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Abstract: We consider recognizable languages of cospans in adhesive categories, of
which recognizable graph languages are a special case. We show that such languages
are closed under concatenation, i.e. under cospan composition, by providing a con-
crete construction that creates a concatenation automaton from two given automata.
The construction is considerably more complex than the corresponding construction
for finite automata. We conclude by showing negative closure properties for Kleene
star and substitution.
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1 Introduction

Regular languages for words and trees are an indispensable concept in many areas of computer
science: they are used for instance for parsers, text editors or verification tools. Hence a natural
question to ask is whether their counterpart in the world of graphs, recognizable graph languages
à la Courcelle [Cou94], can serve the same purpose. In order to use such languages in practice it
is necessary to prove closure properties and to give effective procedures in order to constructively
realize such closure properties.

Here we focus on the closure of recognizable graph languages under concatenation. More
concretely, we use an automaton model introduced by us in [BK08, BBEK12], which accepts
exactly the recognizable graph languages of Courcelle (for an exact comparison see [BK08]).
Such automata accept graphs equipped with a fixed inner and outer interface (categorically:
cospans of graphs). Given two languages LX ,K , LK,Y of cospans, where the cospans are equipped
with interface X ,K, respectively K,Y , by concatenating every cospan of the first language with
every cospan of the second language, one obtains a language LX ,K ;LK,Y of cospans equipped with
interfaces X ,Y .

For finite automata on words concatenation can be implemented by a straightforward construc-
tion [HMU06]), however for graph languages the situation is considerably more complex, due
to the fact that graphs are not freely generated, as opposed to words which are the free monoid

∗ This work was supported by the DFG-project GaReV.
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Closure Properties of Recognizable Languages

over a given alphabet. In other words: there is no canonical way to decompose a graph into
atomic components (or cospans) and hence several decompositions generate the same graph. For
graph automata this requires the condition that a graph is accepted independently of its specific
decomposition and that two different decompositions of a cospan yield the same transitions in the
automaton.

We can assume that two automata AX ,K ,AK,Y satisfying this requirement and accepting the
languages LX ,K , LK,Y are given. Now the challenge is to construct an automaton for the con-
catenation language that also adheres to this constraint. Intuitively the problem is the following:
when accepting a cospan of the concatenation language, one might read it in such a way that the
automaton already sees parts of the second cospan before completely processing the first. This
is visualized below where cospans are represented by “tube-like” structures. Instead of reading
first the cospan from X to K and then the cospan from K to Y , it is possible to start with a cospan
from X to some new interface J that overlaps with K and already reaches into the second cospan,
without fully containing the first.

X YK

J

This effect has to be taken into account in the construction of the new automaton. Especially
we have to record states of both automata (since we can be in both automata at the same time) and
we have to record the current union of the interface graphs K and J (this union will be denoted by
U) and the parts of U that are the current interfaces for the two automata.

This construction will not only be given for graph automata, but more generally for languages
of cospans of (monic) arrows in adhesive categories [LS05]. The properties of adhesive categories
enable us to work in distributive subobject lattices, which are the key to the construction and the
proof of its correctness. This greater generality allows us to prove the result for several classes of
graph-like structures (directed graphs, hypergraphs, attributed graphs, etc.).

Concatenation for recognizable graph languages was already studied by Courcelle in [Cou94],
but for a different setting where graphs have only one interface and are glued over their joint
interface. Furthermore Courcelle’s results applies only to concrete graphs, whereas ours is shown
in a general categorical setting.

We conclude the paper by giving counterexamples for closure properties that fail to hold for
graph languages, while being true for word languages: closure under Kleene star and closure
under substitution.

