
A proof of Finite Family Developments for

Higher-Order Rewriting using a Prefix Property

H. J. Sander Bruggink

Department of Philosophy, Utrecht University
Email: bruggink@phil.uu.nl

Homepage: http://www.phil.uu.nl/~bruggink

Abstract. A prefix property is the property that, given a reduction, the
ancestor of a prefix of the target is a prefix of the source. In this paper we
prove a prefix property for the class of Higher-Order Rewriting Systems
with patterns (HRSs), by reducing it to a similar prefix property of a
λ-calculus with explicit substitutions. This prefix property is then used
to prove that Higher-order Rewriting Systems enjoy Finite Family De-
velopments. This property states, that reductions in which the creation
depth of the redexes is bounded are finite, and is a useful tool to prove
various properties of HRSs.

1 Introduction

Higher-order Rewriting Systems (HRSs), as introduced by Nipkow in 1991 [12,10],
are a powerful tool to study the metatheory of declarative programming lan-
guages, like λProlog and Haskell, on the one hand, and theorem provers and
proof checkers, like Isabelle, on the other. Also, many (extensions of) λ-calculi
can be encoded as instances of HRSs, so that results obtained for HRSs carry
over to other interesting domains.

In this paper, we prove two properties of HRSs where left-hand sides of rule
are restricted to be patterns. First we prove a prefix property, by reducing this
property to a similar prefix property for a λ-calculus with explicit substitutions.
The prefix property says that, given a step, the ancestor of a prefix of the target is
a prefix of the source. Consider, as an example, the (first-order) rewriting system
with the single rule f(x) → g(f(x), x) and the step f(h(a)) → g(f(h(a)), h(a)).
Now, p = g(f(�), h(�)) is a prefix of the target. Intuitively, its ancestor is
f(h(�)), because s = f(h(�)) → g(f(h(�)), h(�)) = t, and p is contained in
t. And indeed, f(�) is a prefix of the source.

Many different prefix properties are possible: we can, e.g., vary in how the
notions of prefix and ancestor are formalized, and we may impose additional
conditions on the form of the prefixes. Prefix properties are already known for
first-order TRSs [2,13] and (a labelling of) the λ-calculus with β-reductions [2],
and have many applications, such as (head) needed reductions [13, Chap. 8] and
normalization of outermost-fair reductions [13, Chap. 9]. A similar property is
proved in Van Daalen’s Square Brackets Lemma [14].

The second contribution is that we prove Finiteness of Family Developments
(FFD) for HRS, by reducing this property to the prefix property described above.
FFD states that each reduction, in which the “creation depth”, or family, of
function symbols is bounded, is finite. The intuition behind the notion of family
is that in a step C[lσ] → C[rσ], the symbols of r depend on the symbols of l,
and therefore have a higher creation depth, while the symbols in C and σ do
not take part in the step and have the same creation depth in both source and
target. For example, consider the following infinite reduction, using the rewrite
system above. We label the function symbols with their creation depth.

f0(a0) → g1(f1(a0), a0) → g1(g2(f2(a0), a0)) → g1(g2(g3(f3(a0), a0), a0)) → · · ·

Clearly, in this infinite reduction, the creation depth of the f’s grows without
bound. FFD states that restricting the creation depth to a finite number, yields
finite reductions. FFD is a useful tool to prove various properties of rewrite
systems, such as termination (e.g. termination of simply typed λ-calculus follows
from FFD, cf. [7, page 31]), existence of standard reductions, etc.

Of some lemmas and theorems the proof is omitted or only sketched. Full
proofs are made available in the technical report [4].

Acknowledgements. I wish to thank Vincent van Oostrom, Delia Kesner and the
anonymous referees for useful remarks on preliminary versions of this paper.

2 Preliminaries

We presuppose knowledge of the simply typed λ-calculus. Here we give a short
overview of Higher-Order Rewrite Systems (HRSs) [10]. In particular, we con-
sider HRSs as HORSs [15] with the simply typed λ-calculus as substitution
calculus. We refer to [13, Sect. 11.2] for a good introduction.

Simple types are generated from a set of base types by the type constructor
→. Let Σ be a signature of simply typed function symbols. We define a preterm
to be a simply typed λ-terms over Σ. We want to consider βη-equivalence classes
of preterms. Since it is well known that β-reduction, combined with restricted η-
expansion (η-reduction), is confluent and terminating, we take βη-normal forms
as unique representatives of the βη-equivalence classes. We define: a term is a
preterm in βη-normal form. In the following, s, t will range over terms (and,
whenever indicated, over preterms as well).

A sequence a1, . . . , an will sometimes be written as an, or just a if the length is
not important or clear from the context. Juxtaposition of two sequences denotes
concatenation.

For terms or preterms s, t1, . . . , tn, we write s(t1, . . . , tn) for st1 · · · tn, or, in
the case of terms, the β-normal form thereof. We also introduce the shorthand
λxn.s for λx1. . . . λxn.s. With FV(s) we denote the set of free variables of term
or preterm s, and with Sym(s) the set of function symbols present in the term
or preterm. If λx.a(s) is a term, then a is called the head of that term (a is a
function symbol or variable).

