
Residuals in Higher-Order Rewriting∗

H. J. Sander Bruggink†

May 6, 2003

Abstract. Residuals have been studied for various forms of rewrit-
ing and residual systems have been defined to capture residuals in an
abstract setting. In this article we study residuals in orthogonal Pat-
tern Rewriting Systems (PRSs). First, the rewrite relation is defined
by means of a higher-order rewriting logic, and proof terms are defined
that witness reductions. Then, we have the formal machinery to define
a residual operator for PRSs, and we will prove that an orthogonal
PRS together with the residual operator mentioned above, is a resid-
ual system. As a side-effect, all results of (abstract) residual theory are
inherited by orthogonal PRSs, such as confluence, and the notion of
permutation equivalence of reductions.

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Higher-Order Rewriting . 3
2.2 Residual Theory . 4

3 Higher-Order Rewrite Logic 6

4 Higher-Order Term Residual Systems 7
4.1 A First Attempt . 8
4.2 Residuals of Compatible Reductions 8
4.3 Proof of Theorem 4.7 . 14
4.4 Computing Residuals . 17

∗This paper will appear (in a shortened form) in the proceedings of RTA 2003. Because
examples have been added in this version, the numbering of the theorems and lemmas may
differ from the conference version.
†Department of Philosophy, Utrecht University, email: bruggink@phil.uu.nl, web:

http://www.phil.uu.nl/~bruggink

1

5 Orthogonality 19
5.1 Compatibility Is Orthogonality 20
5.2 Residuals of Orthogonal PRSs 21

6 Concluding Remarks 22

1 Introduction

This paper deals with residual theory: what remains of a reduction after
another reduction from the same object has been performed? Let ϕ and ψ be
reductions. Intuitively, the residual of ϕ after ψ, written ϕ/ψ, should consist
of exactly those steps of ϕ which were not in ψ. In the literature, residuals
have been studied in various degrees of abstraction [2, 3, 4, 6, 8, 13, 14], and
for various forms of reduction (e.g. reduction in the λ-calculus, first-order
term rewriting, and concurrency theory). In this paper we study residuals in
a subclass of Higher-order Rewriting Systems (HRSs), orthogonal Pattern
Rewriting Systems (orthogonal PRSs).

Even in first-order term rewriting, calculating residuals is a non-trivial
task. Performing a reduction may duplicate the redexes of other reductions,
thus potentially increasing the length of their residuals. In the higher-order
case, the problems caused by duplication are more severe: now, copies of the
same redex may get nested. Consider the orthogonal PRS which consists of
the following two rules:

µ : λz.mu(λx.z(x)) → λz.z(mu(λx.z(x)))
ρ : λx.f(x) → λx.h(x, x)

Consider the term s = mu(λx.f(x)). The rule µ can be applied to the whole
term (because (λz.mu(λx.z(x)))(λx.f(x)) =β s) and the rule ρ can be ap-
plied to the subterm λx.f(x), so the following steps exist from s:

ϕ : mu(λx.f(x)) → f(mu(λx.f(x)))
ψ : mu(λx.f(x)) → mu(λx.h(x, x))

The residual of ψ after ϕ is the reduction

f(mu(λx.f(x))) → h(mu(λx.f(x)),mu(λx.f(x))
→∗ h(mu(λx.h(x, x)),mu(λx.h(x, x)))

in which we see that one copy of the ρ-redex duplicates another (nested)
copy of the ρ-redex.

In this paper we define a projection operator for proof terms, which
are witnesses to multistep reductions. The operator projects one proof term
over another and returns the residual of that proof term after the other. We
define the projection operator by means of an inference system (postponing
the proof that it is actually defined on orthogonal PRSs to the last part of
the paper), prove that a PRS with projection operator is a residual system,
and give an algorithm which calculates residuals.

2

2 Preliminaries

2.1 Higher-Order Rewriting

We use Higher-order Rewriting Systems (HRSs) [7]. In fact, we consider
HRSs as HORSs [12] with the simply typed λ-calculus as substitution calcu-
lus. We presuppose working knowledge of the λ-calculus, but in this section
we will quickly recall the important notions of HRSs.

We fix in advance a signature Σ of simply typed constants (over a set
of base types B)1. Preterms are simply typed λ-terms over Σ. We iden-
tify α-equivalent preterms. We consider βη-equivalence classes of preterms.
Since it is well-known that β-reduction combined with restricted η-expansion
(βη-reduction) is both confluent (modulo α-equivalence) and strongly nor-
malizing, we can consider βη-normal forms as unique representatives of the
βη-equivalence classes. So, we define: terms are preterms in βη-normal form.
A context is a term of the form λx.C0, such that x occurs free in C0 exactly
once.

We write stu for (st)u, and we use, for arbitrary (pre)terms s, t1, . . . , tn,
the following notation: s(t1, . . . , tn) = st1 . . . tn. Often, s will just be a
function symbol, but the same notation is used if s is a term of the form
λx1 . . . xn.s0.

A term s is a pattern if all of its free variables x occur in some subterm
of s of the form x(y1, . . . , yn), where the yi are distinct bound variables.

Definition 2.1. A rewrite rule is a tuple l = λx1 . . . xn.l0 → λx1 . . . xn.r0 =
r, where l (the left-hand side) and r (the right-hand side) are closed terms of
the same type, and l is not η-equivalent to a variable. The rule is left-linear
if x1, . . . , xn occur in l0 exactly once.

A Higher-order Rewrite System (HRS) H is a set of rewrite rules. H is
left-linear, if all its rules are. An HRS is a Pattern Rewrite System (PRS)
if, for all of its rules λx1 . . . xn.l0 → λx1 . . . xn.r0, l0 is a pattern.

Let H be an HRS. We define the rewrite relation →H as follows [16]:
s rewrites to t, written s →H t (the subscript is omitted if clear from the
context), if there is a context C and a rule l → r ∈ R, such that s�β C(l)
and C(r)�β t. By →∗H we denote the reflexive, transitive closure of →H.

Example 2.2. Consider the PRS which consists of the single rule

l = λz.mu(λx.z(x))→ λz.z(mu(λx.z(x))) = r

and the term s = mu(λx.f(x)). Let C = λv.v(λx.f(x)). Now C(l) �β s.
Because C(r) �β f(mu(λx.f(x))) = t, it is the case that s → t. Let C ′ =
λv.f(v(λx.f(x))). Then C ′(l) �β t and C ′(r) �β f(f(mu(λx.f(x)))) = u,
so we know that s→ t→ u.

1All definitions must be read as having the signature as an implicit parameter.

3

This example shows why our definition of the higher-order rewrite re-
lation does not require substitutions such as in first-order term rewriting:
the role of the substitutions is taken over by the context, and the act of
substituting is done by the β-reductions.

Sometimes, the outermost abstractions in the rules will be omitted.
For instance, the rule of Example 2.2 may be written as mu(λx.z(x)) →
z(mu(λx.z(x))), where it is assumed that the free variable z is in fact bound
by an invisible abstraction.

The most important reason one might have to use PRSs, is the following
result of Miller [10]: unification of patterns is decidable, and if two patterns
are unifiable, a most general unifier can be computed. This entails that the
rewriting relation induced by a PRS is decidable.

We mention the following property of higher-order rewriting. It is non-
trivial due to the implicit β-reductions in su and tv. Proofs can be found in
[7, 12].

