the graph automata become
non-implementable.

Class of All Graph Languages

Class of Recognizable
Graph Languages

Class of
Context-Free

Graph Languages

Class Rectwd

Class Recpwd

Figure 6.2.: Language Hierarchy
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Note that despite the situation for word languages the class of recognizable graph
languages and the class of context-free graph languages are incomparable (see [44]
for a proof). But due to a result by Courcelle [48, Cor. 4.38] we have that every
recognizable graph language with bounded treewidth is also context-free. However,
currently we have only considered bounded graph automata accepting graphs with
bounded pathwidth. But we could also introduce bounded consistent tree automata,
which accept languages of graphs with a bounded treewidth. It is obvious that the class
of all recognizable graph languages with bounded treewidth (Rectwd) is a super class
of the class of all recognizable graph languages with bounded pathwidth (Recpwd),
since twd(G) ≤ pwd(G) for all graphs G. Altogether, we have the language hierarchy
depicted in Figure 6.2. However, the class Recpwd already contains many interesting
graph languages.

Beside these different automata models we have taken a look at two different logics
for graphs: on the one hand the monadic second-order logic on graphs and on the
other hand the linear cospan logic, which we have introduced in this thesis. The
former one is of great interest for us for two reasons. First, it is well-known that every
Msogl-formula induces a recognizable graph language. Second, the famous Courcelle’s
theorem states that every Msogl-definable graph language can be decided in linear
time for graphs of bounded treewidth. The drawback of this latter result is that the
construction of an automaton for the corresponding Msogl-formula is very costly
in practice. Hence, we have considered the linear cospan logic which depends on the
usual logical operations (i. e. conjunction, negation, existential quantification) plus a
shift-operation and a number of pre-defined predicates which describe some basic graph
properties, e. g. k-colorability, dominating sets, etc. The shift-operation is very useful
for different applications, such as invariant checking and the computation of weakest
pre-conditions (strongest post-conditions). In case of the invariant checking problem
we have seen that this problem can be reduced to a language inclusion problem of
two automata obtained by shifting the left-hand side and right-hand side respectively
over the original automaton. For the other application we have presented above, Hoare
logic, we have seen that the shift-operation is quite useful for the computation of the
weakest pre-condition (strongest post-condition).

In the next chapter we will explain how graph automata can be efficiently represented
by binary decision diagrams. Furthermore, we will present different algorithms to solve
the language inclusion problem. These algorithms will then be used to solve the invariant
checking problem as stated above.
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“In theory, there is no difference between theory and
practice. But, in practice, there is.”
Johannes L. A. van de Snepscheut (1953 – 1994)

7
Symbolically Represented Graph

Automata

In general an automaton functor consists of infinitely many finite state sets, since
graphs with arbitrary large interface size have to be considered. But if only recognizable
graph languages of bounded interface size are permitted, it is possible to use graph
automata of bounded size, since the size of the interfaces of considered graphs is
bounded. However, the graph automaton might still be very large. In general the sizes
of the state sets will be exponential in the maximum interface size.

In order to tackle this important problem and to obtain an implementable representa-
tion of graph automata we will investigate how binary decision diagrams (as introduced
in Chapter 4) can be used to reduce the size of the representation. Furthermore, we
will take a look at three different algorithms solving the language inclusion problem for
non-deterministic finite automata, which have been published in the last years, and we
will show how these algorithms can be adapted to symbolically represented automata.

Parts of this chapter have already been published in [12].

7.1. Representation of Graph Automata using Binary
Decision Diagrams

Even for rather small interface sizes graph automata become very large very quickly.
This is due to the fact that the sizes of the state sets grow exponentially (or worse)
in the maximum permitted interface size. For instance, the number of states and
the number of Bdd nodes used to encode the state set for the graph automaton
accepting all graphs of bounded interface size which are 4-colorable (cf. Example 6.33)
are depicted in Figure 7.1 for various maximum interface sizes. Note that the scale on
the x-axis is linear and on the y-axis the scale is logarithmic, i. e. the number of states
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grows exponentially and the number of Bdd nodes used to encode the state set grows
sub-exponentially.
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Figure 7.1.: Number of states and number of Bdd nodes used for the 4-colorability
graph automaton (Note: y-axis in logarithmic scale)

As one can see, if the maximum interface size is five the automaton contains over
1 300 states, for the maximum interface size of ten the number of states is about
1 400 000 states and if the maximum interface size is fifteen the number of states grows
up to more than 1 400 000 000 states. In addition to the several state sets of the graph
automaton there is more information which must be stored. On the one hand this
includes the sets of initial and final states and on the other hand the transition relations
for the different letters of the input alphabet.
In order to represent graph automata efficiently we encode the different state sets

and the various transition relations of the graph automata as bit strings which can
then be represented by Bdds (cf. Chapter 4 for more information about Bdds). In
contrast to the size of the state sets the number of Bdd nodes to encode the state
sets of the different graph automata is rather small. For the example mentioned above,
the corresponding Bdd contains 77 nodes for the maximum interface size of five, for
maximum interface size of ten 255 nodes are needed and for the maximum interface size
of fifteen the Bdd consists of 525 nodes. Hence, the rate of growth of the Bdds is several
dimensions smaller than the rate of growth of the explicit state space representation.
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For the rest of this section we present and explain how graph automata can be
encoded by the means of Bdds. The state encoding for every graph automaton has to
take care of the following information:

• the index of the state set to which the state belongs (the index corresponds
directly to the size of the outer interface of the cospan decomposition seen so far)
and

• the specific information of the different graph automata

In the following, we use the k-colorability graph automaton as an example to explain
how the encoding works. In this case the specific information encoded in the second
part of the state encoding includes the color of each node which is accessible by the
outer interface1 of the cospan decomposition seen so far.

As already mentioned in Chaper 4 the size of a Bdd depends highly on the ordering
of the Bdd nodes. Therefore, it is crucial to find good orderings of the bits holding the
several pieces of information to take advantage of the encoding of state sets as Bdds.
But before we investigate the differences between a good and a bad encoding, we first
start with an explanation how to obtain an encoding. For the k-colorability example
we have experimented with different orderings and found the following to be the best:

Let n be the maximum interface size and k the number of colors. Furthermore, let
m = dlog2 ne be the number of bits required to store the maximum interface size,
and ` = dlog2(k + 1)e the number of bits to store one color. The additional “color”
is used to indicate uncolored or unused nodes. This is due to the fact that all bit
strings encoding the several states have the same length, independent of the number
of interface nodes which are currently accessible. Therefore, we use this “uncolor” to
indicate which nodes are currently not in the interface. In the following we distinguish
between three different types of nodes: the first type are the Bdd nodes, the second
type are the graph nodes, i. e. the nodes occurring in the middle graph of the input
cospan, the third and last type are the interface nodes, i. e. the nodes occurring in the
(outer) interface of the input cospan. Furthermore, we assume that the color, which
indicates that the node is “uncolored”, is ~0. A state is then encoded by the bit sequence

~b ~c1 . . . ~cn = b1 . . . bm(c1,1 . . . c1,`) . . . (cn,1 . . . cn,`),

where ~b = b1 . . . bm encodes the current interface size as a binary number and ~cj =
(cj,1 . . . cj,`) (for 1 ≤ j ≤ n) represents the color of the j-th interface node. In addition
to represent relations of states we interleave the Bdd nodes of the corresponding states.
Note if the current interface size is i, that the bit strings ~ci+1 to ~cn are set to ~0 to
indicate that the respective nodes are not in the current interface.

The set of initial states of the n-bounded 〈s, t〉-graph automaton accepting all graphs
which are k-colorable is defined by the following propositional formula:

(~b = s) ∧
s∧

x=1

k∨
y=1

(~cx = y) ∧
n∧

x=s+1
(~cx = ~0).

1In the following, we will also simply write “. . . node in the inner/outer interface . . . ” rather than
“. . . node accessible by the inner/outer interface . . . )
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The formula expresses that the current interface size corresponds to the inner interface
size of all cospans accepted by the graph automaton and that the first s nodes which are
accessible by the inner interface are colored valid, i. e. each node has a color from the
set {1, . . . k} and that the other (n− s) · ` bits of the encoding are set to 0, since these
bits encode nodes which are currently not accessible by the interface. The formulas for
the set of final states and the set of all states can be defined analogously.
The next step is to encode the transition functions of the graph automaton. As

described in Section 6.1.5 each graph automaton consists of a family of transition
functions – one transition function which maps a predecessor state and an input letter
to a set of successor states for each pair of inner and outer interface size (of the
corresponding atomic cospan). Instead of representing each transition function as a
Bdd we first fix an input letter and then define a propositional formula describing
all transitions from a fixed state set of the graph automaton. Then the formula is
transformed into a Bdd. We present the formulas fvertexi and fconnecti� which encode
all vertex-transitions and all connect�-transitions, respectively, from the i-th state set
as an example. Since the transition functions are relations we interleave the bits of the
domain and the codomain as described in Chapter 4. To distinguish between the bits
for the current state and the bits for the successor state we indicate the successor state
encoding by ~b′ ~c′1 . . . ~c′n.
The formula fvertexi consists of four parts:

f1 := (i < n) ∧ (~b = i) ∧ (~b′ = i+ 1) f3 :=
n∧
j=1
j 6=i+1

(~cj = ~c′j)

f2 :=
n∧

j=i+2
(~cj = 0) f4 := (~ci+1 = 0) ∧ (1 ≤ ~c′i+1 ≤ k)

The subformula f1 expresses that the size of the current interface is less than the
maximum interface size, otherwise no new node can be added, and that the interface
size of the current state is i, whereas the interface size of the successor state is i+ 1.
The subformula f2 expresses that the nodes of the encoding which do not belong to the
current interface, that is the last n− i+ 1 nodes in the encoding, have not been colored.
Next, f3 expresses that all nodes have the same color in the source and the target state
– except for the (i+ 1)-th node which is currently added. Finally, f4 expresses that the
node which is to be added does not exist in the interface of the current state, which is
encoded by 0-bits, and the new node has a valid color in the successor state, i. e. the
color of the node is between 1 and k. Now, we take fvertex := f1 ∧ f2 ∧ f3 ∧ f4, that is,
a transition q −vertexi� q′ exists if and only if the above four conditions hold.

The formula fconnect� also consists of four parts. We set p = i− ar(�) + 1 indicating
the index of the first node attached to the new edge:

f5 := (ar(�) ≤ i) ∧ (~b = i) ∧ (~b = ~b′) f7 :=
n∧
j=1

(~cj = ~c′j)

f6 :=
n∧

j=i+1
(~cj = 0) f8 :=

i∧
j=p

i∧
j′=p

(j 6= j′)→ (~cj 6= ~cj′)
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The subformula f5 expresses that the arity of the added edge is less than or equal
to the current interface and that the interface size of both the current state and the
successor state is i. The subformulas f6 and f7 are similar to the subformulas f2 and f3.
Next, f8 expresses that the nodes which are connected by the new edge have different
colors. Let fconnect� := f5 ∧ f6 ∧ f7 ∧ f8, that is, a transition q −connecti�� q′ exists if
and only if the four corresponding conditions hold.
Note that each Bdd generated by the formulas presented above represents a whole

set of states or a whole relation respectively, rather than a single state or pair of states.
Hence we do not deal with single states but perform the different computations on the
whole state set. On the one hand this is very efficient because we do not have to process
one state after the other. On the other hand we have to adapt the techniques which
are designed for explicitly represented states to our setting of symbolically represented
automata (see the next section of this chapter for more details).

Example 7.1. We consider the 3-colorability graph automaton with a maximum
interface size of 5. The size of the state encoding is 3 + (5 · 2) = 13 bits. Consider
the state q depicted in Figure 7.2 (on the left): We have three nodes in the current
interface, colored with color 2, 1 and 3, respectively. The bit string which encodes this
state is given in Figure 7.2 on the right. Note that the least significant bit is left.

2
1

1
2

3
3 4 5

b1 b2 b3 ~c1 ~c2 ~c3 ~c4 ~c5
1 1 0 01 10 11 00 00

Figure 7.2.: State q and its representation as bit string

The Bdd which encodes the vertex3-transition of the 3-colorability graph automaton
is shown in Figure 7.3. Since the nodes which represent the predecessor and successor
states are interleaved, the nodes with even numbers encode the predessor states and the
odd numbered nodes encode the successor states.

The Bdd nodes labeled with 0 to 5 guarantee that the predecessor state has an
interface size of 3 (binary encoded as 110, with least significant bit left) and that the
successor state’s interface size is 4 (or 001 as a binary string). The Bdd nodes labeled
with 6 to 9 encode that the color of the first interface node is not changed by the
vertex3-transition. This condition is sufficient to guarantee that the first interface has a
valid color, since every initial state guarantees that the interface nodes are colored with a
valid color. The Bdd nodes 10 to 13 and 14 to 17 encode the analogous condition for the
second and the third interface node. Since the inner interface size of the vertex3-cospan
is 3 the Bdd nodes 18 and 20 have to be set to 0, which indicates that there is no
fourth interface node in the predeseccor state. But the fourth interface node is added by
the vertex3-operation. Therefore, it needs a valid color in the successor state, i. e. the
Bdd nodes 19 and 21 must be either 1, 2 or 3 (binary encoded 10, 01 or 11). The fifth
interface node occurs neither in the predecessor nor in the successor node. Hence the
Bdd nodes 22 to 25 are set to 0.
Suppose that the graph automaton is currently in state q, and that the next letter is

vertex3. Then there exist three different states, q′, q′′, q′′′, which are reachable from q

99



7. Symbolically Represented Graph Automata

0

1

2

3

4

5

6

7 7

8

9 9

10

11 11

12

13 13

14

15 15

16

17 17

18

19

20 20

21

22

23

24

25

0 1

Figure 7.3.: The Bdd encoding of the vertex3-transition
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by the vertex3-transition. These states are encoded by the following bit strings:

b′1 b
′
2 b
′
3
~c′1
~c′2
~c′3
~c′4
~c′5

q′ : 0 0 1 01 10 11 10 00
q′′ : 0 0 1 01 10 11 01 00
q′′′ : 0 0 1 01 10 11 11 00

Now, we interleave, for example, the bits encoding the states q and q′ and obtain the
following bit string:

10 10 01 00 11 11 00 11 11 01 00 00 00.

If we traverse the Bdd in Figure 7.3 according to this bit string we end up in the
terminal node labeled with 1 which indicates that q −vertex3� q′ is a valid transition.
For the other two states, q′′ and q′′′, we get the same result, therefore q −vertex3� q′′

and q −vertex3� q′′′ are also valid transitions.
Suppose on the other hand that we want to check whether the state q′ encoded by

b′1 b
′
2 b
′
3
~c′1
~c′2
~c′3
~c′4
~c′5

q′ : 0 0 1 11 10 11 10 00

is a valid vertex3-successor state of q. The bit string encoding the transition is as
follows:

10 10 01 01 11 11 00 11 11 01 00 00 00.

Again, we traverse the Bdd for the vertex3-transition, but this time we reach the
terminal labeled with 0 since the color of the first node accessible by the interface is
different in the states q and q′.

Next, we turn to the letter connect3
�, where � is a label of arity 2. In Figure 7.4 we

present the Bdd for the connect3
�-transitions of the 3-colorability graph automaton.

Again, the nodes representing the predecessor and successor states are interleaved, such
that the even numbered Bdd nodes encode the predessor states and the odd numbered
Bdd nodes encode the successor states.
The information encoded by the different Bdd nodes is the same as described for

the Bdd in Figure 7.3. The Bdd nodes labeled with 0 to 5 ensure that the interface
size for the predecessor and the successor state is 3 (or 110 as a bit string). The Bdd
nodes labeled 6 to 9 guarantee that the color of the first graph node is not changed by
the connect3

�-transitions. The nodes in the Bdd labeled 10 to 17 are used to distinguish
three cases, depending on the color of the second interface node. The three cases are:
The graph node has the color 1 (bit string 10), the color 2 (bit string 01) or the color 3
(bit string 11). In each case three conditions must be fulfilled:

• the color of the second interface node must not be changed by the transition,

• the color of the third interface node must not be changed by the transition, and

• the color of the second interface node must be different from the color of the third
interface node.
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Figure 7.4.: The Bdd encoding of the connect3
�-transition

102



7.1. Representation of Graph Automata using Binary Decision Diagrams

Since there are three distinguished cases it is sufficient for the third condition to check
that, if the color of the second interface node is 1, for instance, that the color of the
third interface node is either 2 or 3. The same must hold for the cases where the color
of the second interface node is 2 or 3, respectively.

Now, suppose that the 3-colorability graph automaton is currently in state q and that
the next letter is connect3

�. Since the connect3
�-transition does not change any bit, but

only checks that the coloring is still valid, the successor state is also q. Therefore, the
bit string

11 11 00 00 11 11 00 11 11 00 00 00 00

leads to the terminal labeled with 1 of the Bdd shown in Figure 7.4.
Finally, we suppose that the graph automaton is currently in the state q which is

given by the following bit string:

b1 b2 b3 ~c1 ~c2 ~c3 ~c4 ~c5
q : 1 1 0 11 10 10 00 00

and that the next letter is again connect3
�. This time the second and the third interface

node have the same color. Hence, there exists no connect3
�-transition from q and thus,

the bit string
11 11 00 11 11 11 00 11 00 00 00 00 00

leads to the terminal labeled 0.

Apart from a graph automaton which accepts k-colorable graphs, we also implemented
graph automata for various other graph problems for arbitrary inner and outer interface
sizes. This list includes:

• k-Dominating Set: Graph automata which accept a cospan if and only if the
middle graph G of the cospan contains a dominating set of size at most k. That
is a set D of nodes of G with size at most k such that each node of G is either in
D or adjacent to a node in D.

• k-Vertex Cover: Graph automata accepting a cospan if and only if the middle
graph G of the cospan has a vertex cover of size at most k. That is there exists
a set C of nodes of G with size at most k such that each edge is incident to at
least one node of C. See also Example 6.5.

• Edge/Node-Counting: Graph automata which accept a cospan if and only if
number of edges with a specific label or nodes of the middle graph of the input
cospan are equal to a given number (modulo a fixed divisor).

• Maximum/Minimum Edge/Node: Graph automata accepting only cospans whose
middle graph has a particular maximum (minimum) number of edges or nodes.

• No Isolated Nodes: Graph automata which accept only those cospans whose
middle graphs do not contain any isolated node.

• Link: Graph automata which check that the middle graph of the input cospan
consists of an edge which is incident to at least one node of the inner interface
and to at least one node of the outer interface of the input cospan.
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• Path: Graph automata which check that there exists an 〈S, T 〉-path in the middle
graph of the input cospan, where S is a subset of the inner interface and T is a
subset of the outer interface. That is there exists a path starting at some node
contained in S to some other node contained in T .

• Subgraph: Graph automata which accept all cospans whose middle graph contains
a specific graph as a subgraph. See also Example 6.34.

• Intersection/Union: Graph automata whose accepted language is the intersection
or union, respectively, of the languages of two given graph automata.

The states of the graph automata for the different graph problems mentioned above
have to encode different pieces of information. But we assume that each encoding is of
the form: b1 . . . bm s1 . . . sn, where the bits b1 . . . bm encode the size of the outer
interface of the cospan seen so far and the bits s1 . . . sn encode the problem-specific
state information. In the following we will describe which problem-specific information
is needed and what the initial/final states for several graph problems are. We assume
that each graph automaton accepts languages from i to j, i. e. all accepted cospans are
of the form Di

#
Dj :

• k-Dominating Set:

– Problem-specific information: which nodes of the current interface are part
of the dominating set; which nodes of the current interface are dominated
by some node of the dominating set; the size of the dominating set (if nodes
which belong to the dominating set are fused, the size has to be updated),

– Initial states: the initial states are exactly those states which belong to Qi
and which have at most min(i, k) interface nodes contained in the dominating
set; the size of the dominating set is equal to the number of interface nodes
which belong to the dominating set,

– Final states: the final states are exactly those states such that all interface
nodes are dominated by some node (or belong to the dominating set); the
size of the dominating set has to be less or equal to k.

• k-Vertex Cover:

– Problem-specific information: which nodes of the current interface are part
of the vertex cover; the size of the vertex cover (if nodes which belong to
the vertex cover are fused, the size has to be updated),

– Initial states: the initial states are exactly those states belonging to Qi and
which have at most min(i, k) interface nodes contained in the vertex cover;
the size of the vertex cover is equal to the number of interface nodes which
belong to the vertex cover,

– Final states: the final states are exactly those states such that the size of
vertex cover is less or equal to k.

• Edge/Node-Counting:

– Problem-specific information: the remainder (modulo the fixed divisor) of
the number of edges (nodes) which have been seen so far,
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– Initial states: in case of the edge-counting automaton, the only initial state
which belongs to Qi is the one with a remainder which is equal to zero; in
case of the node-counting automaton, the only initial state which belongs
to Qi is the one with a remainder which is equal to i (modulo the divisor),

– Final states: the only final state, which belongs to Qj , is the one with a
remainder which is equal to the wanted value.

• Maximum/Minimum Edge:
– Problem-specific information: the current number of edges up to the max-

imum (minimum); if the number of edges exceeds the desired maximum
(minimum) further edges are no longer counted,

– Initial states: the only initial state which belongs to Qi is the one having a
counter equal to zero,

– Final states: in case of the maximum automaton, the final states are those
whose counter are less or equal to the maximum; in case of the minimum
automaton, the final states are those whose counters are greater or equal to
the minimum.

• Maximum/Minimum Node:
– Problem-specific information: the current number of nodes up to the maxi-

mum interfaces size; if the number of nodes exceeds the desired maximum
(minimum) further nodes have to be counted, since they can be fused again,

– Initial states: the only initial state which belongs to Qi is the one with a
counter which is equal to i,

– Final states: in case of the maximum automaton, the final states are those
whose counters are less or equal to the maximum; in case of the minimum
automaton, the final states are those whose counters are greater or equal to
the minimum.

• No Isolated Nodes:
– Problem-specific information: whether the several interface nodes are isolated;

whether the parts of the input cospan which no longer belong to the interface
contain an isolated node,

– Initial states: the only initial state which belongs to Qi is the one whose i
interface nodes are all isolated, but which has no isolated node in the part
of the input cospan which is not accessible anymore,

– Final states: the only final state which belongs to Qj is the one without any
isolated interface node and which has no isolated node in the part of the
input cospan which is not accessible anymore.

• Link:
– Problem-specific information: which interface nodes belong to the inner

interface of the input cospan; which nodes of the interface are connected to
at least one interface node which belongs to the inner interface of the input
cospan,
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– Initial states: the only initial state which belongs to Qi is the one whose i
interface nodes are all marked as inner interface nodes and which has no
interface node which is connected to an inner interface node (since there is
no edge),

– Final states: the final states are exactly those which contain at least one
interface node which is connected to an inner interface node of the input
cospan.

• Path:

– Problem-specific information: the transitive closure of the adjacency matrix
of the subgraph induced by the interface nodes; for which interface node
exists a path to at least one of the given source nodes,

– Initial states: the initial states are exactly those states, which belong to Qi
and whose entries in the adjacency matrix are all 0 except for the main
diagonal (of the length i); the only interface nodes for which a path to the
source nodes exist are the source nodes themselves,

– Final states: the final states are exactly those states, which belong to Qj
and whose adjacency matrix (for the nodes 1 to j) can be arbitrary and for
all other nodes are set to 0; there exists at least one interface node which is
contained in the target nodes for which a path to the source nodes exist.

• Subgraph:

– Problem-specific information: the parts of the subgraph which have been
recognized so far; the overlap of the parts (of the subgraph) with the current
interface,

– Initial states: the initial states are exactly those states, which belong to Qi
and which recognize a part of the subgraph consisting of at most i nodes
(and no edge); every (recognized) node of the subgraph has to be mapped
by at least one interface node,

– Final states: the final states are exactly those states, which belong to Qj
and which recognize the complete subgraph; the nodes of the subgraph may
or may not overlap with the interface (depends on whether an interface
node corresponds to a subgraph node).

• Intersection/Union:

– Problem-specific information: the specific information of the graph automata
which have been used for intersection/union are concatenated,

– Initial states: in case of the intersection automaton, the initial states are the
conjunction of the initial states of the underlying automata; in case of the
union automaton, the initial states are the disjunction of the initial states
of the underlying automata,

– Final states: in case of the intersection automaton, the final states are the
conjunction of the final states of the underlying automata; in case of the
union automaton, the final states are the disjunction of the final states of
the underlying automata.
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For the rest of this section we want to discuss why it is important to find a “good”
encoding of the state sets of the several automata or rather of the Bdds representing
the state sets. Since the state spaces of the automata listed above become very large
very quickly, as seen in the introduction to this section, we have experimented with
different encodings. The results of these experiments have led to the following advice:

• First of all, the index of the state set to which the encoded state belongs, i. e. the
current interface size should be encoded with least significant bit first,

• Similar pieces of information should be grouped, i. e. Bdd nodes encoding similar
pieces of information should be encoded by subsequent Bdd nodes,

• The Bdd nodes used to encode the current states and the successor states (when
encoding the transition relations) should be arranged in an interleaved fashion.

As explained above, all states are encoded by bit strings of the same length. Therefore,
we have to check that only those Bdd nodes are used which encode information that
is valid for the current state. The Bdd nodes which are not necessary to encode
information for the current state are set to some unused default value. The first point
is motivated by the thought that it is advantageous to first encode the current interface
size in order to be able to check the remaining information. That is, if some state of the
graph automaton above belongs to the i-th state set, then we can use this information
to check that only the Bdd nodes are valid which encode the status of the graph
nodes accessible by the i interface nodes and that all other Bdd nodes do not encode
any information. The idea behind the second point is the fact that the size of a Bdd
grows exponentially in the length of a path between two Bdd nodes which depend
on each other. The third point is motivated by a similar argument like the one for
the second point. Since the Bdd nodes (encoding the information) of the successor
state are arranged in the same way as in the current state this groups the Bdd nodes
automatically.

But even if we take all the considerations above into account, there could be a huge
difference between two encodings. As an example we compare two encodings for a
graph automaton which accepts all graphs up to a maximum interface size of n which
have a dominating set of size at most 5. For this example the input alphabet of the
graph automaton contains the letters connecti�, fusei, shifti, resi, transi, vertexi, where
� is a label of arity 2. The encodings represent a state of the graph automaton as the
bit string

~b (m1 d1) . . . (mn dn) (s1 s2 s3) (First Encoding)

or

~bm1 . . .mn d1 . . . dn (s1 s2 s3) (Second Encoding)

respectively, where ~b = b1 . . . bm encodes the current interface size as a binary number,
mi encodes whether the i-th interface node is a member of the dominating set and di
encodes whether the i-th interface node is dominated by some other node (or itself). The
bits s1 s2 s3 are used to encode the number of nodes which belong to the dominating
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set, but which have already been removed from the interface, i. e. which are no longer
accessible.
In Figure 7.5a the number of Bdd nodes which are needed to encode the Bdds

representing the transitions of the graph automaton for various maximum interface
sizes are shown. As we can see, it is more efficient to first encode all bits representing
the (non-)membership of the i-th interface node, before we encode whether the several
graph nodes which can be accessed through the interface are dominated. The difference
in the number of Bdd nodes is in large part due to the shifti-letter. For rather small
maximum interface sizes the size of the Bdd representing all shifti-transitions using
the first encoding amounts to about 50% of the overall Bdd nodes, but this portion
increases up to 70% for the maximum interface sizes of 20 and more. The reason
for this is that the first encoding groups the bit for (non-)membership with the bit
for the (non-)domination (for each node). Hence, in case of the shifti-transition the
corresponding Bdd has to relate bits which lay on a path of length 2n − 1. This
is rather costly (compared to the bit arrangement of the second encoding). For the
second encoding the Bdd representing all shifti-transitions only amounts to 25% for
the smaller maximum interface sizes and the portion grows up to 35%. This fact is not
suprising, since the Bdd for the shifti-transitions has to relate the bit m1 (d1) with
the bit mn (dn). As stated above, in case of the first encoding, the path from the first
to the second bit is twice as long as in the case of the second encoding. Hence it is
more efficient (in size of the Bdd nodes) to use the second encoding.

But beside the number of Bdd nodes needed to represent a graph automaton, it is
also important to measure the time required to compute the different Bdds. Figure 7.5b
shows the runtimes in seconds for the computation of the transition-Bdds. It is clear
that the first encoding is much more efficient than the second encoding. Even for a
maximum interface size of 100 the first encoding requires only a few seconds to compute
all transition-Bdds. For maximum interface sizes larger than 20 the second encoding is
not practically usable. The reason for this huge difference in the runtime is probably
arising from the construction of the several Bdds. The resulting Bdd which encodes the
state space according to the different encodings is not computed at once, but in several
steps. Even if the resulting Bdd is rather small, as in the case of the second encoding,
it might be the case that Bdds which are computed in between are exponentially larger
(in the number of Bdd nodes). Hence, the operations which are applied to the several
Bdds need much more time to compute. It seems that the Bdds which are created
temporarily to compute the resulting Bdd for the first encoding are smaller and thus
the computation of the first encoding Bdd is more efficient in matters of runtime.

7.2. Graph Automata and the Language Inclusion
Problem

One of the main applications of Raven is to automatically check invariants of graph
transformation systems as described in Chapter 6. In [15], Bruggink and König together
with the author of this thesis presented a technique for checking invariants based
on the Myhill-Nerode quasi-order which has been introduced in Section 6.1.3 (cf.
Definition 6.20). But the computation of the Myhill-Nerode quasi-order depends on
deterministic graph automata. To avoid determinization we extended the approach and
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used an over-approximation, namely a simulation quasi-order, instead of the Myhill-
Nerode quasi-order. However, the over-approximation led to the problem of one-sided
errors.
To overcome this problem, we will use recent algorithms for checking language

inclusion, which can be applied to non-deterministic (finite) automata. The connection
between checking invariants and the language inclusion problem has been shown in
Theorem 6.38.

These approaches which we will investigate further in the next subsections are:
• An antichain-based approach using either a forwards or a backwards search [132],

• an enhanced antichain-based approach which is equipped with an additional
simulation relation [1] and

• an approach using bisimulations up to congruence for checking language equiva-
lence, which can be used for the language inclusion problem as well [23].

In the next subsections, we forget typing information of the states and consider
bounded automata as regular finite automata.

7.2.1. An Antichain-Based Approach for Language Inclusion
In this subsection we introduce an antichain-based algorithm in four variants – two
forwards and two backwards searching variants – developed by De Wulf, Doyen,
Henzinger and Raskin [132]. Recall that an antichain is a set of elements which are
incomparable with respect to some ordering. How the elements look like and what
ordering is used depends on the application; for the algorithms presented below which
are used to decide language inclusion we use an order which is based on the usual
subset ordering, but which is extended to pairs. The details of the ordering will be
explained below.
Let A = 〈QA,Σ, δA, IA,FA〉 and B = 〈QB,Σ, δB, IB,FB〉 be n-bounded graph au-

tomata. Remember that we denote the set of non-initial states of B by IB and the
set of non-accepting states of B by FB, i. e. IB = QB \ IB and FB = QB \ FB. Further-
more, we introduce two new kinds of transitions, which play an important role for
the algorithms given below: reversed transitions, denoted by δA−1 , and complemented
transitions, denoted by δA. The first kind is obtained by “turning a given transition
around”, i. e. q ∈ δA−1(q′, σ) if and only if q′ ∈ δA(q, σ). Analogously, the reversed
transitions are defined for the graph automaton B. The second kind is a bit more
complicated. It can be obtained as follows: δA(q, σ) := δA({q}, σ). The intuition behind
the complemented transitions is that there exists a complemented transition between a
state q and a state q′ if and only if there exists no (normal) transition between a state
in {q} and q′. The complemented transitions for the graph automaton B are defined as
δB(Q, σ) := δB(Q, σ).