In the class of HRSs that we consider, the left-hand sides of rules are re-
stricted to be local patterns. For patterns, unification is decidable and unique
most general unifiers exist [11]. Local patterns, additionally, are linear (each free
variable occurs at most once) and fully-extended (free variable have all bound
variables in scope as argument). These extra requirements have a similar pur-
pose as the requirement of left-linearity in first-order TRS: they keep matching
local. To match a non-linear pattern, it is possible that subterms outside the
pattern need to be checked for equality; to match a non fully extended pattern,
it is possible that such a subterm must be checked for the non-occurrence of a
variable. Because the notion of pattern depends on what the free variables are,
we need to parametrize the notion with a context of variables, and obtain the
following inductive definition:

Definition 2.1 (Pattern). Let x be a sequence of variables.

(i) A term s is an x-pattern if:
– s = a(s1, . . . , sn) and either a ∈ x ∪ Σ and s1, . . . , sn are x-patterns;

or s1, . . . , sn is η-equivalent to a sequence of distinct variables from x.
– s = λy.s0 and s0 is an xy-pattern.

(ii) A term s is linear outside x, if each free variable which is not in x, occurs
in it at most once. A term s is a fully extended x-pattern, if, in the second
case of the above definition, s1, . . . , sn =η x. A term s is a local x-pattern,
if s is linear outside x and a fully extended x-pattern.

Examples of local patterns are f(x), g(λxy.f(z(x, y))) and h(λx.z(x)). Examples
of non-local patterns are g(λxy.f(y)) (not fully-extended) and h(λx.z(x), λx.z(x))
(not linear). An example of a non-pattern is g(z(a)).

In the following, p, q will range over patterns, and the word pattern (without
the sequence of variables) will refer to a ∅-pattern.

Definition 2.2 (HRS). A rewrite rule (for a signature Σ) is a pair λx.l0 →
λx.r0 of closed Σ-terms of the same type, such that l0 = f(s1, . . . , sn) and l0 is
a local pattern not η-equivalent to a variable. An HRS is a tuple H = 〈Σ, R〉,
where Σ is a signature and R a set of rewrite rules for Σ.

The rewrite relation →H is defined as follows: s →H t if there exist a context
C such that s =β C[l] and t =β C[r], for some rule l → r ∈ R.

For arbitrary rewrite system R, we denote with ։R the reflexive, transitive
closure of →R.

Note that there is no substitution in the definition of the rewrite relation,
such as in first-order term rewriting systems (but see also Remark 2.4). The
leading abstractions of the rules take the role of the substitution, as can be seen
in the next example:

Example 2.3. Let the HRS Map, implementing the higher-order function map,
be defined by:

λz.map(λx.z(x), nil) → λz.nil

λzuv.map(λx.z(x), cons(u, v)) → λzuv.cons(z(e(u)), map(λx.z(x), v))

Here, cons and nil are the list constructors, viz. list composition and the empty
list, respectively. The reason for the symbol e is to make the HRS non-collapsing
(see Def. 2.5). A reduction of two Map-steps is the following:

map(λx.f(x), cons(a, nil))
=β (λzuv.map(λx.z(x), cons(u, v)))(λx′.f(x′), a, nil)

→Map (λzuv.cons(z(e(u)), map(λx.z(x), v)))(λx′.f(x′), a, nil)

=β cons(f(e(a)), map(λx.f(x), nil))
=β cons(f(e(a)), (λz.map(λx.z(x), nil))(λx′.f(x′)))

→Map cons(f(e(a)), (λz.nil)(λx′.f(x′)))
=β cons(f(e(a)), nil)

Note how the (underlined) left-hand sides are literally replaced by the (also
underlined) right-hand sides.

In later examples, the leading abstractions of rewrite rules will be omitted; in
other words, we will write l → r for λx.l → λx.r.

Substitutions are maps from variables to terms. Application of a substitution
σ = [x1 7→ t1, . . . , xn 7→ tn] to a term s is defined as: sσ = (λx1 . . . xn.s)t1 . . . tn
(where this term is, as always, implicitly reduced to βη-normal form). In the
following, ρ, σ, τ, υ will rangle over substitutions. The composition of substitions
σ and τ is denoted by σ ; τ , where sσ;τ = (sσ)τ . A substitution is called linear,
if each free variable occurs in its codomain at most once, i.e. if all terms of its
codomain are linear and have mutually disjoint free variables. A (fully extended)
x-pattern substitution is a substitution of which the codomain consists of (fully
extended) x-patterns.

Remark 2.4. The rewrite relation of Def. 2.2 can alternatively, and more in the
fashion of first-order TRSs, be defined in the following way: s →H t if s =β C[lσ0]
and t =β C[rσ

0], where λx.l0 → λx.r0 ∈ R and σ is a substitution with Dom(σ) =
x. This alternative definition, however, requires the notion of substitution to be
defined, and therefore we prefer the other one. In the rest of the paper, we will
sometimes implicitly switch definitions.

Intuitively, a rewrite rule is collapsing, if it can bring context and subtitution,
or different parts of the substitution, together, i.e. if, after the application of the
rule, a function symbol of the context can be directly connected to a function
symbol of the substitution. This can happen in two specific cases, which we will
use as a definition:

Definition 2.5. A term s is collapsing, if one of the following applies:

– (context-subst): s = x(s1, . . . , sn), where x is a free variable; or
– (subst-subst): s = C[x(s1, . . . , sn)], and for some k, sk = λz.y(t1, . . . , tm),

where C is a context, x is a free variable, and y a free or bound variable.

