
GT-VC 2007

Towards a Systematic Method for
Proving Termination of

Graph Transformation Systems

H. J. Sander Bruggink1,2

Institut für Informatik und Interaktive Systeme, Universität Duisburg–Essen
Duisburg, Germany

Abstract

We describe a method for proving the termination of graph transformation systems. The method is based
on the fact that infinite reductions must include infinite ‘creation chains’, that is chains of edges in different
graphs of the reduction sequence, such that each edge is involved in creating the next edge. In our approach,
the length of such creation chains is recorded by associating with each edge label a creation depth, witch
denotes the minimal length of a creation chain from an edge in the initial graph to that edge. We develop an
algorithm which can prove the absence of such infinite chains (and therefore termination), analyse problems
of the approach and propose possible solutions.

1 Introduction

Proving termination of graph transformation systems (gtss) has applications in
model transformation, program analysis and modelling dynamic systems. This
has brought about emerging interest in finding termination techniques for gtss
[4,3,6,16,10].

In term and string rewriting, proving termination has historically attracted much
more attention. Many general techniques for proving termination have been devised,
even to the point that many of them can be used to automatically obtain termination
proofs of specific rewrite systems. The most succesful of these techniques make use
of the fact that infinite reduction sequences must have infinite ‘creation chains’,
that is infinite chains of symbols f1, f2, f3, . . . in different terms of the reduction
sequence, such that each symbol of the sequence is involved in creating the next
symbol [12,1,8,5]. Proving that such chains do not exist is often easier than proving
termination of a rewrite system directly.

1 Partially supported by DFG project SANDS.
2 E-mail: sander.bruggink@uni-due.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:sander.bruggink@uni-due.de

Bruggink

Although termination techniques for term rewriting have been transferred to
the area of term graph rewriting (see e.g. [13] for an overview), transferring proof
techniques to the general form of graph rewriting is often not directly possible,
because they make use of the inherent hierarchical nature of terms and strings. Still,
we think it is a worthwile area of research to see how much of the theory can be
ported to a graph rewriting setting.

In this paper we describe ongoing research to develop a method for proving the
termination of gtss based on the “absence of infinite creation chains” approach.
We do not focus on proving non-existence of infinite reduction sequences starting
from one particular source graph, such as most other termination results for gtss,
but instead on proving non-existence of infinite reduction sequences starting from
arbitrary members of infinite classes of graphs, which we will call regular graph
languages. Additionally, we describe an algorithm which can find termination proofs
for some graph transformation systems automatically. Finally, we analyse problems
of the approach and propose possible solutions.

2 Preliminaries

We work with edge-labelled directed graphs and employ the double pushout (dpo)
approach to graph transformation. We refer to the standard literature for definitions
and discussion, e.g. [7,15]. Here, we just recapitulate the most important concepts
that are needed in some more detail later.

Given a set Σ of labels, a Σ-graph is given by G = 〈VG, EG, srcG, tgtG, labG〉,
where: VG is the set of nodes, EG is the set of edges, src, tgt : EG → VG are resp.
the source and target function, and labG : EG → Σ is the labelling function. We
restrict our attention to finite graphs, i.e. we assume that VG and EG are finite sets.

Let a graph morphism be defined as usual. A Σ-production is then a pair of
injective graph morphisms L ← K → R, where L is called the left-hand side, R

the right-hand side and K the interface of the production. Throughout the paper
we assume that each production is discrete (i.e. K contains only nodes) and edge-
consuming (i.e. L contains at least one edge). Graph productions are represented
graphically by drawing the left-hand side and the right-hand side in which some
nodes are named. The interface can be reconstructed by taking only the named
nodes, and the morphisms will be just the identities.

We define a gts to be a set of graph productions, i.e. we do not fix a start graph
as usual. Instead, we define termination relative to a set of possible start graphs:

• R is terminating on a Σ-graph G, if no infinite reduction sequence from G exists.
In this case, we also say that G is R-terminating.