2 Recognizable Languages and Automata

2.1 Category Theory

We presuppose basic knowledge of category theory. The identity arrow of an object G will be
denoted by idG. If f and g are composable arrows, we write f ;g for the morphism f postcomposed
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with g, i.e. f ;g = g◦ f .
Let C be a category in which all pushouts exist. A cospan c in C is a pair of arrows 〈cL,cR〉

with the same codomain: c : J cL−→ G cR←− K. J is the domain of c and K is the codomain of
c. We often call J the inner interface of c and K the outer interface of c. Let c : J→ F ← M
and d : M→ H ← K be cospans where the codomain of c equals the domain of d. Then, the
composition of c and d, written as c ;d : J→M′← K is defined via the following commuting
diagram where the middle diamond is a pushout

J G

M

M′

H K
cL

cR

f

dL

g

dR(PO)

Two cospans c : J cL−→ G cR←− K and d : J dL−→ H dR←− K are isomorphic, written c∼ d, if there exists
an isomorphism k from G to H, such that cL ;k = dL and cR ;k = dR. A semi-abstract cospan is
a ∼-equivalence class of cospans. We will often identify a ∼-equivalence class with one of its
representatives. The category Cospan(C) is defined as the category that has the objects of C as
objects and semi-abstract cospans as arrows. The identity arrows are given as the equivalence

class of identity cospans G
idG−−→ G

idG←−− G.

2.2 Adhesive Categories

For this paper we want to investigate a specific type of categories, so called adhesive categories,
defined as in [LS05].

Definition 2.1. A category C is called adhesive if

• C has pullbacks

• C has pushouts along monomorphisms

• pushouts along monomorphims are Van Kampen-pushouts, i.e. whenever the lower square
in the following picture is a pushout along a monomorphim and the front and the left square
are pullbacks it holds that the top square is a pushout iff the right and back squares are
pullbacks.

A

A′

D

D′

C

C′

B

B′
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Closure Properties of Recognizable Languages

Definition 2.2. An example of an adhesive category which we will use in examples is the category
HGraph. For a set A we call A∗ the set of sequences of elements from A and for a function
f : A→ B we write f ∗ : A∗→ B∗ for the function that acts as f on each element of a sequence.
HGraph has hypergraphs as objects and graph morphisms as arrows. Let Λ be a fixed set of

labels with an arity function ar : Λ→ N0. A hypergraph is a four-tuple G = (VG,EG,attG, labG)
where VG is a set (the set of vertices), EG is a set (the set of edges), attG : EG→ V ∗G and labG :
EG→ Λ are functions, where for each edge e ∈ EG it holds that ar(labG(e)) = |attG(e)|. We only
consider finite graphs where the set of vertices and the set of edges is finite.

A graph morphism is a pair of functions ( fV , fE) : G→ H, fV : VG→VH , fE : EG→ EH where
labH ◦ fE = labG and attH ◦ fE = f ∗V ◦attG.

We say a graph D is discrete if ED = /0.

We are particularly interested in subobject lattices in adhesive categories, defined as in [LS05,
BBC+11].

Definition 2.3 (Subobject). Let U be an object in C. Two monomorphisms a : A � U and
b : B � U are called isomorphic if there is an isomorphism ψ : A→ B such that ψ ;b = a. A
subobject of U is an isomorphism class of monomorphisms into U. It is denoted by [a : A �U ]
or [a] where a : A �U is any representative.

For a fixed object U we consider the category Sub(U) that has subobjects of U as objects and
that has an arrow between two objects [a], [b] if there exists an arrow c in C such that c ;b = a. In
this case we write [a]⊆ [b].

An important result regarding subobject lattices due to [LS05] is that each Sub(U) with partial
order ⊆ forms a distributive lattice, the so-called subobject lattice of U .

The meet of two subobjects [a], [b] is realized by taking their pullback in C (see diagram on the
left below) and is denoted by [a]∩ [b] = [a∩b]. A join [a]∪ [b] = [a∪b] is obtained by taking the
pushout over their meet (see diagram on the right below).

A∩B

A

B

U

a

b

a∩b A∩B

A

B

A∪B U

a

b

a∪b

Distributivity means that ([a]∪ [b])∩ [c] = ([a]∩ [c])∪ ([b]∩ [c]) and ([a]∩ [b])∪ [c] = ([a]∪
[c])∩ ([b]∪ [c]) for subobjects [a], [b], [c].