Proposition 2.3. Let s, t, u, v be terms. If s→∗ t and u→∗ v then su→∗
tv.

2.2 Residual Theory

Residual theory was studied in, among others, [2, 3, 4, 6, 8]. In this section,
we present residuals in an abstract setting, following [13, 14], which was, in
turn, based on [17]. If ϕ and ψ are reductions from the same object, in an
arbitrary form of rewriting, then what can we tell in general of what the
residual of ϕ after ψ must look like?

The most general form of rewriting system, which, for that reason, we
will use in this section, is an abstract rewriting system (ARS). An ARS is a
structure R = 〈A,R, src, tgt〉 where A is a set of objects, R is a set of steps,
and src and tgt are functions from R to A, specifying the source and target
of the steps, respectively. Two steps are called coinitial if they start at the
same object.

An abstract rewriting system with composition (ARSC) is a structure
R = 〈A,R, ·, src, tgt〉 such that 〈A,R, src, tgt〉 is an ARS (the elements of
R are now called reductions) and · (the composition operator) is a function
from pairs ϕ,ψ ∈ R with tgt(ϕ) = src(ψ) to elements of R. An ARSC can be
converted to an ARS in the obvious way, i.e. by leaving out the composition
operator.

Definition 2.4. A residual system is specified by a triple 〈R, 1, /〉 where:
R is an (abstract) rewriting system; 1 is a function from objects (of R) to
steps, such that src(1(s)) = tgt(1(s)) = s; and /, the projection function, is
a function from pairs of coinitial steps to steps, with src(ϕ/ψ) = tgt(ψ) and

4

tgt(ϕ/ψ) = tgt(ψ/ϕ), such that the following identities hold:

1/ϕ = 1
ϕ/1 = ϕ
ϕ/ϕ = 1

(ϕ/ψ)/(χ/ψ) = (ϕ/χ)/(ψ/χ)

A residual system 〈R, 1, /〉 is a residual system with composition, if R is an
ARSC, and the following identities hold:

1 · 1 = 1
χ/(ϕ · ψ) = (χ/ϕ)/ψ
(ϕ · ψ)/χ = (ϕ/χ) · (ψ/(χ/ϕ)))

The result of projecting ϕ over ψ (i.e. ϕ/ψ) is called the residual of ϕ after
ψ. The intuitions behind the first three identities and the requirements to
sources and targets are immediately clear. Noting that if we want to project
ϕ over ψ and then over χ, we actually have to project ϕ over ψ and then over
χ/ψ to make sure that the steps are coinitial, the fourth identity just states
that projecting ϕ over ψ and then over χ yields the same result as projecting
ϕ over ψ and χ in reverse order. The two extra identities for residual systems
with composition describe how the projection operator works on composed
reductions. In Fig. 1 we hope to visually clearify the cube identity (on the
left) and the axioms for residual systems with composition (on the right).

• ψ/χ //

ϕ/χ

��

•

(ϕ/ψ)/(χ/ψ) =

(ϕ/χ)/(ψ/χ)

��

•

ϕ

��

ψ
//

χ
??~~~~~~~

•

ϕ/ψ

��

χ/ψ
??~~~~~~~

• // •

• //

??~~~~~~~
•

??~~~~~~~

• χ //

ϕ

��

•
ϕ/χ

��
• χ/ϕ //

ψ
��

•
ψ/(χ/ϕ)

��
•
(χ/ϕ)/ψ

// •

Figure 1: Axioms of residual systems

Theorem 2.5. If 〈R, 1, /〉 is a residual system, then R is confluent.

Proof. Let 〈R, 1, /〉 be a residual system, ϕ a step from a to b and ψ a step
from a to c. Then ψ/ϕ is a step from b to some d and ϕ/ψ a step from c to
the same object d.

Residual theory provides an elegant formalization of the notion of equiv-
alence of reductions: two reductions are the same if the residual of the one

5

ϕ1 : s1 ≥ t1 . . . ϕn : sn ≥ tn
rule

ρ(ϕ1, . . . , ϕn) : l(s1, . . . , sn) ≥ r(t1, . . . , tn)

ϕ1 : s1 ≥ t1 . . . ϕn : sn ≥ tn
apps

a(ϕ1, . . . , ϕn) : a(s1, . . . , sn) ≥ a(t1, . . . , tn)

ϕ : s ≥ t
abs

λx.ϕ : λx.s ≥ λx.t

ϕ : s ≥ u ψ : u ≥ t
trans

(ϕ · ψ) : s ≥ t

Table 1: Rewrite logic for HRSs with witnessing proof terms

after the other is an empty reduction, and vice versa. This formalization is
called permutation equivalence. We define, for reductions ϕ,ψ:

ϕ . ψ if ϕ/ψ = 1
ϕ ' ψ if ϕ . ψ and ψ . ϕ

It is not difficult to prove that . is a quasi-order, and ' is a congruence for
· and /.

One of the side-effects of the main result of the paper, is that the above
notion of permutation equivalence transfers directly to PRSs. Laneve &
Montanari [5] give an axiomatic definition of permutation equivalence for
the related format of orthogonal Combinatory Reduction Systems (CRSs),
by translating CRS to first-order TRS and then using a first-order rewrite
logic. We apply a higher-order rewrite logic to PRSs directly.

3 Higher-Order Rewrite Logic

In this section we give an alternative definition of the rewrite relation by
means of a higher-order rewrite logic, i.e. a higher-order equational logic (see
e.g. [11, 19]) without the symmetry rule (cf. [9]). The rules of the higher-
order rewrite logic are presented in Table 1, together with witnessing proof
terms (ρ : l→ r is a rule, and a is an arbitrary function symbol or variable).
Note that l(s1, . . . , sn) is implicitly reduced to βη-normal form. The rules
don’t include a reflexivity rule; this rule can be easily simulated by the other
rules, and is therefore left out. Note that the rule and apps rules function as
axioms if n = 0. We write s ≥ t if there is a proof term ϕ such that ϕ : s ≥ t.

Proposition 3.1. s→∗ t iff s ≥ t.

Proof. The left-to-right case of the proposition is trivial, and the right-to-left
case is done by structural induction on the inference of s ≥ t.

6

In the rest of the paper, the following conventions are used: f, g range
over function symbols, x, y range over variables, a, b range over function
symbols and variables, and ρ, θ are rule symbols, where l, r are the left- and
right hand side of ρ. Suppose ϕ : s ≥ t. The terms s and t will be called
the source and target of ϕ, respectively, and we introduce the functions
src(ϕ) = s and tgt(ϕ) = t. It is easily seen that s : s ≥ s. Thus, we define
the unit function 1 as 1(t) = t. We will usually omit the argument, and just
write 1 for each reduction which is the unit of some term; the exact term
can be found by looking at the source or the target.

Proof terms are convenient, because they are terms, and so we have
technical machinery to deal with them [1, 13, 14]. We relate proof terms to
the conventional rewriting terminology in the following way: a multistep (or
just step for short) is a proof term which contains no ·’s; a proper step is a
multistep with only one rule symbol in it, and a (multistep) reduction is a
proof term of the form ϕ1 · . . . ·ϕn (i.e. modulo associativity of ·), where the
ϕi are multisteps. Note that these notions intuitively correspond with the
usual non proof term based notions.