• R is terminating on a set of Σ-graphs L, if it is terminating on each G ∈ L. In
this case, we also say that L is R-terminating.

• R is terminating, if it is terminating on the set of all Σ-graphs.

2

Bruggink

3 Finite graph automata

3.1 Regular graph languages

The following notion of a finite graph automaton is a generalization of the notion of
finite (string) automaton. If a string is encoded as a graph in the usual way, that
is, as a linear graph with the string’s symbols as edge labels, a finite automaton
accepts the string if and only if a graph morphism exists from the string into the
automaton (taking care that the first symbol of the string is mapped to an edge
leaving a start state, and the last symbol to an edge entering an accepting state).
This definition can be straightforwardly generalized to graphs in the following way:

Definition 3.1 A finite graph automaton (fga) A is a finite graph. A graph G is
accepted by a finite graph automaton A if there exists a morphism f : G→ A. The
language accepted by a fga A is defined as:

L(A) := {G | ∃f : G
f→ A}

fgas A and B are equivalent if L(A) = L(B).
A set of graphs L is a regular graph language if L = L(A) for some fga A.

We will use fraktur uppercase letters for fgas, while we use ‘normal’ uppercase
letters for other graphs.

The class of regular graph languages as defined here is incomparable to the class
of graph languages which can be recognized by context free (edge replacement) graph
grammars [9]. On the one hand, the language of all graphs over a certain label set
is regular because it is accepted by the final graph over that label set; it is however
not context free (cf. Theorems IV.3.3, IV.3.4 and IV.3.6 of [9]). On the other hand,
the language of all finite trees is context free but not regular.

The definition of finite graph automaton is similar to the definition of a type
graph: a regular graph language is the set of graphs of a specific type. However,
where a type graph is usually meant to be a static structure which is set up in
advance, our aim is the other way around: given an untyped graph transformation
system, we want to generate an automaton which accepts all the reachable graphs.
For this reason, we prefer to maintain different terminology.

3.2 Minimization of finite graph automata

Lemma 3.2 Let two fgas A and B be given. A and B are equivalent if and only
if there exists a morphism A→ B and a morhpism B→ A.

Proof. Directly from the definitions and the fact that the composition of two
morphisms is a morphism again. 2

3

Bruggink

Example 3.3 Consider the following fgas:

A: •

A

B: • •
A

A

In many notions of equivalence of graphs the (nodes of the) above two fgas are
considered equivalent because they represent the same (regular) tree; see e.g. [11].
However, here they are not equivalent because they do not accept the same regular
graph language: the A-loop is accepted by A but not by B.

Example 3.4 Consider the following fgas:

A: ••
1

•
2A A

B: • •A

A and B are equivalent (accept the same graph language) because there exists a
morphism from A to B (so every graph in L(A) is also in L(B)) and also a morphism
from B to A (so every graph in L(B) is also in L(A)).

In Example 3.4, the left automaton is clearly more “complex” than the right one:
either the left-most or the right-most node of the left graph (marked 1 and 2 in the
figure, respectively) is superfluous: for every morphism which maps a node to node
1, there is an alternative morphism which maps the same node to 2. So, node 1

and the edge leading to it could be removed without affecting the accepted graph
language. This observation gives rise to the question of whether or not we can find
a minimal fga among an equivalence class of fgas. We define a minimal fga to be
an fga which does not contain redundancy in the way illustrated above.

Definition 3.5 A fga A is minimal if every morphism f : A→ A is an isomorphism,
i.e. A has no non-trivial automorphisms.

Definition 3.6 Let a fga over the signature Σ, A = 〈V,E, src, tgt, lab〉, and an
automorphism f : A→ A be given. The lessening of A over f is defined as follows:

lessf (A) = 〈V ′, E′, src′, tgt′, lab′〉

where:

• V ′ = V � Rng(f)
• E′ = E � Rng(f)
• src′ = src � (V ′ × E′)
• tgt′ = tgt � (V ′ × E′)
• lab′ = lab � (E′ × Σ)

Lemma 3.7 Let A be an fga.