To come back to our actual aim, which is to decide the language inclusion problem of
A and B, i. e. whether L(A) ⊆ L(B) or not, we now introduce the antichain algorithm.
In particular, the algorithm tries to falsify the claim that the language inclusion holds
by one of four different variants:
Normal Forwards Searching Variant: By starting in an initial state i ∈ IA of A and

in the set of initial states IB of B this variant tries to reach a state q′ ∈ FA and a
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set of states Q′ ⊆ FB by performing (forward) transitions such that q′ ∈ δ̂A(i, ~σ)
and Q′ = δ̂B(IB, ~σ) for some sequence ~σ.

Normal Backwards Searching Variant: By starting in a final state q′ ∈ FA of A and
in the set of final states FB of B this variant tries to reach a state i ∈ IA and a
set of states Q ⊆ IB by performing reversed transitions such that i ∈ δ̂A−1(q′, ~σ)
and Q = δ̂B−1(FB, ~σ) for some sequence ~σ.

Complement Forwards Searching Variant: By starting in an initial state i ∈ IA of
A and in the set of non-initial states IB of B this variant tries to reach a state
q′ ∈ FA and a set of states Q′ ⊇ FB by performing complemented transitions
such that q′ ∈ δ̂A(i, ~σ) and Q′ = δ̂B(IB, ~σ) for some sequence ~σ.

Complement Backwards Searching Variant: By starting in a final state q′ ∈ FA of A
and the set of non-final states FB of B this variant tries to reach an initial state
i ∈ IA of A and a set of states Q ⊇ IB by performing reversed and complemented
transitions such that i ∈ δ̂A−1(q′, ~σ) and Q = δ̂B−1(FB, ~σ) for some sequence ~σ.

For any of these four variants it holds that if the particular algorithm has found a
sequence ~σ, which satisfies the conditions stated above, the algorithm has found a
witness of the falsification of the language inclusion, since the sequence is accepted by
the graph automaton A, but is rejected by the graph automaton B.
There is a strong connection between the two forwards and the two backwards

variants. The connection between the normal and the complement forwards searching
variant is made as follows: Due to the definition of the complemented transitions, one
can reach merely non-final states when starting from the initial states if and only if the
final states are only reachable from the non-initial states by performing complemented
transitions. Therefore, the normal and the complement forwards searching variants are
equivalent.

The same argument holds for the two backwards searching variants and the reversed
transitions. Hence, these two variants are also equivalent.
The relationship between the normal forwards and the complement backwards

searching variant is a litte bit different: By Henzinger et al. [132] we have that for every
instance of the language inclusion problem which is difficult to solve with the normal
forward searching variant, there exists an equally difficult instance for the complement
backwards searching variant.

Again, we can argue that the same holds for the relationship between the complement
forwards and the normal backwards searching variant.

In the following we introduce the algorithms for normal forwards searching and the
complement backwards searching variant. At the end of this section, we will then take
a further look at all four variants. We will also explain why it is not necessary to
implement all four variants if using Bdds. We use a slightly different version of the
algorithms stated by Henzinger et al., which have been published by Blume, Bruggink,
Engelke and König in [12]. Let U = QA × ℘(QB) and 〈q,Q〉, 〈q′, Q′〉 ∈ U , we define

〈q,Q〉 ≤ 〈q′, Q′〉 if q = q′ and Q ⊆ Q′.

Remember that an antichain (for language inclusion) is a set of pairwise incomparable
elements.
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Normal Forwards Searching Antichain Algorithm. For the forwards searching algo-
rithm, we define the following function:

PostA,B(K) =
{
〈q′, Q′〉

∣∣ ∃σ ∈ Σ : ∃〈q,Q〉 ∈ K : q′ ∈ δA(q, σ) ∧ δ̂B(Q, σ) = Q′
}
.

The function does the following: For each 〈q,Q〉 ∈ K, we take the pairs 〈q′, Q′〉 such
that, for some symbol σ, q′ is an σ-successor of q and Q′ is the set of states, which is
reached from Q when reading σ.
The forwards searching algorithm, which returns true if and only if L(A) 6⊆ L(B),

works as follows:

Algorithm 7.1: Forwards Searching Antichain Algorithm
Input: A = 〈QA,Σ, δA, IA,FA〉 and B = 〈QB,Σ, δB, IB,FB〉
Output: true if L(A) 6⊆ L(B), false otherwise
1: K ← IA × {IB}
2: repeat
3: K ′ ← K
4: K ← bK ∪ PostA,B(K)c
5: until K = K ′

6: return there exist 〈q,Q〉 ∈ K such that q ∈ FA and Q ⊆ FB

The line K ← bK ∪ PostA,B(K)c adds new elements to the current antichain and
removes all but the minimal ones. The idea behind the minimization step is as follows:
Let 〈q,Q〉, 〈q′, Q′〉 ∈ K be two state pairs such that 〈q,Q〉 ≤ 〈q′, Q′〉. It is obvious that
whenever a final state pair2 is reachable from the state pair 〈q,Q〉 by some sequence
there exists a final state pair which is reachable from the state pair 〈q′, Q′〉 by the same
sequence.

Complement Backwards Searching Antichain Algorithm. This variant is similar to
the forward algorithm above, except that it starts with the antichain FA × {FB} and
iterates the function

PreA,B(K) =
{
〈q,Q〉

∣∣ ∃σ ∈ Σ : ∃〈q′, Q′〉 ∈ K : q′ ∈ δA(q, σ) ∧ δ̂B(Q, σ) ⊆ Q′
}
.

The function does the following: For each 〈q′, Q′〉 ∈ K, we take the pairs 〈q,Q〉 such
that, for some symbol σ, q is an σ-predecessor of q′ and Q is the set of states, from
which only states in Q′ are surely reachable when reading σ.

Formally, the basic version of the algorithm, which returns true if and only if
L(A) 6⊆ L(B), works as follows:

2A pair 〈q, Q〉 is said to be final if and only if q ∈ FA and Q 6⊆ FB.
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Algorithm 7.2: Backwards Searching Antichain Algorithm
Input: A = 〈QA,Σ, δA, IA,FA〉 and B = 〈QB,Σ, δB, IB,FB〉
Output: true if L(A) 6⊆ L(B), false otherwise
1: K ← FA × {FB}
2: repeat
3: K ′ ← K
4: K ← dK ∪ PreA,B(K)e
5: until K = K ′

6: return there exist 〈q,Q〉 ∈ K such that q ∈ IA and IB ⊆ Q

The line K ← dK∪PreA,B(K)e adds new elements to the current antichain and removes
all but the maximal ones.

The basic algorithms can be optimized in various ways. First, only new elements need
to be processed in each step instead of all the elements in K. Second, since the function
is monotone, the algorithm can return true as soon as the final condition (in line 6) is
satisfied (meaning that L(A) 6⊆ L(B)). Both optimizations (for both algorithms) have
been implemented in Raven. But note that in the implementation that we used in the
tool, both the automata and the pairs in the antichains are represented symbolically
as Bdds. For a correctness proof of the algorithms, we refer to [132].
Example 7.2. Since graph automata can be seen as (very large) non-deterministic
finite automata, we use (small) Nfas instead of graph automata for this example.
Let two non-deterministic finite automata

A = 〈{s0, s1, s2}, {a, b}, δA, {s0, s1}, {s2}〉

and
B = 〈{t0, t1, t2, t3}, {a, b}, δB, {t0, t1}, {t0, t2}〉,

be given which are depicted in Figure 7.6. We want to check whether L(A) ⊆ L(B) or
not, using the two algorithms explained above.

s0

s1

s2

a

a

b

a

b

b

a

t0

t1

t2

t3

a

b

b

a

a

b

a

b a

a

b

Figure 7.6.: The graph automata A (depicted on the left) and B (depicted on the
right).

In case of the (optimized) normal forwards searching variant, the algorithm is
initialized with the state set K = {〈s0, {t0, t1}〉, 〈s1, {t0, t1}〉} which is depicted in
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Figure 7.7 by the solid-bordered state pairs. Starting at these two initial state pairs,
the algorithm computes the successor states by means of the function PostA,B(K). The
result of this function is the set

PostA,B({〈s0, {t0, t1}〉, 〈s1, {t0, t1}〉}) = {〈s0, {t0, t1}〉, 〈s1, {t0, t1}〉,
〈s2, {t1, t2, t3}〉, 〈s0, {t1, t2, t3}〉}

which is also depicted in the second row of Figure 7.7. The letters on the arrows indicate
how the several successor pairs have been computed. The dotted-bordered boxes indicate
that the respective state pairs have already been computed in previous steps of the
algorithm and need not be processed again. Hence the new value of K is the set

K = {〈s2, {t1, t2, t3}〉, 〈s0, {t1, t2, t3}〉}

and the algorithm iterates further, since the antichain has been changed. Again, the
successors of the set K are computed:

PostA,B({〈s2, {t1, t2, t3}〉, 〈s0, {t1, t2, t3}〉}) = {〈s1, {t0, t1, t3}〉, 〈s0, {t1, t3}〉,
〈s0, {t0, t1, t3}〉, 〈s2, {t1, t3}〉}

Since 〈s1, {t0, t1}〉 ≤ 〈s1, {t0, t1, t3}〉 and 〈s0, {t0, t1}〉 ≤ 〈s0, {t0, t1, t3}〉, which is indi-
cated by the dashed-bordered state pairs, we have that

b{〈s1, {t0, t1, t3}〉, 〈s0, {t1, t3}〉, 〈s0, {t0, t1, t3}〉, 〈s2, {t1, t3}〉}c =
{〈s0, {t1, t3}〉, 〈s2, {t1, t3}〉}.

The optimized algorithm terminates at this point and returns true, i. e. L(A) 6⊆ L(B),
since the state pair 〈s2, {t1, t3}〉 contains the accepting state s2 of A, but the state set
{t1, t3} of B is non-accepting, which is indicated by the doubly-bordered box. The word,
found by the algorithm, which is a counterexample for the language inclusion is bb.

〈s0, {t0, t1}〉 〈s1, {t0, t1}〉

〈s0, {t0, t1}〉 〈s1, {t0, t1}〉 〈s2, {t1, t2, t3}〉 〈s0, {t1, t2, t3}〉

〈s1, {t0, t1, t3}〉 〈s0, {t1, t3}〉 〈s0, {t0, t1, t3}〉 〈s2, {t1, t3}〉

a a b a b

a
b a

a
b

Figure 7.7.: Run of the (optimized) forwards searching antichain algorithm on the
automata A and B

Now, we want to perform the language inclusion check using the complemented back-
wards searching algorithm. Initially, the set K contains only the state pair 〈s2, {t1, t3}〉,
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which is shown in Figure 7.8. Again, the solid-bordered box indicates that the state has
been added in the initial phase. Now, the first iteration of the loop starts, computing
the set

PreA,B({〈s2, {t1, t3}〉}) = {〈s0, {t1, t2, t3}〉}.

Since the pair 〈s0, {t1, t2, t3}〉 is incomparable to 〈s2, {t1, t3}〉 and the set {t1, t2, t3}
does not contain all initial states of B the algorithm continues with another iteration.
The predecessors of 〈s0, {t1, t2, t3}〉 are

PreA,B({〈s0, {t1, t2, t3}〉}) = {〈s0, {t1, t3}〉, 〈s1, {t0, t1, t2, t3}〉, 〈s2, {t0, t1, t2, t3}〉}.

Since {t1, t3} ⊂ {t1, t2, t3}, we have that 〈s0, {t1, t3}〉 ≤ 〈s0, {t1, t2, t3}〉. Therefore, the
pair 〈s0, {t1, t3}〉 can be omitted, indicated by the dashed-bordered box in Figure 7.8.
Anyway, the algorithm terminates and returns true, i. e. L(A) 6⊆ L(B), due to the pair
〈s0, {t0, t1, t2, t3}〉. This is because the state s0 is an initial state of A and the state set
{t0, t1, t2, t3} contains all initial states of B. The witness which is found to disprove
the language inclusion is again the word bb.

〈s2, {t1, t3}〉

〈s0, {t1, t2, t3}〉

〈s0, {t1, t3}〉 〈s1, {t0, t1, t2, t3}〉 〈s2, {t0, t1, t2, t3}〉

b

a b b

Figure 7.8.: Run of the (optimized) backwards searching antichain algorithm on the
automata A and B

Now, we want to take another look at the different variants of the antichain-based
approach. As presented above, there are two forwards searching variants and two
backwards searching variants. In the following we will discuss how the two variants,
which were not presented in detail, could be implemented. But we will see that it is not
necessary to implement them on Bdds, since they are subsumed by the other variants.
At first, we further inspect the two forwards searching variants. The algorithm for

the normal forwards searching variant starts with an arbitrary initial state of the first
and the set of all initial states of the second automaton, searches for the corresponding
successor states and chooses only the minimal ones (with respect to set inclusion). But
instead of starting in the initial states of both automata and minimizing the resulting
successor state pairs one could do the opposite. That is one could perform the search
on the “complement” of the original antichain, whereas the complement of a set of
state pairs K is the set K = {〈q,Q〉 | 〈q,Q〉 ∈ K}. This leads to the following changes
to the original forwards searching variant:
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• the algorithm is initiated with all pairs containing an initial state of the first
automaton and the set of non-initial states of the second automaton,

• the function PostA,B(K) is replaced by PostA,B(K) and the result is maximized
and not minimized,

• the algorithm returns true to indicate that the language inclusion does not hold,
if and only if there exists a state pair containing a final state of the first and a
set containing all final states of the second automaton.

Next, we discuss the two backwards searching variants. As explained above, the
algorithm for the complement backwards searching variant starts with an arbitrary
final state of the first and the set of all non-final states of the second automaton.
Subsequently, the corresponding predecessor state pairs are computed and the maximal
ones (with respect to set inclusion) are chosen. Again, we could initiate the algorithm
with the “complement” set and perform the opposite operations, which would lead to
the following changes:

• the algorithm is initiated with all pairs containing a final state of the first
automaton and the set of final states of the second automaton,

• the function3 PreA,B(K) is replaced by PreA,B(K) and the result is minimized
and not maximized,

• the algorithm returns true to indicate that the language inclusion does not hold
if and only if there exists a state pair containing an initial state of the first and a
set without any initial state of the second automaton.

An overview of the four different forwards and backwards searching algorithms is
given in Table 7.1.
As mentioned above, it is not necessary to implement all four variants by means

of Bdds. This is due to the fact that a set (of states) and its complement set can
be represented by two almost identical Bdds. The only difference is that whenever a
path within a Bdd leads to the terminal labeled with 0, the same path leads to the
terminal labeled with 1 of the “complement Bdd” and vice versa. Therefore, every
Bdd representing a state set computed during the run of normal forwards searching
algorithms can be converted into a state set of a run of the complement forwards
searching algorithms (by switching the two terminal nodes) and vice versa. The same
holds for the normal and the complement backwards searching algorithm.

7.2.2. Simulation-based Antichain Algorithms
In this subsection we want to present an improved version of the antichain approach
introduced in the previous subsection. The main idea is to combine two different types
of approaches used to prove (or disprove) language inclusion.
These two types can be divided into simulation-based approaches and approaches

using the subset construction. The former ones compute and use a simulation relation

3Note that this is the “usual” predecessor function, i. e. the successor function of the “reverted”
automaton.
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Input: A = 〈QA,Σ, δA, IA,FA〉 and B = 〈QB,Σ, δB, IB,FB〉
Output: true if L(A) 6⊆ L(B), false otherwise
K ← ¬
repeat

K ′ ← K
K ← ­

until K = K ′

return there exist 〈q,Q〉 ∈ K such that ®

Forwards Backwards

Normal ¬ IA × {IB} ¬ FA × {FB}
­ bK ∪ PostA,B(K)c ­ bK ∪ PreA,B(K)c
® q ∈ FA ∧Q ⊆ FB ® q ∈ IA ∧Q ⊆ IB

Complement ¬ IA × {IB} ¬ FA × {FB}
­ dK ∪ PostA,B(K)e ­ dK ∪ PreA,B(K)e
® q ∈ FA ∧ FB ⊆ Q ® q ∈ IA ∧ IB ⊆ Q

Table 7.1.: Overview of the different variants of the antichain-based algorithm

on the states of the two involved automata A and B and then check if all of the initial
states of the automaton A can be simulated by some initial state of the automaton
B [55]. In this case the language inclusion has been proven. The latter ones, like the
algorithm from Subsection 7.2.1, typically build the product automaton A× B, which
consists of the automaton A and the complement of the automaton B, and then try to
find a word which is accepted by the product automaton. In this case the language
inclusion has been disproven. The advantage of the simulation-based approaches is
that the simulation can be computed in polynomial time in the size of the involved
automata. The disadvantage is that simulation implies language inclusion, but not
vice versa. This problem does not occur with techniques using the subset construction,
since these approaches are complete. However, the subset construction often causes an
exponential blow-up of the state space which leads to an exponential runtime.
The algorithm by Abdulla, Chen, Holík, Mayr and Vojnar [1], which is presented

below, combines these two approaches by using a simulation to rule out unneccessary
state pairs which have been computed by the antichain-based algorithm given in
Subsection 7.2.1. The idea behind this new algorithm is as follows: The antichain-based
algorithm uses equality (resp. set inclusion) to determine whether two states (resp. two
state sets) are related w. r. t. language inclusion. The algorithm presented below uses a
simulation relation, which is defined in Definition 7.3, instead of the equality and set
inclusion, since simulations are more general (cf. Lemma 7.4).
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Definition 7.3 (Simulation). Let n ∈ N and A = 〈QA,Σ, δA, IA,FA〉 be an n-
bounded graph automaton with QA = (Qi)0≤i≤n. A simulation (on A) is a family
of relations

� = {Ri | 0 ≤ i ≤ n},

where the components Ri ⊆ Qi ×Qi are relations such that p Ri q implies that
the following two conditions are satisfied:

• p ∈ FA implies q ∈ FA and

• for every state p′ with p′ ∈ δA(p, σ) there exists a state q′ with q′ ∈ δA(q, σ)
such that p′ Ri q′.

Let q, q′ ∈ Qi with Qi ⊆ QA. We usually write q � q′, if q Ri q′. For two sets
Q,Q′ ⊆ QA of states we define

Q �∀∃ Q′ if ∀ q ∈ Q : ∃ q′ ∈ Q′ : q � q′.

The following lemma is well-known for non-deterministic automata and can easily be
generalized to graph automata.

Lemma 7.4. Let A = 〈QA,Σ, δA, IA,FA〉 be an n-bounded graph automaton, �
be a simulation and q1, q2 ∈ QA. Then q1 � q2 implies L(A)(q1) ⊆ L(A)(q2).

In the following we give the enhanced version of the antichain-based language inclusion
algorithm. In contrast to the basic antichain algorithm we only have a forwards searching
variant. For this new variant we have to slighty alter some definitions from above. First,
we use a different ordering. Let U = QA × ℘(QB) and 〈q,Q〉, 〈q′, Q′〉 ∈ U , we define

〈q,Q〉 ≤ 〈q′, Q′〉 if q′ � q and Q �∀∃ Q′. (7.1)

Additionally, we need a reduction4 function Reduce which does the following:
Input: Q ⊆ Qi with Qi ∈ QB a set of B-states
Output: Q′ ⊆ Q
Q′ := Q
for q ∈ Q do

if ∃q′ ∈ Q′ such that q � q′ then
Q′ := Q′ \ {q}

return Q′

The function Reduce(Q) iterates over all states q ∈ Q and removes q from the
resulting set Q′ if there exists another state q′ ∈ Q′ such that q � q′. Hence, the
resulting set contains only the minimal representatives w. r. t. simulation of the states
contained in Q. Furthermore, for each “equivalence class” w. r. t. simulation the function
chooses arbitrarily one representative. How this function can be implemented will be
explained below (cf. Equation 7.2).

4In [1] this function is called Minimize. We rename it, to avoid confusion with the minimal elements.
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Forwards searching algorithm. First, we redefine the function PostA,B from subsec-
tion 7.2.1 for the forwards searching algorithm:

RPostA,B(K) =
{

(q′,Reduce(Q′))
∣∣ ∃σ ∈ Σ: ∃〈q,Q〉 ∈ K :

q′ ∈ δA(q, σ) ∧ δ̂B(Q, σ) = Q′
}
.

The function does the same as the function PostA,B with the difference that the
successors of B are minimized additionally.

The enhanced forwards searching algorithm, which returns true if and only if L(A) 6⊆
L(B), is then defined as follows:

Algorithm 7.3: Forwards Searching Simulation-based Antichain Algorithm
Input: A = 〈QA,Σ, δA, IA,FA〉 and B = 〈QB,Σ, δB, IB,FB〉
Output: true if L(A) 6⊆ L(B), false otherwise
1: K ← IA × {Reduce(IB)}
2: repeat
3: K ′ ← K
4: K ← bK ∪ RPostA,B(K)c
5: until K = K ′

6: return there exist q ∈ IA and Q �∀∃ FB such that 〈q,Q〉 ∈ K

Note that in the first line, the set of initial states of B is already reduced. Additionally,
the line K ← bK ∪ RPostA,B(K)c adds only those state pairs to the current antichain
whose sets of B-states have been reduced. At all times it holds that for all 〈q,Q〉 ∈ K
there is a word ~σ such that δ̂A({q}, ~σ) ∩ FA 6= ∅ and δ̂B(Q,~σ) ⊆ FB.
Once more, the algorithm can be optimized. The first two optimizations can be

adapted from the antichain-based algorithms from Subsection 7.2.1. The third opti-
mization can be obtained from the following observation:

Lemma 7.5. Let 〈q,Q〉 ∈ U be some state pair. For every q′ ∈ Q such that q � q′
it holds that L(A)(q) ⊆ L(B)(q′).
Furthermore, if for all iA ∈ IA it holds that there exists an iB ∈ IB such that

iA � iB then L(A) ⊆ L(B).

Proof. Trivial.

Therefore, the algorithm can stop if IA �∀∃ IB holds and return false, meaning
L(A) ⊆ L(B).

All optimizations have been implemented in Raven. But note that in the implemen-
tation that we used in the tool, both the automata and the pairs in the antichains are
represented symbolically as Bdds. For a correctness proof of the algorithms, we refer
to [1].

Example 7.6. Let the two non-deterministic finite automata A and B from Exam-
ple 7.2, which were depicted in Figure 7.6, be given. Again, we want to check whether
L(A) ⊆ L(B) or not. But this time we use the simulation-based antichain algorithm
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explained above. Before we can start, we have to compute a simulation. For this example
we use the simulation given by the two tables below:

x
s0 4 8 8 8 8 8 8
s1 8 4 4 8 8 8 8
s2 8 8 4 8 8 8 8

x � y s0 s1 s2 t0 t1 t2 t3
y

x

t0 4 8 8 8
t1 4 4 4 8
t2 4 8 4 8
t3 4 4 4 4

x � y t0 t1 t2 t3
y

In case of the (optimized) forwards searching variant, the algorithm is initialized
with the state set K = {〈s0, {t0}〉, 〈s1, {t0}〉} which is depicted in Figure 7.9 by the
solid-bordered state pairs. The fact that the state pairs only contain the set {t0} but
not the set {t0, t1} is due to the simulation. Since t1 � t0 and the forwards searching
variant uses only the minimal elements, we can omit the state t1. Now, the algorithm
starts with these two initial state pairs and computes the successor states using the
function RPostA,B(K). The result of this function is

RPostA,B(〈s0, {t0}〉, 〈s1, {t0}〉) = {〈s0, {t0}〉, 〈s1, {t0}〉, 〈s2, {t2}〉, 〈s0, {t2}〉}

which is depicted in the second row of Figure 7.9. The letters at the arrows indicate
by which transition of the respective state pair the successor pair can be reached. The
dotted-bordered boxes indicate that the respective state pairs have already been computed
in the previous step of the algorithm and must not be processed again. Hence, the new
value of K is the set

K = {〈s2, {t2}〉, 〈s0, {t2}〉}.

Due to the change of the value of K, the algorithm computes the successors of K again:

RPostA,B(〈s2, {t2}〉, 〈s0, {t2}〉) = {〈s1, {t1}〉, 〈s1, {t0}〉, 〈s0, {t0}〉, 〈s2, {t1}〉}

Due to 〈s1, {t1}〉 ≤ 〈s1, {t0}〉 the state pair 〈s1, {t1}〉 can be omitted, which is indicated
by the dashed-bordered state pair, and since the state pairs 〈s1, {t0}〉, 〈s0, {t0}〉 have
already been computed, we have that

b{〈s1, {t1}〉, 〈s1, {t0}〉, 〈s0, {t0}〉, 〈s2, {t1}〉}c = {〈s2, {t1}〉}.

However, the optimized algorithm terminates at this point and returns true, i. e. L(A) 6⊆
L(B), since the state pair 〈s2, {t1}〉 contains the accepting state s2 of A, but for the
state set {t1} of B it holds that FB �∀∃ {t1}, which is indicated by the doubly-bordered
box. The word, found by the algorithm, which is a counterexample for the language
inclusion, is bb.

To implement the simulation-based antichain algorithm in a symbolic fashion, we
have to take a further look at the simulation relation. The problem is that the algorithm
takes only the maximum pairs into account and removes all other pairs. But since
the simulation relation is not antisymmetric, there could be an arbitrary number of
maximum pairs which are all equivalent w. r. t. simulation. If we process the pairs one
after another this fact does not lead to any difficulties, but since we want to work with
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7.2. Graph Automata and the Language Inclusion Problem

〈s0, {t0}〉 〈s1, {t0}〉

〈s0, {t0}〉 〈s1, {t0}〉 〈s2, {t2}〉 〈s0, {t2}〉

〈s1, {t1}〉 〈s1, {t0}〉 〈s0, {t0}〉 〈s2, {t1}〉

a a
b a

b

b a a a b

Figure 7.9.: Run of the (optimized) forwards searching simulation-based antichain
algorithm on the automata A and B (shown in Figure 7.6)

Bdds we want to avoid processing every pair seperately. Therefore, we slightly alter
the order given in equation 7.1:

〈q,Q〉 ≤ 〈q′, Q′〉 if q′ � q and Q v∀∃ Q′. (7.2)

where v denotes an arbitrary antisymmetric order which implies language inclusion
and which satisfies the following condition for all states q, q′:

if q � q′ ∧ q′ � q then q v q′ ∨ q′ v q.

Since we require the order v to be antisymmetric, the condition ensures that for states
q 6= q′ the order relates either q to q′ or q′ to q. This guarantees that there is exactly
one ≤-maximum pair.

7.2.3. Language Equivalence and Bisimulation up to Congruence
In this subsection we present a recent algorithm by Bonchi and Pous [23] which checks
the language equivalence of two automata using a technique called bisimulation up to
congruence. Their approach is an enhanced version of Hopcroft and Karp’s algorithm
[85]. This algorithm uses a coinduction proof principle [117, 119] for checking the
language equivalence of two states of two (not necessarily different) determinisitic
finite automata. But in contrast Bonchi and Pous’ algorithm does not require the
two automata to be deterministic. This advantage relies on a new proof technique
called bisimulation up to congruence, which extends the bisimulation up to equivalence-
technique used in the algorithm of Hopcroft and Karp.
In order to explain the different proof techniques, we first introduce the notion of

bisimulation in terms of graph automata.

Definition 7.7 (Bisimulation). Let n ∈ N and A = 〈QA,Σ, δA, IA,FA〉 be an
n-bounded graph automaton with QA = (Qi)0≤i≤n. A bisimulation (on A) is a
family of relations

∼ = {Ri | 0 ≤ i ≤ n},
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where the components Ri ⊆ Qi ×Qi are relations such that p Ri q implies that
the following three conditions are satisfied:

• p ∈ FA if and only if q ∈ FA,

• for every σ ∈ Σi,j and for every p′ ∈ δA(p, σ) there exists a q′ ∈ δA(q, σ)
such that p′ Rj q′, and

• for every σ ∈ Σi,j and for every q′ ∈ δA(q, σ) there exists a p′ ∈ δA(p, σ)
such that p′ Rj q′.

Obviously, bisimulation implies language equivalence, i. e. for states p, q ∈ QA
with p ∼ q we can immediately conclude that L(p) = L(q). But note that it is not
necessary for a bisimulation to be an equivalence. However, let p, q, r be states such
that p ∼ q and q ∼ r, but p 6∼ r. From the consideration above, we can conclude that
L(p) = L(q) = L(r). An example of a bisimulation which is also an equivalence is the
largest bisimulation.

The definition above can be lifted to sets of states, rather than single states, in the
following way: Let P,Q ⊆ Qi be two sets of A-states such that P ∼ Q implies

• P is accepting if and only if Q is accepting,

• for every σ ∈ Σi,j it holds that δ̂A(P, σ) ∼ δ̂A(Q, σ).
Furthermore, we have that for all state sets P,Q ⊆ QA that P ∼ Q implies L(P ) =
L(Q). Additionally, we have that for all state sets P,Q ⊆ QA it holds that L(P ∪Q) =
L(P ) ∪ L(Q). This leads to the following observations:

1. Let Q,Q′, Q′′ ⊆ QA be state sets such that Q ∼ Q′ and Q′ ∼ Q′′, but not Q ∼ Q′′,
then we can conclude that L(Q) = L(Q′′), since we have that L(Q) = L(Q′) and
L(Q′) = L(Q′′).

2. Let P, P ′, Q,Q′ ⊆ QA be state sets such that P ∼ P ′ and Q ∼ Q′, then we have
that L(P ∪Q) = L(P ′ ∪Q′).

From the first obversation we conclude that a bisimulation does not need to relate Q
and Q′′ if there exists a state set Q′ related to both. This leads us to bisimulations up to
equivalence. As a result of the second observation we can conclude that a bisimulation
does not need to relate P ∪Q and P ′ ∪Q′, if P (resp. Q) and P ′ (resp. Q′) are related.
This leads us to bisimulations up to context. If we take the two up-to techniques
together, we obtain bisimulations up to congruence. We now give the explicit definition
for the sake of clarity:

Definition 7.8 (Bisimulation up to congruence). Let n ∈ N and an n-bounded
graph automaton A = 〈QA,Σ, δA, IA,FA〉 with QA = (Qi)0≤i≤n be given. A
bisimulation up to congruence (on A) is a family of relations

∼ = {Ri | 0 ≤ i ≤ n},

where the components Ri ⊆ ℘(Qi)× ℘(Qi) are relations such that P Ri Q implies
that the following three conditions are satisfied:
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• P ∩ FA 6= ∅ if and only if Q ∩ FA 6= ∅,

• for every σ ∈ Σi,j , it holds that P ′ = δ̂A(P, σ) and Q′ = δ̂A(Q, σ) are related
by c(∼), i. e. P ′ c(∼)Q′,

where c(∼) denotes the smallest equivalence which is closed with respect to ∪ and
which includes ∼.