We associate to each HRSH the following ARSC Ḣ: terms are its objects,
the proof terms of H are its steps, the src and tgt functions simply are the
ones introduced above, and · just returns for each pair of composable proof
terms ϕ,ψ their composition, i.e. the term ϕ · ψ. The ARS Ĥ is defined as
Ḣ without composition. The translation of H into Ĥ will be done implicitly.

4 Higher-Order Term Residual Systems

From now on, we restrict our attention to PRSs. We want to define a pro-
jection function, which gives for pairs of proof terms the residual of one
after the other. We do this by adding a new symbol to the language, /, and
defining a relation which simplifies terms of this extended signature to terms
which contain no more /’s. This relation can then be used to finally define
the projection operator.

Let a pre-slash-dot term be a proof term over an extended signature
which includes a polymorphic projection operator / : α→ α→ α (note that
every proof term is a slash-dot term as well). Slash-dot terms are pre-slash-
dot terms modulo the following identities:

f(ϕ1 · ψ1, . . . , ϕn · ψn) = f(ϕ1, . . . , ϕn) · f(ψ1, . . . , ψn)
λx.(ϕ · ψ) = λx.ϕ · λx.ψ

1 · ϕ = ϕ
ϕ · 1 = ϕ

The first two are called the functorial identities, and the last two are called
the unit identities.

7

4.1 A First Attempt

Simplification of terms is usually modelled as a rewriting system. In [13, 14],
the following rewriting system is presented which reduces (first-order) slash-
dot terms to their corresponding proof term.

a(ϕ1, . . . , ϕn)/a(ψ1, . . . , ψn) → a(ϕ1/ψ1, . . . , ϕn/ψn)
ρ(ϕ1, . . . , ϕn)/ρ(ψ1, . . . , ψn) → r(ϕ1/ψ1, . . . , ϕn/ψn)
ρ(ϕ1, . . . , ϕn)/l(ψ1, . . . , ψn) → ρ(ϕ1/ψ1, . . . , ϕn/ψn)
l(ϕ1, . . . , ϕn)/ρ(ψ1, . . . , ψn) → r(ϕ1/ψ1, . . . , ϕn/ψn)

(ϕ · ψ)/χ → (ϕ/χ) · (ψ/(χ/ϕ))
χ/(ϕ · ψ) → (χ/ϕ)/ψ

The naive method to transfer the system to the higher-order case, is to add
the following rule:

(λx.ϕ′(x)/λx.ψ′(x))z → ϕ′(z)/ψ′(z)

This rule pushes abstractions outwards. The variable z is just used to han-
dle bound variables. However, the rule is not equipped to handle nesting
correctly. Consider the following two-rule PRS:

µ : λz.mu(λx.z(x)) → λz.z(mu(λx.z(x)))
ρ : λx.f(x) → λx.g(x)

and the following steps:

mu(λx.ρ(x)) : mu(λx.f(x)) ≥ mu(λx.g(x))
µ(λx.f(x)) : mu(λx.f(x)) ≥ f(mu(λx.f(x)))

Wee see that the proof term mu(λx.ρ(x))/µ(λx.f(x)) reduces in a number
of steps to ρ(mu(λx.ρ(x)/λx.ρ(x))), and then in the final step the two copies
of λx.ρ(x), which are not supposed to be further reduced, ‘cancel each other
out’, resulting in the (incorrect) proof term ρ(mu(λx.f(x))). Changing the
fifth rule into

(λx.ϕ′(x)/λx.ψ′(x))z → ϕ′(⊥z)/ψ′(⊥z)

where ⊥ is a new symbol which makes sure that applications of the other
rules are blocked, and adding rules to make sure that ⊥ϕ/⊥ϕ→∗ ϕ, seems,
at first sight, to solve the problem, but I have chosen another approach
which I find more elegant.

4.2 Residuals of Compatible Reductions

We define the ‘simplification’ relation < between slash-dot terms and proof
terms by means of the inference system Res given in Table 2 on page 10.

8

The Ri, ·L and ·R rules define how the residual operator works on terms
of different forms, and the replacement rules zoom in to the interesting
parts of a slash-dot term. The r+t/ rule combines replacement of the / and
transitivity.

We write `K ϕ < χ to denote that the inference K has ϕ < χ as its
final conclusion. The function |K| returns the ‘depth’ of an inference, i.e.
if |K| is an inference with immediate subinferences L1, . . . ,Ln, then |K| =
max0<i≤n |Li| + 1. We write `k ϕ < χ if an inference K exists such that
`K ϕ < χ and |K| ≤ k. If k is omitted, K may be of arbitrary size, and
in this case the ` will often be omitted as well. The principal rule of an
inference K is the last rule which is applied, i.e. the rule which appears
at the bottom of the inference. We will assume the function pr(K) which
returns the principal rule of an inference K.

We demonstrate the inference system by two examples: the first example
shows that the system yields the correct result for the example from Sect. 4.1,
and the second demonstrates how the system works on proof terms with
compositions.

Example 4.1. Consider the PRS from Sect. 4.1. The current framework
yields the correct result:

R1
x/x < x

R1
ρ(x)/f(x) < ρ(x)

R5
λx.ρ(x)/λx.f(x) < λx.ρ(x)

R4
mu(λx.ρ(x))/µ(λx.f(x)) < ρ(mu(λx.ρ(x)))

Example 4.2. Consider the following three-rule PRS (which is actually just
a first-order TRS translated to the current format):

ρ : λx.f(x) → λx.g(x)
θ : λx.g(x) → λx.h(x, x)
η : a → b

In this PRS the following reductions exist: f(a) → g(a) → h(a, a) and
f(a) → f(b). The first reduction is witnessed by the proof term ρ(a) · θ(a)
and the second by f(η). We calculate the both residuals of one after the
other.

R4
a/η < b

R3
ρ(a)/f(η) < ρ(b)

R3
η/a < b

R4
f(η)/ρ(a) < g(η)

R4
a/η < b

R3
θ(a)/g(η) < θ(b)

·L
(ρ(a) · θ(a))/f(η) < ρ(b) · θ(b)

9

Residual rules:

ϕ1/ψ1 < χ1 · · ·ϕn/ψn < χn
R1

a(ϕ1, . . . , ϕn)/a(ψ1, . . . , ψn) < a(χ1, . . . , χn)

ϕ1/ψ1 < χ1 · · ·ϕn/ψn < χn
R2

ρ(ϕ1, . . . , ϕn)/ρ(ψ1, . . . , ψn) < r(χ1, . . . , χn)

ϕ1/ψ1 < χ1 · · ·ϕn/ψn < χn
R3

ρ(ϕ1, . . . , ϕn)/l(ψ1, . . . , ψn) < ρ(χ1, . . . , χn)

ϕ1/ψ1 < χ1 · · ·ϕn/ψn < χn
R4

l(ϕ1, . . . , ϕn)/ρ(ψ1, . . . , ψn) < r(χ1, . . . , χn)

ϕ/ψ < χ
R5

λx.ϕ/λx.ψ < λx.χ

ϕ1/ψ < ϕ
′
1 ψ/ϕ1 < ψ

′ ϕ2/ψ
′ < ϕ′2 ·L

(ϕ1 · ϕ2)/ψ < ϕ′1 · ϕ′2

ϕ/ψ1 < ϕ
′ ϕ′/ψ2 < χ

·R
ϕ/(ψ1 · ψ2) < χ

ϕ < ϕ′ ψ < ψ′ ϕ′/ψ′ < χ
r+t/

ϕ/ψ < χ

Replacement rules:

ϕ1 < ψ1 · · ·ϕn < ψn
repla

a(ϕ1, . . . , ϕn) < a(ψ1, . . . , ψn)

ϕ < ψ
replλ

λx.ϕ < λx.ψ

ϕ1 < ψ1 · · ·ϕn < ψn
replρ

ρ(ϕ1, . . . , ϕn) < ρ(ψ1, . . . , ψn)

ϕ1 < ψ1 ϕ2 < ψ2
repl·

ϕ1 · ϕ2 < ψ1 · ψ2

Table 2: The inference rules for Res.