(i) There exists a morphism from A to lessf (A).

4

Bruggink

(ii) There exists a morphism from lessf (A) to A.

(iii) L(A) = L(lessf (A)).

(iv) A = lessf (A) if and only f is an isomorphism.

Proof. (i) Because the nodes and edges of lessf (A) are exactly the ones which are
in the domain of f , f itself functions as a morphism from A to lessf (A).

(ii) By construction, lessf (A) is a subgraph of A, and therefore the identity
functions as a morphism from lessf (A) to A.

(iii) Suppose g : G→ A. Then by (i), (g ; f) : G→ lessf (A). Inversely, suppose
g : G→ lessf (A). Then by (ii), (g ; id) : G→ A.

(iv) Because the domain and range of automorphisms are the same (and finite),
surjectiveness coincides with injectiveness and thus with being an isomorphism. By
construction, f is surjective if and only if A = lessf (A). 2

In view of the above Lemma, it is easy to construct an equivalent minimal fga from
a given one. We now show that every equivalence class of fgas has a unique (up to
isomorphism) minimal element:

Lemma 3.8 If M and N are minimal fgas such that L(M) = L(N), then M and
N are isomorphic.

Proof. Since M and N accept the same language, there must be morphisms f :
M → N and g : N → M. By definition of minimality, (f ; g) and (g ; f) are
isomorphisms. From this it follows that f and g are isomorphisms as well. 2

4 Annotating GTSs with creation heights

We record creation heights of edges by annotating the edges of a graph with a
natural number representing the creation height. The creation heights of the edges
in the source graph of a reduction sequence are initialized to 0, and in each step the
creation height of edges in the target of the step is equal to the least creation height
of the edges involved in creating it plus one. Thus, the creation height of an edge
represents the minimal length of the ‘creation chains’ to that edge. The absence
of infinite creation chains is now equivalent to the creation heights in a reduction
being bounded by some natural number.

First we define functions which translate annotated and non-annotated graph
into each other: liftn(G) annotates each edge of G with the creation height n, while
proj(G) removes all annotations from the annotated graph G.

Definition 4.1 Let Σ be a set of labels. We define the maps proj(·) and liftn(·)
between Σ-graphs and (Σ× N)-graphs as follows:

• Let G be a Σ-graph. We define: liftn(G) := 〈VG, EG, srcG, tgtG, lab′〉 where
lab′(x) := 〈lab(x), n〉.

• Let G be a (Σ× N)-graph. We define: proj(G) := 〈VG, EG, srcG, tgtG, labG ; π1〉
where π1 is the projection function: π1(〈x, y〉) := x.

5

Bruggink

Definition 4.2 The set of heights of a (Σ× N)-graph G is defined as:

hts(G) := {n | 〈l, n〉 ∈ Rng(labG)}

where for a function f we define Rng(f) to be the range of f , i.e.: Rng(f) :=
{b ∈ B | f(a) = b for some a ∈ A}. The set of heights of a reduction sequence of
(Σ× N)-graphs ρ = G0 ⇒ G1 ⇒ G2 ⇒ · · · is defined as: hts(ρ) :=

⋃
0≤i≤|ρ| hts(Gi).

In the following, the set Σ of labels will be fixed. (Σ × N)-graphs will be called
annotated graphs. A label 〈l, n〉 of an annotated graph will be denoted by ln. The
same convention is used for productions, steps, reductions, etc.

Definition 4.3

• An annotated graph G? is called an annotation of a graph G, if proj(G?) = G.
The set of annotations of a graph G is denoted by Ann(G).

• An annotated graph production p? : L? l← K? r→ R? is an annotation of a
production p : L

l← K
r→ R if

· proj(L?) = L

· R? = liftc(R), where c = min(hts(L∗)) + 1 3 , and
· K? = K.
(Note that the assumption that all productions are discrete assures that l and r

are morphisms from K? to L? and from K? to R?, resp.)
The set of annotations of a graph production p is denoted by Ann(p).