We now present the algorithm which checks whether two given graph automata are
language equivalent. But first, we need a further function

isFinalA : ℘(QA)→ {false, true}

isFinalA(Q) =
{

false, if Q ∩ FA = ∅
true, else

The function does the following: it returns true if and only if the given state set is
accepting, otherwise false is returned.

Forwards searching algorithm. The forwards searching algorithm, which returns true
if and only if L(A) 6= L(B), is then defined as follows:

Algorithm 7.4: Forwards searching Bisimulation up to Congruence Algorithm
Input: A = 〈QA,Σ, δA, IA,FA〉 and B = 〈QB,Σ, δB, IB,FB〉
Output: true if L(A) 6= L(B), false otherwise
1: ∼ ← ∅
2: todo← {〈IA, IB〉}
3: repeat
4: extract 〈P,Q〉 from todo
5: if 〈P,Q〉 ∈ c(∼ ∪ todo) then skip
6: if isFinalA(P ) 6= isFinalB(Q) then return true
7: for all σ ∈ Σ do
8: todo← todo ∪ {〈δ̂A(P, σ), δ̂B(Q, σ)〉}
9: ∼ ← ∼∪ {〈P,Q〉}
10: until todo is empty
11: return false

The line 〈P,Q〉 ∈ c(∼ ∪ todo) checks whether the pair 〈P,Q〉 is already related by
the bisimulation up to congruence based on the current bisimulation ∼. If this is the
case it is not necessary to add the pair to the bisimulation. At all times it holds that
for all 〈P,Q〉 ∈ ∼ there is no word ~σ such that δ̂A(P,~σ) is accepting and δ̂B(Q,~σ) is
not accepting or vice versa.
Note that the algorithm given above slighty differs from the original algorithm

(presented in [23]) in that it returns true if and only if the two automata are not
language equivalent. This modification is made to have the same result as the algorithms
presented in the previous subsections. For the correctness we refer to [23].

The practicability of the algorithm above highly depends on an efficient way to check
whether the state sets of some pair (in todo) are related or not w. r. t. bisimulation up
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to congruence. The solution is to compute the largest representative, i. e. the largest
set, of the involved equivalence classes. This can be done by considering every pair
〈P,Q〉 in the relation ∼ as rewriting rules of the form P → P ∪ Q and Q → P ∪ Q.
We formalize this as follows: Let n ∈ N and A = 〈QA,Σ, δA, IA,FA〉 be an n-bounded
graph automaton with QA = (Qi)0≤i≤n and let R = {Ri | 0 ≤ i ≤ n} be a family of
relations where each Ri is a binary relation on Qi. We define

 R = {Si | 0 ≤ i ≤ n}

to be a family of relations such that each Si ⊆ Qi × Qi is the smallest irreflexive
relation that satisfies the following conditions:

• For every pair 〈P,Q〉 ∈ Si it holds 〈P, P ∪Q〉, 〈Q,P ∪Q〉 ∈ R and

• for every pair 〈P,Q〉 ∈ Si it holds 〈P ∪Q′, Q ∪Q′〉 ∈ R for all Q′ ⊂ Qi.

Furthermore, we denote the normal form of a state set Q ⊆ Qi w. r. t.  R, i. e. the
largest set of its equivalence class, by Q↓R. The key to efficiency is the following
proposition:

Proposition 7.9 (Bonchi, Pous [23]). Let n ∈ N and A = 〈Q,Σ, δ, I,F〉 be an
n-bounded graph automaton with Q = (Qi)0≤i≤n and let

R = {Ri | 0 ≤ i ≤ n}

be a family of relations where each Ri is a binary relation on Qi. For all P,Q ⊆ Qi
it holds P↓R = Q↓R if and only if 〈P,Q〉 ∈ c(R).

The bisimulation up to congruence algorithm can be implemented on Bdds straight-
forwardly. Each pair of state sets 〈P,Q〉 can be mapped to a single Bdd such that the
odd-numbered Bdd nodes represent the first state set P and the even-numbered Bdd
nodes represent the second state set Q (the interleaving is due to encoding as explained
in Section 7.1). The bisimulation up to congruence is then (explicitly) represented by a
set of such Bdds. This way, the computation of the normal form w. r. t.  R can be
done by the following method which is proposed by Bonchi and Pous [23]: Let 〈P,Q〉
be a pair of state sets for which the normal w. r. t.  R should be generated. For each
pair 〈U, V 〉 ∈ R we try to perform the following rewriting steps one after another:

1. Rewriting of P :
• If U ⊆ P , apply the rule U → U ∪ V to the set P which yields the pair
〈P ∪ V,Q〉,

• else if V ⊆ P , apply the rule V → U ∪ V to the set P which yields the pair
〈P ∪ U,Q〉.

2. Rewriting of Q:
• If U ⊆ Q, apply the rule U → U ∪ V to the set P which yields the pair
〈P,Q ∪ V 〉,

• else if V ⊆ Q, apply the rule V → U ∪ V to the set P which yields the pair
〈P,Q ∪ U〉.
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The rewriting can easily be implemented on Bdds due to the following observations:
We explain the idea at the example of the first case given above. First, the “subset
check”, i. e. whether U ⊆ P holds or not, can be performed on Bdds by checking that
the implication between the Bdd representing the set U and the Bdd representing
the set P is a tautology. Second, the rewriting can be performed by computing the
disjunction of the two Bdds representing the set P and the set V . The other cases can
be handled analogously. Hence, tests for both state sets can be efficiently implemented
with Bdds. Finally, the test isFinalA(P ) 6= isFinalB(Q) can be easily obtained by the
Bdd operations ∧, ↔ as well as the existential quantification of Bdds and the final
state sets of the underlying automata which are also represented as Bdds.

As a special case the algorithm can be used to solve the language inclusion problem
for two automata A and B. This is based on the following fact:

L(A) ⊆ L(B) ⇐⇒ L(A) ∪ L(B) = L(B).

Example 7.10. Let the two non-deterministic finite automata A and B from Exam-
ple 7.2, which where depicted in Figure 7.6, be given. Once again we want to prove that
L(A) ⊆ L(B) does not hold. In this example we use the bisimulation up to congruence
algorithm explained above. But before we can start the algorithm, we need to construct
the union automaton of A and B, i. e. we construct the automaton C which accepts
the languages L(C) = L(A) ∪ L(B). As explained in Section 6.1.3 this can be done
efficiently. In the following, we denote by ∼i and todoi the relations which have been
computed during the i-th round of the algorithm.

In case of the (optimized) forwards searching variant, the algorithm is initialized with
the relations ∼0 = ∅ and todo0 = {〈{s0, s1, t0, t1}, {t0, t1}〉} which is depicted in Fig-
ure 7.10 by the solid-bordered pairs. Due to the fact that there is currently only one pair
contained in the relation todo0 the algorithm extracts the pair 〈{s0, s1, t0, t1}, {t0, t1}〉.
Since the relations ∼0 and todo0 are now both empty and {s0, s1, t0, t1} 6= {t0, t1}, the
algorithm can skip the test in line 5. Furthermore, neither {s0, s1, t0, t1} nor {t0, t1}
are accepting state sets, the algorithm continues with line 8 and computes the successor
states of these two state sets as follows,

δ̂C({s0, s1, t0, t1}, a) = {s0, s1, t0, t1}, δ̂B({t0, t1}, a) = {t0, t1},
δ̂C({s0, s1, t0, t1}, b) = {s0, s2, t1, t2, t3}, δ̂B({t0, t1}, b) = {t1, t2, t3},

which yields the pairs 〈{s0, s1, t0, t1}, {t0, t1}〉 and 〈{s0, s2, t1, t2, t3}, {t1, t2, t3}〉. Since
the first pair has already been processed, we can skip it. The other pair is added to
the relation todo1 and the pair which has been extracted in this round is added to the
relation ∼1. Hence we have the following situation:

∼1 = {〈{s0, s1, t0, t1}, {t0, t1}〉}, todo1 = {〈{s0, s2, t1, t2, t3}, {t1, t2, t3}〉}.

The algorithm continues with the second round and extracts the only pair in todo1:
〈{s0, s2, t1, t2, t3}, {t1, t2, t3}〉. In order to test whether

{s0, s2, t1, t2, t3} c(∼1 ∪ todo1) {t1, t2, t3},

the algorithm computes and checks {s0, s2, t1, t2, t3}↓∼1
?= {t1, t2, t3}↓∼1 . But since no

rule is applicable to either of both sides and {s0, s2, t1, t2, t3} 6= {t1, t2, t3}, the test is
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negative and the algorithm continues with line 6. The test on this line is also negative,
because both state sets are accepting. Therefore the algorithm computes the successor
states of these two state sets,

δ̂C({s0, s2, t1, t2, t3}, a) = {s0, s1, t0, t1, t3}, δ̂B({t1, t2, t3}, a) = {t0, t1, t3},
δ̂C({s0, s2, t1, t2, t3}, b) = {s0, s2, t1, t3}, δ̂B({t1, t2, t3}, b) = {t1, t3},

and adds the pairs 〈{s0, s1, t0, t1, t3}, {t0, t1, t3}〉 and 〈{s0, s2, t1, t3}, {t1, t3}〉 to the
relation todo2. The relation ∼2 is updated by the pair 〈{s0, s2, t1, t2, t3}, {t1, t2, t3}〉.
This leads to the following situation:

∼2 = {〈{s0, s1, t0, t1}, {t0, t1}〉, 〈{s0, s2, t1, t2, t3}, {t1, t2, t3}〉},
todo2 = {〈{s0, s1, t0, t1, t3}, {t0, t1, t3}〉, 〈{s0, s2, t1, t3}, {t1, t3}〉}.

In the third round, the algorithm can choose between two pairs. We assume that it
chooses the pair 〈{s0, s1, t0, t1, t3}, {t0, t1, t3}〉 first and extracts it from todo2. Once
again it must be tested whether

{s0, s1, t0, t1, t3} c(∼2 ∪ todo2) {t0, t1, t3}.

Both state sets have the same normal form (w. r. t.  ∼2∪todo2) as we can see below.
The set on the right can be rewritten to the set on the left by the rewriting rule
{t0, t1} → {s0, s1, t0, t1}. Therefore, the pair can be skipped.

{s0, s1, t0, t1, t3}

{s0, s1, t0, t1, t3}

{t0, t1, t3}

{t0, t1} → {s0, s1, t0, t1}

This yields the following situation:

∼3 = {〈{s0, s1, t0, t1}, {t0, t1}〉, 〈{s0, s2, t1, t2, t3}, {t1, t2, t3}〉},
todo3 = {〈{s0, s2, t1, t3}, {t1, t3}〉}.

In the next round, the algorithm extracts 〈{s0, s2, t1, t3}, {t1, t3}〉 which is the only
pair in todo3. The test in line 5 whether

{s0, s2, t1, t3} c(∼3 ∪ todo3) {t1, t3}

can be skipped, since there is no applicable rule (obtainable from ∼3) and {s0, s2, t1, t3} 6=
{t1, t3}. But this time the test in line 6 is positive, because the state set {s0, s2, t1, t3} is
accepting, but the state set {t1, t3} is not. Hence, the algorithm terminates and returns
true. The word found by the algorithm, which is a counterexample for the language
inclusion, is again bb.
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〈{s0, s1, t0, t1}, {t0, t1}〉

〈{s0, s1, t0, t1}, {t0, t1}〉 〈{s0, s2, t1, t2, t3}, {t1, t2, t3}〉

〈{s0, s1, t0, t1, t3}, {t0, t1, t3}〉 〈{s0, s2, t1, t3}, {t1, t3}〉

a b

a b

Figure 7.10.: Run of the (optimized) forwards searching bisimulation up to congruence
algorithm on the automata A and B

7.3. Conclusion
In this chapter we explained how graph automata could be implemented by means
of binary decision diagrams (Bdds). The main challenge here is to find good state
encodings in the sense that the achieved Bdds are as small as possible (in the number
of used Bdd nodes) and that the runtime which is needed to compute these Bdds is
as short as possible. We have seen, using the example of the 5-dominating set graph
automaton, that it is in general not possible to optimize both parameters. Hence, one
has to find a compromise between small Bdds and short runtimes.
Furthermore, we have introduced three different algorithms which can be used to

solve the language inclusion problem. We will also use these algorithms to check whether
a given recognizable graph language is an invariant for some graph transformation
rule. For this purpose we showed that the presented algorithms could be implemented
symbolically for the use with graph automata which are also implemented symbolically.

In the next chapter, we will present our tool suite Raven, which uses the techniques
explained in this chapter.
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“Beware of bugs in the above code; I have only proved it
correct, not tried it.”

Donald Ervin Knuth (1938 – present)

8
Raven – A Verification Tool Suite

Based on Recognizability

In this chapter we describe the tool suite Raven, which is an important achievement
and one of the goals of this thesis. Raven has been developed to handle and manipulate
graph automata of bounded interface size as described in Chapter 6. Furthermore,
we implemented the techniques presented in Chapter 7 in order to perform invariant
checks, which can be used for the verification of graph transformation systems.

8.1. Brief Description of Raven
The implementation of Raven1 started in 2008 with a tool which implements the
graph automaton accepting all graphs containing a given subgraph (see Example 6.34)
[10]. The application of that tool was to check whether the language (accepted by the
implemented graph automaton) is an invariant for a given graph transformation rule by
computing the Myhill-Nerode quasi-order (see Definition 6.20) and checking whether
the left-hand side of the transformation rule is related to the right-hand side (w. r. t.
the Myhill-Nerode quasi-order).
This tool had two main drawbacks which led to the development of Raven. On

the one hand the graph automaton had been implemented in an explicit fashion. As
already described in Chapter 7, the number of states grows exponentially in the size of
the maximum permitted interface of the graph automaton, which has a direct impact
on the size of the explicit representation. As shown by practical examples, it is not
possible to compute graph automata which exceed a rather small maximum interface
size. On the other hand one needs to build the deterministic graph automaton to be
able to compute the Myhill-Nerode quasi-order. But since the computation of the

1Available at http://www.ti.inf.uni-due.de/research/tools/raven/
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deterministic graph automaton (by the powerset construction) is not feasible due to
the exponential blow-up, we used the simulation quasi-order (see Definition 7.3) as an
over-approximation. This quasi-order had also been represented explicitly which led
to the problem that the simulation quasi-order had been computable only for graph
automata up to a maximum interface size of 4, even for rather simple subgraphs [15].
To overcome these issues the development of Raven has been started. The key to

an efficient new tool has been the usage of Bdds as data structures to represent graph
automata as explained in Chapter 7. In addition to the algorithms for checking language
inclusion introduced in the previous chapter, we have also implemented some other
algorithms which comprise universality checks (based on the algorithms presented in
Chapter 7), emptiness checks, memberships checks and algorithms to compute atomic
cospan decompositions (cf. Chapter 5) for a given cospan (which includes graphs seen
as cospans with empty inner and outer interfaces).

8.2. System Architecture of Raven
In this section we will describe the system architecture of Raven which is depicted in
Figure 8.1.
The architecture of Raven can roughly be divided into six parts:

• the input components (depicted on the left of Figure 8.1) which are again split
up into two groups: the user interface and the file readers,

• the repository (depicted in the center) which is one of the core components of
Raven, that is a database for all current objects,

• the decomposer unit (depicted on the bottom) which is used to transform graphs
and cospans to equivalent atomic cospan decompositions,

• the goal components (depicted in the middle around the repository) which are also
core components providing different techniques to perform universality, language
inclusion, invariant, emptiness and membership checks,

• the algorithms unit (depicted on the top) which is used by the different goal
components,

• the output components (depicted on the right) which are also split up into two
groups: the user interface and the file writers.

In the following we will describe the components in detail.
The system starts by reading in the user’s input. Depending on which goals the user

wants to achieve different data structures must be provided. The data structures which
can be handled by Raven are:

• Graphs can either be directly created by the user via the user interface or by
loading a file in Gxl format2 (see Appendix C.1),

2Gxl is a Xml-based standard exchange language for different kinds of graphs widely spread in the
graph transformation community [84, 94, 129], see also http://www.gupro.de/GXL/
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Figure 8.1.: System Architecture of Raven
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• Signatures contain strings representing the letters of the alphabet Σ(Λ) (see
Table 6.1) which are used to define the input alphabet of the different graph
automata. Signatures can also be created in the user interface or by loading a
file in a special line-oriented format,

• Cospans can be produced through the user interface or by loading a file in Gxl
format (also see Appendix C.2),

• (Atomic) Cospan Decomposition can either be generated by the user calling the
decomposer unit on a graph or a cospan, which will be explained in detail below,
or by loading a file in a special line-oriented format,

• Graph Automata can be created by choosing an automaton type (out of a list
of predefined automata, also see Section 7.1) and defining the automaton’s
properties, such as the permitted inner, outer and maximum interface and some
further specific properties, or by loading a graph automaton from a file (see
Appendix C.3 for further information).

After the data structures have been read, every object is stored under a certain name
in the repository. Later on, the user can use the objects in the repository by handing
over the names of the desired objects to the several goals.
Some of the goals, namely the membership and the invariant checking goal, expect

the user to input an atomic cospan decomposition. Hence, Raven provides the oppor-
tunity to automatically decompose a graph or a cospan into such an atomic cospan
decomposition. This is done in several steps depending on the object one wants to
decompose:

• In case of graphs, the first step is to compute a tree decomposition of the graph
(see Definition 5.1). This is done by two algorithms. The first one is a heuristic
which computes a list of the nodes of the graph depending on different criteria
[20]. The second algorithm generates the actual tree decomposition depending on
the node list. The heuristic to find the node list can either be chosen by the user
or the default heuristic, called GreedyDegree in the literature, is chosen.
In the second step, the tree decomposition (which is essentially a tree) is tra-
versed to obtain a linearization of the decomposition. In order to get a path
decomposition, one needs to perform further operations, since it could be the case
that the bags (of the linearization) containing a given node (of the graph) do not
form a path, which would be a violation of the definition of a path decomposition.
Therefore, it is checked for every graph node and for every path from one bag
to another bag which both contain the given node, whether the node is also
contained in all bags on the path. If this is not the case, the node is added to
all bags on the path which do not contain the node. This yields a valid path
decomposition of the graph.
In the last step, the path decomposition is transformed into an atomic cospan
decomposition. This is done in a “bag-wise” manner, i. e. the algorithm processes
the path decomposition bag by bag based on the procedure described in the proof
of Lemma 5.9.
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• In case of cospans, five different steps are required to obtain an atomic cospan
decomposition. The idea is based on (the proof of) Proposition 6.25. The first
step is to add a vertex-operation for each node in the middle graph of the given
cospan. Note that there are additional nodes which are accessible from the inner
interface (of the given cospan). In the second step all edges of the middle graph are
added by permuting the incident nodes to the last position of the outer interface
with the help of shift- and trans-operations and a subsequent connect�-operation,
where � is just a placeholder for the corresponding label. Next, in step three,
the nodes added in step one are fused with the already existing nodes according
to the inner interface (of the given cospan). At this point the middle graph
obtained by the atomic cospan decomposition matches the middle graph of the
given cospan. Hence, in step four, we can permute the outer interface (of the
atomic cospan decomposition) by adding shift- and trans-operations repeatedly
such that the nodes which are not accessible by the outer interface of the given
cospan allocate the last positions of the outer interface of the atomic cospan
decomposition. Then, the fifth and last step is to remove these last nodes from the
outer interface by adding enough res-operations. This yields the desired atomic
cospan decomposition.

An object in the repository can be used as input for the different goal components:

• The universality method checks whether the given graph automaton is universal,
i. e. whether the accepted language of the 〈i, j〉-graph automaton contains all
cospans of the form c : Di

#
Dj . In case that the given graph automaton is not

universal, a counterexample is returned.

• The language inclusion goal expects two 〈i, j〉-graph automata and checks whether
the language of the first graph automaton is contained in the language of the
second graph automaton. In case the language inclusion does not hold, each
algorithm computes a counterexample and returns it to the user.

• The invariant checking goal checks whether the language of a given 〈0, j〉-graph
automaton is an invariant for a graph transformation rule ρ = 〈`, r〉 given as two
cospans of the form `, r : ∅# Di (see Section 3.3). As a pre-processing step the
〈i, j〉-graph automata A[`] and A[r] are computed as described in Section 7.2.
The check is then based on the language inclusion goal for the graph automata
A[`] and A[r]. Again, if the language of the given graph automaton is not an
invariant for the given transformation rule, a counterexample is computed and
presented to the user.

• The emptiness checking goal expects a graph automaton and checks whether the
language of the automaton is empty.

• The membership checking goal runs a given 〈i, j〉-graph automaton on a given
cospan of the form c : Di

#
Dj and checks whether the cospan is accepted by

the graph automaton.

If the language inclusion goal has been chosen, one of the algorithms presented in
the Sections 7.2.1, 7.2.2 and 7.2.3 is called to solve the language inclusion problem.
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Note that in case of the simulation-based antichain algorithm, the simulation pre-order
for the given automata is computed as a pre-processing step.

If the user has chosen the universality goal, there exist algorithms which are essentially
the same as for the language inclusion goal (see [1, 23, 132] for further information
about these universality algorithms).

If the invariant checking goal has been selected by the user, the input is transformed
as described above and afterwards the chosen language inclusion algorithm is called.

The other two goals are directly implemented on top of the underlying data structures,
which are given as input, i. e. both the emptiness and the membership check goal call
methods which are implemented in the graph automaton datastructure. Therefore, no
further algorithms are needed here.

At last, the system can either visualize the data structures contained in the repository
using the different viewers or write the data structures in the different file formats
which have been described above.

8.3. Tutorial: Functionality and Usage
The tool suite Raven has been implemented in the Java programming language3

and offers both a command-line and a graphical user interface. Furthermore, Raven
depends on a number of libraries/programs which are listed in the following:

• JavaBDD, a Java library for manipulating Bdds which offers an interface to
the well-known BuDDy library [128]

• BuDDy, a highly efficient Bdd library written in C [101]

• LibTW, a Java library for computing tree decompositions of graphs [54]

• ANTLR, a parser generator library written in Java,

• JDOM, a library for reading, manipulating and writing Xml documents written
in Java

• JGraphX, a Java library for visualizing graphs

• JAnsi, a library written in Java to use ANSI escape sequences to format console
outputs

• Graphviz, a program for automatically layouting graphs

All the libraries and programs given above are free software (also see Appendix D for
further information). Since Raven as well as many of the libraries above are written in
Java and since BuDDy as well as Graphviz are available for many platforms, Raven
can be used on Linux, MacOS and Windows. The full description can be found in the
Raven program documentation4.
In the rest of this section we give a short tutorial to the main features of Raven.

But note that we will limit our attention to the graphical user interface. The program
can be called from the shell by the following command

3Raven depends on a Java Runtime Environment 1.7 or higher.
4Available at http://www.ti.inf.uni-due.de/research/tools/raven/documentation.pdf
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java -jar raven.jar

which brings up the main window of Raven (see Figure 8.2). This window consists of
five main componentes:

¬ The goal panel on which the user can choose the different goals (membership
check, language inclusion check, . . . ) to use with Raven,

­ The output panel which shows the user text-based status information about
Raven,

® The command-line input field which provides the user with the opportunity to
directly use console commands in the graphical user interface,

¯ The repository panel which presents a list of all data objects (signatures, cospans,
. . . ) which are currently contained in the repository,

° The data information panel which gives detailed information about the currently
selected data object.

¬

­

®

¯

°

Figure 8.2.: Raven GUI

We start by creating some data structures which will be used later on for the analysis.
First, we create a new graph and add it to the repository. This can be done by choosing
either Repository -> Create graph from the main menu or the item Create graph
which appears when pressing the button (:) labeled with a green plus sign located
on the repository panel (¯). The visual graph creator component appears, which is
depicted in Figure 8.3. The use is rather intuitive. In the text field on the top side of
the window, the user has to define a (unique) name for the new graph which is used
to address the graph after it has been added to the repository. By pressing the Add

137



8. Raven – A Verification Tool Suite Based on Recognizability

node button the user can add new nodes to the graph. A click on the Add edge button
brings up a new dialog window on which the user can specify the (unique) name, the
label and incident nodes of a new edge. The graph is then added to the repository by
pressing the Accept button.

Figure 8.3.: Raven Visual Graph Creator

Next, we want to add a graph automaton. But before we can do this, we need to add a
signature to define the automaton’s input alphabet. Again, we either choose Repository
-> Create signature from the main menu or the item Create signature which
appears when pressing the button (:) labeled with a green plus sign located on the
repository panel. The visual signature creator appears, which is shown in Figure 8.4.
First of all, the user has to define a (unique) name for the new signature. Subsequently
the user can add the letters which should be contained in the signature by pressing the
button (:) labeled with a green plus sign. The available letters consist of the letters
introduced in Chapter 6: connect� (where � is a placeholder for an arbitrary label which
can be determined by the user), fuse, perm, res, trans and vertex . If the user wants to
remove a letter, this can be done by selecting the respective letter and pressing the
button ( ) labeled with a red minus sign. Once all operations have been added to the
signature, the user can press the Accept button and add it to the repository.

Now, we can create a new graph automaton. As before, the visual automaton creator
dialog can be invoked either by the main menu, choosing Repository -> Create
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Figure 8.4.: Raven Visual Signa-
ture Creator

Figure 8.5.: Raven Visual Automa-
ton Creator

graph automaton, or by pressing the button (:) labeled with a green plus sign located
on the repository panel and selecting the Create automaton item. Either way the visual
automaton creator, which is depicted in Figure 8.5, is shown to the user. Analogously
to the dialogs explained above, first of all the user has to define a (unique) name for
the new graph automaton. Next, the user can choose the type of the graph automaton,
which specifies the language accepted by the automaton. The list (at the time of writing
this thesis) consists of types which represents the languages presented in Section 7.1.
Therefore, the type must be one of the following: colorability, dominating set, edge
counting, link, maximum edge, maximum vertex, minimum edge, minimum vertex, no
isolated nodes, path, product, subgraph, union, vertex cover, vertex counting. Furthermore,
the user has to specify the signature used by the new graph automaton as well as the
inner, outer and maximum interface size of the cospans accepted by the automaton.
However, it is recommended to choose the maximum interface size as low as possible,
since the size (and therefore the time of computation) of a graph automaton depends
exponentially on the maximum interface size, as explained in Section 7.1. At last, the
user has to define some type-specific properties such as the number of colors in case
of the colorability type or the maximum size of the dominating set in case of the
dominating set type, et cetera. If all required properties have been given, the user can
start the computation of the new graph automaton by clicking the Accept button.
When the computation is finished, the graph automaton is added to the repository.

The last data structure we want to create is a new cospan. For this purpose the
user has two possibilities in Raven. The first is to directly create a new cospan by
creating the middle graph of the cospan and defining which nodes are in the inner and
which ones are in the outer interface. The second is to give the cospan in terms of an
atomic cospan decomposition (see Chapter 5). The advantage of the latter option is
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that the user has more influence on the cospan decomposition, since no decomposition
must be computed. The disadvantage is that the user has to know the decomposition
of the desired cospan. In order to create a new cospan the user has to choose either
Repository -> Create cospan from the main menu or the button (:) labeled with a
green plus sign located on the repository panel and selecting the Create cospan item.
The visual cospan creator dialog appears which is shown in Figure 8.6. The use of this
dialog is similar to that of the visual graph creator. Therefore, we omit the explanation
of the visual cospan creator as far as possible. The only difference is that the user can
add nodes of the middle graph to the inner and outer interface respectively. This can
be done by selecting the certain node and clicking on the buttons labeled with the
different arrows. To create a new cospan decomposition the user has to choose the
Create cospan decomposition item instead of the Create cospan item. This brings
up the visual cospan decomposition creator dialog, which can be seen in Figure 8.7.
First of all, the user has to define the (unique) name of the cospan decomposition.
Afterwards the user can compose the new atomic cospan decomposition out of the
list of available atomic cospans which are depicted on the upper left of the dialog
window by selecting the desired atomic cospan and pressing the arrow buttons. Every
time a new atomic cospan is added to the decomposition, the cospan list, depicted in
the upper middle of the dialog, and the cospan view, depicted in the bottom part of
the dialog, are updated. Furthermore, the user is provided with the current (outer)
interface of the cospan by the list on the right. Once the atomic cospan decomposition
is complete, the user can hit the Accept button such that the decomposition is added
to the repository.

After the user has created some data structures, the user can get further information
about these objects by selecting them on the repository panel (¯). The details about
the selected object are then depicted on the data information panel (°). For example,
if the user selects a graph automaton, the depicted details consist of properties which
have been used during the creation and of further information such as the number
of (all/the initial/the final) states of the automaton, the name of the Bdd encoding
(see Section 7.1) or the (visual representation of the) Bdds used to encode the several
transitions functions of the graph automaton. For the other data structures the user
can also get additional information by selecting an appropriate object on the repository
panel.

Now, we turn to the analysis of the graph automaton created beforehand. We assume
that the user has created a graph with the help of the visual graph creator. As an
example we want to check whether the given graph is accepted by the graph automaton,
i. e. we want to solve the membership problem. To do so, the user has to select the
Membership goal from the goal panel (¬) first. Then the desired graph automaton and
the desired graph have to be selected from the respective lists which appear on the
goal panel. To start the computation of the underlying membership algorithm the user
has to hit the button (I) labeled with a green triangle. In a similar way, the other
goals can be chosen and started by the user. Therefore, we omit the description here
and refer to the documentation5 for further information.
During the whole runtime of Raven the output panel (­) provides the user with

additional information about the status of the program. Once the computation has
finished, the result is displayed to the user. In case of the membership check only a

5Available at http://www.ti.inf.uni-due.de/research/tools/raven/documentation.pdf
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Figure 8.6.: Raven Visual Cospan Creator

small text dialog is displayed which is used to indicate whether the check has been
successful or not. In the case where the user has chosen the universality, language
inclusion or invariant check, Raven also displays a counterexample if the result is
negative.