In order to structure our results more clearly, we define:

Definition 2.4. Let d : A→ B←C be a cospan consisting of monos and U be an object with
monos a : A→U, b : B→U, c : C→U, such that a,b,c commute with the two legs of the cospan.
That is, [a], [b], [c] are subobjects of U and [a]⊆ [b], [c]⊆ [b].

In the following we write [d̂]U = ([a], [b], [c]) in order to represent a cospan as a triple of
subobjects. When U is clear from the context, we omit it and just write [d̂] = ([a], [b], [c]). Union
and intersection of such triples are defined pairwise.
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2.3 Recognizability

Courcelle [Cou90, Cou94] introduced the notion of recognizability of graph languages as an
analogon to regularity of word languages.

This notion can be extended to arbitrary categories C that are locally small, i.e. for every two
objects the class of arrows between them is a set. Nondeterministic finite automata are commonly
used to investigate properties of regular languages. An analogous notion for recognizable sets of
arrows in a category is given by an automaton functor [BK08].

The intuition behind such automaton functors is the following: a transition function δ : Z×Σ→
P(Z) (where Z is the set of states and Σ is an alphabet) for non-deterministic word automata
can be extended to a transition function δ̂ : Z×Σ∗→P(Z) on words. With some currying and
rearranging we can view δ̂ as a function that maps a word from Σ∗ to a relation on Z and which
furthermore satisfies δ̂ (ε) = idZ and δ̂ (w1w2) = δ̂ (w1)δ̂ (w2) (functoriality conditions).

Similarly we define an automaton as a mapping from cospans of graphs to relations on states,
such that the functoriality conditions above hold. Alternatively one could define automata only on
so-called atomic cospans as in [BBEK12], but – different from word languages – it is necessary
to require that a cospan generates the same relation, independently of its decomposition, which is
already implicit in the functoriality conditions.

Definition 2.5 (Automaton). Let C be any category and let Rel be the category of sets and
relations. Furthermore let J,K be objects of C.

A (J,K)-automaton is a tuple A= (A, I,F), where A is a functor A : C →Rel that maps every
object X of C to a finite set A(X) (called the set of states of X) and every arrow f : X → Y to a
relation A( f )⊆ A(X)×A(Y ). Furthermore there is a set of initial states I ⊆ A(J) and a set of
final states F ⊆ A(K). The functor A is called automaton functor; we often identify A with its
functor A.

An automaton A is deterministic whenever every relation A( f ) is a function and I contains
exactly one element.

The language L(A) of A (which contains arrows from J to K) is defined as follows:

f : J→ K is contained in L(A) if and only if there exist s ∈ I, t ∈ F which are related
by A( f ), i.e., s A( f ) t.

A language LJ,K of arrows from J to K is recognizable in C if it is the language of a (J,K)-
automaton.

Many properties of regular languages can be shown for recognizable languages in a straightfor-
ward way; see [BK08] for proofs.

Proposition 2.6. For every automaton, there exists an equivalent deterministic automaton.

Proof. (Sketch.) The construction is more or less equivalent to the case of finite automata: we
replace every set of states by its powerset.

Proposition 2.7. Suppose we have two recognizable languages of arrows, L1
J,K and L2

J,K . Then
also L1

J,K ∩L2
J,K , L1

J,K ∪L2
J,K and (L1

J,K)
C (the complement of L1

J,K) are recognizable.
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Proof. (Sketch.) Again the construction resembles the case of finite automata: For union and
intersection, we take the cross product of two deterministic automata and define the final states
accordingly. For the complement we exchange final and non-final states of a deterministic
automaton.

3 Closure under Concatenation

From now on we consider as category, over which to define automaton functors, the category of
cospans of monos of a given adhesive category.