10

R3
η/a < η

R4
f(η)/ρ(a) < g(η)

R3
η/a < η

R4
g(η)/θ(a) < h(η, η)

·R
f(η)/(ρ(a) · θ(a)) < h(η, η)

The first proof term, ρ(b) · θ(b), witnesses the reduction f(b) → g(b) →
h(b, b), and the second proof term, h(η, η), witnesses the reduction (in this
case consisting of a single multistep) h(a, a) →∗ h(b, b). So we see that we
obtain the expected proof terms.

A slash-dot term ϕ is called internally compatible if there is a χ such
that ϕ < χ. The source and target of an internally compatible slash-dot
term ϕ with ϕ < χ are defined as src(ϕ) = src(χ) and tgt(ϕ) = tgt(χ). Two
slash-dot terms ϕ and ψ are compatible if ϕ/ψ is internally compatible. A
PRS H is called compatible if all possible pairs of proof terms ϕ,ψ of H are
compatible.

The following lemma expresses, in a sense, that proof terms are the ‘final
objects’ of the relation < defined by the inference system.

Lemma 4.3. Let ϕ be a proof term. Then: `K ϕ < ψ if and only if ϕ = ψ.

Proof. Since ϕ is a proof term, it does not contain /’s and we only need
to consider replacement rules. The ‘only if’ side can then be proved by
induction on K, and since the premisses of the rules under consideration
are all strictly smaller than the conclusion, the ‘if’ side can be proved by
induction on the length ϕ.

Next, we prove a few standardization properties of the proposed infer-
ence system, which will come in handy in the later proofs. Given a desired
outcome, Lemma 4.4 and Lemma 4.5 are used to select the principal rule of
a valid inference with the desired conclusion (if it exists).

Lemma 4.4. Suppose `K ϕ/ψ < χ.

1. If ϕ = a(ϕ1, . . . , ϕn) and ψ = a(ϕ1, . . . , ϕn), then there is an inference
K′ with |K′| ≤ |K| such that `K′ ϕ/ψ < χ and pr(K′) = R1.

2. If ϕ = ρ(ϕ1, . . . , ϕn) and ψ = ρ(ϕ1, . . . , ϕn), then there is an inference
K′ with |K′| ≤ |K| such that `K′ ϕ/ψ < χ and pr(K′) = R2.

3. If ϕ = ρ(ϕ1, . . . , ϕn) and ψ = l(ϕ1, . . . , ϕn), then there is an inference
K′ with |K′| ≤ |K| such that `K′ ϕ/ψ < χ and pr(K′) = R3.

4. If ϕ = l(ϕ1, . . . , ϕn) and ψ = ρ(ϕ1, . . . , ϕn), then there is an inference
K′ with |K′| ≤ |K| such that `K′ ϕ/ψ < χ and pr(K′) = R4.

5. If ϕ = λx.ϕ0 and ψ = λx.ψ0, then there is an inference K′ with
|K′| ≤ |K| such that `K′ ϕ/ψ < χ and pr(K′) = R5.

11

Proof. We show only (1), the other cases are analogous. We use induction on
|K|. There are exactly two rules that match the conclusion, so we distinguish
the following cases:

• If pr(K) = R1, then simply K′ = K.

• If pr(K) = r+t/, then we know, by induction hypothesis and the ob-
servation that only the repla rule matches conclusions of the form
a(~ϕ) < ϕ′, that there is an inference L as follows, where χ = a(~χ):

· · ·ϕi < ϕ′i · · ·
repla

a(~ϕ) < a(~ϕ′)

· · ·ψi < ψ′i · · ·
repla

a(~ψ) < a(~ψ′)

· · ·ϕ′i/ψ′i < χi · · ·
R1

a(~ϕ′)/a(~ψ′) < a(~χ)
r+t/

a(~ϕ)/a(~ψ) < a(~χ)

We now build the inference K′ as follows:

· · ·

ϕi < ϕ
′
i ψi < ψ

′
i ϕ′i/ψ

′
i < χi

r+t/
ϕi/ψi < χi · · ·

R1
a(~ϕ)/a(~ψ) < a(~χ)

Lemma 4.5. Suppose `K ϕ/ψ < χ.

1. If ϕ = ϕ1 · ϕ2, then there is an inference K′ with |K′| ≤ |K| such that
`K′ ϕ/ψ < χ and pr(K) = ·L.

2. If ψ = ψ1 · ψ2, then there is an inference K′ with |K′| ≤ |K| such that
`K′ ϕ/ψ < χ and pr(K) = ·R.

Proof. By induction on |K|. First we prove (i):

• If pr(K) = ·L, then K′ = K.

• If pr(K) = r+t/, then there must be an L, where |L| ≤ |K|, which ends
as follows:

ϕ1 < ϕ
′
1 ϕ2 < ϕ

′
2

ϕ1 · ϕ2 < ϕ
′
1 · ϕ′2 ψ < ψ0

ϕ′1/ψ0 < χ1 ψ0/ϕ
′
1 < ψ

′
0 ϕ′2/ψ

′
0 < χ2

ϕ′1 · ϕ′2/ψ0 < χ1 · χ2

(ϕ1 · ϕ2)/ψ < χ1 · χ2

where the left subinference looks like this because only the repl· rule
matches conclusions of the form ϕ · ψ < χ, and the right subinference
is obtained by induction hypothesis.

We can now prove:

12

ϕ1 < ϕ
′
1 ψ < ψ0 ϕ′1/ψ0 < χ1

ϕ1/ψ < χ1

ϕ2 < ϕ
′
2 ψ′0 < ψ

′
0 ϕ′2/ψ

′
0 < χ2

ϕ2/ψ
′
0 < χ2

ψ < ψ0 ϕ1 < ϕ
′
1 ψ0/ϕ

′
1 < ψ

′
0

ψ/ϕ1 < ψ
′
0

and finally build K′ as follows:

ϕ1/ψ < χ1 ψ/ϕ1 < ψ
′
0 ϕ2/ψ

′
0 < χ2

(ϕ1 · ϕ2)/ψ < χ1 · χ2

• If pr(K) = ·R, then it must be the case that ϕ/ψ = (ϕ1 ·ϕ2)/(ψ1 ·ψ2),
and, by applying the induction hypothesis on the subinferences, the
following inference L with |L| ≤ |K| must exist:

ϕ1/ψ1<ϕ′1 ψ1/ϕ1<ψ′1 ϕ2/ψ′1<ϕ
′
2

(ϕ1·ϕ2)/ψ1<ϕ′1·ϕ′2

ϕ′1/ψ2<ϕ′′1 ψ2/ϕ′1<ψ
′
2 ϕ′2/ψ

′
2<ϕ

′′
2

(ϕ′1·ϕ′2)/ψ2<ϕ′′1 ·ϕ′′2

(ϕ1·ϕ2)/(ψ1·ψ2)<ϕ′′1 ·ϕ′′2

(1)

and we take K′ to be the following inference:

ϕ1/ψ1<ϕ′1 ϕ′1/ψ2<ϕ′′1

ϕ1/(ψ1·ψ2)<ϕ′′1

ψ1/ϕ1<ψ′1 ϕ1/ψ1<ϕ′1 ψ2/ϕ′1<ψ
′
2

(ψ1·ψ2)/ϕ1<ψ′1·ψ′2

ϕ2/ψ′1<ϕ
′
2 ϕ′2/ψ

′
2<ϕ

′′
2

ϕ2/(ψ′1·ψ′2)<ϕ′′2

(ϕ1·ϕ2)/(ψ1·ψ2)<ϕ′′1 ·ϕ′′2
(2)

Now we prove (ii).