8.4. Comparison with other tools
In this section we want to give a short comparison between Raven and some other
software tools, which use techniques similar to the ones presented here.
In his seminal work Courcelle [44] has shown that graph properties definable in

monadic second-order logic can be encoded as finite (tree) automata. That is a result
which is very important not only for Raven, but also for other tools. The challenge in
the application of this result is the practicability for graphs with a reasonable treewidth
(pathwidth), since the treewidth (pathwidth) has an exponential impact of the size of
the finite (tree) automaton. Initial work to tackle this problem has been done by the
authors of the tool Mona [77, 89]. This tool is used to encode formulas of (a fragment
of) monadic second-order logic on strings and trees into finite (tree) automata. Similar
to Raven the tool Mona also benefits from the symbolical encoding of automata
by Bdds. But in case of Mona the Bdds are used differently, since instead of the
state space only the alphabet is encoded by means of Bdds. Therefore, for Mona it
is beneficial that one has a huge alphabet which must be encoded, whereas Raven is
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Figure 8.7.: Raven Visual Cospan Decomposition Creator

designed for huge state spaces. However, this is not the only difference between both
tools. In contrast to Raven which is used for the verification of graph transformation
systems, Mona is designed for the analysis of so-called pointer programs [111, 112]
and for shape analysis [118] respectively. These techniques are very suitable if the
data structures under consideration (i. e. single or doubly linked lists, different kind of
trees, maps, . . . ) are known in advance. In this case only specific graph-like structures,
which are used to model the underlying data structures, must be considered in the
verification, which potentially makes these techniques more feasible. But if the inspected
system is much more heterogeneous in a way that the system must be modelled by
arbitrary graphs or is evolving in a rule-based but otherwise unpredictable manner or
has different components with different behavior, one needs a more general approach.
This is one of the advantages of Raven in contrast to Mona, since Raven is only
restricted by the class of (bounded) recognizable graph languages. Hence, in case of
Raven, the systems under consideration can be very heterogeneous.
The software AutoWrite [58, 59] is another tool which is used to verify monadic
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second-order logic definable properties on graphs of bounded tree- or clique-width6

respectively. The verification is done by transforming the input formula into a so-called
fly-automaton, in which the state set and the transition function are represented
as computable functions rather than in an explicit way [45–47]. Furthermore, it is
possible to compute more complex fly-automata using basic automata and the usual
automata-theoretic operations such as union, intersection, complementation, et cetera,
which is similar to the features of Raven. The differences between both tools lie
in the distinct fields of application. AutoWrite has much potential in solving the
membership problem, since the tool has to compute and explicitly store only states
which are reached by a given input. This is due to the representation of the transition
functions, which yields small fly-automata on the one hand and less overhead due to
the on-the-fly computation on the other hand. The disadvantage is, that due to the use
of computable functions to represent the (huge) state sets and the (huge) transition
function, many decision problems which are of special interest for verification purposes
(e. g. emptiness, universality, language inclusion, . . . ) become undecidable, if arbitrary
computable functions are considered. In contrast the advantage of Raven is that
these problems are decidable if one uses the techniques and symbolical representation
implemented in Raven. Therefore, AutoWrite and Raven are useful for different
purposes, even if the theoretical basis of both tools is similar.
A further tool which depends on techniques also used for Raven is the software

tool Alaska [57]. Just as Raven, the Alaska-tool is based on the antichain-based
approach to solve the language inclusion problem presented in Chapter 7. Another
similarity between both tools is the representation of the state sets of the involved
automata as Bdds. But Alaska converts these symbolically represented state sets
into an explicit representation when computing the successor or predecessor state sets
respectively. This is different to Raven as described in Section 7.2, which is implemented
fully symbolically. In case of Raven this conversion would be infeasible due to the
huge size of the state spaces of the certain automata. But in contrast to Raven, the
Alaska tool deals with much smaller automata which originates from the different
areas of application: Alaska is applied to solve the Ltl-model checking problem
whereas Raven can be used for monadic second-order model checking. Hence, Alaska
deals with alternating finite automata or alternating Büchi automata respectively to
represent (ω-regular) word languages which are rather small compared to the graph
automata to represent recognizable graph languages used by Raven.

8.5. Conclusion
In this chapter we presented a prototype implementation for a tool suite which is
able to handle and manipulate graph automata up to a bounded interface size as
introduced in Chapter 6. In order to represent these automata in an efficient manner
the implementation depends on a symbolic representation realised as binary decision
diagrams as described in Section 7.1. The functionality of Raven covers among others
the computation of pre-defined classes of automata (k-colorability automaton, subgraph
isomorphism automaton, vertex cover automaton, . . . ), which can be combined by

6The notion of clique-width is similar to the notion of pathwidth and treewidth and depends on a
clique decomposition of a graph. For further information about clique-width see [49].
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computing union or product automata, thus realising closure properties, and to check
the membership of a given graph in the language defined by an automaton. For our
purposes, which are in the area of verification of dynamically evolving systems, decision
procedures on automata are a central ingredient and hence we implemented both
emptiness and universality checks. Another feature of Raven is the possibility to solve
the language inclusion problem for two given graph automata which is implemented
via the algorithms presented in Section 7.2. In the next chapter, we will give some
experimental results which have been obtained by using Raven.
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“The only truly secure system is one that is powered off.”
Eugene Howard Spafford (1956 – present)

9
Experimental Results

In this chapter, we present different case studies which we have conducted using the
tool suite Raven presented in the previous chapter. The case studies are of different
types:

Multi-User File System We considered the multi-user file system from [15]. In this
example a system state is represented by a single graph: Nodes represent users and
files, edges represent permissions, either “read” or “write”. Graph transformation
rules are used to model the access rules of the system such as “add new user”,
“change permission”, “delete file”, . . . The task of this case study is to check
whether the file system can reach a forbidden state which violates some consistency
property using the system’s access rules.

Invariant checking We considered additional case studies in connection with invariant
checking to evaluate our approach. In particular we analyzed a transformation
rule which switches a single edge for which the language of all graphs containing a
triangle subgraph is an invariant. Furthermore, we examined two other examples.
The first one consists of a transformation rule which extends a path (segment)
from length one to length three for which the language of all 2-colorable graphs
is an invariant. The second one consists of a transformation rule which replaces a
triangulated rectangular subgraph by a more complex subgraph for which the
language of all 3-colorable graphs is an invariant.

Results from graph theory and counterexample generation Language inclusion al-
lowed us to prove some results from graph theory (up to bounded pathwidth)
and to obtain counterexamples if the inclusion fails.

Membership tests We obtained runtime results for various membership tests. We
computed random graphs (for different number of nodes), obtained their tree
decompositions and then decomposed them into atomic cospans and processed
them with our tool.



9. Experimental Results

All tests in this chapter, except for the membership tests, were performed on a
64-bit Linux machine with a Xeon Dualcore 5150 processor and 8 GB of available main
memory. For the membership tests we used a different machine running a 64-bit version
of Windows 7 on a Core i5-2500 processor and 8 GB of available main memory. This
hardware exchange has been necessary, since the other machine was no longer available.
For all case studies we used only signatures which do not contain the letter fuse. This
decision is motivated by two reasons: on the one hand we only consider loop-free graphs
which can be created without the fuse cospan, on the other hand the computation of
the fuse-transition is usually very expensive (measured in the time of computation).

9.1. Case Study “Multi-user File System”
In this section we want to validate the multi-user file system1 from [15], where the
access to the system is controlled by several rules in order to guarantee some consistency
properties. In this example, a system state is modelled as a graph: users and files are
nodes with a unary edge, either labeled by u (for user) or f (for file), attached to each
node to distinguish users from files. Furthermore, access permissions (either “read” or
“write”) are binary edges, either labeled by r or w. The system behavior (add new
user, change access permissions, . . . ) is modelled as transformation rules (see below).
As signature we take the following (families of) letters: connectiu, connectif , connectir,
connectiw, permi, resi, transi and vertexi, where u as well as f are both labels of arity
1 and r as well as w are both labels of arity 2 (see also Table 6.1 on page 72).

We consider two properties which describe each a violation of the consistency of the
multi-user file system. The system is in a consistent state as long as these properties
are not satisfied. The first property is the double write access of a user to a file (double
access), i.e. a user has twice a write access to the same file at the same time. The
second property is the write access of two different users to the same file at the same
time (two users). These two forbidden properties can be modeled by the two graphs
depicted in Figure 9.1.

u
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f
1w1 2

w1 2

(a)

u
1 f

1

u
1

w
1 2

w
1 2

(b)

Figure 9.1.: Forbidden subgraphs “Double Access” and “Two Users”

Note that it is not forbidden that a user has more than one read access to a file at
the same time and that two or more users can have read access to the same file at the
same time even if one user has write access to that file.

1This case study has been inspired by [92].
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The multi-user file system offers the usual operations which will be explained in
more detail below:

Create new user (with read/write access): The rule “Create new user” creates
a new user u and a new file f and gives the user a read (write) access to this file.
It can be modeled by the following span where x is either r or w:

∅∅
u
1

f
1

x
1 2

Delete user/file: The rule “Delete user/file” applied for some user u (file f) removes
the user (file) from the system. The following span models this rule where x is
either u or f :

∅
a

x
1 ∅

User converts (read/write) access: The rule “User converts access” applied to
some user u with read (write) access to some file f converts the access of the
user from read to write access to this file (or vice versa). It can be modeled by
the following span where either x is r and y is w or vice versa:

a b
a b

u
1

f
1

x
1 2

a b

u
1

f
1

y
1 2

User creates new file (with read/write access): The rule “User creates new file”
applied to some user u creates a new file f and gives the user a read (write)
access to this file. It can be modeled by the following span where x is either r or
w:

a
a

u
1

a b

u
1

f
1

x
1 2

User requests file (with read/write access): The rule “User requests file” applied
to some user u sets the read (write) access of this user from the current file to
some other existing file. The following span models this rule where x is either r
or w:
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a

b
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c

u
1

f
1

f
1

x1
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a

b
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u
1

f
1

f
1

x
1

2

Users swap (read/write) access: The rule “Users swap access” applied to two
user u1 and u2 with read (write) access to files f1 and f2 swaps the access to
these files. The following span models this rule where x is either r or w:

a b

c d

a b

c d

u
1

f
1

u
1

f
1

x
1 2

x
1 2

a b

c d

u
1

f
1

u
1

f
1

x
1

2

x
1 2

User transfers (read/write) access: The rule “User transfers access” applied to
two users u1, u2 and a file f read (write) accessible by u1 transfers the access of
the file to the user u2. The following span models this rule where x is either r or
w:

a

bc

a

bc

u
1

f
1

u
1

x
1

2 a

bc

u
1

f
1

u
1

x1
2

Withdraw (read/write) access: The rule “Withdraw access” applied to some user
u with read (write) access to some file f widthdraws the access of the user to
this file. The following span models this rule where x is either r or w:

a b
a b

u
1

f
1

x
1 2

a b

u
1

f
1

As already mentioned in Section 3.3 every rewriting rule ρ : L�`− I −r�R can be
considered as two cospans c` : ∅ → L�`−I and cr : ∅ → R�r−I which are the left-hand
side and right-hand side of the corresponding rewriting rule.

In Section 6.1.3 we have stated that recognizable languages are closed under boolean
operations and in Example 6.34 we have described how the graph automaton accepting
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9.1. Case Study “Multi-user File System”

Max. Interface Size
Access Rule Result 4 10
Create new user with read access 4 2 3 246
Create new user with write access 4 2 3 260
Delete user 4 2 3 153
Delete file 4 2 3 137
User converts read access 8 < 1 < 1
User converts write access 4 2 3 084
User creates new file with read access 4 2 3 145
User creates new file with write access 4 2 3 329
User requests file with read access 4 2 3 054
User requests file with write access 8 < 1 < 1
Users swap read access 4 2 3 232
Users swap write access 4 2 3 312
User transfers read access 4 2 3 098
User transfers write access 4 2 3 120
Withdraw read access 4 2 2 663
Withdraw write access 4 2 2 628

Table 9.1.: Results and runtimes (in seconds) for the case study “Multi-user file
system”

the language of all graphs containing a fixed subgraph works. With these considerations
we can now construct a graph automaton that recognizes all graphs violating one of the
two properties, i. e. all graphs that contain either of the two forbidden subgraphs. Note
that this graph automaton accepts the complement of the language of all consistent
states, i. e. all graphs that do contain one of the forbidden subgraphs. Hence, we perform
a backwards analysis on each rewriting rule and check whether L(A [r]) ⊆ L(A [`]).
If the language inclusion holds, then the original rewriting rule does not violate
the consistency of the multi-user file system. This can be seen as follows: After the
application of the rule the consistency of the system is violated only if it was already
violated before the rule application, hence the language is verified to be an invariant.

In Table 9.1 the result of the backwards analysis and the runtime results obtained
by the complement backwards searching antichain algorithm (see Subsection 7.2.1) are
presented. In the first column the name of the rewriting rule is given. The result of the
language inclusion check is either denoted by a checkmark (4), if the transformation
rule is consistent, or by a crossmark (8), if the transformation rule is not consistent.
In the columns three and four we present the times (in seconds) needed to run the
complement backwards searching antichain algorithm for both a setting with a maximum
permitted interface size of 4 and a setting with a maximum permitted interface size of
10.

As we can see, the only rules which are not consistent are the two rules “User converts
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read access” and “User requests file with write access”. To prove the non-consistency
two counterexamples – one for each rule – can be obtained from the complement
backwards searching antichain algorithm. For the rule “User converts read access”
the counterexample depicted in Figure 9.2 is computed. Obviously, the graph on the
left-hand side is consistent, i. e. it does violate neither the “double access” nor the “two
users” condition. But if we apply the rule “User converts read access” we obtain the
graph depicted on the right, which violates the consistency property “double access”.

u
1

f
1r1 2

w1 2

u
1

f
1w1 2

w1 2

Figure 9.2.: Counterexample for the rule “User converts read access”

For the rule “User requests file with write access” the counterexample depicted in
Figure 9.3 is computed. Similarly, the graph depicted on the left is consistent, but the
graph on the right, obtained by applying the rule “User requests file with write access”,
obviously violates the consistency property “double access”, too.

u
1

f
1

f
1

w1 2

w1 2

u
1

f
1

f
1

w
1 2

w1 2

Figure 9.3.: Counterexample for the rule “User requests file with write access”

Note that in [10] and [15] the author together with Bruggink and König used a
different approach based on the generalized Myhill-Nerode theorem (cf. Theorem 6.22)
to verify the access rules depicted above. The idea is that a language L is an invariant
according to a rule ρ : L �`− I −r� R if the corresponding cospans2 c` and cr are
related by the Myhill-Nerode quasi-order, i. e. c` ≤L cr holds. To compute the Myhill-
Nerode quasi order there exists an algorithm which is similar to the one used for the
computation of the minimal Dfa. But for practical purposes this approach is not useful
due to the fact that the Myhill-Nerode quasi order is only computable for deterministic
graph automata which are in general exponentially larger than the equivalent non-
deterministic graph automata. Hence, a simulation relation was used to approximate

2For the connection between transformation rules and cospans we refer to page 27.
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the Myhill-Nerode quasi-order, which can also be computed for non-deterministic
graph automata. Due to this approximation the validation of the rewriting rules “User
transfers write access” and “Users swap write access” was unsuccessful, although the
language is an invariant w. r. t. these rules. Now we succesfully verified them.

9.2. Case Studies: Invariants for Subgraph Containment
& Colorability

In this section we want to validate three other invariants, namely the “triangle subgraph
invariant”, the “2-colorability with path extension invariant” and the “3-Colorability
with Node Replacement” invariant. We explain these two case studies in more detail
below:

Triangle Subgraph: For this example we take the graph T (which is depicted in
Figure 9.4) as fixed subgraph.

A

B

B

Figure 9.4.: Wanted subgraph T

The signature of this case study contains the following (families of) letters:
connectiA, connectiB, permi, resi, transi and vertexi, where A and B are both
labels of arity 2 (see also Table 6.1 on page 72). How the graph automaton can be
obtained which accepts the language LT of all graphs containing T as a subgraph
has been explained in Example 6.34. The language LT is an invariant for the rule
ρA (shown in Figure 9.5) which “switches” an A-labeled edge.

a ba b

A

a b

A

Figure 9.5.: Transformation rule ρA

This can be seen as follows: Every graph which contains T as subgraph before
the application of ρA does contain T also after the rule application. But due to
the “switch” of the A-labeled edge, also the B-labeled edges switch their role.

2-Colorability with Path Extension: For this example we consider the language C(2) of
all 2-colorable graphs, which has been introduced in Example 6.4. The correspond-
ing graph automaton has been explained in Example 6.33. The corresponding
signature consists of the following (families of) letters: connecti�, connectiw, permi,
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resi, transi and vertexi, where � is an arbitrary label of arity 2 (see also Table 6.1
on page 72). This language is an invariant for the transformation rule αn depicted
in Figure 9.6 which adds two new nodes between two adjacent nodes on a path.

a ba b a b

Figure 9.6.: Transformation rule αn

It is obvious that a graph with an even number of nodes also has an even number
of nodes after the rule application. Hence, the language C(2) is an invariant for
the rule αn, since every path with an even number of nodes is 2-colorable. Note
that this holds also for other k-colorable graphs (with k ≥ 2).

3-Colorability with Node Replacement: For this example we consider the language
C(3) of all 3-colorable graphs (see Example 6.4 and Example 6.33, the signature
is the same as for the example above). This language is an invariant for the
transformation rule αr depicted in Figure 9.7 which replaces the center node of
the left-hand side by a directed cycle consisting of four nodes which are connected
to a new center node.

a

c

b

d

a

c

b

d

a

c

b

d

Figure 9.7.: Transformation rule αr

That the language C(3) is an invariant for the rule αr can be seen as follows:
The outer nodes of the graph of the left-hand side can be colored alternating.
Hence, the third color can be used to color the center node. This coloring can be
extended for the graph of the right-hand side. The nodes of the inner cycle can
be colored alternatingly, too.

We now present the runtime results for these three case studies in Table 9.2 (for
the “triangle subgraph” case study) in Table 9.3 (for the “2-Colorability with path
extension” case study) and in Table 9.4 (for the “3-Colorability with Node Replacement”
case study). Note that we have used the four language inclusion algorithms presented
in Section 7.2 to check the invariants. That is, we used the following algorithms:

• normal forwards searching antichain algorithm (forwards antichain for short), see
also Algorithm 7.1,

• complement backwards searching antichain algorithm (backwards antichain for
short), see also Algorithm 7.2,
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9.2. Case Studies: Invariants for Subgraph Containment & Colorability

• simulation-based antichain algorithm, see also Algorithm 7.3 and

• bisimulation up-to congruence algorithm, see also Algorithm 7.4.

Furthermore, all tests have been run with a time limit of 86 400 seconds which equals
24 hours. Whenever this time limit was exceeded, the respective test was aborted.

Maximum Interface Size
Algorithm 3 4 5 6 7 8 9 10
Forwards Antichain 11 1 202 69 829 to – – – –
Backwards Antichain 1 3 17 190 1 525 10 200 47 001 to
Sim.-Based Antichain 150 9 756 to – – – – –
Bisim. up-to Cong. to – – – – – – –

Table 9.2.: Runtimes (in seconds) for the case study “Triangle Subgraph”; to: timed
out

Maximum Interface Size
Algorithm 3 4 5 6 7 8 9 10
Forwards Antichain < 1 < 1 1 2 25 1 311 60 853 to
Backwards Antichain < 1 < 1 1 3 37 1 501 49 638 to
Sim.-Based Antichain < 1 1 7 527 40 433 to – –
Bisim. up-to Cong. < 1 < 1 1 12 821 45 271 to –

Table 9.3.: Runtimes (in seconds) for the case study “2-Colorability with path exten-
sion”; to: timed out

Max. Interface Size
Algorithm 5 6 7
Forwards Antichain 63 30 747 to
Backwards Antichain 112 to –
Sim.-Based Antichain < 1 to –
Bisim. up-to Cong. to – –

Table 9.4.: Runtimes (in seconds) for the case study “3-Colorability with Node Re-
placement”; to: timed out

Now, we compare and interpret the runtimes of the four algorithms. In all three
case studies the best runtime results are always obtained by one of the antichain
algorithms. In the first case study the backwards antichain algorithm is much faster
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and applicable to much higher maximum interface sizes than the other three algorithms.
In the second case study the forwards and the backwards antichain algorithm are
nearly equal. In the third case study only the forward antichain algorithm is applicable
to a maximum interface size greater than 5. In contrast to the antichain algorithms
the simulation-based antichain algorithms is rather slow and the bisimulation up-to
congruence algorithm is not usable in the first and the third case study, the results in
the second case study are also rather poor.
The reason for the good results of the backwards antichain algorithms in the first

case study may be found in the implementation of the subgraph graph automaton.
In order to minimize the size of the Bdds needed to encode the states of the graph
automaton, we also permitted bit strings which do not encode valid states of the graph
automaton, but which are unreachable from the initial states. Thus, the number of
states of the graph automaton becomes larger and conversely the Bdd which encodes
the state set becomes smaller. This fact may yield a more compact representation of
(state) information.

The reason why the runtime results of the forwards antichain algorithm for the third
case study are much better than that of the backwards antichain algorithm can be
found by taking the “starting states” of both algorithms into account. The forwards
algorithm starts with the initial states of the “shifted” automata, i. e. those states
which are reachable from the initial state of the 3-colorability automaton by processing
the left- and right-hand side of the transformation rule respectively. Hence, the initial
states of the “shifted” automata represented valid colorings of the left- and right-hand
side. Then the forwards algorithms tries to reach an accepting state pair (as decripted
in subsection 7.2.1). The backwards algorithm starts with the opposite states, i. e. the
algorithm is initialized with the set of accepting state pairs and tries to (backward-
)reach the initial states of the “shifted” automata (as described in subsection 7.2.1). Due
to this backwards steps, the backwards antichain algorithm may also (backward-)reach
states which are not reachable from the initial states. Hence, the search space of this
variant is larger than that of the forwards antichain algorithm, which results in worse
runtimes.

Altogether, we can handle some non-trivial examples up to relatively large interface
sizes (note that in practical applications the width, and thus the interface size of graphs,
is in general relatively small). For example, the “triangle subgraph automaton” has
37 440 states in case of maximum interface 3, 19 173 952 states in case of interface size
6 and 2 147 483 647 in case of the interface size 9.

9.3. Case Studies from Graph Theory
In this section we want to perform some language inclusion checks which allow us to
prove some results from graph theory (up to bounded pathwidth). In case the language
inclusion does not hold we want to obtain counterexamples. To be precise we checked
the following six results (for 2 ≤ k ≤ 4):

• C(3) ⊆ C(4) and C(4) 6⊆ C(3). We computed results to show that every 3-colorable
graph is also 4-colorable, but that not every 4-colorable graph is 3-colorable. For
the corresponding graph automata we refer to Example 6.33.

• V(k) 6⊆ D(k) and D(k) 6⊆ V(k). We computed results to show that graphs which
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have a vertex cover of size at most k do not necessarily have a dominating set
of size at most k. We also showed that the reverse inclusion does not hold as
well. For the vertex cover graph automaton we refer to Example 6.5. For an idea
how to obtain the graph automaton for the language V(k) we refer to the list on
page 103.

• NonIso ∩ V(k) ⊆ D(k) and D(k) 6⊆ NonIso ∩ V(k). We computed results to show
that all graphs without isolated nodes which have a vertex cover of size at most
k also have a dominating set of size at most k. We also showed that the reverse
inclusion does not hold. The information which is needed to encode the graph
automaton for the language NonIso is explained in the list on page 103.

Similar to the case studies in the previous section, we use the four algorithms
presented in Section 7.2 to check the language inclusion. In Table 9.5 we present the
results for the check C(3) ⊆ C(4) and in Table 9.6 the results for the check C(4) 6⊆ C(3).
As signature we take the following (families of) letters: connecti�, permi, resi, transi
and vertexi, where � is an arbitrary label of arity 2 (see also Table 6.1 on page 72).

Maximum Interface Size
Algorithm 3 4 5 6 7
Forwards Antichain < 1 1 246 to –
Backwards Antichain < 1 1 269 to –
Sim.-Based Antichain < 1 5 1 127 57 556 to
Bisim. up-to Cong. < 1 2 to – –

Table 9.5.: Runtimes (in seconds) for the case study C(3) ⊆ C(4); to: timed out

Maximum Interface Size
Algorithm 4 5 6 7 8 9 10
Forwards Antichain 5 7 899 to – – – –
Backwards Antichain 7 7 846 to – – – –
Sim.-Based Antichain 8 1 319 69 999 to – – –
Bisim. up-to Cong. < 1 8 156 763 2 351 6 703 7 200

Table 9.6.: Runtimes (in seconds) for the case study C(4) 6⊆ C(3); to: timed out

Note that for each test given in Table 9.6 which has completed successfully, a
counterexample has been computed, too. The computed counterexample is depicted
below on the left. Obviously, the graph is 4-colorable, since it consists only of 4 nodes.
But it is not 3-colorable, because every node is pairwise incident to every other node.
Furthermore, we want to point out that we obtain another counterexample if we change
the signature by replacing the connecti�-operation with connecti2, where 2 is a label of
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arity 3. In this case we would obtain the counterexample depicted below on the right.
This graph is also a 4-clique, but the nodes are connected pairwise by three 2-edges.

In Table 9.7 we present the results for the check V(k) 6⊆ D(k) and in Table 9.8 the
results for the check D(k) 6⊆ V(k). Note that the results depicted in the two tables have
been obtained for different values of k ranging from 2 to 4. For both case studies we
used the same signature which contains the following (families of) letters: connecti�,
permi, resi, transi and vertexi (see also Table 6.1 on page 72).

Maximum Interface Size
Algorithm k 3 4 5 6 7 8 9 10
Forwards 2 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Antichain 3 < 1 < 1 < 1 < 1 < 1 1 1 1

4 < 1 3 15 48 91 108 118 138
Backwards 2 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Antichain 3 < 1 < 1 < 1 < 1 < 1 1 1 1

4 < 1 < 1 < 1 1 2 4 11 28
Sim.-Based 2 < 1 8 108 1 542 21 031 to – –
Antichain 3 1 14 240 2 883 35 081 to – –

4 2 46 577 8 155 to – – –
Bisim. up-to 2 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Cong. 3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

4 < 1 < 1 2 4 4 9 3 9

Table 9.7.: Runtimes (in seconds) for the case study V(k) 6⊆ D(k); to: timed out

In both cases we obtained a counterexample for each test which has completed
successfully. For the case study V(k) 6⊆ D(k) the counterexample simply consists of a
graph with k + 1 isolated nodes, i. e. the graph Dk+1. Due to the fact that this graph
does not contain any edge the vertex cover can be left empty. But since there are k + 1
nodes which are pairwise non-adjacent each node must be dominated by itself. Hence
the dominating set has to contain all k + 1 nodes, which is not allowed due to the
restriction of the size of the dominating set.
For the other case study D(k) 6⊆ V(k) a counterexample of the following form is

computed:
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Maximum Interface Size
Algorithm k 3 4 5 6 7 8 9 10
Forwards 2 < 1 2 7 22 53 63 134 306
Antichain 3 < 1 22 854 7 121 21 272 58 294 to –

4 3 685 to – – – – –
Backwards 2 1 551 86 266 to – – – –
Antichain 3 6 6 922 to – – – – –

4 24 38 672 to – – – – –
Sim.-Based 2 < 1 8 121 1 582 1 480 to – –
Antichain 3 < 1 13 182 2224 35 070 to – –

4 2 43 747 14 305 to – – –
Bisim. up-to 2 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1
Cong. 3 1 17 101 147 151 179 215 199

4 64 1 990 18 342 to – – – –

Table 9.8.: Runtimes (in seconds) for the case study D(k) 6⊆ V(k); to: timed out

. . .

where the number of 2-cliques is equal to k − 1. This is obviously a valid coun-
terexample witnessing D(k) 6⊆ V(k), since the 3-clique can be dominated by a single
node, the remaining 2-cliques can be dominated by another k − 1 nodes (one node
dominating each 2-clique). But to cover the three edges of the 3-clique at least two of
the three nodes of the 3-clique have to be contained in the vertex cover. Additionally,
for every 2-clique one of the two nodes must be contained in the vertex cover. Hence,
the minimum vertex cover has a size of k + 1.
In Table 9.9 we present the results for the case study NonIso ∩ V(2) ⊆ D(2) and in

Table 9.10 the results for the case study D(2) 6⊆ NonIso ∩ V(2). For both case studies
we used the same signature which contains the following (families of) letters: connecti�,
permi, resi, transi and vertexi (see also Table 6.1 on page 72). Note that the results
for bisimulation up-to congruence algorithm in Table 9.9 in case of k = 3, 4 for the
maximum interface size are somewhat suprising.
Again, for each test given in Table 9.10 which has completed successfully a coun-

terexample has been computed. In case of the D(2) 6⊆ NonIso ∩ V(2) case study the
counterexample consists only of a single node, i. e. the graph D1. Obviously, this graph
has a dominating set of size at most 2 (the dominating set contains the only node),
but since the single node is isolated, the graph cannot be contained in the language
NonIso ∩ V(2).
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Maximum Interface Size
Algorithm k 3 4 5 6 7 8
Forwards 2 < 1 2 31 868 19 114 to
Antichain 3 1 204 18 329 to – –

4 11 6 272 to – – –
Backwards 2 1 412 to – – –
Antichain 3 6 3 873 to – – –

4 31 21 053 to – – –
Sim.-Based 2 1 11 157 2 036 26 359 to
Antichain 3 3 104 3 018 66 616 to –

4 9 216 5 550 to – –
Bisim. up-to 2 12 to – – – –
Cong. 3 19 064 to – – – –

4 18 735 to – – – –

Table 9.9.: Runtimes (in seconds) for the case study NonIso ∩ V(k) ⊆ D(k); to: timed
out

Maximum Interface Size
Algorithm k 3 4 5 6 7 8 9 10
Forwards 2 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Antichain 3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

4 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Backwards 2 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Antichain 3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

4 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Sim.-Based 2 < 1 10 135 1 790 28 592 to – –
Antichain 3 3 100 2 670 64 231 to – – –

4 8 200 4 890 to – – – –
Bisim. up-to 2 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Cong. 3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

4 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

Table 9.10.: Runtimes (in seconds) for the case study D(k) 6⊆ NonIso∩V(k); to: timed
out
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Next, we interpret the runtimes of the six case studies. In case C(3) ⊆ C(4) (cf.
Table 9.5) the simulation-based antichain algorithm is applicable to higher maximum
interface sizes than the other three algorithms. The reason for this is that the algorithm
benefits from the simulation relation which is costly to compute but helps to optimize
the antichain algorithm.
This result can also be seen in the case study C(4) 6⊆ C(3) (cf. Table 9.6). The

simulation-based antichain algorithm is still applicable to the maximum interface size
of 6, for which both the forwards and the backwards antichain algorithm timed out. But
the best algorithm for this case study is the bisimulation up-to congruence algorithm.

In the case study V(k) ⊆ D(k) (cf. Table 9.7) the simulation-based antichain algorithms
is only applicable to a maximum interface size of 7 (if k equals 2 or 3) or 6 respectively
(if k equals 4). Furthermore, we can see that the computation of the simulation relation
is rather costly. Here, the other three algorithms are much better, since the runtimes
are significantly better and the algorithms are applicable to much higher maximum
interface sizes.

For the case study D(k) 6⊆ V(k) (cf. Table 9.8) only the forwards antichain algorithm
and the bisimulation up-to congruence algorithm are usable for higher maximum
interface sizes (if k equals 2 or 3). Here, the backwards antichain algorithms delivers
the worst results, but also the simulation-based antichain algorithm is not as efficient as
the other two algorithms. Only if k equals 4 the simulation-based antichain algorithm
is still applicable for a maximum interface size of 6 while the other algorithms are not
applicable anymore.