A rewrite rule λx.l → λx.r is collapsing, if r is collapsing, and an HRS is
collapsing, if at least one of its rules is.

Example 2.6.

– The rules λx.f(x) → λx.x and λz.mu(λx.z(x)) → λz.z(mu(λx.z(x))) are
collapsing due to the (context-subst) condition.

– The rule λyz.g(λx.z(x), y) → λyz.f(z(y)) is collapsing due to the (subst-
subst) condition.

– The rule λyz.app(lam(λx.z(x)), y) → λyz.z(y) is collapsing due to both the
(context-subst) and the (subst-subst) conditions.

3 Labelling HRSs with natural numbers

Labelling rewriting systems is a well-known method to formalize the notion of
redex family; see e.g. [8,9]. In this section, we develop a labelling, in the sense of
[17,13], for HRSs, analogous to the labelling for the λ-calculus used by Hyland
[6] and Wadsworth [18]. Each function symbol is labelled by a natural number,
representing the “creation depth” of the function symbol, and the rules are
labelled such that every function symbol of the right-hand side is labelled with
the largest label of the left-hand side plus one.

Definition 3.1 (ω-labelling).

(i) The ω-labelling of a signature Σ is defined as: Σω = {f ℓ | f ∈ Σ, ℓ ∈ N}.
(ii) The family of a term s, denoted fam(s), is the largest label of s, i.e.:

fam(s) = max{ℓ | f ℓ ∈ Sym(s)}
(iii) Let s be a term, and ℓ ∈ N a label. Then:

x(s1, . . . , sn)ℓ = x(sℓ
1, . . . , s

ℓ
n)

f(s1, . . . , sn)ℓ = f ℓ(sℓ
1, . . . , s

ℓ
n)

(λx.s0)
ℓ = λx.sℓ

0

(iv) The projection operation |·|ω is the mapping from Σω to Σ given by |f ℓ|ω =
f . The mapping is homomorphically extended to terms.

(v) Let H = 〈Σ, R〉. The ω-labelled version of H is defined as: Hω = 〈Σω, Rω〉,
where Rω consist of all rules l′ → r(fam(l′)+1) such that l → r ∈ R and
|l′|ω = l.

The ω-labelling only labels function symbols, not variables, abstractions or ap-
plications. The reason for this is that we want the ω-labelling of an HRS to
be an HRS itself (otherwise it would not be a labelling in the sense of [17,13]).
Labelling variables is impossible, because α-equivalent terms are identified. La-
belling abstractions and applications is impossible because we have fixed the
(unlabelled) simply typed λ-calculus as substitution calculus.

Example 3.2. The labelled HRS Mapω consists, among others, of the rules:

map0(λx.z(x), nil0) → nil1

map1(λx.z(x), nil1) → nil2

map0(λx.z(x), cons0(u, v)) → cons1(z(e1(u)), map1(λx.z(x), v))
map0(λx.z(x), cons1(u, v)) → cons2(z(e2(u)), map2(λx.z(x), v))

A labelled reduction corresponding to the reduction of Ex. 2.3 is the following:

map0(λx.f0(x), cons0(a0, nil0))

=β (λzuv.map0(λx.z(x), cons0(u, v)))(λx′.f0(x′), a0, nil
0)

→Map (λzuv.cons1(z(e1(u)), map1(λx.z(x), v)))(λx′.f0(x′), a0, nil
0)

=β cons1(f0(e1(a0)), map1(λx.f0(x), nil0))

=β cons1(f0(e1(a0)), (λz.map1(λx.z(x), nil0))(λx′.f0(x′)))

→Map cons1(f0(e1(a0)), (λz.nil2)(λx′.f0(x′)))

=β cons1(f0(e1(a0)), nil2)

Notice how only the labels of function symbols involved in the step (i.e. the
underlined ones) are increased.

The following two lemmas provide a correspondence between labelled and unla-
belled reductions, and are easily proved by induction:

Lemma 3.3. Let H be an HRS. Hω is orthogonal/collapsing/erasing, if and
only if H is.

Lemma 3.4. Let H be an HRS.

(i) If s →H t, then, for each s′ such that |s′|ω = s, there is a t′ such that
s′ →Hω t′ and |t′|ω = t.

(ii) If s →Hω t, then |s|ω →H |t|ω.

4 The Prefix Property

We call p a prefix of term t, if it is a pattern, and there exists a substitution σ

such that pσ = t. Given a step s → t, a subterm q of s is the ancestor of a subterm
p of t, if the symbols of t “trace to” the symbols of s. This notion is formalized
here using labelling together with the rewrite relation: q is an ancestor of p, if
fam(p) ≥ fam(q) and q ։Hω pυ. The substitution υ is necessary because q might
reduce to a “bigger” term than p; typically, υ has only function symbols which
are also in p. Using these formalizations, we prove in this section the following
theorem (proof begins on page 12).

Theorem 4.1 (Prefix Property). Let Hω be the ω-labelling of a non-collaps-
ing HRS, s a term, p a local x-pattern and σ a substitution. If s →Hω pσ,
then there exist a local x-pattern q and a substitution τ , such that s = qτ ,
fam(p) ≥ fam(q), and either:

– q →Hω pυ, for some substitution υ such that υ ; τ = σ; or (trm)
– q = p and τ →Hω σ. (sub)

The theorem states that, given a prefix of the target, its ancestor is a prefix of
the source. There are two possibilities: either the prefix takes part in the step, or
the step occurred fully in the substitution. Note that, in the first case, we do not
only require that its ancestor is a prefix, but also that the suffix stays the same
(except for duplicated subterms). In this regard, the lemma is stronger than e.g.
the prefix property (for the λ-calculus) proved in [2, Prop. 7.4].