• If pr(K) = ·R, then K′ = K.

• If pr(K) = r+t/, then there is a L such that |L| ≤ |K|, which ends as
follows:

ϕ < ϕ0

ψ1 < ψ1,0 ψ2 < ψ2,0

ψ1 · ψ2 < ψ1,0 · ψ2,0

ϕ0/ψ1,0 < ϕ
′
0 ϕ′0/ψ2,0 < χ

ϕ0/(ψ1,0 · ψ2,0) < χ

ϕ/(ψ1 · ψ2) < χ

and we take K′ to be the following inference:

ϕ < ϕ0 ψ1 < ψ1,0 ϕ0/ψ1,0 < ϕ
′
0

ϕ/ψ1 < ϕ
′
0

ϕ′0 < ϕ
′
0 ψ2 < ψ2,0 ϕ′0/ψ2,0 < χ

ϕ′0/ψ2 < χ

ϕ/(ψ1 · ψ2) < χ

• If pr(K) = ·L, then by induction hypothesis there is a L such that
|L| ≤ |K| which ends as in (2) above, and we take K′ to be the inference
given in (1).

13

Lemma 4.6. If ϕ < χ and ϕ < χ′, then χ = χ′.

Proof. Let `K ϕ < χ and `L ϕ < χ′. We prove the proposition by induction
on |K| + |L|. If pr(K) = pr(L), then the result simply follows from the
induction hypothesis. Otherwise, we consider ϕ/ψ and use Lemmata 4.4
and 4.5 to obtain inferences K′,L′ such that `K′ ϕ < χ, `L′ ϕ < χ′ and
pr(K′) = pr(L′). Since |K′| ≤ |K|, |L′| ≤ |L| we can apply the induction
hypothesis on the subinferences as we would have done in the first case.

We define the relation ≈ to be the reflexive, symmetric and transitive
closure of <. By Lemma 4.6 and the fact that if ϕ < χ then χ is a proof
term (easily proved by induction), we can take proof terms as the unique
representatives of the classes of ≈-equivalent slash-dot terms. We can now
define the projection operator // as follows: ϕ // ψ = χ if χ is the unique
representative of the slash-dot term ϕ/ψ. Theorem 4.7 is proved in Sect. 4.3.

Theorem 4.7. 〈H, 1, //〉 is a residual system, if H is a compatible PRS.

In fact, as follows from Lemma 4.9 in the next section, 〈H, 1, //〉 is even
a residual system with composition.

Corollary 4.8. A compatible PRS is confluent.

Proof. By Theorems 4.7 and 2.5.

4.3 Proof of Theorem 4.7

In this subsection we prove Theorem 4.7, i.e. we show that a compatible
PRS together with unit and projection operator is a residual system. We
mention the following two auxiliary lemmas:

Lemma 4.9.

1. (ϕ · ψ)/χ ≈ ϕ/χ · ψ/(χ/ϕ)

2. χ/(ϕ · ψ) ≈ (χ/ϕ)/ψ

Proof. In order to save space, we give textual sketches of the inferences.
Suppose ϕ/χ < ϕ′, χ/ϕ < χ′, ψ/χ′ < ψ′ and χ′/ψ < χ′′. (Lemmata 4.4 and
4.5 imply that the mentioned pairs must be compatible if the equations of
Lemma 4.9 are internally compatible.)

(i) With one application of r+t/ we prove ψ/(χ/ϕ) < ψ′, and then with
one application of ·L and repl· we prove (ϕ·ψ)/χ < ϕ′·ψ′ and ϕ/χ·ψ/(χ/ϕ) <
ϕ′ · ψ′, respectively, and hence (ϕ · ψ)/χ ≈ ϕ/χ · ψ/(χ/ϕ).

(ii) With one application of ·R we prove χ/(ϕ/ψ) < χ′′ and with one
application of r+t/ we prove (χ/ϕ)/ψ < χ′′, hence χ/(ϕ ·ψ) ≈ (χ/ϕ)/ψ.

14

Lemma 4.10. ≈ is a congruence, i.e. if ϕ ≈ ψ, then

1. f(. . . , ϕ, . . .) ≈ f(. . . , ψ, . . .)

2. ρ(. . . , ϕ, . . .) ≈ ρ(. . . , ψ, . . .)

3. λx.ϕ ≈ λx.ψ

4. ϕ · χ ≈ ψ · χ and χ · ϕ ≈ χ · ψ

5. ϕ/χ ≈ ψ/χ and χ/ϕ ≈ χ/ψ

Proof. Since ϕ ≈ ψ, there is a ξ such that ϕ < ξ and ψ < ξ.
(1-4) To prove (1), we simply apply the replf rule to obtain inferences

of f(. . . , ϕ, . . .) < f(. . . , ξ, . . .) and f(. . . , ψ, . . .) < f(. . . , ξ, . . .). To show
(2), (3) and (4) we follow the same strategy, but with replρ, replλ and repl·,
respectively.

(5) requires a little bit more work, because the ‘integrated’ transitivity
has to be taken care of. The following two inferences do the job for the first
part of (5), and the second part is similar:

ϕ < ξ χ < χ′ ξ/χ′ < ξ′

ϕ/χ < ξ′
ψ < ξ χ < χ′ ξ/χ′ < ξ′

ψ/χ < ξ′

To prove that we are dealing with a residual system, we have to show
that sources and targets match (Prop. 4.11), and that the residual axioms
hold (Prop. 4.12).

Proposition 4.11. Sources and targets match, i.e.:

1. src(ϕ/ψ) = tgt(ψ)

2. tgt(ϕ/ψ) = tgt(ψ/ϕ)

Proof. By induction on the inferences of ϕ/ψ < χ and ψ/ϕ < ξ we easily
prove that src(χ) = tgt(ψ) and tgt(χ) = tgt(ξ).

Proposition 4.12. The residual axioms hold, i.e.:

1. 1/ϕ ≈ 1

2. ϕ/1 ≈ ϕ

3. ϕ/ϕ ≈ 1

4. (ϕ/ψ)/(χ/ψ) ≈ (ϕ/χ)/(ψ/χ)

15

Proof. (1)–(3) are proved by induction on the length of ϕ. In addition, (2)
is based on (1), and (3) on (1) and (2). We show only (2), the other two are
analogous. (Below, a, b and c are used to handle the various R1–R4 together,
e.g. in R3, a = ρ, b = l and c = r.)