• If R is a gts, then its annotation RN is defined as: RN =
⋃

p∈RAnn(p).

Example 4.4 The annotation of the gts It on the left, consists of all rules of the
form on the right, where e = min{c, d}+ 1.

It : •
1

•
2

A

B

⇒ •
1

•
2

A

B

ItN: •
1

•
2

Ac

Bd

⇒ •
1

•
2

Ae

Be

The creation heights of the right-hand side are all strictly larger than the lowest
creation height of the left-hand side.

Note that the annotation RN of a gts R contains infinitely many rules. This is no
problem in either theory or practice. Given an annotated graph G? and a morphism
m from the left-hand side of a (non-annotated) production p : L ← K → R into
proj(G?), we can construct the unique annotated production p? : L? ← K? → R?

such that m is a morphism of L? into G?. In other words, the technique of this
paper can be implemented by creating the needed annotated rules on the fly.

The following proposition follows from the fact that, for each L∗, there is a unique
R∗ such that L∗ ← K∗ → R∗ is an annotation.

Proposition 4.5 Let R be a gts and RN its annotation.

3 Alternatively, we could define c = max(hts(L∗)) + 1. In this case, all the results of Sect. 4 would still hold.
However, with min we obtain a stronger termination criterion in Sect. 5.

6

Bruggink

For each R-step G ⇒p,m H and annotated graph G? ∈ Ann(G), there exists
a unique RN-step G? ⇒p?,m H? such that p? ∈ Ann(p). Moreover, it holds that
H? ∈ Ann(H).

It follows from Prop. 4.5 that for each reduction sequence ρ = G0 ⇒ G1 ⇒ · · ·
there exists a unique annotated reduction sequence ρ? = G?

0 ⇒ G?
1 ⇒ · · · such that

G?
0 = lift0(G0) and proj(G?

i) = Gi for each Gi in the reduction sequence. In the
following, this reduction sequence will be called the canonical annotation of ρ, and
denoted by ρN. In the following, we will use hts(ρ) as a synonym for hts(ρN).

We can now show that a reduction sequence is infinite if and only if there is no
bound on its creation heights. The property depends on the assumption that at
least one annotation (in particular the minimal one) is replaced by an (arbitrary
amount of) strictly bigger annotations, which is assured by the assumptions that
interfaces are discrete and each left-hand side contains at least one label.

Theorem 4.6 A reduction sequence ρ is finite if and only if there is a b ∈ N such
that for every c ∈ hts(ρ) it holds that c < b.

Proof. (⇒) Trivial.
(⇐) Assume that b is the bound on the creation heights of ρ. We associate

with each graph in the reduction sequence an array x0, . . . , xb of natural numbers,
where xc denotes the number of edges in the graph that have annotation c. These
sequences can be ordered lexicographically, yielding a well-founded ordering on such
arrays. According to this ordering the graphs strictly decrease in every step of the
sequence, therefore the sequence is finite. 2

5 Proving termination

In this section we describe a method to prove termination of graph rewriting. In
particular, we are interested in the question of whether or not a gts is terminating
on a regular graph language. However, for ease of presentation, we first consider the
weaker question of whether or not an infinite reduction sequence exists from a single
graph. It will turn out that the technique developed for graphs is easily extended to
regular graph languages.

5.1 Termination on a single graph

In order to find out whether or not there is a bound on the creation heights of the
graphs reachable from a specific graph, we use the notion of unwinding, which is
essentially a simpler form of unfolding [2]: it encodes in an economical way the
graphs which are reachable from a specific graph, so that some properties of the gts

(combined with the start graph) can be read from it.

Definition 5.1 Let R be a gts. A graph U is a R-unwinding of a graph G, if there
is a morphism h : G → U , and for each production L ← K → R and morphism
f : L → U , there exists a morphism g : R → U such that the following diagram

7

Bruggink

commutes:
L K R

U
f g

Lemma 5.2 Let a gts R and a graph G be given, and let U be a R-unwinding of
G. For each graph H such that G⇒∗ H there exists a morphism eH : H → U .