We want to prove that recognizable languages over adhesive categories are closed under
concatenation. Let LX ,K be a language of cospans from X to K and LK,Y a language of cospans
from K to Y . Then

LX ,K ; LK,Y = {c1 ; c2 | c1 ∈ LX ,K ,c2 ∈ LK,Y},

consists of all possible compositions of cospans of the two languages.
For regular (word) languages this closure property is well known and given two (non deter-

ministic finite) automata A1 and A2 it is easy to construct an automaton that accepts exactly
L(A1) ; L(A2) by first simulating A1 for the first part of a given word, non-deterministically
switching to A2 and then simulating A2 for the rest of the word. For recognizable languages on
adhesive categories we cannot retain this easy construction because an automaton functor has
to behave identically on different decompositions of the same cospan, as we will show in the
following example.

Example 3.1. We concatenate two rather similar graph automata over the label set Λ = {a,b}.
Automaton 1 accepts a cospan J→ G← K with discrete interfaces of size one of the category
HGraph. The graph G must contain an even number of a-labelled edges, no b-edges and one
vertex. Automaton 2 accepts a cospan J → G← K with discrete interfaces of size one of the
categoryHGraph. The graph G must contain an even number of b-labelled edges, no a-edges and
one vertex. We first specify both automata. As they do essentially the same, we will only specify
A1. We will use the notation #a(G) for the number of a-labelled edges in a graph G.

The first automaton is a 3-tuple A1 = (A1, I1,F1) with

A1(G) =

{
{0,1} if |VG|= 1 and |EG|= 0
/0 otherwise

A1(J→ G← K) =


{(0,0),(1,1)} if #a(G)≡ 0 (mod 2), #b(G) = 0 and |VG|= 1
{(0,1),(1,0)} if #a(G)≡ 1 (mod 2), #b(G) = 0 and |VG|= 1
/0 otherwise

for each cospan of hypergraphs with discrete interfaces of size one. For cospans J→ G← K
that do not have discrete interfaces of size 1, A1(J→ G← K) = /0. Furthermore, I1 = {0} and
F1 = {0}. The second automaton A2 = (A2, I2,F2) is constructed analogously.

To show why we have to use a more complex construction than in the case of regular word
languages, consider the following cospan:
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c =
a

a b

b

This cospan is in the concatenation language because it can be decomposed into

a

a
;

b

b

and the right cospan is clearly accepted byA1, while the right cospan is accepted byA2. However,
it is not possible in general to run the two automata one after the other. The same cospan c can
also be decomposed in

a b
;

a b
.

Because of the functoriality condition, the concatenation automaton must also accept the cospan
in this case, although none of the two constituents cospans are accepted by A1 or A2. In general,
A1 and A2 have to be run in parallel.

We will sketch a constructive proof that recognizable languages on adhesive categories are
closed under concatenation, some technical details are omitted, though. We will start by defining
a concatenation automaton.

Definition 3.2 (Concatenation automaton). Let A1 = (A1, I1,F1) and A2 = (A2, I2,F2) be au-
tomata over cospans of monos of an adhesive category C where A1 is an (X ,K)-automaton and
A2 is a (K,Y )-automaton. We define the concatenation automaton A= (A, I,F) of A1 and A2 as
follows.

• A assigns to each object J a set of states A(J), where each state consists of four monos as
shown below, and two states z1 ∈ A1(U1),z2 ∈ A2(U2).1

K

U

J

U1〈z1〉 U2〈z2〉
ϕK

s1 s2

ϕJ

In addition we require that [s1]∪ [s2] = [idU ] as well as [ϕJ]∪ [ϕK ] = [idU ] and that [ϕJ]∩
[ϕK ] = [s1]∩ [s2]. We want to simulateA1 andA2, so in such a state, U represents the union
of the current interface J of A and the final interface K of A1. Furthermore U1 represents
the current interface of A1 and U2 represents the current interface of A2.2

1 We will indicate the two states within the categorical diagrams in angular brackets.
2 In order to obtain a finite set of states we do not take all monos into U , but only one representative of every subobject
equivalence class.
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Closure Properties of Recognizable Languages

• A state z as above is initial (z ∈ I) if z1 ∈ I1, z2 ∈ I2, s1 = ϕJ and s2 = ϕK .