In the case study NonIso∩V(k) ⊆ D(k) (cf. Table 9.9) the three antichain algorithms
– forwards, backwards and simulation-based – are all applicable up to a maximum inter-
face size of 4, whereas the bisimulation up-to congruence algorithm is only applicable
up to a maximum interface size of 3. But again, we can see that the computation of
the simulation is very costly and not always beneficial.

In case of the case study D(k) 6⊆ NonIso∩V(k) (cf. Table 9.10) the simulation can only
be computed for a maximum interface size of 4. Hence, the simulation-based antichain
algorithm is only applicable up to that interface size. The other three algorithms can
be used up to maximum interface sizes of 10 and beyond. The good results of these
algorithms (for this case study) are not suprising, since the counterexample consists
only of a single node.
From the case studies above, it is apparent that the runtimes are better when

the first automaton is small (the automaton for C(3) and D(2), respectively). This is
unsurprising, because the states of the first automaton are explicitly represented (more
formally, as a Bdd representing a singleton set), whereas the (sets of) states of the
second automaton are collectively represented by a Bdd. A more detailed evaluation
of the four algorithms is given in Section 9.5. There, we discuss not only the reults of
this section, but we also compare the results of other sections for all algorithms.

9.4. Membership Case Studies
In this section we give some results for solving the membership problem for different
languages. For each membership case study we computed 100 random graphs. The
number of nodes of these graphs varies between 10 and 50, depending on the parameters
of the different case studies. But in each case we computed graphs with an “edge density”
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of 10%, i. e. for each pair of nodes of the graph there is a 10% chance that an edge
(with label � of arity 2) is added connecting these two nodes. For all membership case
studies we used the same signature which contains the following (families of) letters:
connecti�, permi, resi, transi and vertexi (see also Table 6.1 on page 72).

For our membership experiments we used the following languages as case studies:

• the language L3C of all graphs which contain the 3-clique (see graph below) as
subgraph,

• the language C(3) of all graphs which are 3-colorable,

• the language C(4) of all graphs which are 4-colorable,

• the language D(k) of all graphs which have a domating set of size at most k,

• the language V(k) of all graphs which have a vertex cover of size at most k,

• the language NonIso ∩ V(k) of all graphs which have no isolated nodes and have
a vertex cover of size at most k.

For each case study we performed tests with graphs of different size (in the number
of nodes) which were used as input. But note that for each test all graphs have the
same size. Depending on the number of nodes of the input graphs we also altered the
maximum interface size of the graph automata, i. e. depending on the number of nodes
of the random graphs we have chosen a fixed maximum interface size:

Number of Nodes 10 20 30 40 50
Maximum Interface Size 5 10 15 20 25

This is due to the idea that we want to compute the graph automaton only once and
to use it over and over again to process all graphs (with the same number of nodes).
If we use a different graph automaton for each graph it might be more advisable

to choose the maximum interface size depending on the width of the atomic cospan
decomposition of the given graph. Since in this case the maximum interface size needed
to process the graph might be smaller than the maximum interface size defined in the
table above, this results in a smaller graph automaton. However, even if we set the
maximum interface size to a fixed value which may be greater than needed, this does
not effect the runtime of the membership test. This is due to the fact that states which
encode information for interfaces with a size greater than the width of the atomic
cospan decomposition (of the processed graph) are not reachable while processing the
atomic cospan decompostion.
But also note that we do not guarantee to be able to process all graphs with the

given number of nodes. But due to the “sparse edge density”, it is very likely that the

160



9.4. Membership Case Studies

bigger part of the random graphs can be processed, i. e. that the pathwidth is equal or
less to the chosen maximum path width. Furthermore, each instance of Raven (used
for the tests) had 2 GB of available memory.

In order to obtain the atomic cospan decompositions, Raven first uses the Greedy-
FillIn-algorithm (cf. Bodlaender and Koster [20]) to get a tree decomposition of
the input graph. Second, the tool transforms this tree decomposition into a path
decomposition and then computes the atomic cospan decomposition.
In Table 9.11 we present the results of the membership tests for [G] ∈ L3C . In the

first column we give the number of nodes of the several graphs which serve as input.
The second column gives the ratio of acceptance, i. e. the portion of graphs which have
been accepted by the graph automaton. The columns three to five give the minimum,
the average and the maximum width of the atomic cospan decompositions which were
processed. In the columns six to eight the minimum, average and maximum length of
the processed atomic cospan decompositions is given. The last three columns give the
minimum, average and maximum time (in seconds) which were needed to process the
input graphs.

Width Length Time (in sec)
|VG| Ratio Min Avg Max Min Avg Max Min Avg Max
10 11% 1 2.32 4 20 31.80 78 < 1 < 1 < 1
20 64% 3 5.24 9 74 201.28 564 < 1 1 45
30 97% 6 8.74 11 246 737.06 1 345 < 1 283 2894
40 – – – – – – – – – –
50 – – – – – – – – – –

Table 9.11.: Results for the membership tests [G] ∈ L3C

The tests for graphs with 40 (50) nodes could not be finished successfully due to a
high memory consumption. But note that the graph automaton accepting the language
L3C with a maximum interface size of 15 already contains 2 573 485 501 354 560 states.
In Table 9.12 and in Table 9.13 we present the results of the membership tests for

[G] ∈ C(3) and for [G] ∈ C(4). The information given in the several columns are the
same as in Table 9.11.

Width Length Time (in sec)
|VG| Ratio Min Avg Max Min Avg Max Min Avg Max
10 100% 2 2.40 5 21 33.52 111 < 1 < 1 < 1
20 100% 2 5.22 8 61 196.13 512 < 1 < 1 < 1
30 95% 5 9.24 13 176 829.06 1 591 < 1 < 1 < 1
40 65% 10 14.54 20 1 393 2 682.40 5 163 < 1 2 69
50 14% 15 20.09 25 3 623 6 069.74 8 828 < 1 18 293

Table 9.12.: Results for the membership tests [G] ∈ C(3)
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Width Length Time (in sec)
|VG| Ratio Min Avg Max Min Avg Max Min Avg Max
10 100% 1 2.43 5 20 34.70 98 < 1 < 1 < 1
20 100% 2 5.07 10 68 181.02 528 < 1 < 1 < 1
30 100% 6 9.12 13 268 823.61 1 630 < 1 1 15
40 100% 9 14.07 18 1 217 2 507.70 3 870 < 1 350 3 172
50 – – – – – – – – – –

Table 9.13.: Results for the membership tests [G] ∈ C(4)

The tests for the [G] ∈ C(4) case study were only successful for graphs with 40 or less
nodes. In case of graphs with 50 nodes the test could not be finished successfully due to
a high memory consumption. Note that even if the graph automaton with a maximum
interface size of 25 for the language C(4) contains “only” 1 501 199 875 790 165 states,
the graph automaton is highly non-deterministic which leads to Bdds with a rather
great number of Bdd nodes. This is due to the fact that in many cases there exists a
great number of valid colorings (which are all equivalent).
In Table 9.14 we present the results of the membership tests for [G] ∈ D(k). In the

second column the different values for k are given, i. e. the bound of the size of the
dominating set. All other information given in the several columns are the same as in
Table 9.11. Again, the tests for the [G] ∈ D(14) case study for graphs with 50 nodes
have been cancelled prematurely due to a high memory consumption. Also in this case
the problem is rather the size of the graph automaton with maximum interface size of
25 accepting the language D(14), which contains 19 063 993 712 460 states, but the high
non-determinism which is instrinsic to this kind of graph automata.

Width Length Time (in sec)
|VG| k Ratio Min Avg Max Min Avg Max Min Avg Max
10 6 52% 1 2.36 5 20 32.74 92 < 1 < 1 < 1
20 8 44% 2 5.08 8 59 192.14 478 < 1 < 1 < 1
30 10 84% 5 9.49 13 297 903.01 2 146 < 1 1 18
40 12 95% 10 14.23 19 1 318 2 590.67 4 367 < 1 142 1 627
50 14 – – – – – – – – – –

Table 9.14.: Results for the membership tests [G] ∈ D(k)

In Table 9.15 and in Table 9.16 we present the results of the membership tests
for [G] ∈ V(k) and for [G] ∈ NonIso ∩ V(k). In the second column of both tables the
different values for k are given, i. e. the bound of the size of the vertex cover. All other
information given in the several columns are the same as in Table 9.11.

As already mentioned in Chapter 5 we supervised a student, Weixiang Guan, to work
on the development of more efficient heuristics to compute atomic cospan decompositions
[79]. Since the results of this master’s thesis seem to be very promising, perhaps we
could tackle graphs with a greater pathwidth (which corresponds to the maximum
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Width Length Time (in sec)
|VG| k Ratio Min Avg Max Min Avg Max Min Avg Max
10 6 100% 2 2.46 5 21 33.82 90 < 1 < 1 < 1
20 7 39% 2 4.87 8 68 173.71 551 < 1 < 1 < 1
30 14 46% 6 9.27 13 246 860.97 1 687 < 1 < 1 < 1
40 21 54% 10 14.22 20 1 127 2 682.81 4 199 < 1 < 1 3
50 28 50% 15 19.87 24 3 450 5 917.50 8 606 2 19 108

Table 9.15.: Results for the membership tests [G] ∈ V(k)

Width Length Time (in sec)
|VG| k Ratio Min Avg Max Min Avg Max Min Avg Max
10 6 3% 2 2.40 4 23 34.02 85 < 1 < 1 < 1
20 7 1% 2 5.00 9 62 181.34 527 < 1 < 1 < 1
30 14 6% 6 9.47 14 357 874.03 1 508 < 1 < 1 < 1
40 21 26% 11 14.64 18 1 430 2 707.77 4 610 < 1 < 1 3
50 28 30% 15 20.05 25 3 501 6 071,29 9 896 < 1 22 139

Table 9.16.: Results for the membership tests [G] ∈ NonIso ∩ V(k)

interface size of the graph automata). But even without these optimizations Raven
can compete with other tools which are used to solve the membership problem for
different graph problems. In [91] Kneis, Langer and Rossmanith solved the membership
problem for minimum vertex cover and 3-colorability only for grids of graphs (with
approximately 200 nodes). We have not given results for these case studies obtained
by Raven, but since grids are somewhat path-like it is obvious that we can simply
decompose and process this kind of graph. In [47, 59] Courcelle and Durand gave a short
overview of membership problems which can be solved by the tool AutoWrite. In
case of the k-colorability Courcelle and Durand could obtain automata for graphs with
a cliquewidth3 which is less or equal to 2 (for k = 3) or for graphs with a cliquewidth
which is less or equal to 3 (for k = 2). Since they gave no concrete runtimes it is quite
difficult to compare Raven and AutoWrite in detail. But even if the results of the
membership tests are rather good, Raven can not compete with heuristics which can
be used to solve a fixed problem such as k-colorability [53, 100, 107]. However, the
focus of Raven lies on the area of verification, anyway. Hence, we are more interested
in closure properties and decision procedures for language inclusion/equivalence rather
than membership.

3Cliquewidth is a notion similar to treewidth and pathwidth with the following connection: A graph
with bounded treewidth has also a bounded cliquewidth and a graph with a bounded cliquewidth
has also a bounded pathwidth.
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9.5. Conclusion
In this chapter we presented different experimental results which we have obtained by
the use of the tool suite Raven (cf. Chapter 8). First of all we successfully verified
the multi-user file system case study from [15]. Furthermore, we have seen that the
forwards antichain algorithm is in most cases very efficient. However, the simulation-
based antichain algorithm as well as the bisimulation up-to congruence algorithm have
been useful for some case studies.

The reason that the simulation-based antichain algorithm is not very efficient in most
cases is that the computation of the simulation relation is often very costly (measured
in the runtime) – compared to the time needed to run the several antichain algorithms.
Hence, the computation of the simulation relation is only advisable if

• either both automata are rather huge (or the concrete state space which has to
be searched is rather huge), but have a similar behavior

• or at least the first automaton is rather huge compared to the second automaton.

An example for the first case can be found in the case study C(3) ⊆ C(4). Due to the
high non-determinism of both automata the state space (containing pairs of states of
both automata, cf. Section 7.2.1) which has to be searched by the antichain algorithms
is rather huge. But many of the states are behaviorially equivalent, since the colorings
are often interchangeable. The simulation relation can be used to speed up the search
of the state space, since it takes the behavior of states into account. Therefore, the
simulation-based antichain algorithm is better applicable in this case than the other
two antichain algorithms.

Maximum Interface Size
Automaton 3 4 5 6 7 8 9 10
AD(2) 120 363 1 092 3 279 9 840 29 523 88 572 265 719
AD(3) 160 484 1 456 4 372 13 120 39 364 118 096 354 292
AD(4) 200 605 1 820 5 465 16 400 49 205 147 620 442 865

Table 9.17.: Number of states for different dominating set graph automata depending
on the maximum interface size

Maximum Interface Size
Automaton 3 4 5 6 7 8 9 10
AV(2) 45 93 189 381 765 1 533 3 069 6 141
AV(3) 60 124 252 508 1 020 2 044 4 092 8 188
AV(4) 75 155 315 635 1 275 2 555 5 115 10 235

Table 9.18.: Number of states for different vertex cover graph automata depending
on the maximum interface size
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Maximum Interface Size
Automaton 3 4 5 6
ANonIso∩V(2) 510 2 046 8 190 32 766
ANonIso∩V(3) 680 2 728 10 920 43 688
ANonIso∩V(4) 850 3 410 13 650 54 610

Maximum Interface Size
Automaton 7 8 9 10
ANonIso∩V(2) 131 070 524 286 2 097 150 8 388 606
ANonIso∩V(3) 174 760 699 048 2 796 200 11 184 808
ANonIso∩V(4) 218 450 873 810 3 495 250 13 981 010

Table 9.19.: Number of states for different automata depending on the maximum
interface size

An example for the second case can be found in the case studies V(4) 6⊆ D(4),
NonIso ∩ V(3) ⊆ D(3) and NonIso ∩ V(4) ⊆ D(4). Since in all these cases the first
automaton is rather huge and has much more states than the second automaton (see
Table 9.17, Table 9.18 and Table 9.19), the state space cannot be represented very
efficiently. This is due to the fact that the pairs (which contain a single state of the
first automaton and a set of states of the second automaton) are encoded by Bdds.
But Bdds are only advantageous if used to represent sets (of states), otherwise this is
equivalent to an explicit encoding. To compensate this disadvantage it is important to
reduce the number of pairs which have to be processed. Again, the simulation-based
antichain algorithm is better applicable in these cases, since the simulation-relation
can help to rule out unnecessary pairs.
The bisimulation up-to congruence algorithm has also obtained good results for

some case studies. In the C(4) 6⊆ C(3) case study we were able to proof that the
language inclusion does not hold up to a maximum size of 10 – we have not computed
runtime results for a higher maximum interface size. With the other algorithms this
has not been possible. On the one hand this is caused by the fact that the colorability
automaton for the language C(4) is larger (in number of states) than the automaton
for the language C(3) (cf. Table 9.20). As already mentioned above it is inappropriate
for the forwards and backwards antichain algorithm if the first automaton has a larger
size than the second automaton due to the “explicit representation” of the states of the
first automaton. On the other hand it has not been possible to compute the simulation
relation for colorability automata of a maximum interface size greater than 6 within
the given time limit. Hence, the simulation-based antichain algorithm has not been
applicable for tests with a maximum interface size of 7 or more.
In the case studies V(3) 6⊆ D(3) and V(4) 6⊆ D(4) the bisimulation up-to congruence

algorithm has given results which are equivalent to that of the forwards and backwards
antichain algorithms or are slighty better respectively. The higher the maximum
interface size, the more noticeable is the margin between the runtimes of the bisimulation
up-to congruence algorithm and the other algorithms. The advantage of the bisimulation
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Maximum Interface Size
Automaton 3 4 5 6 7 8 9 10
AC(2) 15 31 63 127 255 511 1 023 2 047
AC(3) 40 121 364 1 093 3 280 9 841 29 524 88 573
AC(4) 85 341 1 365 5 461 21 845 87 381 349 525 1 398 101

Table 9.20.: Number of states for different colorability graph automata depending on
the maximum interface size

up-to congruence algorithm, in contrast to the forwards and backwards antichain
algorithm, is that it considers the behavior of states to rule out unnecessary states. But
in contrast to the simulation-based antichain algorithm the (bi)simulation relation is not
computed before but on-the-fly. For this kind of example it is not wise to pre-compute
such a relation, since the counter-examples can be computed quite fast.

A somewhat different situation can be observed for the case study D(k) 6⊆ V(k). For
the cases D(2) 6⊆ V(2) and D(3) 6⊆ V(3) it is clear that the bisimulation up-to congruence
algorithm is better than the other three algorithms. But in the case of D(4) 6⊆ V(4)
the pre-computation of the simulation relation is more beneficial. The reason is that
the bisimulation up-to congruence algorithm has the disadvantage that the language
inclusion test is reduced to the language equivalence problem by computing the product
automaton of both automata and checking whether the language of the product
automaton is equivalent to the language of the second automaton (cf. Subsection 7.2.3).
In contrast, for the simulation-based antichain algorithm it is not necessary to compute
the product automaton.
However, we have seen that both the simulation-based antichain algorithm and

the bisimulation up-to congruence algorithm have their benefits. To combine the
advantages of the backwards antichain algorithm either with the simulation-based
antichain algorithm or the bisimulation up-to congruence algorithm, we would like to
consider (and implement) backwards variants of both the simulation-based and the
bisimulation up-to congruence algorithm. But at least in case of the simulation-based
antichain algorithm it is not obvious how to obtain a backwards variant.
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“The best way to predict the future is to invent it.”
Alan Kay (1940 – present)

10
Conclusion

In this chapter we draw the thesis to a close. First, we give an overview of related
work. Subsequently, we summerize the theory and applications presented in this thesis.
Finally, we finish with possible future work.

10.1. Related Work
In this section we discuss similarities and differences to related work.

Recognizability: The categorial notion of recognizability used in this thesis has orig-
inally been introduced by Bruggink and König [27]. When instantiated to the
category of graphs, which yields the recognizable graph languages presented in
Chapter 6, this notion is equivalent to Courcelle’s notion of recognizability [44].
For a detailed comparison see [27]. Another notion of recognizable languages
which is also equivalent to the notion of Bruggink and König has been introduced
by Griffing [78]. In contrast to the other categorial approach Griffing does not
introduce the notion of graph automata or automaton functors respectively, but
characterizes recognizable languages (which are called composition-representative
subsets by Griffing) in terms of two equivalent notions. The first notion is charac-
terized via locally finite congruences. The second notion is based on a functor
from some category into a category with finite hom-sets, whereas the recognizable
languages are the preimages of subsets of a finite hom-set. Both characterizations
yield the same notion of recognizability defined by Courcelle.
Furthermore, Bozapalidis and Kalampakas presented in [28] another notion of
recognizable graph languages which is based on magmoids of graphs. A magmoid
is a doubly-ranked alphabet equipped with two binary associative, distributive
operations, called product and sum, and a family of units for each operation. In
case of the magmoid of graphs the two ranks can be identified as an inner and an
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outer interface respectively. In addition, the product of two graphs is obtained by
taking the disjoint union of the two involved graphs and subsequently fusing the
corresponding interfaces. The sum of two graphs is obtained by merely taking the
disjoint union of the involved graphs and the concatenation of the corresponding
interfaces. In [28] Bozapalidis and Kalampakas have shown that this notion is also
equivalent to Courcelle’s notion of recognizability (and therefore is also equivalent
to the notion presented here), if only graphs with rank zero, i. e. with empty
interfaces, are considered.
In [81], Habel, Kreowski and Vogler introduced the notion of compatible graph
properties which arise in the context of hyperedge-replacement grammars. The
idea of compatibility is as follows: A graph property is compatible, if the property
can be checked for each graph generated by a hyperedge-replacement grammar
by checking the property for the components and composing the sub-results to a
result for the entire graph. Furthermore, Lengauer and Wanke introduced the
notion of finite graph properties [99], which also originates from the context of
hyperedge-replacement grammars. A graph property is said to be finite if there
exist only a finite number of classes of graphs that behave differently w. r. t. the
graph property. The connection between compatible, finite and recognizable graph
properties (represented by inductive graph properties introduced by Bauderon
and Courcelle [7, 44]) has been investigated by Habel, Kreowski and Lautemann
in [80]. Habel et al. have shown that all three notions are essentially equivalent.

Graph Automata and Logics: In the last 40 years graph automata have already been
considered by other authors. To some extent, their approaches differ considerably
from the graph automata presented in Chapter 6. Originally, graph automata
have been introduced by Milgram [105], as well as Wu and Rosenfield [131] as
generalizations of finite automata which consist of graph-structured instead of
string-oriented tapes. The main idea is to place an automaton on a node (or an
edge respectively) of some labeled input graph and to move the automaton to
another adjacent node (or another adjacent edge) while changing the state of the
automaton and the label of the node (edge). Due to this method of operation
the input graph has to be connected and, possibly, the degree of each node has
to be bounded by some constant. However, the computational power of these
automata is equivalent to Turing machines (in case of the automata introduced
by Milgram) or linear bounded automata (in case of the automata introduced by
Wu and Rosenfield) respectively.
Another kind of graph automata which have a similar concept to the graph
automata of Milgram, Wu and Rosenfield, but which have less descriptive power
have been introduced by Kreowski and Rozenberg [93]. These automata are a
special kind of finite automata which accept so-called Eulerian circuit languages,
i. e. languages which contain only connected graphs consisting of nested circuits.
Hence, there is a great difference between the automaton models explained above
and the automaton model introduced in this thesis.
A further notion of graph automata has been considered by Brandenburg and
Skodinis [29, 30] with the aim of defining automata which accept a class of
languages generated by a specific class of graph grammars. Their approach deals
with automata for so-called linear graph languages which are generated by linear
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NCE graph grammars [66]. In some sense these linear NCE graph grammars
are an extension of linear context-free word grammars to the setting of graphs.
Therefore, this kind of graph automaton is different to the graph automata
presented here, since the graph automata of this thesis deal with recognizable
graph languages rather than linear graph languages.
In [27] Bozapalidis and Kalampakas introduced a weaker notion of graph automata
which are based on a special kind of magmoids, called graphoids. By this kind of
graph automata a new class of recognizable graph languages is introduced which
is a proper subclass of the class of recognizable graph languages presented in this
thesis. For a detailed comparison between these two notions of recognizability
see [27].
One of the issues when working with graph automata is their huge size (in
the number of states) which grows exponentially in the maximum width of
the accepted graphs. To overcome this difficulty, Courcelle and Durand [45,
46, 59] introduced so-called fly-automata, which are used to verify monadic
second-order logic definable properties on graphs of bounded width. The main
difference between fly-automata and the graph automata presented in Chapter 6
is that in fly-automata the state set and the transition function are represented
as computable functions rather than in an explicit or a symbolic way. This
is motivated by the fact that fly-automata of Courcelle and Durand are used
primarily to decide whether a given graph satifies a given Msogl-formula. This
differs from the approach presented in this thesis where graph automata are used
particularly to represent sets of graphs.
Another approach to overcome the state space explosion problem is presented by
Kneis, Langer and Rossmanith [90, 91]. Their work abstains from the represen-
tation of a graph language as an automaton, but establishes a game-theoretic
approach between two players, the verifier and the falsifier. The game is identified
with an algorithm that bottom-up traverses a tree decomposition of the input
graph. In simple terms, the algorithm tries to evaluate the given graph property
at each bag of the decomposition. If the graph property can already be decided,
the algorithm terminates, otherwise the tree decomposition is traversed further.
This approach is useful for deciding the satisfiability of monadic second-order
formulas, similar to the work of Courcelle and Durand. Hence, this approach has
a different area of application than the approach presented in this thesis.
In Chapter 8 we have already mentioned the tools Mona, AutoWrite and
Alaska. The first one is used to encode monadic second-order tree formulas
into tree automata [89]. The second one is a tool to verify monadic-second order
definable properties on graphs of bounded tree- or clique-width. The last tool
offers verification methods based on the antichain-based approach similar to the
techniques presented in Chapter 7. For a comparison between these tools and
Raven see Section 8.4.

Verification: Invariant checking for graph transformation systems has already been
considered by other authors. In the work of Fradet and Le Métayer [69] and in
the work of Bakewell, Plump and Runciman [6] so-called shapes are introduced
which are used to describe sets of graphs satisfying specific properties. The former
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approach is based on context-free graph grammars used to describe shapes, the
latter uses more expressive graph reduction systems instead. However, the idea
of both methods is to verify a graph transformation system by checking how it
may change the shape of a graph.
Another related work by Habel, Pennemann and Rensink [82] presents an ap-
proach for computing weakest preconditions of application conditions, which
are equivalent to first-order graph logic. It is possible to use this approach for
invariant checking in the following way: for every transformation rule it has to
be shown that the weakest precondition of the transformation rule is implied by
the invariant. Note that recognizable graph languages are more expressive than
application conditions, since every monadic second-order graph logic formula is
known to specify a recognizable graph language [44].
In [8] Becker et al. consider an approach for verifying safety properties in the
setting of mechatronic systems. Safety properties are modeled by the use of
so-called graph patterns consisting of two distinguished parts: a positive and a
negative one. Intuitively, a graph pattern represents all graphs that contain the
positive part as a subgraph, but do not contain the (complete) negative part. In
order to verify (or falsify) a safety property Becker et al. perform a backwards
reachability analysis for hyperedge replacement grammars. If the initial graph
is backwards reachable from some forbidden system state by the application of
some transformation rule, the system has been falsified. Otherwise the system
is verified. To make this method efficient a symbolic implementation based on
binary decision diagrams is used, but in a somewhat different setting than the
one presented in Chapter 7.

10.2. Summary
In this thesis we presented a concrete and automaton-theoretic view on automaton
functors called graph automata. This new automaton model is designed to accept
recognizable languages of cospans with a bounded width. Therefore, we have introduced
several notions of cospan width which depend on different types of cospan decompo-
sitions. In contrast to the situation in classical graph theory, there is more than one
choice how to obtain decompositions of cospans. On the one hand we can decompose a
cospan in a path-like manner, similar to path decompostions, or in a tree-like manner,
similar to tree decompositions. But on the other hand we have also the choice whether
to identify bags with interfaces or with the center graph of a cospan. However, as
we have seen these notions all coincide either with the classical notion of pathwidth
or with the classical notion of treewidth. In addition we have introduced a further
type of decomposition into atomic cospans for both path-like and tree-like cospan
decompositions.

Especially the path-like atomic cospan decompositions play an important role, since
graph automata do not consider all cospan decompostions but only decompositions in
atomic cospans. This is a major difference between graph automata and automaton
functors, because an automaton functor (in the category of cospans of graphs) has to
be defined on all cospans of graphs. However, we have seen that it suffices to take only
atomic cospans into account, since every (bounded) cospan can be obtained from a
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(finite) sequence of atomic cospans.
Graph automata have also another advantage over automaton functors. Since graph

automata can be seen as a special kind of finite automata (due to their boundedness),
we can apply classical and recent algorithms for finite automata, if we perform some
minor changes to these algorithms. The modifications are necessary not only because
of the differences in the range of use between graph automata and finite automata, but
also for the symbolic representation in terms of binary decision diagrams, which we
have used. Note that this symbolic representation is one of the keystones to efficiently
implement graph automata, because an explicit representation is impossible due to
huge size of graph automata – even for a rather small maximum interface size and
rather simple examples. Another keystone for an efficient implementation of graph
automata are good, i. e. fast and scaling, algorithms. One of the main applications
of the theory presented in this thesis is to automatically check whether a language,
given as an automaton, is an invariant of a graph transformation system, which can be
reformulated as a language inclusion problem. Hence, we can use recent algorithms
by Henzinger et al. [132], Abdulla et al. [1] as well as Bonchi and Pous [23] for the
language inclusion problem, which yield very promising results.

Furthermore we have started to tackle another problem: So far we had to construct
graph automata very directly, but this is hard because of the consistency property which
has to be enforced for graph automata. For this reason we have presented the Lcl-logic
which can be used for generating graph automata from formulas. But in contrast to
the Msogl-logic the atomic formulas of the Lcl-logic are predefined graph properties
which may be rather complex. The idea is to avoid the cost-intensive construction of
graph automata for such graph properties from (complex) Msogl-formulas to make
our logic more efficient in practice. But the idea is not only to simply transform
an Lcl-formula to a graph automaton, but to use the logic to potentially simplify
constructions or to automatize the computation of invariants.
Beside the theoretical results we have also presented a tool suite for computing

and manipulating (bounded) graph automata, called Raven. The tool suite offers the
possibility to compute a number of pre-defined graph automata for different graph
languages. We have also implemented methods for computing the union and the
intersection of graph automata, as well as a method to “shift” a cospan over a given
automaton. In addition we have implemented different algorithms for both universality
and language inclusion checking for recognizable graph languages which are based
on different recent approaches. Finally, we have given a number of examples and
corresponding runtime results.

10.3. Future Work
In this section we discuss some ideas which could be used as a starting point for future
work.

As stated in Section 6.1 apart from graph automata which are used to process path-
like cospan decompositions there is also the notion of consistent tree automata which
are used to process tree-like cospan decompositions. So far we have not implemented
this kind of automata, but it could be profitable, since in general the treewidth of a
graph is much smaller than its pathwidth. Hence, the maximum interface size needed
to process a graph can be reduced if one uses consistent tree automata instead of
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graph automata. In turn consistent tree automata depend on the join-operation whose
computation is often very costly. Therefore, it has to be investigated whether consistent
tree automata can help to further increase the efficiency of Raven.
Another improvement of Raven could be achieved by considering node-labeled

graphs. For example, the complexity of the multi-user file system case study of Sec-
tion 9.1 could be decreased, because we could omit the edges of arity 1 which are
used to “label” each node. But before this type of graphs can be used, the question
of how the underlying theory has to be adapted must be answered. In any case, this
would yield more atomic cospans, since a different vertex-operation is needed for every
node label, similar to the situation with the connect -operation. Hence, the reduction
in complexity, i. e. the size of the system model, causes a more complex alphabet of
the underlying automaton. It has to be checked whether this modification can be used
to increase the efficiency of Raven.

In Section 6.2.2 we introduced the Lcl-logic whose purpose is to be used as generator
of graph automata from Lcl-formulas. But it is still unclear how expressive this
logic is. Since the set of atomic formulas can be identified with (the language of)
arbitrary graph automata, it is possible to provide a graph automaton which accepts a
non-Msogl-definable language. Hence, it is possible to express properties which are
not Msogl-expressible. But in return, we want to prohibit formulas which contain
(arbitrary) negations. Therefore, it could be possible to express properties in Msogl,
which are not necessarily Lcl-expressible.

To better classify the Lcl-logic we could consider a set of predefined atomic formulas
such that each atomic formula is identified with a singleton set. It would be interesting
to compare the expressive power of this variant with the expressive power of conditional
reactive systems [31] (which are equivalent to first-order graph logic). But note, that
in case of the Lcl-logic both interfaces of the considered cospans are fixed, whereas in
case of the conditional reactive systems only the inner interface is fixed. Currently, it
is not clear how to fix this gap. This is a point for future work.