IH
ϕ1/1 < ϕ1 · · ·

IH
ϕn/1 < ϕn

a(ϕ1, . . . , ϕn)/b(1, . . . , 1) < c(ϕ1, . . . , ϕn)

IH
ϕ′/1 < ϕ′

λx.ϕ′/λx.1 < λx.ϕ′

IH
ϕ/1 < ϕ

(1)
1/ϕ < 1

IH
ψ/1 < ψ

(ϕ · ψ)/1 < ϕ · ψ

In order to prove (4) we introduce the layered size |ϕ| of a slash-dot term
ϕ:

f(ϕ1, . . . , ϕn)	= 1 + max0<i≤n	ϕi
x(ϕ1, . . . , ϕn)	= 1 + max0<i≤n	ϕi
ρ(ϕ1, . . . , ϕn)	= 1 + max0<i≤n	ϕi

λx.ϕ	=	ϕ		
ϕ · ψ	=	ϕ	+ 1 +	ψ
ϕ/ψ	=	ϕ		

Now (4) is verified by induction on the sum of the layered sizes of ϕ, ψ and
χ.

The proof follows the same pattern as the one in [13]. Suppose that
either ϕ, ψ or χ is a composite. If ϕ is a composite, we have the following,
where the various (underlined) steps follow from Lemma 4.10 and either the
induction hypothesis or Lemma 4.9:

((ϕ1 · ϕ2)/ψ)/(χ/ψ)
≈ ((ϕ1/ψ) · (ϕ2/(ψ/ϕ1)))/(χ/ψ)
≈ (ϕ1/ψ)/(χ/ψ) · ((ϕ2/(ψ/ϕ1))/((χ/ψ)/(ϕ1/ψ)))
≈IH (ϕ1/χ)/(ψ/χ) · ((ϕ2/(ψ/ϕ1))/((χ/ϕ1)/(ψ/ϕ1)))
≈IH (ϕ1/χ)/(ψ/χ) · ((ϕ2/(χ/ϕ1))/((ψ/ϕ1)/(χ/ϕ1)))
≈ ((ϕ1/χ) · (ϕ2/(χ/ϕ1)))/(ψ/χ)
≈ ((ϕ1 · ϕ2)/χ)/(ψ/χ)

If ψ is a composite, we do:

(ϕ/(ψ1 · ψ2))/(χ/(ψ1 · ψ2))
≈ ((ϕ/ψ1)/ψ2)/((χ/ψ1)/ψ2)
≈IH ((ϕ/ψ1)/(χ/ψ1))/(ψ2/(χ/ψ1))
≈IH ((ϕ/χ)/(ψ1/χ))/(ψ2/(χ/ψ1))
≈ (ϕ/χ)/(ψ1/χ · ψ2/(χ/ψ1))
≈ (ϕ/χ)/((ψ1 · ψ2)/χ)

16

The case that χ is a composite, is the inverse of this.
Now consider the case that none of ϕ,ψ, χ are composites. Suppose that

ϕ = f(~ϕ), ψ = f(~ψ), and χ = f(~χ), where we use the notation ~x for the
vector x1, . . . , xn. By Lemma 4.4, the following inference must exist:

· · · ϕi/ψi < ζ1,i · · ·

f(~ϕ)/f(~ψ) < f(~ζ1)

· · · χi/ψi < ζ2,i · · ·

f(~χ)/f(~ψ) < f(~ζ2)

· · · ζ1,i/ζ2,i < ξ1,i · · ·

f(~ζ1)/f(~ζ2) < f(~ξ1)

(f(~ϕ)/f(~ψ))/(f(~χ)/f(~ψ)) < f(~ξ1)

and similarly we obtain an inference of (f(~ϕ)/f(~χ))/(f(~ψ)/f(~χ)) < f(~ξ2).
Using the same subinferences for ϕi/ψi < ζ1,i, χi/ψi < ζ2,i and ζ1,i/ζ2,i <
ξ1,i, we easily prove (ϕi/ψi)/(χi/ψi) < ξ1,i, and similarly (ϕi/χi)/(ψi/χi) <
ξ2,i. Since, by induction hypothesis, (ϕi/ψi)/(χi/ψi) ≈ (ϕi/χi)/(ψi/χi), we
know now that ξ1,i ≈ ξ2,i, so there are ξ3,i such that ξ1,i < ξ3,i 4 ξ2,i. Two
easy inferences prove f(~ξ1) < f(~ξ3) and f(~ξ2) < f(~ξ3). We put everything
together with transitivity and get:

(f(~ϕ)/f(~ψ))/(f(~χ)/f(~ψ)) ≈ f(~ξ3) ≈ (f(~ϕ)/f(~χ))/(f(~ψ)/f(~χ))

The same strategy works in the other non-composite cases, e.g. if ϕ = ρ(~ϕ),
ψ = ρ(~ψ), and χ = r(~χ), since the difficult nesting problems (duplicating
behaviour within right-hand sides of rules) occur only on the right of the <
symbols.

Now, the fact that a PRS with residual operator is a residual system
(Theorem 4.7) follows from Prop. 4.11 and Prop. 4.12. In fact, it follows
from Lemma 4.9 that it is a residual system with composition. QED.

4.4 Computing Residuals

In Sect. 4.2 only a specification of the simplification relation was given, but
Lemma 4.4 and Lemma 4.5 already hinted at the existence of an algorithm
which effectively computes the representative of a slash-dot term. In this
section, such an algorithm is indeed given. We also prove that it terminates
for two special cases of slash-dot term, and show that if the algorithm ter-
minates, it prints the correct answer.

Definition 4.13. The (recursive) function sim(π) on proof terms π, is de-
fined by the following pseudo-program:

sim((ϕ1/ϕ2)/ψ)) = sim(ϕ′/ψ)
where ϕ′ = sim(ϕ1/ϕ2)

sim(ϕ/(ψ1/ψ2)) = sim(ϕ/ψ′)
where ψ′ = sim(ψ1/ψ2)

sim(x(ϕ1, . . . , ϕn)/x(ψ1, . . . , ψn)) = x(sim(ϕ1/ψ1), . . . , sim(ϕn/ψn))

17

sim(f(ϕ1, . . . , ϕn)/f(ψ1, . . . , ψn)) = f(sim(ϕ1/ψ1), . . . , sim(ϕn/ψn))
sim(ρ(ϕ1, . . . , ϕn)/ρ(ψ1, . . . , ψn)) = r(sim(ϕ1/ψ1), . . . , sim(ϕn/ψn))
sim(ρ(ϕ1, . . . , ϕn)/l(ψ1, . . . , ψn)) = ρ(sim(ϕ1/ψ1), . . . , sim(ϕn/ψn))
sim(l(ϕ1, . . . , ϕn)/ρ(ψ1, . . . , ψn)) = r(sim(ϕ1/ψ1), . . . , sim(ϕn/ψn))
sim(λx.ϕ/λx.ψ) = λx.(ϕ/ψ)
sim((ϕ1 · ϕ2)/ψ)) = ϕ′1 · ϕ′2

where ϕ′1 = sim(ϕ1/ψ)
ϕ′2 = sim(ϕ2/ψ

′)
where ψ′ = sim(ψ/ϕ1)

sim(ϕ/(ψ1 · ψ2)) = sim(ϕ′/ψ2)
where ϕ′ = sim(ϕ/ψ1)

sim(f(ϕ1, . . . , ϕn)) = f(sim(ϕ1), . . . , sim(ϕn))
sim(ρ(ϕ1, . . . , ϕn)) = ρ(sim(ϕ1), . . . , sim(ϕn))
sim(λx.ϕ) = λx.sim(ϕ)
if none of the above cases apply then

print “incompatible”