• Analogously, a state z as above is final (z ∈ F) if z1 ∈ F1, z2 ∈ F2, s1 = ϕK and s2 = ϕJ .

• On cospans the functor A is defined as follows: let c : J � J � J′ be a cospan consisting
of two monos. Two states (s1,s2,ϕJ,ϕK ,z1,z2), (s′1,s

′
2,ϕ

′
J,ϕ

′
K ,z
′
1,z
′
2) are related by A(c)

whenever there are cospans d1,d2,d (consisting of monos) and additional monos such that
the diagram below commutes

U

K

J

U1〈z1〉

U2〈z2〉
U

K

J

U1

U2

U ′

K

J′

U ′1〈z′1〉

U ′2〈z′2〉

υ1 υ ′1
s1

u1
s′1

idK idK

ϕK k ϕ ′K

u u′

ϕJ j ϕ ′J

ι ι ′

s2
u2

s′2

υ2 υ ′2

idK:

d1:

d:

d2:

c:

and the following five conditions are satisfied.

1. [d̂1]∪ [d̂2] = [d]

2. [d̂1]∩ [d̂2] = [ĉ]∩ [îdK ]

3. [ĉ]∪ [îdK ] = [d]

4. It holds that z1A1(d1)z′1 and z2A2(d2)z′2.

5. [u1]∩ [k] = [u′1]∩ [k] and [u2]∩ [k] = [u2]∩ [k] where u2 = υ2 ;u2 and u′1 = υ ′1 ;u1

The meaning of the five objects in the diagram above describing a state can be intuitively
explained with the diagram depicted in the introduction (Section 1): the objects K, J from the
definition above are indicated in that picture and U would be the union of K and J. If we intersect
U with the cospan from X to K we obtain U1 (fully contained in the first cospan) and if we
intersect U with the cospan from K to Y we obtain U2 (fully contained in the second cospan).

Conditions 1–3 above use the notation of Definition 2.4 and extend the conditions a state has
to satisfy to transitions. The fourth condition means that d1 is a cospan that allows a transition
from z1 to z′1 in A1 and that d2 is a cospan that allows a transition from z2 to z′2 in A2. Therefore,
this condition ensures that the concatenation automaton behaves like A1 on U1 and like A2 on U2.
The last condition is in place to guarantee that U1 can only grow regarding K whereas U2 can only
diminish regarding K. Intuitively, we do not want A1 to forget a part of K it has already read and
we do not want A2 to read a part of K anew that it has already forgotten.

To show that the concatenation automaton is indeed an automaton functor, we have to prove
two lemmas. For the remainder of this section we assume that C is an adhesive category and that
each cospan is a cospan consisting of monos in this category.
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Lemma 3.3. Let A= (A, I,F) be a concatenation automaton over C and c be a cospan that can
be decomposed as c = c1 ;c2.

1. If there are states z,z,z′ such that z A(c1) z and z A(c2) z′ then a transition from z to z′ via c
must exist as well, that is z A(c) z′.

2. If z A(c) z′ for states z,z′, then there is a state z such that z A(c1) z and z A(c2) z′, that is,
one can reach every state that is reachable via c by first making a c1-step and then making
a c2-step.

The proof to this lemma is rather technical, although it mainly uses computations of unions and
intersections, and lengthy, so it is omitted here. To allow working just on the subobject-lattice of
U when Lemma 3.2, we used the following supplemental result.

Lemma 3.4. Let a : A→U, b : B→U, c : C→U, d : D→U a′ : A→U1, b′ : B→U1, c′ : C→
U1, d′ : D→U1 and u : U1→U be monomorphisms in an adhesive category. Furthermore, let
a = a′ ;u, b = b′ ;u, c = c′ ;u and d = d′ ;u. Then

(i) [a]∩ [b] = [c]∩ [d] iff [a′]∩ [b′] = [c′]∩ [d′]

(ii) [a]∪ [b] = [c]∪ [d] iff [a′]∪ [b′] = [c′]∪ [d′].