Furthermore, it would be interesting to use the Lcl-logic in combination with Raven
in order to compute the weakest pre-condition and the strongest post-condition for a
given set of transformation rules and to check whether a given set of graphs satisfies
the weakest pre-condition (strongest post-condition). Such a method could serve as the
basis for automatic invariant generation as explained in Chapter 6.
Another approach to the verification of distributed and infinite-state systems is

regular model checking [25, 26]. The idea of this approach is to represent sets of states
as regular languages, which are given as finite automata, and transitions of the system
as regular relations, given as finite-state transducers. Since regular languages are closed
under rule applications, the set of successors of a set of states is also a regular language.
However, a main problem of this approach is the size of the finite automaton resulting
after a number of rule applications. Hence, widening techniques are needed in order to
over-approximate the automata and to bound their size. Since this approach is very
successful and has also been extended to the setting of regular tree languages, it is
natural to ask for an extension to the setting of recognizable graph languages. For this
purpose a kind of graph transducer has to be introduced. There already exists the
notion of Msogl-definable transductions by Courcelle [43], but this notion has two
major drawbacks. The first is that these transductions are very complex and the second
is that they do not guarantee to transform a recognizable graph language into another
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recognizable graph language in general. Therefore, it has to be further investigated
how finite-state transducers can be generalized in a way that make them useful for
“regular graph model checking”.

In [35] Bruggink, König and Zantema introduce two approaches for proving termi-
nation of graph transformation systems, i. e. to show the absence of transformation
sequences of infinite length. One of these two approaches is based on so-called type
graphs which are used to define languages of graphs. The language of a type graph,
which is just some fixed graph T , consists of all graphs G for which a morphism exists
which maps G to T . The approach of Bruggink, König and Zantema then assigns
weights to graphs by means of a weighted type graph. It can be shown that a graph
transformation system which uses as initial graphs only the language of type graph is
terminating if the weights of the transformation decrease in each derivation step. This
idea is interesting for recognizable graph languages, because the language of a type
graph is recognizable. In [95] Küpper has shown that a straight-forward generalization
of an approach for proving termination of string rewriting systems which are closed
under regularity to the setting of graph transformation systems and recognizable graph
languages is not possible. This is due to the fact that recognizable graph languages do
not have the same closure properties as regular word languages. Hence, it has to be
further investigated how recognizable graph languages can be successfully used in the
termination analysis of graph transformation systems.
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Appendix





A
Proofs

A.1. Proofs of Chapter “Tree, Path and Cospan
Decompositions”

Lemma 5.5. Let c = J −cL�G�cR−K be a linear cospan, i. e. cL, cR are monos.
Then there exist atomic cospans a1, . . . , an such that c = a1 ; · · · ; an.

In fact, there exist such atomic cospans a1, . . . , an such that the following
condition holds: Let ai = Dni−1 → Hi ← Dni , for 1 ≤ i ≤ n. It holds that
|Dni | ≤ |G| for all 0 ≤ i ≤ n and |Hi| ≤ |G| for all 1 ≤ i ≤ n.

Proof. Let J = Dn, K = Dm and G = 〈V,E, att, lab〉. We can assume without loss of
generality that VG = N|G| and cL(v) = v for every node v of Dn. Assume furthermore,
that E = {e1, . . . , ek} and define Ai = lab(ei).
We construct c using the following atomic cospans:

vertexnn ; vertexn+1
n+1 ; · · · ; vertex |V |−1

|V |−1 ; add enough nodes to the graph

connect|V |A1,θ1
; · · · ; connect|V |Ak,θk

; connect nodes with edges

perm|V |π ; move nodes of outer interface
to the front

res|V ||V | ; res|V |−1
|V |−1 ; · · · ; res|V |−m+1

|V |−m+1 remove appropriate nodes

where the θi are functions θi : {1, . . . , |att(ei)|} → {1, . . . , |V |} where θi(j) returns
the j-th node attached to edge ei. Furthermore, π is a bijection on {1, . . . , |V |} with
π(j) = f(j) for 1 ≤ j ≤ m and is arbitrary otherwise.
The second condition of the lemma also holds for the above atomic cospans.
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Lemma 5.9.

1. Let P be a path decomposition of a graph G. There exists a graph-bag
decomposition ~c of G such that wdgb(~c) = wd(P).

2. Let ~c be a graph-bag decomposition of G. There exists an interface-bag
decomposition ~d of G such that wdib(~d) = wdgb(~c).

3. Let ~c be a graph-bag decomposition of G. There exists an atomic cospan
decomposition ~d of G such that wdat(~d) ≤ wdgb(~c).

4. Let ~c be an interface-bag decomposition of G. There exists a path decompo-
sition P of G such that wd(P) = wdib(~c).

Proof.

1. Let P = 〈P,X〉, with P = 1− · · ·−n and G = 〈V,E, att, lab〉. We construct the
cospan path decomposition ~c = c1, . . . , cn (where ci = Ji−1 → Gi ← Ji, for
1 ≤ i ≤ n) as follows:
Let Gi = 〈Vi, Ei, atti, labi〉 be the graph which contains the nodes in Xi and all
edges of G which are connected only to nodes of Xi and are not in some Gj ,
with j < i. Furthermore, let J0 := ∅ and Jn = ∅ and, for 1 ≤ i < n, let Ji be the
discrete graph with node set Vi ∩ Vi+1.
We claim that ~c is a graph-bag cospan path decomposition of G with wdgb(~c) =
wd(P). By construction, there is an injection from every Ji and Gi into G.
Moreover, since P is a path decomposition of G, every node of G appears in at
least one Gi, while every edge appears in exactly one Gi. Also, since the bags
containing a node form a subpath, nodes that appear in more than one Gi will
be fused. Thus, Colim(~c) = G.
Also by construction, eachGi corresponds to some bagXi. Thus, wd(P) = wdgb(~c)
directly follows.

2. Define, for a cospan c = J −cL�G�cR−K, the pair of cospans ĉ, č, where
• ĉ = J −c′L�G− �id−G− and
• č = G− −id′�G�cR−K.

where G− is the discrete graph with the same node set as G and c′L and id ′ describe
the same morphism as cL and id, respectively, but have different codomains. We
observe that ĉ ; č = c.
Let ~c = c1, . . . , cn. We define ~d := ĉ1, č1, . . . , ĉn, čn. By the observation in the
previous paragraph, it holds that Colim(~c) = Colim(~d).
By construction, one interface of both ĉ and č consists of the nodes of G. Therefore,
both ĉ and č are jointly node-surjective, all nodes of each edge occur together
in some interface, and |ĉ|ib = |č|ib = |c|gb. From this it follows, that ~d is an
interface-bag decomposition and wdib(~d) = wdgb(~c).
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3. Let ~c = c1, . . . , cn. By Lemma 5.5, there exist, for 1 ≤ i ≤ n, atomic cospan
decompositions ~ai = ai,1, . . . , ai,mi such that ai,1 ; · · · ; ai,mi = ci. Define:

~d = a1,1, . . . , a1,m1 , . . . , an,1, . . . , an,mn .

It follows directly from the previous observations that Colim(~d) = Colim(~c).
From the second part of Lemma 5.5 it follows that wdat(~d) ≤ wdgb(~c).

4. Let ~c = c1, . . . , cn, where ci = Ji−1 → Gi ← Ji. By assumption, Colim(~c) = G.
Let fi : Ji → G (for 0 ≤ i ≤ n) and gi : Gi → G (for 1 ≤ i ≤ n) be the morphisms
given by the colimit construction. We construct the path decomposition P =
〈P,X〉 as follows: P = 0− · · ·−n, with Xi = fi(VJi), for 0 ≤ i ≤ n.
This is a path decomposition by the following arguments: First of all, since
Colim(~c) = G and all cospans are jointly node-surjective, all nodes of G must
have a pre-image in some interface Ji along the morphism fi, and therefore appear
in the bag Xi. Since ~c is an interface-bag decomposition, (the pre-images of) all
nodes connected to a single edge must appear together in some interface and
therefore the nodes must appear together in some bag. finally, suppose there is a
node v of G and bags Xp, Xq and Xr with p < q < r, such that v has a pre-image
in Xp and Xr (over fp and fr, respectively). Since the colimit construction on
graphs takes the disjoint union and then factors through the smallest equivalence
relation which equates nodes that have a common pre-image, it must be the case
that Xq contains a pre-image of v (along fq).
From the facts that, by construction, Xi = fi(VJi), and all fi are injective, it
follows that wd(P) = wdib(~c).

Lemma 5.16.

1. Let T be a tree decomposition of G. There exists a star decomposition S of
G such that wd?(S) = wd(T ).

2. Let S be a star decomposition of G. There exists a costar decomposition C
of G such that wd?(C) = wd?(S).

3. Let C be a costar decomposition of G. There exists a tree decomposition T
of G such that wd(T ) = wd?(C).

4. Let S be a star decomposition ofG. There exists an atomic star decomposition
S ′ of G such that wd?(S ′) = wd?(S).

Proof.

1. Let T = 〈T,X〉. We choose an arbitrary total ordering < on the edges of T . We
construct the star decomposition S = 〈T, τ〉, where T is the tree component of T
and τ is defined as follows: For each node t ∈ VT of T , we define τ(t) = 〈Xt, ∅, ∅, ∅〉,
that is the discrete hypergraph with node set Xt. For each edge b = {t1, t2} ∈ ET
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we define τ(b) = τ(t1) −id′�Gb �id′′− τ(t2), where Gb is the graph with node set
Xt1 ∪Xt2 which contains those edges of G which are not contained in (the center
graph of) some cospan τ(b′), where b′ < b, and id ′ and id ′′ are the respective
embeddings.
Now we need to show that S is a star decomposition of G. Let a graph G′ and,
for each node t ∈ VT and edge b = {t1, t2} ∈ ET of T , morphisms ft : τ(t)→ G′

and fb : Gb → G′ be given. We define a mediating morphism h : G→ G′.
Since the bags containing a node of G form a subtree of T , and every node
of G occurs in some bag, for each node v of G the set {v′ ∈ VG′ | fx(v) =
v′ for some x ∈ VT ∪ ET }1 must be a singleton (otherwise the diagram does not
commute). Let w be the only element of the singleton. We must take h(v) := w
(otherwise the diagram does not commute). By construction, every edge e ∈ EG of
G occurs in the domain of exactly one fb. We must take h(e) := gb(e) (otherwise
h is not a morphism). Now, h is the desired morphism, and it is unique, so
G = Colim(S).
Because the bags of T correspond one-to-one to (the node sets of) the graphs
τ(t) of T , it is clear that wd?(S) = wd(T ) and for all edges e ∈ VG it holds that
the nodes adjacent to e occur together in τ(t) for some t ∈ T .

2. Let S = 〈T, τS〉. We choose an arbitrary total ordering < on the nodes of T ; let
VT = {t1, . . . , tn}, with t1 < · · · < tn. Let ft : τS(t)→ G and fb : Gb → G, where
τS(b) = J → Gb ← K, be the morphisms given by the colimit construction.
First we define a “skeleton” costar decomposition B = 〈T, τB〉, where τB is defined
as follows:

• for all tree nodes t ∈ VT , τB(t) := τS(t);
• for all tree edges b = {t1, t2} ∈ ET , where τS(b) = J −φ�G�ψ−K, we define
τB(b) := J �φ′−G′ −ψ′�K, where G′ is obtained by taking the pullback of
φ and ψ.

Now, we construct the final costar decomposition C = 〈T, τC〉 by adding the edges
to appropriate graphs. For all t ∈ VT , τC(t) is built from τB by adding all edges
of G of which the adjacent nodes all have a pre-image (along ft) in τC(t), but
which have no pre-image in τC(t′) for some t′ < t.
Since the “bags” of C correspond one-to-one to the “bags” of S, wd?(C) = wd?(S).
Furthermore, by construction, nodes of the graph τS(t) which were mapped to
the same node by the morphisms in the cospan τS(b), are the image of the same
node along the morphisms of the span τC(b). Since all the edges of G are in the
image of exactly one fb, it must be the case that Colim(C) = Colim(S).

3. Let C = 〈T, τ〉. By assumption, G = Colim(C). Let, for each t ∈ VT and {t1, t2} ∈
ET , ft : τ(t) → G and f{t1,t2} : J{t1,t2} → G be the morphisms given by the
colimit construction.
We construct the tree decomposition T = 〈T,X〉, where T is the tree from C. If
τ(t) = H, then we let Xt := ft(VH). We show that the structure thus constructed
is a tree decomposition of G.

1Note that, by construction, the node and edge sets of the graphs occurring in the tree decomposition,
are subsets of node and edge sets of G, respectively. Therefore, fx can actually be applied to v.
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First of all, since G = Colim(C), every node of G must have a pre-image along
some ft, thus every node of G occurs in some bag Xt. Since interfaces are discrete,
every edge of G occurs in the domain Gt of exactly one ft, and thus the nodes
adjacent to this edge occur together in Xt.
Furthermore, assume that for some node v the subgraph of bags of which v is an
element do not form a subtree of T . That is, there are tree nodes t, t′ and a tree
node u on the path between t and t′ such that v ∈ Xt, v ∈ Xt′ but v /∈ Xu. Then
we can show that G 6= Colim(C) in a similar way as in the proof of Lemma 5.9
(iv).

4. By Lemma 5.5, we can transform any cospan with discrete interfaces and injective
morphisms into an atomic cospan decomposition. That is, we can transform
the edges of a star decomposition (labeled with cospans) into paths labeled with
atomic cospans.

A.2. Proofs of Chapter “Recognizable Graph
Languages”

Proposition 6.3 (Robustness). Let a class L of output-linear cospans with discrete
interfacesDs andDt be called output-linear-recognizable whenever L is recognizable
in OLCG. Then L is recognizable in Cospan(Graph) if and only if it is output-
linear-recognizable.

For the proof of Proposition 6.3 we first need the notion of factorization structure.

Definition A.1 (Factorization Structure). Let C be a category and let E ,M be
classes of morphisms in C. The pair 〈E ,M〉 is called a factorization structure for
C whenever

• E andM are closed under composition with isomorphisms,

• C has 〈E ,M〉-factorizations of morphisms, i. e. each morphism A −f� C of
C has a factorization A −f� C = A −e�B −m� C with e ∈ E and m ∈M,
and

• C has the unique 〈E ,M〉-diagonalization property: For each commutative
square as shown below with e ∈ E and m ∈M there exists a unique diagonal,
i. e. a morphism d such that the diagram with the morphism B −d�C added
commutes, i. e. A −e�B −d� C = A −g� C, B −d� C −m�D = B −h�D.
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A B

C D

e

g d
h

m

Note that in any category with an 〈E ,M〉-factorization structure, the classes E and
M are closed under composition and factorizations of morphisms are unique up to
isomorphism [2].

For the proof of Proposition 6.3 below we consider the factorization structure 〈E ,M〉
for the category Graph with E = {e | e is an epimorphism in Graph} andM = {m |
e is a monomorphism in Graph}. Note that the epimorphisms (monomorphisms) are
the surjective (injective) morphisms in Graph.

Proof. We adapt a robustness proof by Bruggink and König [33]. For both direc-
tions of the proof, we use the characterization of recognizability via congruences (see
Proposition 6.15).

(⇒): Trivial, because OLCG is a subcategory of Cospan(Graph), and thus we can
use the congruence for Cospan(Graph) also in the case OLCG.

(⇐): Let ≡R be a congruence for L in the sense of Definition 2.19 for the category
OLCG. We now define an equivalence ≡′R on Cospan(Graph) and show that it
is a congruence of finite index (see Proposition 6.15).
For this we first need the notion of merger pairs. For a cospan c : Dn−cL�G�cR−
Dm the set M(c) of merger pairs consists of all pairs of cospans 〈an, am〉 of the
form

an : Dn′
id−→Dn′

anR←−− Dn, am : Dm
amL−−−→Dm′

id←− Dm′

such that anR and amL are surjective and an ; c ; am is an output-linear cospan.
In a sense the merger pairs induce an equivalence on the interfaces which relates at
least the interface items which have the same image under cL or cR. Furthermore,
since we only deal with finite graphs, there are only finitely many “merger cospans”
up to isomorphism.
We now define ≡′R as follows: for two cospans c1 : Dn → G1 ← Dm and c2 : Dn →
G2 ← Dm it holds that c1 ≡′R c2 whenever M(c1) = M(c2) and for all 〈an, am〉 ∈
M(c1) we have an ; c1 ; am ≡R an ; c2 ; am. Note that for an input- and
output-linear cospan c the pairs consisting of the identity cospans on Dn and Dm

are among the merger pairs and hence ≡′R is a refinement of ≡R. Furthermore it
can be shown that ≡′R is locally finite whenever ≡R is.
We now have to show that ≡′R is congruence. For this take two cospans c1 ≡′R c2
with ci : Dn → Gi ← Dm, where i ∈ {1, 2}, and another cospan d : Dm → H ←
Dk. We have to prove that c1 ; d ≡′R c2 ; d.
Now take a merger pair of c1 ; d, i. e., choose 〈an, ak〉 ∈M(c1 ; d). We will show
that there are cospans am, am′ such that 〈an, am〉 ∈ M(c1), 〈am′ , ak〉 ∈ M(d)
and an ; c1 ; d ; ak = an ; c1 ; am ; am′ ; d ; ak. For this consider the diagram
below which represents the composition (an ; c1) ; (d ; ak) via pushouts where
the order of composition is indicated by the brackets.
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Dn′ Dn′ Dn G1 Dm H Dk Dk′ Dk′

G′1 H ′

H1

Note that the two “triangles” on left and right are pushouts and that the middle
“pentagon” is also a pushout. In the following we will denote injective morphisms
by � and surjective morphisms by �. Now consider the morphism Dm → H1
and take its factorization into a surjective morphism Dm � Dm′ , followed by an
injective morphism Dm′ � H1. In the category of graphs this factorization always
exists and is unique. In addition take the pushout of Dm → G′1, Dm � Dm′

and of Dm → H ′, Dm � Dm′ , obtaining graphs G′′1 and H ′′ and corresponding
mediating morphisms. We have that the morphism Dm′ → G′′1 is injectve, since
it splits the injective morphism Dm′ � H1. The same argument holds for the
morphism Dm′ → H ′′. Hence the situation is as follows:

Dn′ Dn′ Dn G1 Dm H Dk Dk′ Dk′

G′1 G′′1 Dm′ H ′′ H ′

H1

Note also that the morphism Dk′ → Dk′ → H ′ → H ′′ must be injective, since it
splits the injective morphism Dk′ � H1.
We will now show that the square Dm′ , G

′′
1 , H

′′, H1 commutes and that it is a
pushout. We are in the situation depicted on the left below where the outer
square is pushout. We have Dm � Dm′ � G′′1 → H1 = Dm → G′1 � G′′1 →
H1 = Dm → H ′ � H ′′ → H1 = Dm � Dm′ � H ′′ → H1. Since Dm � Dm′

is surjective we can conclude that Dm′ � G′′1 → H1 = Dm′ � H ′′ → H1.
Now assume a commuting square Dm′ , G

′′
1 , H

′′, X as shown below on the right.
Since the outer square is a pushout we obtain a mediating morphism H1 → X.
The triangles G′′1 , H1, X and H ′′, H1, X commute since they commute if we
precompose them with the morphisms G′1 � G′′1 and H ′ � H ′′ respectively.
Furthermore the morphism H1 → X must be unique since any other mediating
morphism would also be a mediating morphism for the outer pushout.
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Dm H ′

Dm′ H ′′

G′1 G′′1 H1

Dm H ′

Dm′ H ′′

G′1 G′′1 H1

X

Hence we get am : Dm � Dm′ �id− Dm′ and am′ : Dm′ −id� Dm′ � Dm and
from the diagram above it follows that an ; c1 ; d ; ak = an ; c1 ; am ; am′ ; d ; ak.
Due to the considerations above we know that the morphisms Dm′ → G′′1 and
Dk′ → H ′′ are injective, which are the right-legs of the cospans an ; c1 ; am and
am′ ; d ; ak respectively. Hence, both cospans are also output-linear. By c1 ≡′R c2,
we get an ; c1 ; am ; am′ ; d ; ak = an ; c2 ; am ; am′ ; d ; ak.
It is now left to show that an ; c2 ; am ; am′ ; d ; ak = an ; c2 ; d ; ak and that this
is an output-linear cospan. We first consider the diagram for (an ; c2) ; (d ; ak).

Dn′ Dn′ Dn G2 Dm H Dk Dk′ Dk′

G′2 H ′

H2

Next, we consider the factorization of Dm → G′2 into a surjective morphism
followed by an injective morphism, i. e.,

Dm → G′2 = Dm

sm−−�DG� G′2.

We construct the pushout of sm : Dm � DG and Dm � G′2 as shown below in
two steps. First we take the pushout of sm with itself, which gives us DG and the
identity morphisms since sm is surjective. Then we take the pushout of DG� G′2
and the identity on DG, resulting in G′2.

Dm DG G′2

DG DG G′2

sm

sm id id

id
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Now consider the cospan â : Dm−sm�DG�id−DG. Because of the considerations
above we can conclude that 〈an, â〉 ∈M(c2) = M(c1). Furthermore, we can show
that â is uniquely characterized to be the most “general” partner for an. Consider
for instance another cospan am : Dm → Dm′ ← Dm′ with 〈an, am〉 ∈ M(c2).
Then we obtain the diagram below on the left.

Dm DG G′2

Dm′ G′2

sm

id

Dm DG G′2

Dm′ G′2

sm

id

Because of the diagonalization property of factorizations we obtain a unique
morphism DG → Dm′ which makes the diagram commute (see diagram above
on the right). This property uniquely characterizes sm (up to isomorphism).
The same characterization holds for the factorization of Dm → G′1 (since the
merger pairs are identical) and we can conclude that Dm → G′1 factorizes into
Dm −sm� Dm′ � G′1. Now consider also the factorization of Dm → H into
Dm � DH � H and split the pushout of Dm → G′2 and Dm → H as shown
below:

Dm DH H

DG Dm′′ H ′′

G′2 G′′2 H2

sm

Hence taking the pushout of Dm � DG and Dm � DH gives us the unique
factorization of Dm → H2. The same is true in the case of H1 where the
factorization is Dm → H1 = Dm � Dm′ � H1. Hence Dm′ and Dm′′ are
isomorphic.
Furthermore in the diagram for (an ; c2) ; (d ; ak) above we can split the middle
pushout in a way identical to the splitting of (an ; c1) ; (d ; ak) and obtain a
pushout consisting of Dm′ , G

′′
2 , H

′′, H2 (see below).

Dn′ Dn′ Dn G2 Dm H Dk Dk′ Dk′

G′2 G′′2 Dm′ H ′′ H ′

H2
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This implies that an ; c2 ; d ; ak = an ; c2 ; am ; am′ ; d ; ak. Furthermore
Dk′ � H2 must be injective: Dk′ � H ′′ is injective (since it is the right leg
of the output-linear cospan am′ ; d ; ak) and if we compose with the injective
morphism H ′′� H2 we obtain Dk′ � H2. Hence we have M(c1 ; d) = M(c2 ; d)
and this concludes the proof.

Proposition 6.25. For every sequence of composable cospans in the category
OLCG exists an equivalent sequence of composable cospans which is in atomic
cospan normal form.

Proof. Let ~c be a sequence of composable cospans such that the cospan obtainded from
~c has the form

~c : Dk
cL−→G

cR←− D`,

where G = 〈V,E, att, lab〉. Without loss of generality we assume that V = {1, . . . , n}
and E = {e1, . . . , em}. Furthermore, we define Ai = lab(ei), Ei = {ej ∈ E | j < i} and
s(i) =

∑
e∈Ei |att(e)| for every i = 1, . . . ,m.

We construct the equivalent sequence in atomic cospan normal form as follows:

vertexkk+1 ; vertexk+1
k+2 ; · · · ; vertexk+s−1

k+s ;
connectk+s

A1,θ1
; · · · ; connectk+s

Am,θm
;

fusek+s
δ ;

permn
π ;

resnn ; · · · ; res`+1
`+1

where

• s = s(m) + z =
∑
e∈E |att(e)|+ z such that z is the number of isolated nodes of

G,

• the θi are (injective) functions

θi : {1, . . . , |att(ei)|} → {k + s(i− 1) + 1, . . . , k + s(i− 1) + |att(ei)|}

where θi(j) returns the j-th node attached to edge ei ∈ E and

• δ is an equivalence which indicates which nodes must be fused, i. e. δ is the
smallest equivalence containing the pair 〈v, w〉 if and only one of the following
conditions hold:
– the nodes v and w are the ends of a loop, i. e. let v = θi(j) be the j-th and
w = θi(j′) be the j′-th node of some edge ei ∈ E such that att(ei)[j] =
att(ei)[j′],

– the nodes v and w connect two edges, i. e. let v = θi(j) be the j-th node of
some edge ei ∈ E and w = θi′(j′) be the j′-th node of some edge ei′ ∈ E
such that att(ei)[j] = att(ei′)[j′],
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– the node i-th node of the inner interface is mapped to the j-th node of the
middle graph, i. e. cL(i) = j, v = i and w = k + j.

• π is a bijection on {1, . . . , n} with π(j) = cR(j) for 1 ≤ j ≤ ` and is arbitrary
otherwise.

Proposition 6.26 (Algebraic Properties of Atomic Cospans). The atomic cospans
defined in Definition 3.10 satisfy the equation schemes 6.1–6.17.

Proof. The proofs in the following are always of the form that we have two cospans
c : Dn−cL�G�cR−Dm, d : Dn−dL�H�dR−Dm and we have to show that the following
diagram commutes

G

Dn Dm

H

cL

dL

cR

dR

µ

• Proof of equation 6.1: We have that

vertexni = Dn
ϕ−→Dn+1

idDn+1←−−−−− Dn+1

and
vertexnn ; permn+1

π = Dn
i−→Dn+1

π←− Dn+1

where

ϕ : Dn → Dn+1, x 7→

{
x, if x < k

x+ 1, otherwise
i : Dn → Dn+1, x 7→ x.

We show that

Dn
ϕ−→Dn+1

idDn+1←−−−−− Dn+1 ' Dn
i−→Dn+1

π←− Dn+1

as follows: Let µ := π−1, i. e.

µ : Dn+1 → Dn+1, x 7→


x, if x < k

x+ 1, if k ≤ x ≤ n
k, otherwise

Obviously, we have that π ; µ = idDn+1 . Additionally, let x ∈ Dn, we then have

(i ; µ)(x) = π−1(i(x)) =


i(x), if i(x) < k

i(x) + 1, if k ≤ i(x) ≤ n
k, otherwise
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=


x, if x < k

x+ 1, if k ≤ x ≤ n
k, otherwise

Since dom(i ; µ) = Nn, the last case never occurs. Therefore, we have that:

=
{
x, if x < k

x+ 1, if k ≤ x ≤ n
= ϕ(x)

• Proof of equation 6.2: We have that

vertexnk ; vertexn` = Dn
ϕ1;ϕ′1−−−−→Dn+2

idDn+2←−−−−− Dn+2

and
vertexnf(`) ; vertexn+1

g(k) = Dn
ϕ2;ϕ′2−−−−→Dn+2

idDn+2←−−−−− Dn+2

where

ϕ1 : Dn → Dn+1, x 7→

{
x, if x < k

x+ 1, otherwise

ϕ′1 : Dn+1 → Dn+2, x 7→

{
x, if x < `

x+ 1, otherwise

ϕ2 : Dn → Dn+1, x 7→

{
x, if x < f(`)
x+ 1, otherwise

ϕ′2 : Dn+1 → Dn+2, x 7→

{
x, if x < g(k)
x+ 1, otherwise

We show that

Dn
ϕ1;ϕ′1−−−−→Dn+2

idDn+2←−−−−− Dn+2 ' Dn
ϕ2;ϕ′2−−−−→Dn+2

idDn+2←−−−−− Dn+2

as follows: Let µ := idDn+2 . Obviously, we have that idDn+2 ; µ = idDn+2 .
Additionally, let x ∈ Dn. We the have

(ϕ1 ; ϕ′1 ; µ)(x) = ϕ′1(ϕ1(x)) =
{
ϕ1(x), if ϕ1(x) < `

ϕ1(x) + 1, otherwise

=


x, if x < k, x < `

x+ 1, if x ≥ k, x+ 1 < `

x+ 1, if x < k, x ≥ `
x+ 2, otherwise
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and

(ϕ2 ; ϕ′2 ; µ)(x) = ϕ′2(ϕ2(x)) =
{
ϕ2(x), if ϕ2(x) < g(k)
ϕ2(x) + 1, otherwise

=


x, if x < f(`), x < g(k)
x+ 1, if x ≥ f(`), x+ 1 < g(k)
x+ 1, if x < f(`), x ≥ g(k)
x+ 2, otherwise

Now, we distinguish two different cases:
– Case 1: Let k < `. Hence, f(`) = ` − 1 and g(k) = k. Furthermore, since
x < k ∧ x ≥ ` and x < g(k) ∧ x ≥ f(`) are contradictions, this yields

(ϕ1 ; ϕ′1 ; µ)(x) =


x, if x < k, x < `

x+ 1, if x ≥ k, x+ 1 < `

x+ 2, otherwise

=


x, if x < k

x+ 1, if x ≥ k, x+ 1 < `

x+ 2, otherwise

=


x, if x < f(`), x < g(k)
x+ 1, if x < f(`), x ≥ g(k)
x+ 2, otherwise

= ϕ′2(ϕ2(x)) = (ϕ2 ; ϕ′2 ; µ)(x)

– Case 2: Let k ≥ `. Hence, f(`) = ` and g(k) = k + 1. Furthermore, since
x ≥ k ∧ x+ 1 < ` and x ≥ g(k) ∧ x < f(`) are contradictions, this yields

(ϕ1 ; ϕ′1 ; µ)(x) =


x, if x < k, x < `

x+ 1, if x < k, x ≥ `
x+ 2, otherwise

=


x, if x < `

x+ 1, if x ≥ `, x+ 1 < k + 1
x+ 2, otherwise

=


x, if x < f(`), x < g(k)
x+ 1, if x ≥ f(`), x+ 1 < g(k)
x+ 2, otherwise

= ϕ′2(ϕ2(x)) = (ϕ2 ; ϕ′2 ; µ)(x)

• Proof of equation 6.6: We have that

permn
π ; vertexni = Dn

ϕ−→Dn+1
idDn+1←−−−−− Dn+1
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and
vertexni ; permn+1

π′ = Dn
ψ−→Dn+1

π′←− Dn+1

where

ϕ : Dn → Dn+1, x 7→


π−1(x), if x < k, π−1(x) < k

π−1(x) + 1, if x < k, π−1(x) ≥ k
π−1(x− 1), if x ≥ k, π−1(x) < k

π−1(x− 1) + 1, otherwise

ψ : Dn → Dn+1, x 7→

{
x, if x < k

x+ 1, otherwise

We show that

Dn
ϕ−→Dn+1

idDn+1←−−−−− Dn+1 ' Dn
ψ−→Dn+1

π′←− Dn+1

as follows: Let µ := π′−1, i. e.