Proof. By induction on the length of the reduction sequence G⇒∗ H. If the length
of the reduction is 0, then the lemma follows immediately. Otherwise, G⇒∗ H ′ ⇒ H,
where a production p : L← K → R is responsible for the last step. By definition of
unwinding, there exists a morphism g : R → U , and by the induction hypothesis,
there exists a morphism eH′ : H ′ → U , so we have the following situation:

L K R

H ′ D H

U

(1)

l r

m d m′

l′ r′

eH′

g

eH

The existence of the dashed morphism eH follows from the morphisms (l′ ; eH′) and
g, and the fact that the right square (marked (1) above) is a pushout by definition.2

Corollary 5.3 Let a gts R and a graph G be given. Furthermore, let U? be a
RN-unwinding of lift0(G). G is R-terminating if and only if there is a bound on the
creation heights of U?.

Proof. Suppose there exists an infinite R-reduction sequence from G. Then there
exists an infinite RN-reduction sequence from lift0(G) by Prop. 4.5. By Theorem 4.6,
the creation heights in this reduction sequence are unbounded, and therefore by
Lemma 5.2 the creation heights of U? are unbounded. 2

This provides us with the following systematic method for proving that, given a gts

R, no infinite R-reduction sequence exists from a given graph G:

(i) “Construct” the annotation RN of R.

(ii) Construct a RN-unwinding U of lift0(G). Constructing an unwinding will be
the topic of Sect. 6.

(iii) G is R-terminating if and only if there is a bound on the creation heights of U .
In practice, we will use the fact that a finite unwinding always has a bound on
the creation heights.

Note that the method is not be total (it can’t be, because termination of gtss is
non-decidable in general [14]), in particular the second step will loop forever if the
gts does not terminate.

8

Bruggink

Example 5.4 Consider the one-production gts It from Ex. 4.4 and the following
graph G:

G: • • • •
A A A

B

An unwinding of lift0(G) is the following annotated graph:

• • • •
A0

A1

B0 A0

A1

A2

B1 A0

A1

A2

A3

B1

B2

B3

The It-unwinding is finite, and thus the creation heights are bounded, so we conclude
that no infinite It-reduction exists from G.

5.2 Termination on a regular graph language

Because of the way we have set things up, the results of the previous section are
easily generalized from proving termination of a single graph to proving termination
of a regular graph language. The following auxiliary result, which follows from the
fact that the composition of two morphisms is a morphism again, is responsible for
this.

Lemma 5.5 Let R be a gts, A a fga and G ∈ L(A) a graph. Every R-unwinding
of A is an R-unwinding of G.

From this lemma and the results of the previous section, the following result can be
easily proved:

Lemma 5.6 Let R be a gts, A be a fga and U be a R-unwinding of A. For each
G ∈ L(A) and H such that G⇒∗ H, it holds that there is a morphism f : H → U.

It is easy to see that, for an fga A, we have L(lift0(A)) = {lift0(G) | G ∈ L(A)},
and thus we have the following corollary:

Corollary 5.7 Let a gts R and a fga A be given. Furthermore, let U? be a
RN-unwinding of lift0(A). L(A) is R-terminating if and only if there is a bound on
the creation heights of U?.

This provides us with the following systematic method for proving that, given a gts

R and a fga A, no infinite reduction sequence exists from any member of L(A):

(i) Construct the annotation RN of R.

(ii) Construct an RN-unwinding U? of lift0(A).

(iii) L(A) is R-terminating if and only if there is a bound on the creation heights of
U?.

In the next section we will discuss an algorithm to construct an unwinding of a
graph or fga.

9

Bruggink

Example 5.8 Consider the fga G := G, where G is the graph from Ex. 5.4, and let
the gts It from the same example be given. The language L(G) consists of all acyclic
graphs with maximal path length 3, and because there is a bound on the creation
heights in an unwinding of lift0(G), we conclude that L(G) is It-terminating.