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��

prl

q

υ
→Hω

τ

s

σ ρ

Fig. 1. The interesting case in the proof of the Prefix Property for HRSs

Example 4.2. Consider the following Mapω-step (see page 3):

h1(map3(λx.f2(x), cons2(a5, nil1)) → h1(cons4(f2(e4(a5)), map4(λx.f2(x), nil1)))

First, let the prefix p = h1(cons4(f2(y1), y2)) of the target be given. The suffix is
then given by σ = [y1 7→ e4(a5), y2 7→ map4(λx.f2(x), nil1)]. Then:

q = h1(map3(λx.f2(x), cons2(y1, z2)))
υ = [y1 7→ e4(z1), y2 7→ map4(λx.f(x), z2)]

τ = [z1 7→ a5, z2 7→ nil1]

satisfy the conditions of the (trm) case. Second, let p = h(y) and σ = [y 7→
cons4(f2(e4(a5)), map4(λx.f2(x), nil1)))]. Then:

q = h1(y) and τ = [y 7→ map3(λx.f2(x), cons2(a5, nil1))]

satisfy the conditions of the (sub) case.

The interesting case in the proof of the Prefix Property is the case that the step
s →Hω pσ occurs at the head. In this case we have that s = lρ and pσ = rρ,
for some rule l → r and substitution ρ. This situation is depicted in Fig. 1. We
want to construct an ancestor q that satisfies the (trm) case. It makes sense
to try to do this by adding to the pattern l the parts of p that are not in r.
However, due to the implicit β-conversions, these “parts of p that are not in r”
are not easily obtained. The key observation is that the β-reduction from pσ to
normal form is a variable renaming, because p is a pattern and has only bound
variables as arguments of free variables. The trick is to translate the prefix and
suffix in such a way, that the variable renamings are already carried out (we need
variable capturing, first-order substitutions for this, called graftings), trace the
prefix back over the β-reduction from rρ to normal form, and find the prefix’s
ancestor, which is a prefix of rρ. Now, we are dealing with terms that are exactly
equal, instead of only equal up to β-equality, and now the problem can be solved
by using first-order unification techniques.

The above proof technique suggests that we need to prove a prefix property
for β-reductions in the λ-calculus. This is difficult, however, since the λ-calculus
does not cope well with graftings, because of the global nature of substitution.

For example, let C = (λx.�)a, D = � and s = x. Then C →β D, and C[s] →β a,
because the x in s is captured by the abstraction in the context and substituted
for. However, D[s] = x and thus C[s] 6→β D[s]. To tackle this problem, we use
a λ-calculus with explicit substitutions, a variant of the λx-calculus, and prove
a prefix property for it. Then, we simulate β-equality with this new calculus. In
[5] a similar approach is taken w.r.t. higher-order unification.

4.1 The Prefix Property of the λx-Calculus

We use a variant of the λx-calculus [3], with explicit renamings. The calculus
has both object variables (x, y, z) and metavariables (X, Y, Z). In the following,
we will refer to it simply by λx-calculus. The terms of the λx-calculus over some
signature Σ are first-order terms given by the following grammar:

Λx := x | X | f | λx.Λx | ΛxΛx | Λx{x\Λx}

where f ∈ Σ and the object variables are considered as constants or names.
M, N will range over λx-terms. Terms of the form M{x\N} will be called explicit
substitutions, and the {x\N} part of an explicit substitution is called a closure.
With MV(M) we will denote the set of metavariables of M , and with Sym(M)
the set of function symbols of M . The reduction rules of the λx-calculus are:

(λx.M)N →B M{x\N}

x{x\N} →x N

y{x\N} →x y

f{x\N} →x f

(λx.M){x\N} →x λx.M

(λy.M){x\N} →x λz.M{y\z}{x\N}
(M1M2){x\N} →x M1{x\N}M2{x\N}

where x 6= y and z is a fresh object variable. The subcalculus x consists of all
rules except the B-rule. The reduction relations →Bx and →x are the contextual
closures of the above steps. Note that there is no reduction rule for terms of the
form X{x\N}, where X is a metavariable, and thus x-normal forms are charac-
terized by the fact that sequences of closures are only applied to metavariables.

A λx-term is called passive if no metavariable X occurs in a subterm of the
form Xµ(M1, . . . , Mn), where µ is a sequence of closures; it is called linear, if
every metavariable occurs in it at most once. In the following P, Q will range
over linear, passive λx-terms.

Remark 4.3. It is well-known that the λx-calculus is not confluent on terms
containing metavariables. At first sight, non-confluence seems problematic, be-
cause we’re trying to use the λx-calculus to simulate the (confluent) λ-calculus.
However, the translation to λ-calculus (see page 10) will remove all closures,
and will project normal forms of the same λx-term to the same λ-term (modulo
α-equivalence).