µ : Dn+1 → Dn+1, x 7→



π−1(x), if x < k, π′−1(x) < k

π−1(x) + 1, if x < k, π′−1(x) ≥ k
k, if x = k

π−1(x− 1), if x > k, π′−1(x) < k

π−1(x− 1) + 1, otherwise

Obviously, we have that π′ ; µ = idDn+1 . Additionally, let x ∈ Nn, we then have

ψ ; µ(x) = π′−1(ψ(x)) =
{
π′(x), if x < k

π′(x+ 1), otherwise

=


π−1(x), if x < k, π′−1(x) < k

π−1(x) + 1, if x < k, π′−1(x) ≥ k
π−1(x− 1), if x ≥ k, π′−1(x) < k

π−1(x− 1) + 1, otherwise
= ϕ(x)

• Proof of equation 6.10: We have that

permn
π ; connectnA,θ = Dn

π′−1

−−−→H
i←− Dn

and
connectnA,θ ; permn

π = Dn
i−→H ′

π;i←−− Dn

where

H = 〈Nn, {e}, attH , labH〉 and H ′ = 〈Nn, {e′}, attH′ , labH′〉
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such that attH(e) = θ(0) . . . θ(ar(A)− 1), attH′(e′) = θ′(0) . . . θ′(ar(A)− 1) and
lab(e) = A = lab(e′),

π′−1 : Dn → H, x 7→ π−1(x)
i : Dn → H x 7→ x

i′ : Dn → H ′ x 7→ x.

We show that
Dn

π′−1

−−−→H
i←− Dn ' Dn

i−→H ′
π;i←−− Dn

as follows: We define µ as

µ : H ′ → H, x 7→

{
π−1(x), if x ∈ V
e, otherwise

.

Let x ∈ Dn, we then have

(i ; µ)(x) = π′′−1(i(x)) = π′′−1(x) = π−1(x) = π′−1(x)

and

(π ; i′ ; µ)(x) = π′′−1(i(π(x))) = π′′−1(pi(x)) = π−1(π(x)) = i(x).

• Proof of equation 6.15: We have that

resni ; permn
π = Dn

idDn−−−→Dn
π;ϕ←−− Dn−1

and
permn

π ; resni = Dn
π′−1

−−−→Dn
ϕ←− Dn−1

where

ϕ : Dn−1 → Dn, x 7→

{
x, if x < k

x+ 1, otherwise

We show that

Dn
idDn−−−→Dn

π;ϕ←−− Dn−1 ' Dn
π′−1

−−−→Dn
ϕ←− Dn−1

as follows: Let µ := π′. Obviously we have that π′−1 ; µ = idDn . Additionally, let
x ∈ Nn, we then have

(ϕ′ ; µ)(x) = π′(ϕ(x))

=



π(ϕ(x)), if ϕ(x) < k, π(ϕ(x)) < k

π(ϕ(x)) + 1, if ϕ(x) < k, π(ϕ(x)) ≥ k
ϕ(x), if ϕ(x) = k

π(ϕ(x)− 1), if ϕ(x) > k, π(ϕ(x)) < k

π(ϕ(x)− 1) + 1, otherwise
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Since there exists no ` ∈ Dn such that ϕ(`) = k, the corresponding case never
can occur. Therefore, we obtain:

=


π(x), if x < k, π(x) < k

π(x) + 1, if x < k, π(x) ≥ k
π(x+ 1− 1), if x > k, π(x) < k

π(x+ 1− 1) + 1, otherwise

=
{
π(x), if π(x) < k

π(x) + 1, otherwise
= ϕ(π(x)) = (π ; ϕ)(x)

• Proof of equation 6.16: We have that

resni = Dn
idDn−−−→Dn

ϕ←− Dn−1

and
permn

π ; resnn = Dn
π−1

−−→Dn
i′←− Dn−1

where

ϕ : Dn−1 → Dn, x 7→

{
x, if x < k

x+ 1, otherwise
i′ : Dn−1 → Dn, x 7→ x

We show that

Dn
idDn−−−→Dn

ϕ←− Dn−1 ' Dn
π−1

−−→Dn
i′←− Dn−1

as follows: Let µ := π. Obviously we have that π−1 ; µ = idDn . Additionally, let
x ∈ Dn, we then have

(i′ ; µ)(x) = π(i′(x))

=


i′(x), if i′(x) < k

i′(x) + 1, if k ≤ i′(x) < n

k, otherwise

Since n /∈ dom(i′), which implies that n /∈ dom(i′ ; µ), we have that:

=
{
x, if x < k

x+ 1, otherwise
= ϕ(x)

• Proofs of equations 6.3, 6.4, 6.7, 6.8, 6.9, 6.11, 6.12, 6.14: Trivial, by definition of
the atomic cospans.
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• Proofs of equation 6.5, 6.13, 6.17: These proofs are similar to the proof of equation
6.2.

To make the completeness proof easier, we introduce the following derived equation
shemes which can easily be proved by Proposition 6.26.

Remark A.2. Here are some derived schemes which will be useful in the forthcoming
proof:

vertexnn+1 ; vertexn+1
n+2 ≡ vertexnn+1 ; vertexn+1

n+2 ; permn+2
π , (A.1)

where π is defined as

π : Nn+2 → Nn+2, π(x) =


x, if x < n+ 1
n+ 2, if x = n+ 1
n+ 1, if x = n+ 2

vertexnn+1 ; . . . ; vertexn+k
n+k+1 ≡ vertexnn+1 ; . . . ; vertexn+k

n+k+1 ; permn+k+1
π , (A.2)

where π is defined as

π : Nn+k+1 → Nn+k+1, π(x) =


x, if x < n+ 1
x+ 1, if k + 1 ≤ x < n+ k + 1
n+ 1, if x = n+ k + 1

permn
π ; vertexnn+1 ; . . . ; vertexn+k

n+k+1 ≡
vertexnn+1 ; . . . ; vertexn+k

n+k+1 ; permn+k+1
π′ , (A.3)

where π′ is defined as

π′ : Nn+k+1 → Nn+k+1, π′(x) =
{
π(x), if x < n+ 1
x, if x ≥ k + 1

connectnA,θ ≡ permn
π ; connectnA,θ′ ; permn

π−1 , (A.4)
where θ′ is defined as

θ′ : Nn → Nn, θ′(x) = π−1(θ(x))

permn
π ; fusenδ ≡ fusenπ−1(δ) (A.5)
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resnn ; resn−1
n−1 ≡ permn

π ; resnn ; resn−1
n−1, (A.6)

where π is defined as

π : Nn → Nn, π(x) =


x, if x < n− 1
n, if x = n− 1
n− 1, if x = n

resn+k
n+k ; . . . ; resnn ≡ permn

π ; resn+k
n+k ; . . . ; resnn, (A.7)

where π is defined as

π : Nn+k → Nn+k, π(x) =


x, if x < n

n+ k, if x = n

x− 1, if x > n

resn+k
n+k ; . . . ; resnn ; permn

π ≡ permn+k
π′ ; resn+k

n+k ; . . . ; resnn, (A.8)

where π′ is defined as

π′ : Nn+k → Nn+k, π′(x) =
{
π(x), if x < n

x, if x ≥ n

Theorem 6.27 (Soundness). If two sequences of composable cospans in the
category OLCG (with the same inner and outer interface) can be transformed
into each other via the equations schemes 6.1–6.17, they are equivalent.

Proof. Let ~c and ~d be two sequences of composable cospans. By proposition 6.25 we
can transform both ~c and ~d in two sequences ~c′ and ~d′ which are both in atomic cospan
normal form. By assumption we can transform the sequence ~c′ into the sequence ~d′
and vice versa. Hence, ~c and ~d are equivalent.

Theorem 6.28 (Completeness). If two sequences of composable cospans in the
category OLCG (with the same inner and outer interface) are equivalent, they
can be transformed into each other via the equation schemes 6.1–6.17.

Proof. Let ~c and ~d be two equivalent sequences of composable cospans from which we
can obtain two cospans of the following form

~c : Dk
cL−→G

cR←− D` and ~d : Dk
dL−→G′

dR←−− D`.
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Since ~c and ~d are isomorphic it also holds that G ' G′. Without loss of generality, we
assume that

G = 〈V,E, att, lab〉 and G′ = 〈V,E′, att′, lab′〉,
where V = {1, . . . , n}, E = {e1, . . . , em} and E′ = {e′1, . . . , e′m}. Furthermore, we define
Ai = lab(ei), Ei = {ej ∈ E | j < i} and s(i) =

∑
e∈Ei |att(e)| for every i = 1, . . . ,m.

Analogously we define A′i, E′i and s′(i) for i = 1, . . . ,m.
By Proposition 6.25, we can transform the sequence ~c into an equivalent sequence ~c′

which is in atomic normal form, i. e.

~c ≡ ~c′ = vertexkk+1 ; vertexk+1
k+2 ; · · · ; vertexk+s−1

k+s ;
connectk+s

A1,θ1
; · · · ; connectk+s

Am,θm
;

fusek+s
δ ;

permn
π ;

resnn ; · · · ; res`+1
`+1

where

• s = s(m) + z =
∑
e∈E |att(e)|+ z where z is the number of isolated nodes of G,

• the θi are (injective) functions

θi : {1, . . . , |att(ei)|} → {k + s(i− 1) + 1, . . . , k + s(i− 1) + |att(ei)|}

where θi(j) returns the j-th node attached to edge ei ∈ E and

• δ is an equivalence which indicates which nodes must be fused, i. e. δ is the
smallest equivalence containing the pair 〈v, w〉 if and only one of the following
conditions hold:

– the nodes v and w are the ends of a loop, i. e. let v = θi(j) be the j-th and
w = θi(j′) be the j′-th node of some edge ei ∈ E such that att(ei)[j] =
att(ei)[j′],

– the nodes v and w connect two edges, i. e. let v = θi(j) be the j-th node of
some edge ei ∈ E and w = θi′(j′) be the j′-th node of some edge ei′ ∈ E
such that att(ei)[j] = att(ei′)[j′],

– the node i-th node of the inner interface is mapped to the j-th node of the
middle graph, i. e. cL(i) = j, v = i and w = k + j.

• π is a bijection on {1, . . . , n} with π(j) = cR(j) for 1 ≤ j ≤ ` and is arbitrary
otherwise,

Similarly, we can transform the sequence ~d by Proposition 6.25 into an equivalent
sequence ~d′ which is in atomic normal form, i. e.

~d ≡ ~d′ = vertexkk+1 ; vertexk+1
k+2 ; · · · ; vertexk+s′−1

k+s′ ;

connectk+s′
A′1,θ

′
1

; · · · ; connectk+s′
A′m,θ

′
m

;

fusek+s′
δ′ ;
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permn
π′ ;

resnn ; · · · ; res`+1
`+1

where

• s′ = s′(m) + z′ =
∑
e∈E′ |att′(e)|+ z′ where z′ is the number of isolated nodes of

G′,

• the θ′i are (injective) functions

θ′i : {1, . . . , |att′(ei)|} → {k + s′(i− 1) + 1, . . . , k + s′(i− 1) + |att′(ei)|}

where θ′i(j) returns the j-th node attached to edge ei ∈ E and

• δ′ is an equivalence which indicates which nodes must be fused, i. e. δ′ is the
smallest equivalence containing the pair 〈v, w〉 if and only one of the following
conditions hold:
– the nodes v and w are the ends of a loop, i. e. let v = θ′i(j) be the j-

th and w = θ′i(j′) be the j′-th node of some edge ei ∈ E′ such that
att′(ei)[j] = att(ei)[j′],

– the nodes v and w connect two edges, i. e. let v = θ′i(j) be the j-th node of
some edge ei ∈ E′ and w = θ′i′(j′) be the j′-th node of some edge ei′ ∈ E′
such that att′(ei)[j] = att′(ei′)[j′],

– the node i-th node of the inner interface is mapped to the j-th node of the
middle graph, i. e. dL(i) = j, v = i and w = k + j.

• π′ is a bijection on {1, . . . , n} with π′(j) = dR(j) for 1 ≤ j ≤ ` and is arbitrary
otherwise.

Since there exists an bijection between the graphs G and G′ we can follow that the
number of isolated nodes of G and G′ is equal, hence z = z′. Furthermore, each edge
of G can be mapped to exactly one edge of G′ with the same label and the same arity
(and vice versa). Hence, we have that s = s′ and that the number of vertex -operations
must be equal.
Since both G and G′ have the same set of edges (up to isomorphism), the number

connect -operations must also be equal. Additionally, for each connect -operations which
occurs in the sequence ~c′ there must exist an equivalent connect -operation in the se-
quence ~d′, i. e. for every edge e ∈ G, there must exist exactly one operation connectk+s

Ai,θi

in ~c′ and exactly one operation connectk+s
A′
j
,θ′
j
in ~d′, such that Ai = lab(e) = A′j

and θi(1) . . . θi(|e|) = att(e) = θ′j(1) . . . θ′j(|e|). The same must hold for the connect -
operation in the sequence ~d′. Therefore, the sequence of connect -operations of both
sequences ~c′ and ~d′ can only differ in the order of the connect -operations. Hence, we can
repeatedly use equation 6.8 to re-order the connect -operations of the sequence ~c′ such
that Ai = Bi holds for 1 ≤ i ≤ m. Furthermore, we have to construct a permutation π̂
such that θ′j = θi ; π̂ where θ′j and θi are given as described above. This permutation
can be build by repeated usage of equations A.2 and A.3. Next, we can “shift” the
permutation π̂ (represented by the permπ̂-operation) over all connect -operations by
repeatedly use equation 6.10.
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Now, we have a sequence ~c′′ of composable cospans which is equivalent to ~c′ of the
following form:

~c′′ = vertexkk+1 ; vertexk+1
k+2 ; · · · ; vertexk+s−1

k+s ;
connectk+s

A′1,θ
′
1

; · · · ; connectk+s
A′m,θ

′
m

;

permk+s
π̂ ;

fusek+s
δ ;

permn
π ;

resnn ; · · · ; res`+1
`+1

Next, we “shift” permπ̂-operation over the fuseδ-operation by the equation A.5. This
yields the equivalence δ′ = π̂(δ) = {〈π̂(v), π̂(w)〉 | 〈v, w〉 ∈ δ}, since ~c′′ is equivalent to
~d′ and by equation A.5 we obtain a sequence ~c′′′ which is equivalent to ~c′′. If δ′ 6= π̂(δ)
we could follow that ~c′′ is not equivalent to ~d′, which is a contradiction.

At last, we compose the permutation π̂ with the permutation π by use of the
equation 6.14. This yields the permutation π′, i. e. π′ = π ; π̂, since the ~c′′′ is equivalent
to ~d′ and by the same argument as above, we can follow that we obtain the sequence
~d′ by equation A.5. If π′ 6= π ; π̂, we could follow ~c′′′ is not equivalent to ~d′, which is a
contradiction.
Hence, we have shown that the sequence ~c can be transformed into the sequence ~d

by the equation schemes 6.1–6.17.

Proposition 6.47. Let ϕ : i→ j and ψ : j → k be formulas. Then

J∀ϕ : ψK = {c : Di
#
Dk | ∀c′ : Di

#
Dj , c

′′ : Dj
#
Dk :

(c = c′ ; c′′ ∧ c′ |= ϕ) =⇒ c′′ |= ψ}.

Proof. The proof can be done by using the basic definitions given above.

J∀ϕ : ψK
= J¬ (∃ϕ : ¬ψ)K
=M(C,E) \ J∃ϕ : ¬ψK
=M(C,E) \ {c : Di

#
Dk | ∃c′ : Di

#
Dj , c

′′ : Dj
#
Dk :

c = c′ ; c′′ ∧ c′ |= ϕ ∧ c′′ |= ¬ψ}
= {c : Di

#
Dk | ¬ (∃c′ : Di

#
Dj , c

′′ : Dj
#
Dk :

c = c′ ; c′′ ∧ c′ |= ϕ ∧ c′′ |= ¬ψ)}
= {c : Di

#
Dk | ∀c′ : Di

#
Dj , c

′′ : Dj
#
Dk :

¬(c = c′ ; c′′ ∧ c′ |= ϕ) ∨ c′′ |= ψ}
= {c : Di

#
Dk | ∀c′ : Di

#
Dj , c

′′ : Dj
#
Dk :

(c = c′ ; c′′ ∧ c′ |= ϕ) =⇒ c′′ |= ψ}
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Proposition 6.48. Let ϕ : i→ k and ψ : i→ j be formulas. Then
r
ϕ↓∀ψ

z
= {c′ : Dj

#
Dk | ∀c : Di

#
Dj : c |= ψ =⇒ c ; c′ |= ϕ}.

Proof. The proof can be done by using the basic definitions given above.
r
ϕ↓∀ψ

z

=
r
¬
(
¬ϕ↓∃ψ

)z
=M(D,E) \

r
¬ϕ↓∃ψ

z

=M(D,E) \ {c′ : Dj
#
Dk | ∃c : Di

#
Dj : c |= ψ ∧ c ; c′ |= ¬ϕ}

= {c′ : Dj
#
Dk | ¬ (∃c : Di

#
Dj : c |= ψ ∧ c ; c′ |= ¬ϕ)}

= {c′ : Dj
#
Dk | ∀c : Di

#
Dj : c |= ψ =⇒ c ; c′ 6|= ¬ϕ}

= {c′ : Dj
#
Dk | ∀c : Di

#
Dj : c |= ψ =⇒ c ; c′ |= ϕ}

Proposition 6.57. Let n ∈ N, ψ : i → k be a formula and i, j, k ≤ n. The
functions

α∃ψ : Φk,j → Φi,j γ∀ψ : Φi,j → Φk,j
α∃ψ(ϕ) = ∃ψ : ϕ γ∀ψ(ϕ′) = ϕ′↓∀ψ

are a Galois connection between 〈Φk,j , |=〉 and 〈Φi,j , |=〉.

Proof. • We show the monotonicity of α∃ψ as follows. We assume that ϕ1 |= ϕ2
holds.

q
α∃ψ(ϕ1)

y

= J∃ψ : ϕ1K
= {d | ∃d′, d′′ : d = d′ ; d′′ ∧ d′ |= ψ ∧ d′′ |= ϕ1}
⊆ {d | ∃d′, d′′ : d = d′ ; d′′ ∧ d′ |= ψ ∧ d′′ |= ϕ2}
= J∃ψ : ϕ2K

=
q
α∃ψ(ϕ2)

y

Therefore, α∃ψ(φ1) |= α∃ψ(φ2) holds.

• We show the monotonicity of γ∀ψ as follows. We assume that ϕ1 |= ϕ2 holds.

q
γ∀ψ(ϕ1)

y
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=
r
ϕ1↓∀ψ

z

=
r
¬
(
¬ϕ1↓∃ψ

)z
=M(k, j) \

r
¬ϕ1↓∃ψ

z

=M(k, j) \ {c′ : Dk
#
Dj | ∃c : Di

#
Dk : c |= ψ ∧ c ; c′ 6|= ϕ1}

= {c′ : Dk
#
Dj | ¬ (∃c : Di

#
Dk : c |= ψ ∧ c ; c′ 6|= ϕ1)}

= {c′ : Dk
#
Dj | ∀c : Di

#
Dk : c 6|= ψ ∨ c ; c′ |= ϕ1}

⊆ {c′ : Dk
#
Dj | ∀c : Di

#
Dk : c 6|= ψ ∨ c ; c′ |= ϕ2}

= {c′ : Dk
#
Dj | ¬ (∃c : Di

#
Dk : c |= ψ ∧ c ; c′ 6|= ϕ2)}

=M(k, j) \ {c′ : Dk
#
Dj | ∃c : Di

#
Dk : c |= ψ ∧ c ; c′ 6|= ϕ2}

=M(k, j) \
r
¬ϕ2↓∃ψ

z

=
r
¬
(
¬ϕ2↓∃ψ

)z
=
r
ϕ2↓∀ψ

z

=
q
γ∀ψ(ϕ2)

y

Therefore, γ∀ψ(φ1) |= γ∀ψ(φ2) holds.

• We show the extensivity of α∃ψ ; γ∀ψ as follows. We assume that ϕ 6|= γ∀ψ(α∃ψ(ϕ)).
Then there exists a cospan c |= ϕ such that c 6|= γ∀ψ(α∃ψ(ϕ)).

c 6|= γ∀ψ(α∃ψ(ϕ))
⇐⇒ c 6|= (∃ψ : ϕ)↓∀ψ
⇐⇒ c |= ¬

(
(∃ψ : ϕ)↓∀ψ

)
⇐⇒ c |= ¬ (∃ψ : ϕ) ↓∃ψ
⇐⇒ c ∈ {d′ : Dk

#
Dj | ∃d : Di

#
Dk : d |= ψ ∧ d ; d′ |= ¬ (∃ψ : ϕ)}

⇐⇒ c ∈ {d′ : Dk
#
Dj | ∃d : Di

#
Dk : d |= ψ ∧

d ; d′ ∈ {e : Di
#
Dj | ∀e′ : Di

#
Dk, e

′′ : Dk
#
Dj :

e′ 6|= ψ ∨ e′′ 6|= ϕ ∨ e 6= e′ ; e′′}}

Now we can conclude, since d |= ψ and d ; d′ = e, for some cospan e : Di
#
Dj

satisfying e′ 6|= ψ∨ e′′ 6|= ϕ∨ e 6= e′ ; e′′, that d′ 6|= ϕ. But this yields c 6|= ϕ, which
is a condtradiction to the assumption.

• We show the reduction of γ∀ψ ; α∃ψ as follows.

q
α∃ψ(γ∀ψ(ϕ))

y

=
r
∃ψ : (ϕ↓∀ψ)

z
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=
{
c : Di

#
Dj | ∃c′ : Di

#
Dk, c

′′ : Dk
#
Dj : c = c′ ; c′′ ∧ c′ |= ψ ∧ c′′ |= ϕ↓∀ψ

}
⊆ {c : Di

#
Dj | ∃c′ : Di

#
Dk, c

′′ : Dk
#
Dj : c = c′ ; c′′ ∧ c |= ϕ}

= {c : Di
#
Dj | c |= ϕ}

= JϕK

Therefore, α∃ψ(γ∀ψ(ϕ)) |= ϕ.

Proposition 6.58. Let n ∈ N, ψ : i → j be a formula and i, j, k ≤ n. The
functions

α∀ψ : Φj,k → Φi,k γ∃ψ : Φi,k → Φj,k
α∀ψ(ϕ) = ∀ψ : ϕ γ∃ψ(ϕ′) = ϕ′↓∃ψ

are a Galois connection between 〈Φj,k, |=〉 and 〈Φi,k, |=〉.

Proof. • We show the monotonicity of α∀ψ as follows. We assume that ϕ1 |= ϕ2
holds. Then also ¬ϕ2 |= ¬ϕ1 holds

q
α∀ψ(ϕ1)

y

= J∀ψ : ϕ1K
= J¬ (∃ψ : ¬ϕ1)K
=M(C,E) \ J(∃ψ : ¬ϕ1)K
=M(C,E) \ {c : Di

#
Dk | ∃c′ : C

#
D,∃c′′ : Dj

#
Dk :

c = c′ ; c′′ ∧ c′ |= JψK ∧ c′′ |= J¬ϕ1K}
= {c : Di

#
Dk | ∀c′ : Di

#
Dj ,∀c′′ : Dj

#
Dk : c 6= c′ ; c′′ ∨

c′ 6|= JψK ∨ c′′ |= Jϕ1K}
⊆ {c : Di

#
Dk | ∀c′ : Di

#
Dj ,∀c′′ : Dj

#
Dk : c 6= c′ ; c′′ ∨

c′ 6|= JψK ∨ c′′ |= Jϕ2K}
=M(C,E) \ {c : Di

#
Dk | ∃c′ : Di

#
Dj ,∃c′′ : Dj

#
Dk :

c = c′ ; c′′ ∧ c′ |= JψK ∧ c′′ |= J¬ϕ2K}
=M(C,E) \ J(∃ψ : ¬ϕ2)K
= J¬ (∃ψ : ¬ϕ2)K
= J∀ψ : ϕ2K

=
q
α∀ψ(ϕ2)

y

Therefore, α∀ψ(ϕ1) |= α∀ψ(ϕ2) holds.

• We show the monotonicity of γ∃ψ as follows. We assume that ζ1 |= ζ2 holds.
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q
γ∃ψ(ζ1)

y

=
r
ζ1↓∃ψ

z

= {c′′ : Dj
#
Dk | ∃c′ : Di

#
Dj : c |= JψK ∧ c′ ; c′′ |= Jζ1K}

⊆ {c′′ : Dj
#
Dk | ∃c′ : Di

#
Dj : c |= JψK ∧ c′ ; c′′ |= Jζ2K}

=
r
ζ2↓∃ψ

z

=
q
γ∃ψ(ζ2)

y

• We show the extensivity of α∀ψ ; γ∃ψ as follows. We assume ϕ 6|= γ∃ψ

(
α∀ψ(ϕ)

)
. Then

there exists a cospan c such that c |= ϕ and c 6|= γ∃ψ

(
α∀ψ(ϕ)

)
.

c 6|= γ∃ψ
(
α∀ψ(ϕ)

)
⇐⇒ c 6|= ∀ψ : ϕ↓∃ψ
⇐⇒ c 6|= ¬

(
∃ψ : ¬

(
ϕ↓∃ψ

))
⇐⇒ c |= ∃ψ : ¬

(
ϕ↓∃ψ

)
⇐⇒ c ∈

{
d : Di

#
Dk | ∃d′ : Di

#
Dj ,∃d′′ : Dj

#
Dk : d = d′ ; d′′ ∧

d′ |= ψ ∧ d′′ |= ¬
(
ϕ↓∃ψ

)}
⇐⇒ c ∈

{
d : Di

#
Dk | ∃d′ : Di

#
Dj ,∃d′′ : Dj

#
Dk : d = d′ ; d′′ ∧

d′ |= ψ ∧ d′′ ∈
{
e′′ : Dj

#
Dk | ∀e′ : Di

#
Dj : c′ 6|= ψ ∨ e′ ; e′′ 6|= ϕ

}}
Now, we have that c 6|= γ∃ψ

(
α∀ψ(ϕ)

)
holds if and only if there exist two cospans

c′ : Di
#

Dj and c′′ : Dj
#

Dk such that c = c′ ; c′′ and c′ |= ψ and for c′′ we
have that with every cospan d′ : Di

#
Dj satisfying d′ |= ψ it holds d′ ; c′′¬ |= ϕ.

Since c′ |= ψ, we immediately have c = c′ ; c′′¬ |= ϕ, which is a contradiction.
Therefore, we have ϕ |= γ∃ψ

(
α∀ψ(ϕ)

)
.

• We show the reduction of γ∃ψ ; α∀ψ as follows.
q
α∀ψ(γ∃ψ(ϕ))

y

=
r

(∀ψ : ϕ) ↓∃ψ
z

= {c′′ : Dj
#
Dk | ∃c′ : Di

#
Dj : c′ |= ψ ∧ c′ ; c′′ |= ∀ψ : ϕ}

⊆ {c′′ : Dj
#
Dk | c′′ |= ϕ} (Prop. 6.53)

= JϕK

Therefore, α∀ψ(γ∃ψ(ϕ)) |= ϕ.
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B
Graph Automata Encoding

In this appendix we exemplarily give the formulas encoding graph automata for the
k-colorability language (presented in Examples 6.4 and 6.33) and the k-dominating set
language.

In the following we will confuse the states of the graph automata and the bit strings
used to encde them. Hence, every bit string is seen as a state.

B.1. Colorability Graph Automaton Encoding
In this section we explain how the n-bounded k-colorability graph automaton A =
〈Q,Σ, δ, I,F〉 can be encoded by propositional formulas. These formulas can in turn be
used to obtain Bdds representing the graph automaton.

As already explained in Section 7.1, we encode each state by a bit string of the form:

~b ~c1 . . . ~cn = b1 . . . bm(c1,1 . . . c1,`) . . . (cn,1 . . . cn,`),

where ~b encodes the (outer) interface size of the cospan decomposition seen so far and
~cj encodes the color of the j-th interface node (for 1 ≤ j ≤ n).
For the sake of simplicity we assume that the encoded graph automaton only accepts

cospans with empty inner and outer interface. The set of all states Q, the set of initial
states I and the set of final states F can then be encoded as follows:

State Set Q = (Qi)i≤n: The states of the set Qi are exactly those states
• whose interface size is equal to i,
• whose first i interface nodes are colored valid and
• whose n− i last interface nodes are “uncolored”.
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~b ~c1 . . . ~cn ∈ Qi ⇐⇒ (~b = i) ∧
i∧

j=1
(1 ≤ ~cj ≤ k) ∧

n∧
j=i+1

(~cj = ~0)

Initial State Set I: The initial state set I contains exactly those states
• whose interface size is equal to 0 and
• whose nodes are all “uncolored”.

~b ~c1 . . . ~cn ∈ I ⇐⇒ (~b = 0) ∧
n∧
j=1

(~cj = ~0)

Final State Set F: The set of final states is exactly the set of initial states.

~b ~c1 . . . ~cn ∈ F ⇐⇒ (~b = 0) ∧
n∧
j=1

(~cj = ~0)

Next, we show how to encode the transitions for the six types of letters given in
Table 6.1.

connecti�-Transition: The connecti�-transition from one state to another exists if the
following conditions are met:

• the arity of the edge is less or equal to the current interface size,
• the interface sizes of the current and the successor state are both equal to i,
• the color of no node is changed,
• the last n− i nodes are “uncolored” in the successor state and
• the nodes incident to the new edge are pairwise colored with different colors.

We set p = i− ar(A) + 1.

~b ~c1 . . . ~cn
connecti�−−−−−−→ ~b′ ~c′1 . . .

~c′n ⇐⇒ (ar(A) ≤ i) ∧ (~b = i) ∧ (~b = ~b′) ∧
n∧
j=1

(~cj = ~c′j) ∧
n∧

j=i+1
(~cj = 0) ∧

i∧
j=p

i∧
j′=p

(j 6= j′)→ (~cj 6= ~cj′)

fusei-Transition: The fusei-transition from one state to another exists if the following
conditions are met:

• the current interface size is between 2 and n (if the interface size is less than
2 there are no nodes to be fused),

• the interface size of the current state is equal to i and the interface size of
the successor state is equal to i− 1,

• the color of no node is changed (except for the i-th node),
• the color of the i-th node is
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– equal to the color of the (i− 1)-th node in the current state and
– “uncolored” in the successor state,

• the last n− i nodes are “uncolored” in the successor state.

~b ~c1 . . . ~cn
fusei−−−→ ~b′ ~c′1 . . .

~c′n ⇐⇒ (2 ≤ i ≤ n) ∧ (~b = i) ∧ (~b′ = i− 1) ∧
n∧
j=1
j 6=i

(~cj = ~c′j) ∧ (~ci = ~ci−1) ∧ (~c′i = ~0) ∧
n∧

j=i+1
(~cj = ~0)

shifti-Transition: The shifti-transition from one state to another exists if the following
conditions are met:

• the current interface size is between 3 and n (if the interface size is less
than 2 there are no nodes to be shifted and if the interface is equal to 2 the
shift-operation is identical to the trans-operation),

• the interface size of the current and the successor states are both equal to i,
• the color of the first i nodes is shifted cyclic and
• the color of the last n− i nodes is “uncolored” before and not changed after

the application of the shift.