Example 5.9 Let the following gts Tr and fga A be given:

Tr : •1 •
2

A
C

B

•1 •
2

A
C

⇒ A: •

A

B C

Note that L(A) contains all graphs over the signature A,B, C. An unwinding of
lift0(A) is the following:

• A0

A1
B0

C0
A1

Since the creation heights in the unwinding are bounded (because it is finite) we
conclude that Tr is terminating on the class of all {A,B, C}-graphs.

Note that in Ex. 5.8 and Ex. 5.9, we show termination of an infinite class of graphs,
in the second case even of the class of all graphs (over the signature). Many other
termination techniques for gtss, on the other hand, focus on proving termination of
a single source graph.

6 Constructing unwindings of graphs

The method described above depends on constructing an unwinding of the initial
annotation of a graph. Since this unwinding is necessarily infinite if there is no bound
on the creation heights, we cannot hope to find an algorithm which always terminates.
However, usually the goal is to prove termination rather than non-termination, and
thus a semi-decision procedure is already useful. We analyse the following algorithm:

Algorithm 1

given: a tuple 〈R, G〉, where R is a gts and G a graph;
U := G;
do

S := {(L← K → R) ∈ R |
there exists a morphism f : L→ U ,
but there is no morphism R→ U such that
the following diagram commutes:

L K R

U

l r

f };
if S 6= ∅ then

10

Bruggink

(L← K → R) := an arbitrary element of S ;
Construct the following pushout:

K

L

R

U U ′

l

r

f

U := U ′;
endif;

until S = ∅;
output: U ;

It is easy to show that if Algorithm 1 terminates on input 〈R, G〉, then its output
is an R-unwinding of G. For example, the unwindings of Ex. 5.4 and Ex. 5.9
can be found by running the algorithm. However, the algorithm does not always
terminate, not even in some cases in which a finite unwinding exists. Consider as a
counter-example the following one-production gts Bad and graph G:

•
1

•
2

A

B

⇒ •
1

•
2

•

A

B

A

Bad : • •A

B

G:

The gts Bad is obviously terminating on finite graphs without A-cycles, or even
more generally, on graphs without infinite A-paths. However, the following is now a
run of the algorithm (starting from the initial annotation lift0(G)), which increases
the number of A1-edges in every step:

• •A0

B0

⇒ • •

•
A1

A0

A1

B0 B1

⇒ • •

••

A1

A0

A1

A1

B1

A1

B0 B1

⇒ · · ·

Note that the bound on the creation heights in graphs of the sequence (except the
first) is 2. In the example above, the solution is to include a minimization step in the
while-loop. In this case the second graph in the above sequence would be minimized
to:

• •
A1

A0

B0 B1

11

Bruggink

which is a finite unwinding of the initial annotation of G. However, minimization
will not work in general. Consider the following gts:

• 1

•
2

•
3

A

B

C0

⇒

• 1

•
2

•
3

•
A

B

The following is (the beginning of) an infinite run of the algorithm with minimization:

•

• •

A0

B0

C0

⇒

•

• • •

A0

B0

C0

A1

B1

⇒

•

• • • •

A0

B0

C0

A1

B1

A1

B1

Note that all graphs of the sequence are minimal, but that the highest creation
height obtained is 1.

7 Related Work

As mentioned in the introduction, there exist several other results in the area of
gtss. Many of the results, however, focus on proving termination from a single
source graph, whereas our method proves termination from an infinite class of source
graphs.

The most related termination technique is the approximation-based approach by
Varró et al. [16]. Both results are not complete, in the sense that terminatiing gtss
exist for which the technique cannot prove termination. The approximations of [16]
ignores the structure of the graph, and focusses on the number of occurrences of
elements of certain type. In contrast, our approach can take the structure of the
source graph(s) into account.

A more direct comparison of the two methods, for example with case studies,
would be interesting, but is outside the scope of this paper.

8 Conclusion and future work

We describe a method to prove termination of gts. The method works by showing
that a reduction does not contain infinite creation chains, or equivalently, that the
creation heights in a reduction are bounded by a natural number. This is done by
encoding the graphs which are reachable from a given regular graph language in a
so-called unwinding.