A grafting is a mapping from metavariables to λx-terms. The greek lowercase
letters ζ, η, θ, κ will range over graftings. Applying a grafting ζ to a term M ,

written M [ζ], is defined exactly as first order substitution, i.e.:

x[ζ] = x

X [ζ] = ζ′(X)
f [ζ] = f

(λx.M)[ζ] = λx.M [ζ]
(M1M2)[ζ] = M1[ζ]M2[ζ]

(M{x\N})[ζ] = M [ζ]{x\N [ζ]}

where ζ′(X) = ζ(X), if X ∈ Dom(ζ), and ζ′(X) = X , otherwise. A grafting
is called linear, if every metavariable occurs in its codomain only once, i.e. its
codomain consists of linear λx-terms with mutually disjoint metavariables. A
grafting is called passive, if all the terms of its codomain are passive.

Because λx-terms are first-order terms, unification is decidable. In the proof
of the Prefix Property, we need the following property: if two λx-terms are unifi-
able, there exists a most general unifier (mgu). In fact, if we assume the unifiable
terms to be linear and passive, then the mgu applied to one of the terms is a
linear, passive λx-term again:

Lemma 4.4. Let M, N be linear λx-terms, where MV(M)∩MV(N) = ∅, and let
ζ, η be graftings such that M [ζ] = N [η]. There exist graftings ζ0, η0, κ such that
M [ζ0] = N [η0], ζ0 ; κ = ζ, η0 ; κ = η, Sym(ζ0) ⊆ Sym(N), Sym(η0) ⊆ Sym(M).
Moreover, if M (N) is passive, then η0 (ζ0) consists of passive λx-terms.

Proof. (Sketch) Since λx-terms are basically first-order terms, we can use first-
order unification techniques. Because of disjointness of the metavariables we can
consider the two graftings as one unifier, and the linearity assumption is needed
for the condition on the symbols. ⊓⊔

Example 4.5. Let:

M = λx.g(f1(X1), X2)
ζ = [X1 7→ a, X2 7→ f2(a)]

N = λx.g(Y1, f2(Y2))
η = [Y1 7→ f1(a), Y2 7→ a]

Then M [ζ] = λx.g(f1(a), f2(a)) = N [η]. We take ζ0 = [X2 7→ f2(Z1)], η0 = [Y1 7→
f1(Z2)] and κ = [Zi 7→ a] to satisfy the conditions of the lemma.

In the next theorem, we prove the Prefix Property for the λx-calculus. P is a
prefix of a λx-term M , if it is a linear, passive λx-term, and there exists a grafing
ζ such that P [ζ] = M . The notion of ancestor is again formalized using labelling
and the rewrite relation; however, because we do not count creation depth in
Bx-reductions, now the labels, or more generally, the function symbols of the
prefix must be the same as those of its ancestor. Just like in Theorem 4.1, a
prefix can either take part in the step, or not, resulting in two cases. Item (ii) is
the extension of the Prefix Property to Bx-reductions.

Theorem 4.6 (λx-Prefix Property). Let M be a closed λx-term, P a linear,
passive λx-term and ζ a grafting.

(i) If M →Bx P [ζ], then there exist a linear, passive λx-term Q and a grafting
η such that M = Q[η], Sym(Q) = Sym(P) and either:

– Q →Bx P [κ] where κ is some grafting such that κ ; η = ζ; or (trm)
– Q = P and η →x ζ. (sub)

(ii) If M ։Bx P [ζ], then there exist a linear, passive λx-term Q and a grafting
η such that: M = Q[η], Sym(Q) = Sym(P), Q ։Bx P [κ] where κ is some
grafting such that κ ; η ։Bx ζ.

Proof. (Sketch) Item (i) is proved by induction on the context of the step M →Bx

P [ζ], using a case analysis and Lemma 4.4 in the base case, and (ii) by induction
on the length of the reduction. ⊓⊔

Example 4.7. Consider the Bx-reduction (λx.g(x, x))(f(a)) ։Bx g(f(a), f(a)),
and the prefix P = g(f(X), Y) of the target. The suffix is ζ = [X 7→ a, Y 7→ f(a)].
We can take Q = (λx.g(x, x))(f(Y)), κ = [Y 7→ f(X)] and η = [X 7→ a], satisfy-
ing the conditions of Theorem 4.6 (ii).

4.2 Translating between Terms, Preterms and λx-Terms

We are now dealing with three types of terms: terms, preterms and λx-terms.
In this section we develop translations between (pre)terms and λx-terms. The
“translation” between terms and preterms will be done completely implicitly,
here. See [4] for a more detailed approach.

Translating terms. We introduce the operations ·⊖x and ·⊕, which map λ-terms
to λx-terms, and vice versa, as follows:

y⊖
x = Y if y 6∈ x

x⊖
x = x if x ∈ x

f⊖
x = f

(λy.s)⊖x = λy.s⊖xy

(s1s2)
⊖
x = (s1)

⊖
x (s2)

⊖
x

M⊕ = (M↓x)
⊕
N

(Y σ)⊕N = y

x⊕
N = x

f⊕
N = f

(λy.M)⊕N = λy.M⊕

(M1M2)
⊕
N = M⊕

1 M⊕
2

Note that ·⊕ also normalizes the term to x-normal form and removes explicit sub-
stitutions, and that, for each preterm s and sequence of variables x, (s⊖x)⊕ = s.
The operations above are naturally generalized to translations between substi-
tutions and graftings.