Example 4.14. Consider the PRS from Sect. 4.1 (and from Ex. 4.1). We
apply the algorithm of Def. 4.13 to the term mu(λx.ρ(x))/µ(λx.f(x)). The
following is one run of the algorithm:

sim(mu(λx.ρ(x))/µ(λx.f(x))) =
(λz.z(mu(λx.z(x))))(sim(λx.ρ(x)/λx.f(x))) =
(λz.z(mu(λx.z(x))))(λx.sim(ρ(x)/f(x))) =
(λz.z(mu(λx.z(x))))(λx.ρ(sim(x/x))) =
(λz.z(mu(λx.z(x))))(λx.ρ(x)) �β

ρ(mu(λx.ρ(x)))

We see that the result of the previous example is the same as the re-
sult of Ex. 4.1. So why does the algorithm work, and doesn’t the rewriting
system presented in Sect. 4.1? The crucial difference is that the algorithm
calculates subexpressions first, and does β-reductions afterwards, while the
rewriting system performs β-reductions first and only then calculates the
subexpressions. And even if this was fixed in the rewriting system, it would
have to be equipped with a depth-first strategy to make it correct.

Proposition 4.15.

1. If ϕ and ψ are reductions, then sim(ϕ/ψ) terminates.

2. If ϕ is internally compatible, then sim(ϕ) terminates.

Proof. We prove the first item first. If ϕ and ψ are reductions, then the
computation of sim(ϕ/ψ) proceeds in two stages: first the compositions on
the outside of the terms are dealt with, and in this stage the number of
composition symbols in the proof term strictly decreases in each step; and

18

then, when ϕ and ψ are parallel steps, the length of the proof term strictly
decreases in each step.

Secondly, if ϕ is internally compatible, then an inference K exists such
that `K ϕ/ < χ. The second item can be proved by induction on K, using
Lemma 4.4 and Lemma 4.5.

Termination in general is hard to show. If a proof term ϕ is not internally
compatible, an inference of ϕ < χ is not at our disposal, so we cannot use
induction on the inference. The problem is then the cases which deal with
composition. In these cases the size of the terms which are passed recursively
to the function, may actually be larger than the size of the term under
consideration.

Conjecture 4.16. sim(ϕ) terminates for all slash-dot terms ϕ.

The main result of the paper does not depend on this conjecture, al-
though, because of its not being proved, a small detour has to be followed
in Sect. 5.1.

Proposition 4.17. sim(ϕ) = χ if and only if ϕ < χ.

Proof. The ‘only if’ side is proved by recursively building an inference of
ϕ < χ. The ‘if’ side is easily proved by using Lemma 4.4 and Lemma 4.5.

5 Orthogonality

In this section we relate compatibility with the well-known notion of orthog-
onality. In order to define orthogonality, we need to define overlap, and this
is done by associating with each proper step a set of redex positions, and
then looking at the intersection of the redex positions of two coinitial proper
steps.

Positions are sequences of natural numbers. If P is a set of positions,
and p is a position, we write p ? P for {pq | q ∈ P}. First, we need to define
the set of all positions of a term. Let � denote the empty context.

Pos(�) = ∅
Pos(x(s1, . . . , sn)) = {ε} ∪

⋃
0<i≤n i ? Pos(si)

Pos(f(s1, . . . , sn)) = {ε} ∪
⋃

0<i≤n i ? Pos(si)
Pos(λx.s) = {ε} ∪ 1 ? Pos(s)

where x is a variable and f a function symbol.
Now, let ϕ be a proper step. We define the set of redex positions of ϕ,

written RPos(ϕ), as:

RPos(x(ϕ1, . . . , ϕn)) =
⋃

0<i≤n i ?RPos(ϕi)
RPos(f(ϕ1, . . . , ϕn)) =

⋃
0<i≤n i ?RPos(ϕi)

RPos(λx.ϕ0) = 1 ?RPos(ϕ0)
RPos(ρ(ϕ1, . . . , ϕn)) = Pos(l(�, . . . ,�))

19

Note that, since ϕ is a proper step, in the last equation there are no more
rule symbols in the ϕi.

Two coinitial proper steps ϕ,ψ are overlapping if RPos(ϕ)∩RPos(ψ) 6=
∅. A left-linear PRS is orthogonal, if all pairs of different, coinitial proper
steps are non-overlapping.

This definition has an infinite flavour: there are infinitely many steps
one has to check. Fortunately, it is well-known that an equivalent notion
of orthogonality exists, based on critical pairs [7]. Since a finite PRS has
only finitely many possible critical pairs, this makes the question whether
a PRS is orthogonal or not decidable. We stick to the step-based definition
for convenience.

5.1 Compatibility Is Orthogonality

In this subsection we will prove that compatibility and orthogonality coin-
cide. The difficult part of the proof, but also the most important one, is
to show that orthogonality implies compatibility. One way of doing so is
by contraposition: we run the algorithm of Def. 4.13 and analyse in which
situations it prints incompatible, and show that the PRS is not orthogonal
in each of these cases. There is one problem: we have not succeeded in prov-
ing that the algorithm actually always terminates, so we have to follow a
small detour: we transform the incompatible proof terms into incompatible
reductions, and then feed those to the algorithm.

Lemma 5.1. If l(ϕ1, . . . , ϕn)·ρ(ψ1, . . . , ψn) is compatible with χ, then ρ(ϕ1 ·
ψ1, . . . , ϕn · ψn) is compatible with χ.

Proof. Let ϕ = l(ϕ1, . . . , ϕn)·ρ(ψ1, . . . , ψn) ϕ′ = ρ(ϕ1 ·ψ1, . . . , ϕn ·ψn). Since
ϕ and χ are compatible, it must be the case that `K ϕ/χ < υ for some υ.
By Lemma 4.5 there is an inference that ends as follows:

χ/l(ϕ1, . . . , ϕn) < χ′ χ′/ρ(ψ1, . . . , ψn) < υ

χ/(l(ϕ1, . . . , ϕn) · ρ(ψ1, . . . , ψn)) < υ

where the premisses are compatible. This is only possible if χ = l(~ϕ) (and
χ′ = l(~χ′)) or χ = ρ(~ϕ) (and χ′ = ρ(~χ′)) and, by assuming that the rule
suggested by Lemma 4.4 is applied, ϕi, χi and χ′i, ψi are compatible. In the
case the χ = ρ(~ϕ), we now prove ϕ′/χ < υ′, for some υ′, by the following
inference:

· · ·

χi/ϕi < χ
′
i χ′i/ψi < υi

χi/(ϕi · ψi) < υi . . .

ρ(χ1, . . . , χn)/ρ(ϕ1 · ψ1, . . . , ϕn · ψn) < r(υ1, . . . , υn)

Note that, in fact, υ′ = υ. The case that χ = l(~ϕ) is proved by a similar
inference.

20

Theorem 5.2. Let H be an PRS. H is orthogonal, if and only if H is com-
patible.