Since the functors of concatenation automata also preserve identities, we thus conclude:

Corollary 3.5. Concatenation automata are automaton functors.

Next we want to show that concatenation automata accept exactly the language we expect them
to accept.

Lemma 3.6. Let A1 be an (X ,K)-automaton, let A2 be a (K,Y )-automaton, let A be the con-
catenation automaton of A1 and A2 and let c be a cospan from X to Y .

1. Whenever c ∈ L(A1) ; L(A2) then c ∈ L(A).

2. Whenever c ∈ L(A) then c ∈ L(A1) ; L(A2).

Proof. Part 1: Let c ∈ L(A1) ;L(A2), then there must be a c1 ∈ L(A1) and a c2 ∈ L(A2) such
that c = c1 ;c2. We will now give a transition for c1 in A that starts in an initial state, then a
composable transition for c2 in A that ends in a final state. As we have already shown that A is a
graph automaton, we have shown that c is accepted by A.

The cospan c1 can be written as c1 = U1 →U ← K, hence we can construct the transition
depicted in the following diagram,

K K KidK :

U U Kd:

d1:

d2:

U1 U Kc1:

U1〈zs1〉 U K〈ze1〉

K〈zs2〉 K K〈zs2〉

9 / 14 Volume XXX (2013)



Closure Properties of Recognizable Languages

where zs1 is the initial and ze1 the final state of the c1-transition in A1, zs2 is the initial and ze2

the final state of the c2-transition in A2. Apart from U , all objects and corresponding arrows are
already known, U and its arrows are defined by first taking the pullback of U1→U and K→U
and then taking the pushout of the resulting arrows, so it is the join of U1→U and K→U . As
before, for each object A the equivalence class of arrows going from A to U is denoted by [a]. We
now have to show that the five properties of state transitions in A hold.

1. [u] = [u]∪ [k], [k]∪ [k] = [k] are obvious, [u] is defined as the join of [u1] and [k], so
[u] = [u1]∪ [k] holds per definition.

2. [k]∩ [k] = [k]∩ [k], [u]∩ [k] = [u]∩ [k] and [k]∩ [u1] = [k]∩ [u1] clearly hold.

3. Once again, [u] = [k]∪ [u1] holds per definition and [u]∪ [k] = [u] as well as [k]∪ [k] = [k]
are obvious.

4. d1 was assumed to be a cospan with zs1A1 (c1)ze1 . As d2 is just the identity and does not
change the state, it has to be a cospan with zs1A2(d2)zs1 .

5. [u]∩ [k] = [k]∩ [k] and [k]∩ [k] = [k]∩ [k] hold obviously.

A transition for c2 in A can be found analogously:

K K KidK :

K U U ′d:

d1:

d2:

K U J′c2:

K〈ze1〉 K K〈ze1〉

K〈zs2〉 U J′〈ze2〉

Apart from U ′, all objects and corresponding arrows are known, U ′ can be obtained as the join of
J′ and K in the same way as U was constructed for the c1-transition. The five properties are easily
proven in the same way as for the c1-transition.

Part 2: Let c ∈ L(A) and an accepting c-transition in A be given as follows:

K K KidK :

U U U ′d:

d1:

d2:

J J J′c:

J〈z1〉 U1 K〈z′1〉

K〈z2〉 U2 J′〈z′2〉

We will show that c = d1 ;d2. As c is in L(A), d1 and d2 must be in L(A1) respectively L(A2), by
the definition of A, hence this is sufficient to show that c ∈ L(A1) ;L(A2). We first observe that
[ j] = [u], because from d2 it follows that [k]⊆ [u2] and from d1 it follows that [k]⊆ [u1] and as
[u1]∩ [u2] = [ j]∩ [k] also [k]⊆ [ j] holds.
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We will now continue to show that d1 and d2 are in fact composable over U , which means that
the pushout can be obtained as the union of U1 and U2. The outer interface of d1 equals the inner
interface of d2 and as we have just seen, [k]⊆ [u1]∩ [u2] holds. Moreover, [u1]∩ [u2] = [ j]∩ [k]⊆
[k], so [u1]∩ [u2] = [k] and therefore the cospans are indeed composable in this sense.