Lemma 4.8. Let M, N be λx-terms. M ։Bx N if and only if M⊕
։β N⊕.

Proof. (⇒) and (⇐) are proved by induction on the length of the reductions
M ։Bx N and M⊕

։β N⊕, respectively. ⊓⊔

Although the above lemma suggests that Bx-reduction in the λx-calculus can eas-
ily simulate β-reduction, there is still a problem: ·⊕ does not distribute properly
over grafting application. The problem is similar to the problem given on page 8.
Consider the λx-term M := (λx.f(Y))a and grafting ζ := [Y 7→ x]. Now M [ζ]⊕ =

(λx.f(x))a, M⊕ = (λx.f(y))a. ζ⊕ = [y 7→ x]. Note that (M⊕)(ζ
⊕) = λz.f(x), be-

cause substitutions are capture-avoiding, and thus M [ζ]⊕ 6=β (M⊕)(ζ
⊕).

The solution is to add as arguments to the free variables of the preterms as
many (bound) variables as necessary (or more) to make the distribution work.
In the example above we would have s = (λx.f(y(x)))a and σ = [y 7→ λx.x].
Now, s and σ are, in a way that will be formalized in the next definition, similar
to M and ζ, but now M [ζ]⊕ =β sσ.

Definition 4.9. Let M be a λx-term and ζ a grafting. A tuple 〈s, σ〉 of preterm
and substitution is a λ-extension of 〈M, ζ〉 if there are graftings θ1, θ2 such that:

– s = M [θ1]
⊕ and σ = (θ2 ; ζ)⊕;

– for each X ∈ MV(M), θ1(X) = X(z) and θ2(X) = λz.X, where z is a list
of variables containing at least the bound variables of M in scope that occur
in ζ(X) (in arbitrary order).

The notion of λ-extension is, again, naturally generalized to graftings and sub-
stitutions as the first component of the tuples.

Lemma 4.10. Let 〈s, σ〉 be a λ-extension of 〈M, ζ〉. Then:

(i) sσ =β M [ζ]⊕;
(ii) for each λx-term N such that M ։Bx N , sσ =β N [ζ]⊕.

The lemma works, because the arguments of the free variables in the term and
the leading abstractions in the substitution, take over the role of the explicit
substitutions, as can be seen in the following example:

Example 4.11. Let M = (λx.(λy.Z)b)a be a λx-term, and ζ = [Z 7→ f(x, y)] a
grafting. Now, according to Def. 4.9, 〈s, σ〉, where s = (λx.(λy.z(x, y))b)a and
σ = [z 7→ λxy.f(x, y)] is a λ-extension of 〈M, ζ〉, with, θ1 = [Z 7→ Z(x, y)] and
θ2 = [λxy.Z]. We check both cases of Lemma 4.10:

(i) sσ = (λx.(λy.(λxy.f(x, y))(x, y))b)a =β (λx.(λy.f(x, y))b)a = M [ζ]⊕.
(ii) Let N = Z{y\b}{x\a}. Then M ։x N . Let t = z(a, b). Now tσ =β

f(a, b) = M [ζ]⊕. Since s =β t, this means that sσ =β M [ζ]⊕, as required.
(Note that the ·⊕ operation also reduces to x-normal form.)

Translating patterns. Among the λ-extensions of a pair 〈P, ζ〉 of linear, pas-
sive λx-term and grafting, there is, for each sequence of variables x exactly one
λ-extension 〈p, σ〉 where p is a x-pattern, viz. the one in which in p the free vari-
ables have all bound variables in scope as arguments. We denote by P+

x 〈P, ζ〉
the function which returns this specific λ-extension, and by P−

x the inverse of
P+

x . See [4] for a more detailed definition of these operations.

Example 4.12. Consider the linear, local λx-terms P = f(λxy.g(Z, x)) and Q =
map(λx.Z, nil), and the grafting ζ = [Z 7→ f(x)]. Then:

P+
∅
〈P, ζ〉 = 〈f(λxy.g(z(x, y), x)), [z 7→ λxy.f(x)]〉

P+
∅
〈Q, ζ〉 = 〈map(λx.Z(x), nil), [z 7→ λx.f(x)]〉

4.3 Proof of the Prefix Property

Proof (of Theorem 4.1). (Sketch). The interesting case is the case that the step
occurs at the head, i.e.: s = lρ and pσ = rρ, for some rule l → r ∈ R and
substitution ρ. We translate the terms to λx-terms: 〈P, ζ〉 := P−

x 〈p, σ〉, R := r⊖
∅

,

L := l⊖
∅

and µ := ρ⊖x . Because pσ =β rρ, and P [ζ] is a Bx-normal form by
construction, it is the case that R[µ] ։Bx P [ζ] (using Lemma 4.8).

Now, we use the λx-Prefix Property (Theorem 4.1) to find the ancestor P ′

of P in this reduction. This gives us, among other things, a graftings η, κ1 such
that P ′[η] = R[µ], and P ′ = P [κ]. Equality here is first-order equality, and thus
we apply first-order unification techniques (Lemma 4.4) to find an mgu 〈η0, µ0〉
for the unifier 〈η, µ〉, and grafting κ2 such that η0 ; κ2 = η and µ0 ; κ2 = µ.