12

Bruggink

As it stands, the algorithm which constructs the unwinding does not always
terminate, not even in the case of some reasobly simple terminating gtss. However,
restricting the algorithm to a certain number of steps, does yield an algorithm which
either proves termination, or results in an “unkown” answer. Such an algorithm can
be useful in praxis.

Also, the method shows termination of infinite classes of graphs. Most other
termination results for gtss focus on a single source graph.

For the above reasons, we feel the method is promising to investigate further.
Possible improvements and ideas for further research include:

• Obtaining similar results for more expressive classes of graph languages. Regular
graph languages are not expressive enough to recognize the class of acyclic finite
graphs or even the class of finite trees, while non-cyclicity is can be an important
property for proving termination. Combining creation heights with more expressive
classes of graph languages may provide stronger results.

• Extending the method to gtss with negative application conditions. This is a
non-trivial extension because, where the creation heights of edges depend on other
edges which are present, negative application conditions typically allow certain
transformation steps only in the case that something is not present.

• Extending the method also to non-termination proving. It is also interesting to see
whether conditions can be found on the basis of which non-termination can be
concluded.

References

[1] Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency pairs. Theoretical
Computer Science, 236(1–2):133–178, 2000.

[2] Paolo Baldan. Modelling Concurrent Computations: From Contextual Petri Nets to Graph Grammars.
PhD thesis, Dipartimento di Informatica, Università di Pisa, 2000.

[3] Paolo Bottoni, Kathrin Hoffman, Francesco Parisi Presicce, and Gabriele Taentzer. High-level
replacement units and their termination properties. Journal of Visual Languages and Computing,
2005.

[4] Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer. Termination of high-level
replacement units with application to model transformation. ENTCS, 127, 2005.

[5] H. J. Sander Bruggink. A proof of finite family developments for higher-order rewriting using a prefix
property. In Proceedings of RTA ’06. Springer, 2006.

[6] Hartmut Ehrig, Karsten Ehrig, Juan de Lara, Gabriele Taentzer, Dániel Varró, and Szilvia Varró-Gyapay.
Termination criteria for model transformation. In Proceedings of FASE ’05. Springer, 2005.

[7] Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. Graph-grammars: An algebraic approach.
In FOCS, 1973.

[8] Alfons Geser, Dieter Hofbauer, and Johannes Waldmann. Match-bounded string rewriting. Applicable
Algebra in Engineering, Communication and Computing, 15(3–4):149–171, 2004.

[9] Annegret Habel. Hyperedge Replacement: Grammars and Languages. Springer, 1992.

[10] Tihamér Levendovszky, Ulrike Prange, and Hartmut Ehrig. Termination criteria for DPO transformations
with injective matches. In Proceedings of the GT-VC workshop at CONCUR ’06. Elsevier, 2007. To
appear.

[11] Laurent Mauborgne. An incremental unique representation for regular tree. Nordic Journal of
Computing, 7(4):290–311, 2000.

[12] Vincent van Oostrom. Finite family developments. In Proceedings of RTA ’97. Springer, 1997.

13

Bruggink

[13] Detlef Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,
Handbook of Graph Grammars II. World Scientific, 1997.

[14] Detlef Plump. Termination of graph rewriting is undecidable. Fundementa Informaticae, 33(2):201–209,
1998.

[15] Grzegorz Rozenberg, editor. Handbook of Graph Grammars. World Scientific, 1997.

[16] Dániel Varró, Szilvia Varró-Gyapay, Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Termination
analysis of model transformations by Petri Nets. In Proceedings of ICGT ’06. Springer, 2006.

14

	Introduction
	Preliminaries
	Finite graph automata
	Regular graph languages
	Minimization of finite graph automata

	Annotating GTSs with creation heights
	Proving termination
	Termination on a single graph
	Termination on a regular graph language

	Constructing unwindings of graphs
	Related Work
	Conclusion and future work
	References