To conclude, we have to show that c and d1 ;d2 are equal. From the conditions a state transition
in A has to fulfill, we know that [u1]∪ [u2] = [u] and thus [u1]∪ [u2] = [ j], hence c = d1 ;d2.

And thus we conclude:

Corollary 3.7. A concatenation automaton accepts exactly the concatenation of the languages of
its constituent automata.

So we have shown:

Theorem 3.8. Recognizable languages in adhesive categories are closed under concatenation
and an automaton accepting the concatenation of two recognizable languages can be computed
from their respective automata via the concatenation automaton.

An important adhesive category is the categoryHGraph so we have particularily shown that the
concatenation of recognizable graph languages is recognizable. A similar result for recognizable
graph languages has been shown in [Cou94], for languages of graphs with a single interface. Note
that here we also generalized this result to the setting of adhesive categories.

Example 3.9. We give a short example of our construction. For this, we will reuse the automata
from example 3.1.

We want to construct the concatenation automaton A = (A, I,F) of A1 = (A1, I1,F1) and
A2 = (A2, I2,F2). In the following we will use the names c,d,J,U, . . . as in Definition 3.2.

We start by defining the states of the automaton: K = D1, the discrete graph with one node,
because the right interface of a cospan accepted by A1 always has one vertex. The equality
J =U =U1 =U2 has to hold, as we are working with discrete interfaces and neither A1 nor A2
accept a graph that has more or less than one vertex. Furthermore we set ϕJ =ϕK = s1 = s2 = idU .
For each combination of z1 ∈ {0,1} and z2 ∈ {0,1} this forms a state. A state is initial whenever
z0 = z1 = 0 and a state is final whenever z0 = z1 = 0.

So now we can define the state transitions of A. For a given cospan c we have to define
z1,z′1,z2,z′2 as well as d1,d,d2, idK is already uniquely defined. Let c = d and c = c1 ;c2 then
d1 = c1, d2 = c2, z1 A1(c1) z′1, z2 A2(c2) z′2 yields a transtion in A and all transitions in A arise
in this way. Looking at the states, one can see that the concatenation automaton reads a given
cospan in such a way that the a-edges are counted separately in z1 and the b-edges are counted
in z2 (both modulo 2). The resulting automaton accepts exactly the cospans of hypergraphs that
have discrete interfaces of size one, exactly one vertex and an even number of a-edges, as well as
an even number of b-edges.

4 Negative Results for Closure Properties

As shown above recognizable languages over adhesive categories are closed under concatenation,
just like regular languages. We already know that recognizable languages are closed under
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complementation, union and intersection. Unfortunately, there are some closure properties that
regular languages enjoy but which do not hold for recognizable languages. To show two negative
results, we will work in the category of cospans overHGraph.

We start by showing that recognizable languages are not closed under Kleene star and we will
start by defining the notion of Kleene star in our setting.

Definition 4.1. Let L be a (K,K)-graph language. Then the Kleene-star of L, written L∗, is the
(K,K)-graph language defined as:

L∗ =
{

σ | there are σ1, . . . ,σn such that σ = σ1 ; · · · ; σn and σi ∈ L for all 1≤ i≤ n
}
.

Hence in our setting we call the language of all cospans of graphs that can be decomposed into
cospans that are in a language L, the language L∗. We will now show that recognizable graph
languages are not closed under Kleene star.

Theorem 4.2. Recognizable graph languages are not closed under Kleene-star.