Now we translate everything back to (pre)terms, using the techniques dis-
cussed in the previous subsection: υ is the translation of κ1 followed by η0 (using
λ-extensions to make the two composable), τ is the translation of κ2 and Q is the
translation of L[η0]. This translation is cumbersome, but not hard in principle.
The λ-extensions make sure that Bx-equality can be transformed to β-equality.

The last thing we have to prove is that fam(p) ≥ fam(q). This holds because
Sym(η0) ⊆ Sym(p), because Sym(η0) ⊆ Sym(r), all labels in r are the same and
p and r have at least one symbol in common because r is non-collapsing. ⊓⊔

5 Finite Family Developments

In this section we apply the prefix property of the previous section to prove that
all family developments of HRSs are finite. We restrict our attention to non-
collapsing HRSs first. In the next section, we will describe a way to generalize
the result to collapsing HRSs as well.

Families are formalized by labelling all function symbols with natural num-
bers, as defined in Def. 3.1. We prove that the resulting system is terminating
if we restrict the labels to some finite bound. The proof is inspired by the proof
by Van Oostrom [16]. The differences between this proof and the one by Van
Oostrom are the following:

– We use a different method of labelling. Our labelling has the property that
one step of the labelled HRS corresponds exactly to one step in the original.
Also, our notion of labelling is an instance of the abstract notion of labelling
put forth in [17,13].

– In Van Oostrom’s paper, the proof of Lemma 15 is omitted. Here, we give
a proof of that lemma (adapted for the different method of labelling) by
reducing it to the Prefix Property.

Lemma 5.1. Let Hω be the labelling of a non-collapsing HRS, s be a term,
p a local pattern, ℓ ∈ N a label and τ and σ substitutions such that for any
x ∈ Dom(σ), σ(x) has a function symbol labelled with ℓ as head. If sσ

։Hω pτ ,
then either:

– fam(p) ≥ ℓ; or (int)

– s ։H pυ, for some υ such that υ ; σ ։Hω τ . (ext)

Proof. By induction on the length of the reduction sσ
։Hω pτ . If the length

is 0, the result follows easily. Otherwise, suppose sσ
։Hω s′ →Hω pτ . By The-

orem 4.1, there exist a local pattern q and substitution σ′ such that s′ = qσ′

,
fam(p) ≥ fam(q) and either (trm) q ։Hω pυ′

and υ′ ; σ′ = τ ; or (sub) p = q and
σ′

։Hω τ . Applying the induction hypothesis to sσ
։Hω qσ′

yields that one of
the following cases must apply:

– (int) fam(q) ≥ ℓ, but then fam(p) ≥ ℓ by transitivity of ≥.
– (ext) s ։Hω qυ and υ ; σ ։Hω σ′, for some substitution υ. We distinguish

the following cases:
• (trm) s ։Hω qυ

։Hω pυ′;υ and υ′ ; υ ; σ ։Hω υ′ ; σ′ = τ .
• (sub) s ։Hω qυ = pυ and υ ; σ ։Hω σ′

։Hω τ . ⊓⊔

Theorem 5.2. Let Hω be the labelling of a non-collapsing HRS, and let R :
s1 →Hω s2 →Hω · · · be a Hω-reduction. R is finite, if and only if there is a
ℓmax ∈ N such that fam(si) ≤ ℓmax for all si.

Proof. (Sketch) (⇒): Trivial. (⇐): We prove the theorem by showing that Hω =
〈Σω, Rω〉 is terminating if we restrict it to rules l → r ∈ Rω where fam(r) ≤ ℓmax.
It suffices to show that rσ terminates for all right-hand sides r and terminating
substitutions σ. We do this by assuming, to the contrary, that a non-terminating
term exists. Let (sℓ)σ be a minimal non-terminating term such that s is non-
(subst-subst)-collapsing1, and σ is a terminating substitution. By minimality,
this reduction is of the form: (sℓ)σ

։Hω lτ →Hω rτ
։Hω · · ·, where λx.l →

λx.r ∈ Rω. We will show, by induction on (ℓmax − ℓ), that (sℓ)σ is terminating,
contradicting the assumption that it’s not.

The interesting case is that s = λx.y(s1, . . . , sn), where y ∈ Dom(σ). Let
t = σ(y), and σ′ = [xi 7→ si]. Then tσ

′

։H lτ . By the fact that s is non-(subst-
subst)-collapsing, the heads of the si are function symbols labelled with ℓ, and
thus we can apply Lemma 5.1. Again, the interesting case is if t ։Hω lυ, and now
termination of rτ follows from the fact that σ is terminating by assumption. ⊓⊔

6 Dealing with Collapsing HRSs

In the previous sections we restricted our attention to non-collapsing HRSs. Both
the Prefix Property and FFD do not hold for collapsing HRSs, as is witnessed
by the following two counterexamples:

Example 6.1 (Prefix Property). Consider the collapsing HRS Mu:

mu(λx.z(x)) → z(mu(λx.z(x))

1 We drop the (context-subst) condition of Def 2.5, because subterms of non (context-
subst)-collapsing terms can be (constext-subst)-collapsing, meaning that an infinite
reduction from a minimal counter example might not contain a head step.

and the following Muω-step:

mu3(λx.f2(x)) →Muω f2(mu4(λx.f2(x)))

It is easy to check that the prefix p = f2(u) of the target of the step has no
ancestor q that satisfies the requirements of the Prefix Property (Theorem 4.1).