Proof. We first prove the right-to-left implication. Assume that all coinitial
reductions are compatible. This implies that all coinitial multisteps ϕ,ψ are
compatible, i.e. an inference K exists such that `K ϕ/ψ < χ. We easily
prove, by induction on K, that ϕ,ψ are non-overlapping.

To show the left-to-right implication, assume, by contraposition, that
ϕ,ψ are coinitial, but not compatible. Consider the (meta-level) rewrite
system which consists of all rules of the form

ρ(ϕ1 · ψ1, . . . , ϕn · ψn)⇒ l(ϕ1, . . . , ϕn) · ρ(ψ1, . . . , ψ2)

where ρ : l→ r is a rule. It is not difficult to see that this rewrite system is
strongly normalizing, and that its normal forms are actually reductions. So,
applying this rewriting system to ϕ and ψ yields reductions ϕ′, ψ′, respec-
tively. By Prop. 4.15, sim(ϕ′/ψ′) terminates, and by (the contraposition of)
Lemma 5.1, ϕ′ and ψ′ are not compatible.

Let ϕ0/ψ0 be the slash-dot term which was passed to sim in the last
step before it terminated; ϕ0 and ψ0 must be multisteps. By Prop. 4.17 the
algorithm prints incompatible. By coinitiality of ϕ0 and ψ0, it cannot cannot
be the case that ϕ0 = f(ϕ1, . . . , ϕn) and ψ0 = g(ψ1, . . . , ψn), where f 6= g.
So, the following must apply: ϕ0 = ρ(ϕ1, . . . , ϕn) and ψ0 6=βη l(ψ1, . . . , ψn).
There are two possible causes of this. The first is that ψ0 has a rule symbol
within the redex pattern of l. But then overlapping, coinitial proper steps
ϕ′0 and ψ′0 can be constructed by replacing all rule symbols, except the
overlapping ones, of ϕ0 and ψ0, respectively, by their left-hand sides. The
second possible cause is that one of the ψi occurs twice in l(ψ1, . . . , ψn).
However, then l cannot be left-linear. Both cases imply non-orthogonality.
(The third ‘cause’ is that ψ0 has a · inside the redex pattern of ϕ0, but
this cannot happen because compositions are moved outwards over function
symbols and abstractions by the functorial identities, and l consists only of
function symbols and abstractions.) The same argument can be applied to
the symmetrical case.

5.2 Residuals of Orthogonal PRSs

In this subsection we prove the main result of the paper, namely that an
orthogonal PRS, together with the unit and projection operator, forms a
residual system. The hard work has already been done; we just need to put
together the results obtained so far.

Theorem 5.3. If H is an orthogonal PRS, then 〈H, 1, //〉 is a residual sys-
tem.

Proof. By Theorem 5.2, H is compatible, and therefore, by Theorem 4.7,
〈H, 1, //〉 is a residual system.

21

It is well-known that orthogonal PRSs are confluent, as was proved in,
among others, [7, 12, 15]. Here, we obtain a new proof based on the residual
theory developed in this paper. The proof emerges as a simple corollary of
the main result.

Corollary 5.4. Orthogonal PRSs are confluent.

Proof. LetH be an orthogonal PRS. By Theorem 5.3,H is a residual system,
and thus by Theorem 2.5, H is confluent.

6 Concluding Remarks

In this paper, we have shown that orthogonal PRSs form a residual system.
As a consequence, all results for residual systems are inherited, such as
the notion of permutation equivalence and confluence. We have also given
an algorithm which simplifies slash-dot terms to proof terms, and we have
proven, in two special cases, that the algorithm terminates.

For the future, the following research is interesting. Firstly, it is interest-
ing to find a proof (or a refutation) of the claim that the algorithm mentioned
in the previous paragraph does always terminate. Not only is this interesting
in its own right, it is my view that such a proof may aid us in the under-
standing of termination of higher-order rewriting, and provide new proof
methods.

Secondly, it is interesting to see if the framework can be generalized to
non-orthogonal, left-linear PRSs, or even arbitrary PRSs. For this to work,
an error symbol must be added, to indicate non-compatibility. For the first-
order case, the same approach was succesfully applied to left-linear TRSs in
[13].

Acknowledgements

I wish to thank Vincent van Oostrom and the anonymous referees of RTA’03
for their valuable remarks on preliminary versions of this paper.

References

[1] Barnaby P. Hilken. Towards a proof theory of rewriting: The simply
typed 2λ-calculus. Theoretical Computer Science, 170:407–444, 1996.

[2] Gérard Huet. Residual theory in λ-calculus: A formal development.
Journal of Functional Programming, 4(3):371–394, 1994.

[3] Gérard Huet and Jean-Jacques Lévy. Computations in orthogonal
rewriting systems, part I + II. In J.L. Lassez and G.D. Plotkin, editors,

22

Computational Logic – Essays in Honor of Alan Robinson. MIT Press,
1991.

[4] Zurab Khasidashvili and John Glauert. Relating conflict-free stable
transition systems and event models via redex families. Theoretical
Computer Science, 286(1):65–95, 2002.

[5] Cosimo Laneve and Ugo Montanari. Axiomatizing permutation equiv-
alence. Mathematical Structures in Computer Science, 6(3):219–215,
1996.

[6] Jean-Jacques Lévy. Réductions correctes et optimales dans le λ-calcul.
Thèse de doctorat d’état, Université Paris VII, 1978.

[7] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and
their confluence. Theoretical Computer Science, 192:3–29, 1998.

[8] Paul-André Melliès. Axiomatic rewriting theory VI: Residual theory
revisited. In Sophie Tison, editor, 13th International Conference on
Rewriting Techniques and Applications, pages 24–50, 2002.

[9] José Meseguer. Conditional rewriting logic as a unified model of con-
currency. Theoretical Computer Science, 96:73–155, 1992.

[10] Dale Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. Journal of Logic and Com-
putation, 1(4), 1991.

[11] Tobias Nipkow and Christian Prehofer. Higher-order rewriting and
equational reasoning. In W. Bibel and P. Schmitt, editors, Automated
Deduction — A Basis for Applications, Volume I: Foundations, num-
ber 8 in Applied Logic Series, pages 399–430. Kluwer Academic Press,
1998.

[12] Vincent van Oostrom. Confluence for Abstract and Higher-Order
Rewriting. PhD thesis, Vrije Universiteit, Amsterdam, 1994.

[13] Vincent van Oostrom and Roel de Vrijer. Equivalence of Reductions,
chapter 8 of [18]. 2003.

[14] Vincent van Oostrom and Roel de Vrijer. Four equivalent equivalen-
ces of reductions. In Proceedings of WRS’02 (ENTCS 70.6), 2003.
Downloadable at: http://www.elsevier.nl/locate/entcs/.

[15] Femke van Raamsdonk. Confluence and Normalisation for Higher-
Order Rewriting. PhD thesis, Vrije Universiteit, Amsterdam, 1996.

[16] Femke van Raamsdonk. Higher-order rewriting. In 10th International
Conference on Rewriting Techniques and Applications, 1999.

23

[17] Eugene W. Stark. Concurrent transition systems. Theoretical Computer
Science, 64(3):221–269, 1989.

[18] Terese. Term Rewriting Systems. Number 55 in Camb. Tracts in Theor.
Comp. Sc. Cambridge University Press, 2003.

[19] D. A. Wolfram. The Clausal Theory of Types. Number 21 in Camb.
Tracts in Theor. Comp. Sc. Cambridge University Press, 1993.

24