Proof. Let L be the graph language that contains only the following cospan:

a b

Since this language consists of only one graph it is recognizable. However, L∗ consists of all
cospans of graphs with one vertex (which is both in the inner and outer interface), any number
of a-edges and the same amount of b-edges. But we cannot find a graph automaton over the set
of atomic cospans that accepts L∗, because the set of reachable states has to be the same for any
decomposition of a given cospan in L∗. Thus, it is possible to decompose an accepted cospan in a
way that first reads all a-edges and then all b-edges. Therefore there have to be infinitely many
equivalence classes for an interface of one vertex.

We will now see that recognizable graph languages are not closed under edge substitution (i.e.,
simultaneous substitution of all edges with a certain label, as in hyperedge replacement [Hab92])
either.

Definition 4.3. Let L be a set of graphs over the label alphabet Λ, a ∈ Λ a label for edges of arity
k and G be a fixed graph where a sequence s of k vertices are marked as merge-vertices. The set
L′ of all graphs that are generated by substituting all a-labelled edges by G is the set of graphs
that includes all graphs that can be generated from any graph G′ ∈ L by repeating the following
steps until there is no more original a-edge in G′.

• Let e be an a-edge in G′. Delete e from G′ and remember the sequence of vertices attG′(e).

• Insert a copy of G into G′. Identify the merge-vertices of G with attG′(e), the vertices
previously incident to the a-edge.

Theorem 4.4. Recognizable graph languages are not closed under substitution.
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Proof. Again we will show this by providing a counter-example. First, let L be the language
of all graphs that have exactly one vertex v and an arbitrary number of a-edges of arity 1. As
a substitution graph we will use the graph G that consists of one vertex (that also is the merge-
vertex), one b-edge and one c-edge, both of arity 1. This substitution rule applied to L generates
the language of all graphs with one vertex, any number of b-edges and the same amount of c-edges.
As before we see that this language is not recognizable, whereas L ist recognizable.

5 Conclusion

We gave an explicit construction for an automaton functor which recognizes the concatenation of
the languages of two given automaton functors. More precisely, given an automaton functor AX ,K

accepting a language LX ,K of cospans with domain X and codomain K and an automaton functor
AK,Y accepting a language LK,X of cospans with domain K and codomain Y , we constructed an
automaton functor A which accepts the concatenation of LX ,K and LK,Y . The construction is
non-trivial because we have to make sure that the constructed automaton functor is a functor, that
is, if a cospan c can be decomposed into c = c1 ; c2, it must hold that A(c) =A(c1) ;A(c2). By
giving this construction, we have shown that recognizable languages (of arrows in an adhesive
category) are closed under concatenation.

One application of the construction could be the calculation of strongest post-conditions. Let
a property be given as an automaton functor A, and let p = (`,r) be a graph rewriting rule
in the format of reactive systems [LM00], that is, r and ` are cospans with the same domain
and codomain, and the reduction relation is generated by ` ; c⇒ r ; c for all context cospans
c. We construct an automaton A′ which accepts c if and only if A accepts ` ; c by changing
the initial states of A to the states which are reachable by ` from an original initial state (see
also [BBEK12]). Then we have two recognizable languages, {r} and L(A′) and we obtain the
strongest post-condition by constructing the composition automaton. It is future research to
make this idea more concrete. Note that in this application one of the recognizable languages is
quite simple, consisting of only a single cospan. Another future plan is to find a more efficient
construction for such simple concatenations.

In the final part of the paper we showed, by giving counter-examples, that recognizable
languages are not closed under (a suitable notion of) Kleene star and substitution. Especially the
second negative result is unfortunate, as a similar property for regular word languages played
a key role in the match-bound technique for showing that a string rewrite system terminates
[GHW03]. This makes it hard to transfer the technique to graph transformation systems.

Additional closure properties were considered in [Küp12], which forms the basis of this paper.
Especially [Küp12] contains additional negative results and the proof that recognizable graph
languages are closed under application of inverse context-free rules. Furthermore the construction
of the concatenation automaton, given in this paper, is broken down to atomic cospans, a necessary
requirement for the concrete construction of such automata, which we plan to implement in the
tool RAVEN [BBEK12].
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