~b ~c1 . . . ~cn
shifti−−−→ ~b′ ~c′1 . . .

~c′n ⇐⇒ (3 ≤ i ≤ n) ∧ (~b = i) ∧ (~b = ~b′) ∧
i−1∧
j=1

(~cj+1 = ~c′j) ∧ (~c1 = ~c′i) ∧
n∧

j=i+1

(
(~cj = ~0) ∧ (~cj = ~c′j)

)

resi-Transition: The resi-transition from one state to another exists if the following
conditions are met:

• the current interface size is between 1 and n (if the interface size is less than
1 there are no nodes to be restricted),

• the interface size of the current state is equal to i and the interface size of
the successor state is equal to i− 1,

• the color of no node is changed (except for the i-th node),
• the i-th node is “uncolored” in the successor node and
• the last n− i nodes are “uncolored” in the successor state.

~b ~c1 . . . ~cn
resi−−→ ~b′ ~c′1 . . .

~c′n ⇐⇒ (1 ≤ i ≤ n) ∧ (~b = i) ∧ (~b′ = i− 1) ∧
n∧
j=1
j 6=i

(~cj = ~c′j) ∧ (~c′i = ~0) ∧
n∧

j=i+1
(~cj = ~0)

205



B. Graph Automata Encoding

transi-Transition: The transi-transition from one state to another exists if the following
conditions are met:

• the current interface size is between 2 and n (if the interface size is less than
2 there are no nodes to be transposed),

• the interface size of the current and the successor states are both equal to i,
• the color of the first two nodes is transposed and the color of all other nodes

is not changed and
• the last n− i nodes are “uncolored” in the successor state

~b ~c1 . . . ~cn
transi−−−−→ ~b′ ~c′1 . . .

~c′n ⇐⇒ (2 ≤ i ≤ n) ∧ (~b = i) ∧ (~b = ~b′) ∧

(~c1 = ~c′2) ∧ (~c2 = ~c′1) ∧
n∧
j=3

(~cj = ~c′j) ∧
n∧

j=i+1
(~cj = ~0)

vertexi-Transition: The vertexi-transition from one state to another exists if the fol-
lowing conditions are met:

• the current interface size is less than n (otherwise the new node cannot be
added to the interface),

• the interface size of the current state is equal to i and the interface size of
the successor state is equal to i+ 1,

• the color of no node is changed (except for the (i+ 1)-th node),
• the (i+ 1)-th node is “uncolored” in the current state and has to be colored

valid in the successor state and
• the last n− i nodes are “uncolored” in the successor state

~b ~c1 . . . ~cn
vertexi−−−−→ ~b′ ~c′1 . . .

~c′n ⇐⇒ (i < n) ∧ (~b = i) ∧ (~b′ = i+ 1) ∧
n∧
j=1
j 6=i+1

(~cj = ~c′j) ∧ (~ci+1 = 0) ∧ (1 ≤ ~c′i+1 ≤ k) ∧
n∧

j=i+2
(~cj = ~0)

B.2. Dominating Set Graph Automaton Encoding
In this section we explain how the n-bounded k-dominating set graph automaton
A = 〈Q,Σ, δ, I,F〉 can be encoded by propositional formulas. These formulas can in
turn be used to obtain Bdds representing the graph automaton.

As already explained in Section 7.1, we encode each state by a bit string of the form:

~b (m1 d1) . . . (mn dn)~s

where ~b encodes the (outer) interface size of the cospan decomposition seen so far,
the bit mj encodes whether the j-th node is a member of the dominating set, the bit
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dj encodes whether the j-th nodes is dominated by some node and the bit string ~s
encodes the size of the dominating set. Note that the concrete order of the bits not
important for the propositional formulas given below. Hence, the formulas can be used
for both encodings of the dominating set graph automaton presented in Section 7.1.

For the sake of simplicity we assume that the encoded graph automaton only accepts
cospans with empty inner and outer interface. The set of all states Q, the set of initial
states I and the set of final states F can then be encoded as follows:

State Set Q = (Qi)i≤n: The states of the set Qi are exactly those states
• whose interface size is equal to i,
• whose first i interface nodes may be dominated or not, but if a interface

node is a member of the dominating set, it must also be dominated and
• whose size of the dominating set is between 0 and k.

~b (m1 d1) . . . (mn dn)~s ∈ Qi ⇐⇒ (~b = i) ∧
i∧

j=1

(
(mj = 1)→ (dj = 1)

)
∧

n∧
j=i+1

(
(mj = 0) ∧ (dj = 0)

)
∧

k∨
j=0

(~s = j)

Initial State Set I: The initial states set I contains exactly those states
• whose interface size is equal to 0,
• whose interface nodes are neither member of the dominating set nor domi-

nated by some node and
• whose size of the dominating set is between 0.

~b (m1 d1) . . . (mn dn)~s ∈ I ⇐⇒ (~b = 0) ∧
n∧
j=1

(
(mj = 0) ∧ (dj = 0)

)
∧ (~s = 0)

Final State Set F: The set of final states F contains exactly those states
• whose interface size is equal to 0,
• whose interface nodes are neither member of the dominating set nor domi-

nated by some node and
• whose size of the dominating set is between 0 and k.

~b (m1 d1) . . . (mn dn)~s ∈ I ⇐⇒ (~b = 0) ∧
n∧
j=1

(
(mj = 0) ∧ (dj = 0)

)
∧

k∨
j=0

(~s = j)
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Next, we show how to encode the transitions for the six types of letters given in
Table 6.1.

connecti�-Transition: The connecti�-transition from one state to another exists if the
following conditions are met:

• the arity of the edge is less or equal to the current interface size,
• the interface sizes of the current and the successor state are both equal to i,
• the membership bit of no interface node is changed,
• the dominated bit of an interface node

– which is not incident to the new edge is not changed
– which is incident to the new edge

∗ is set if at least one node incident to the new edge is a member of
the dominating set,

∗ is not changed if no node incident to the new edge is a member of
the dominating set,

• the size of dominating set is not changed.

q
connecti�−−−−−−→ q′ ⇐⇒ (ar(A) ≤ i ≤ n) ∧ (~b = i) ∧ (~b = ~b′) ∧

n∧
j=1

(mj = m′j) ∧
i−ar(A)∧
j=1

(dj = d′j) ∧
n∧

j=i+1
(dj = d′j) ∧ i∨

j=i−ar(A)+1

(mj = 1)→
i∧

j=i−ar(A)+1

(d′j = 1)

 ∧
 i∧
j=i−ar(A)+1

(mj 6= 1)→
i∧

j=i−ar(A)+1

(dj = d′j)

 ∧ (~s = ~s′)

fusei-Transition: The fusei-transition from one state to another exists if the following
conditions are met:

• the current interface size is between 2 and n (if the interface size is less than
2 there are no nodes to be fused),

• the interface size of the current state is equal to i and the interface size of
the successor state is equal to i− 1,

• the membership bit and the the dominated bit of no interface node is changed
(except for the (i− 1)-th and the i-th node),

• the membership bit of the (i− 1)-th interface node in the successor state is
set to the maximum of the membership bits of the (i− 1)-th and the i-th
interface nodes in current state,

• the membership bit of the i-th interface node in the successor state is cleared,
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• the dominated bit of the (i− 1)-th interface node in the successor state is
set to the maximum of the dominated bits of the (i − 1)-th and the i-th
interface nodes in current state,

• the dominated bit of the i-th interface node in the successor state is cleared
and

• the size of dominating set
– is decreased by 1 if both nodes, which were fused, were members of the

domating set (in this case the fused node was counted twice) and
– is not changed if at most one of the two nodes, which are fused, was a

member of the domating set.

q
fusei−−−→ q′ ⇐⇒ (2 ≤ i ≤ n) ∧ (~b = i) ∧ (~b′ = i− 1) ∧

n∧
j=1
j 6=i−1
j 6=i

(
(mj = m′j) ∧ (dj = d′j)

)
∧
(
m′i−1 = max{mi,mi−1}

)
∧

(
d′i−1 = max{di, di−1}

)
∧ (m′i = 0) ∧ (d′i = 0) ∧((

(mi−1 = 1) ∧ (mi = 1)
)
→ (~s′ = ~s− 1)

)
∧((

(mi−1 = 0) ∨ (mi = 0)
)
→ (~s′ = ~s)

)
shifti-Transition: The shifti-transition from one state to another exists if the following

conditions are met:
• the current interface size is between 3 and n (if the interface size is less

than 2 there are no nodes to be shifted and if the interface is equal to 2 the
shift-operation is identical to the trans-operation),

• the interface sizes of the current and the successor state are both equal to i,
• the membership bits and the dominated bits of the first i nodes are shifted

cyclic,
• the membership bits and the the dominated bits of the last n− i nodes are

cleared before and not changed after the application of the shift and
• the size of dominating set is not changed

q
shifti−−−→ q′ ⇐⇒ (3 ≤ i ≤ n) ∧ (~b = i) ∧ (~b′ = ~b) ∧

i−1∧
j=1

(
(mj = m′j+1) ∧ (dj = d′j+1)

)
∧ (mi = m′0) ∧ (di = d′0) ∧

n∧
j=i+1

(
(mj = m′j) ∧ (dj = d′j)

)
∧ (~s = ~s′)
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resi-Transition: The resi-transition from one state to another exists if the following
conditions are met:

• the current interface size is between 1 and n (if the interface size is less than
1 there are no nodes to be restricted),

• the interface size of the current state is equal to i and the interface size of
the successor state is equal to i− 1,

• the membership bit and the the dominated bit of no interface node is changed
(except for the the i-th node),

• the i-th membership bit of the successor state is cleared,
• the i-th dominated bit has to be set for the current state (since only

dominated nodes may be restricted from the interface) and is cleared in the
successor state and

• the size of dominating set is not changed

q
resi−−→ q′ ⇐⇒ (3 ≤ i ≤ n) ∧ (~b = i) ∧ (~b′ = i− 1) ∧

n∧
j=1
j 6=i

(
(mj = m′j) ∧ (dj = d′j)

)
∧ (m′i = 0) ∧ (di = 1) ∧ (d′i = 0) ∧ (~s′ = ~s)

transi-Transition: The transi-transition from one state to another exists if the following
conditions are met:

• the current interface size is between 2 and n (if the interface size is less than
2 there are no nodes to be transposed),

• the interface size of the current and the successor states are both equal to i,
• the membership bits and the the dominated bits of the first two interface

nodes are transposed, the membership bits and the the dominated bits of
all other interface nodes are not changed and

• the size of dominating set is not changed

q
transi−−−−→ q′ ⇐⇒ (2 ≤ i ≤ n) ∧ (~b = i) ∧ (~b′ = ~b) ∧

(m1 = m′2) ∧ (m2 = m′1) ∧ (d1 = d′2) ∧ (d2 = d′1) ∧
n∧
j=3

(
(mj = m′j) ∧ (dj = d′j)

)
∧ (~s = ~s′)

vertexi-Transition: The vertexi-transition from one state to another exists if the fol-
lowing conditions are met:

• the current interface size is less than n (otherwise the new node cannot be
added to the interface),
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• the interface size of the current state is equal to i and the interface size of
the successor state is equal to i+ 1,

• the membership bits and the dominated bits of the first i nodes are not
changed,

• the membership bit and the dominated bit of the (i+ 1)-th node are both
unset in the current state and are both either set or unset in the successor
state and

• the size of dominating set
– is increased by 1 if the (i+ 1)-th membership bit is set in the successor

state and
– is not changed if the (i+1)-th membership bit is not set in the successor

state.

q
vertexi−−−−→ q′ ⇐⇒ (i < n) ∧ (~b = i) ∧ (~b′ = i+ 1) ∧

n∧
j=1
j 6=i+1

(
(mj = m′j) ∧ (dj = d′j)

)
∧

(mi+1 = 0) ∧ (di+1 = 0) ∧ (m′i+1 = d′i+1) ∧(
(m′i+1 = 1)→ (~s′ = ~s+ 1)

)
∧
(

(m′i+1 = 0)→ (~s′ = ~s)
)
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C.1. The GXL Format for Graphs
In this section, we give an example of a graph represented in the Gxl-format which is
used to save graphs to .gxl-files. For a detailed description of the Gxl-format see the
website at http://www.gupro.de/GXL/.

For our example, we take the following graph:

where the edge from node n1 to node n2 is named e1, the edge from node n1 to node
n3 is named e2, and so on. The graph depicted above can then be represented by the
following Xml-file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE gxl SYSTEM "http://www.gupro.de/GXL/gxl-1.0.dtd">

<gxl>
<graph id="G" edgeids="true" edgemode="undirected"

hypergraph="true">
<node id="n1" />
<node id="n2" />

http://www.gupro.de/GXL/
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<node id="n3" />
<node id="n4" />
<node id="n5" />

<rel id="e1">
<attr name="label">

<string>A</string>
</attr>
<relend target="n1" role="vertex" startorder="0" />
<relend target="n2" role="vertex" startorder="1" />

</rel>

<rel id="e2">
<attr name="label">

<string>A</string>
</attr>
<relend target="n1" role="vertex" startorder="0" />
<relend target="n4" role="vertex" startorder="1" />

</rel>

<rel id="e3">
<attr name="label">

<string>A</string>
</attr>
<relend target="n1" role="vertex" startorder="0" />
<relend target="n5" role="vertex" startorder="1" />

</rel>

<rel id="e4">
<attr name="label">

<string>A</string>
</attr>
<relend target="n2" role="vertex" startorder="0" />
<relend target="n3" role="vertex" startorder="1" />

</rel>

<rel id="e5">
<attr name="label">

<string>A</string>
</attr>
<relend target="n2" role="vertex" startorder="0" />
<relend target="n5" role="vertex" startorder="1" />

</rel>

<rel id="e6">
<attr name="label">

<string>A</string>
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</attr>
<relend target="n3" role="vertex" startorder="0" />
<relend target="n4" role="vertex" startorder="1" />

</rel>

<rel id="e7">
<attr name="label">

<string>A</string>
</attr>
<relend target="n4" role="vertex" startorder="0" />
<relend target="n5" role="vertex" startorder="1" />

</rel>
</graph>

</gxl>

C.2. The GXL Format for Cospans
In this section, we give an example of a cospan represented in the Gxl-format which
is used to save cospans to .cos-files. The file format is very similar to that used for
graphs (see Section C.1). The greatest difference is that we also need to save inner and
outer interface of the cospan.
For our example, we take the following cospan:

where the B-edge incident to the nodes n1 and n5 is named e1, the A-edge incident to
the nodes n1, n3 and n6 is named e2, the A-edge incident to the nodes n2, n4 and n7
is named e3 and the B-edge incident to the nodes n2 and n4 is named e4. Furthermore,
the inner interface consists of the nodes n1, n3 as well as n4 and the outer interface
consists of the nodes n4, n5, n6 and n7.
The graph depicted above can then be represented by the following Xml-file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE gxl SYSTEM "http://www.gupro.de/GXL/gxl-1.0.dtd">
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<gxl>
<graph id="innerInterface">

<attr name="n1">
<string>"n1"</string>

</attr>
<attr name="n3">

<string>"n3"</string>
</attr>
<attr name="n4">

<string>"n4"</string>
</attr>

</graph>

<graph id="middleGraph" edgeids="true" edgemode="undirected"
hypergraph="true">

<node id="n1" />
<node id="n5" />
<node id="n4" />
<node id="n3" />
<node id="n2" />
<node id="n7" />
<node id="n6" />

<rel id="e3">
<attr name="label">

<string>A</string>
</attr>
<relend target="n2" role="vertex" startorder="0" />
<relend target="n3" role="vertex" startorder="1" />
<relend target="n7" role="vertex" startorder="2" />

</rel>

<rel id="e2">
<attr name="label">

<string>A</string>
</attr>
<relend target="n3" role="vertex" startorder="0" />
<relend target="n6" role="vertex" startorder="1" />
<relend target="n1" role="vertex" startorder="2" />

</rel>

<rel id="e4">
<attr name="label">

<string>B</string>
</attr>
<relend target="n2" role="vertex" startorder="0" />
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<relend target="n4" role="vertex" startorder="1" />
</rel>

<rel id="e1">
<attr name="label">

<string>B</string>
</attr>
<relend target="n1" role="vertex" startorder="0" />
<relend target="n5" role="vertex" startorder="1" />

</rel>
</graph>

<graph id="outerInterface">
<attr name="n5">

<string>"n5"</string>
</attr>
<attr name="n7">

<string>"n7"</string>
</attr>
<attr name="n4">

<string>"n4"</string>
</attr>
<attr name="n6">

<string>"n6"</string>
</attr>

</graph>
</gxl>

C.3. The Automaton File Format
In this section, we briefly explain the .aut-file format which is used to save automata
to files. Every .aut-file is essentially a ZIP-file consisting of different files depending
on the automaton. Each .aut-file contains

• a file named general.obj which holds the serialized1 representation of the
corresponding automaton object,

• a file named states.bdd2 holding information about the Bdd representing the
set of all states,

• a file named initial.bdd holding information about the Bdd representing the
set of initial states,

• a file named final.bdd holding information about the Bdd representing the set
of final states,

1See http://docs.oracle.com/javase/7/docs/technotes/guides/serialization/ for further information
about serialization in Java.

2For a description of the file format used in the .bdd-files see the manual of the BuDDy-package.
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• a file named nonFinal.bdd holding information about the Bdd representing the
set of non-final states

• depending on the input alphabet of the corresponding automaton a .bdd-file
for each atomic cospan of the input alphabet is contained: these .bdd-files hold
information about the Bdds representing the transition relations for the particular
atomic cospans.

C.4. The Signature File Format
In this section, we briefly explain the .sig-file format which is used to save signatures
to files. Since a signature is just a set of atomic cospans (used as input alphabet for
graph automata) the file format is rather simple. The format is text- and line-oriented,
i. e. each line of the file consists of the name of exactly one atomic cospan.

C.5. The Cospan Decomposition File Format
In this section, we briefly explain the .dec-file format which is used to save cospan
decompositions to files. Since a cospan decomposition is just a sequence of atomic
cospans the file format is rather simple. The format is text- and line-oriented, i. e. each
line of the file consists of the name of exactly one atomic cospan. With one exception:
the first line of the file indicates the size of the inner interface of the resulting cospan.
The size of the outer interface of the resulting cospan (and all intermediate interface
sizes) can then be computed by the sequence of atomic cospans.
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Raven Libraries

Library License URL
ANTLR ANTLR 4 License http://www.antlr.org/
BuDDy Public Domain http://buddy.sourceforge.net/

GraphViz Eclipse Public License 1.0 http://www.graphviz.org/
JAnsi Apache License 2.0 http://jansi.fusesource.org/

JavaBDD GNU LGPL 2.0 http://javabdd.sourceforge.net/
JDOM Apache-style License http://www.jdom.org/

JGoodies BSD 2-Clause License http://www.jdom.org/
JGraphX BSD 3-Clause License http://www.jgraph.com/jgraph.html
LibTW Public Domain http://www.treewidth.com/

Table D.1.: Libraries on which Raven depends

http://www.antlr.org/
http://buddy.sourceforge.net/
http://www.graphviz.org/
http://jansi.fusesource.org/
http://javabdd.sourceforge.net/
http://www.jdom.org/
http://www.jdom.org/
http://www.jgraph.com/jgraph.html
http://www.treewidth.com/
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Category Symbols
[G] The trivial cospan ∅ → G← ∅, page 25

vR A (well-)quasi-order on a category, page 19

≡R A equivalence (congruence) on a category, page 19

f ; g The composition of two morphisms A −f� B and B −g� C,
page 18

J −cL�G�cR−K A cospan from J to K, page 21

J
#
K A cospan from J to K, page 21

A −e�B An epimorphism e between A and B, page 20

A �−i�B An isomorphism i between A and B, page 20

A �−m�B A monomorphism m between A and B, page 20

C A category, page 18

Graph The category of graphs and graph morphisms, page 25

cod(f) The codomain of the morphism f , page 18

Cospan(C) The cospan category of C, page 21

dom(f) The domain of the morphism f , page 18

idA The identity morphisms on A, page 18

M(A,B) The class of morphisms from A to B, page 18

OLCG The category of output-linear cospans of graphs, page 25

OLCGn The category of output-linear cospans of graphs of size at most
n, page 25

Rel The category of sets and relations, page 18

Set The category of sets and functions, page 18

Graph Symbols



Nomenclature

|G| The size of the graph G, page 24

∅ The empty graph, page 24

G
ρ,m===⇒H,G==⇒H A derivation of G to H (by applying ρ via the match m),

page 27

L�`− I −r�R A transformation rule rewriting the left-hand side L to the
right-hand side R via the interface I, page 26

att The attachment function of a graph, page 24

Dn The discrete graph with n nodes, page 24

lab The labeling function of a graph, page 24

Atomic Cospan Symbols
connectnA,θ The atomic cospan for the connection of a single hyperedge,

page 28

fuseni,j The atomic cospan for the fusion of two nodes, page 28

permn
π The atomic cospan for the permutation of the outer interface,

page 28

resnk The atomic cospan for the restriction of the outer interface,
page 28

shiftn The atomic cospan for the shift of the outer interface, page 72

transn The atomic cospan for the transposition of the first two nodes
of the outer interface, page 72

vertexnk The atomic cospan for the disjoint union with a single node,
page 28

Language Symbols
|w| The length of the word w, page 13

≤L The Myhill-Nerode quasi-order relative to L, page 15

≈L The syntactical congruence relative to L, page 15

∅ The empty language, page 13

C(k) The language of all k-colorable graphs, page 57

L A language, page 13

L(q) The language accepted by some state q ∈ Q, page 14

L(X) The language accepted by a state set X ⊆ Q, page 14

L The complement language of L, page 16
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Nomenclature

L1 ∩ L2 The intersection language of L1 and L2, page 16

L1 ∪ L2 The union language of L1 and L2, page 16

L1 ; L2 The concatenation language of L1 and L2, page 16

V(k) The language of all graphs containing a vertex cover of size at
most k, page 58

ε The empty word, page 13

Σ An alphabet, page 13

Finite Automaton Symbols
F The set of final states of an automaton A, page 14

I The set of initial states of an automaton A, page 14

Q The set of states of an automaton A, page 14

δ The transition function of an automaton A, page 14

δ̂ The extended transition function of an automaton A, page 14

Σ The input alphabet of an automaton, page 14

Tree Automaton Symbols
2s A hole of type s, page 16

(Fσ)σ∈S A family of sets of accepting states, page 17

(Iσ)σ∈S A family of sets of initial states, page 17

Ops The alphabet containing the function symbols vertexnk , resnk ,
connectnA,θ, permn

π, joinn, page 51

(Qσ)σ∈S A family of finite sets of states (indexed by S), page 17

(∆f )f∈Σ A family of transition functions indexed by function symbols,
page 17

Σ An S-Signature, page 17

Automaton Functor Symbols
AC(k) The automaton functor for the language of all k-colorable

graphs, page 57

AV(k) The automaton functor for the language of all graphs containing
a vertex cover of size at most k, page 58

A(c) The transition relation of the automaton functor A for mor-
phism c, page 56
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Nomenclature

A(X) The set of states of the automaton functor A for the object X,
page 56

F The final states of an automaton functor A, page 56

I The initial states of an automaton functor A, page 56

L(A) The language accepted by some automaton functor A, page 56

Graph Automaton Symbols
F The set of final states of a graph automaton, page 73

I The set of initial states of a graph automaton, page 73

(Qi)i≤n The set of states of a graph automaton, page 73

(Sigi)i≤n The input alphabet of a graph automaton, page 73

(δi,j)i,j≤n The transition function of a graph automaton, page 73

δ̂i,j The extended transition function of a graph automaton from
Qi to Qj , page 73

Logical Symbols
⊥ The symbol for the truth value false, page 31

> The symbol for the truth value true, page 31

|= The entailment relation, page 85

∀xi(ϕ) Universal Quantification of xi, page 32

∃xi(ϕ) Existential Quantification of xi, page 32

B The set of truth values, page 31

Bn The set of all bit vectors of length n, page 31

η(xi), J·Kη The (extended) valuation over some set X, page 32

ϕ[xi/ψ] The substitution of every occurrence of xi in a formula ϕ with
ψ, page 32

Other Symbols
d
B Greatest lower bound of B, page 12⊔
B Least upper bound of B, page 12

dBe The set of all maximal elements of B, page 12

bBc The set of all minimal elements of B, page 12

[[a]]≡, [[a]] The equivalence class of a w. r. t. ≡, page 12
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Nomenclature

|~a| The length of a sequence ~a, page 11

~a[i] The i-th element of ~a, page 11

A/ ≡ The quotient set of A by ≡, page 12

A∗ The set of all finite sequences over a set A, page 11

An The n-ary cartesian product, page 11

f(~a) Extension of a function f : A → B to a sequence ~a ∈ A∗,
page 12

N The set of natural numbers, i. e. {0, 1, 2, . . .}, page 11

Nk The set of the first k natural numbers, i. e. {0, 1, 2, . . . , k − 1},
page 11

℘(A) The powerset of a set A, page 11

R∗ Reflexive and transitive closure of R, page 11

R+ Transitive closure of R, page 11

Rn n-th power of R, page 11

X The complement of a set X, page 14
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Alphabet, 13
Letters, 13
Word, 13
Empty Word, 13
Length, 13

Antichain, see Quasi-Order
Antichain Algorithm

Backwards Searching Variant, 113
Complement Backwards Searching

Variant, 111, 117
Complement Forwards Searching

Variant, 111, 117
Forwards Searching Variant, 112
Normal Backwards Searching

Variant, 111, 117
Normal Forwards Searching

Variant, 110, 117
Arrows, see Category, Morphisms
Atomic Cospan, 28

connectnA,θ, 28
connectnA, 72
fuseni,j , 28
fusen, 72
Normal Form, 67
permn

π, 28
resnk , 28
resn, 72
shiftn, 72
transn, 72
vertexnk , 28
vertexn, 72

Automaton Functor, 56
Accepted Language, 56
Deterministic, 56
Final States, 56
Initial States, 56
k-Colorability, 57

k-Vertex Cover, 58
States, 56
Transition Relation, 56

Bdd, see Binary Decision Diagram
Binary Decision Diagram, 33

High Edge, 33
Low Edge, 33
Reduced and Ordered Binary

Decision Diagram, 35
Terminal Node, 33

Binary Relation, 11
Antisymmetric, 11
Inverse, 11
n-th power of R, see Binary

Relation
Reflexive, 11
Reflexive and transitive closure, 11
Symmetric, 11
Transitive, 11
Transitive closure, 12

Bisimulation, 121
Bisimulation up to Congruence, 122
Bit Vectors, 31
Boolean Formula

Substitution, 32
Valuation, 32

Boolean formula, 31
Boolean Function, 32
Boolean variables, 31
Bounded Automaton Functor, 77
Bounded Graph Automaton, 74

Accepted Language, 75

Cartesian product, 11
Category, 18

Category of Cospans of Graphs, 25
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Category of Graphs and Graph
Morphisms, 25

Category of Output-Linear
Cospans of Graphs, 25

Codomain, 18
Composition, 18
Domain, 18
Hom-Class, 18
Identity, 18
Locally Small, 19
Morphisms, 18
Objects, 18

Chain, see Quasi-Order
Colimit, 21
Congruence, 19
Consistent Tree Automaton, 60
Cospan, 21

Equivalent, 67
Inner Interface, 25
Outer Interface, 25
Output-linear, 25

Cospan Category, 21
Courcelle’s Theorem, 82

Deterministic Finite Automaton, see
Finite Automaton,
Deterministic

Dfa, see Finite Automaton,
Deterministic

Double Pushout Approach, 26
Dpo-Approach, see Double Pushout

Approach

Epimorphism, 20
Equivalence, 12, 19

Class, 12
Finite index, 12
Quotient Set, 12
Representative, 12

Existential Quantification, 32

Finite Automaton
Accepted Language, 14
Accepting States, 14
Deterministic, 15
Non-Deterministic, 14

Function, 12
Function Symbol, 17

Functor, 20

Galois Connection, 88
Generalized Myhill-Nerode Theorem,

16
Graph, see Hypergraph
Graph Transformation Rule, 26

Applicable, see Rule Application
Interface, 26
Left-Hand Side, 26
Match and Co-match, 26
Right-Hand Side, 26
Rule Application, 26

Graph Transformation System, 26

High Edge, see Binary Decision
Diagram

Hoare Triple, 90
Hom-Class, see Category, Hom-Class
Hypergraph, 24

Discrete Graph, 24
Empty Graph, 24
Hypergraph Morphism, 25
Size, 24

Invariant, 79
Isomorphism, 20

Jointly Node-surjective, 25

Language, 14
Empty Language, 14

Lcl, see Linear Cospan Logic
Linear Cospan Logic

Entailment Relation, 86
Semantics, 83
Syntax, 83

Low Edge, see Binary Decision
Diagram

Monadic Second-Order Logic, 80
Semantics, 81
Syntax, 80
Valuation, 81

Monomorphism, 20
Morphisms, see Category, Morphisms
Msogl, see Monadic Second-Order

Logic
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Myhill-Nerode Quasi-Order, 15

Natural Numbers, 11
Nfa, see Finte Automaton,

Non-Deterministic
Non-Deterministic Finite Automaton,

see Finite Automaton,
Non-Deterministic

Objects, see Category, Objects

Partial Order, 12
Path Graph, 24
Post-Condition, 90
Powerset, 11
Pre-Condition, 90
Pushout, 20

Quasi-Order, 12, 19
Antichain, 12
Chain, 12
Greatest Lower Bound, 12
Least Upper Bound, 12
Lower Bound, 12
Maximal Element, 12
Minimal Element, 12
Upper Bound, 12
Upward-Closed, 12

Recognizable Language, 56, 57
Regular Language, 14
robdd, see Binary Decision Diagram

Sequence, 11
Ascending, 12
Ascending Chain Condition, 12
Length, 11

Shannon Expansion, 34
Signature, 17
Simple Digraph, 23

Simple Graph, 23
Acyclic, 24
Cycle, 23
Root, 23
Rooted, 23

Simulation, 118
Simulation-based Antichain Algorithm

Forwards Searching Variant, 119
Sorts, 16

Input Sorts, 16
Output Sorts, 16
S-type, 16
S-typed Set, 16

Span, 22
Strongestes Post-Condition, see

Post-Condition
Subset Construction, 15
Substitution, see Boolean Formula,

Substitution
Syntactical Congruence, 15

Term
Hole, 16
Linear, 16

Terminal Node, see Binary Decision
Diagram

Tree, 24
Tree Automaton, 17

Accepted Language, 18
Truth Values, 31

Universal Quantification, 32

Valuation, see Boolean Formula,
Valuation

Weakest Pre-Condition, see
Pre-Condition

Well-Quasi-Order, 12, 19
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