Example 6.2 (FFD). Consider the collapsing HRS Lam :

app(lam(λx.z(x), y)) → z(y)

Then one Lamω-step is the following:

app1(lam1(λx.app1(x, x)), lam1(λx.app1(x, x)))

→Lamω app1(lam1(λx.app1(x, x)), lam1(λx.app1(x, x)))

So we see that Lamω has a one-step cycle, and thus an infinite reduction with
bounded labels.

The problem in both cases is that, because of applying a collapsing rule, a
function symbol can be directly connected to a previously unconnected function
symbol from the context or substitution, or to the root of the term, without the
rule leaving any trace in between, in the form of a label. This can be remedied
by including “empty” function symbols, named ǫα, for each base type α, in the
right-hand sides of rules, and “saturating” the left-hand sides of rules with those
empty function symbols. The same approach is taken for the first-order case in
[13, Chap. 8]. We sketch the idea of this “ǫ-lifting”, Hǫ, by giving two examples;
for a formal definition, see [4].

Example 6.3. The ǫ-lifting of Mu (types of ǫ’s omitted):

mu(λx.z(x)) → ǫ(z(ǫ(mu(λx.ǫ(z(ǫ(x)))))))

Note that more ǫ’s are added than strictly necessary; this is for ease of definition
(see [4] for details). A (Muǫ)ω step corresponding to the step of Ex. 6.1 is:

mu3(λx.f2(x)) →(Muǫ)ω ǫ4(f2(ǫ4(mu4(λx.ǫ(f2(ǫ(x)))))))

Take the corresponging prefix p = ǫ4(f2(y)). Now, the Prefix Property is satisfied
with q = mu3(λx.f2(x)), τ = ∅ and υ = [z 7→ ǫ4(mu4(λx.ǫ(f2(ǫ(x)))))].

Example 6.4. The ǫ-lifting of Lam consists of (among others) the following rules:

app(lam(λx.z(x), y)) → ǫ(z(ǫ(y)))
app(ǫ(lam(λx.z(x))), y) → ǫ(z(ǫ(y)))

app(ǫ(ǫ(lam(λx.z(x)))), y) → ǫ(z(ǫ(y)))

Then a (Lamǫ)ω-step corresponding to the step of Ex. 6.2 is the following:

app1(lam1(λx.app1(x, x)), lam1(λx.app1(x, x)))

→(Lamǫ)ω ǫ2(app1(ǫ2(lam1(λx.app1(x, x))), ǫ2(lam1(λx.app1(x, x)))))

Now, all redex patterns have a maximum label of 2, instead of 1.

Theorem 6.5 (FFD). Let (Hǫ)ω be the ǫω-labelling of an HRS, and let R :
s1 →(Hǫ)ω s2 →(Hǫ)ω · · · be a (Hǫ)ω-reduction. R is finite, if and only if there is
a ℓmax ∈ N such that fam(si) ≤ ℓmax for all si.

7 Applications and Further Research

The Prefix Property and Finite Family Developments are useful tools for proving
various properties of HRSs. For example, an alternative proof of termination of
the simply typed λ-calculus (encoded as an HRS) uses FFD. Also, in a work in
progress by the author, FFD is used to prove the termination of a higher-order
standardization procedure. This result can be used to formalize the notion of
equivalence of reductions, in a similar way as is done in [13].

For future research, it might be interesting to further investigate the relation
between FFD and the Dependency Pair method [1], both in the higher-order and
first-order case. Since FFD and the Dependency Pair method both essentially
depend on the same principle, that an infinite reduction must have an unbounded
creation depth, it the author’s conjecture that FFD, or the Prefix Property, can
be used to design a higher-order Dependency Pair method.

References

1. Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236(1–2):133–178, 2000.

2. Inge Bethke, Jan Willem Klop, and Roel de Vrijer. Descendants and origins in
term rewriting. Information and Computation, 159(1–2):59–124, 2000.

3. Roel Bloo. Preservation of Termination for Explicit Substitution. PhD thesis,
Technische Universiteit Eindhoven, 1997.

4. H. J. Sander Bruggink. A proof of finite family developments for higher-order
rewriting using a prefix property. Preprint, LGPS 245, Zeno Inst. of Phil., 2006.

5. Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher order unification via
explicit substitutions. Information and Computation, 157(1–2):184–233, 2000.

6. J.M.E. Hyland. A syntactic characterization of the equality in some models of the
λ-calculus. Journal of the London Mathematical Society, 12(2):361–370, 1976.

7. J. W. Klop. Combinatory Reduction Systems. PhD thesis, Utrecht Univ., 1980.
8. Jean-Jacques Lévy. Réductions correctes et optimales dans le λ-calcus. PhD thesis,

Université Paris VII, 1978.
9. Luc Maranget. Optimal derivations in weak lambda-calculi and in orthogonal term

rewriting systems. In POPL, 1991.
10. Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their conflu-

ence. Theoretical Computer Science, 192:3–29, 1998.
11. Dale Miller. A logic programming language with lambda abstraction, function

variables and simple unification. Journal of Logic and Computation, 1(4), 1991.
12. Tobias Nipkow. Higher-order critical pairs. In LICS, 1991.
13. Terese. Term Rewriting Systems. Number 55 in CTTCS. CUP, 2003.
14. D.T. van Daalen. The language theory of Automath. PhD thesis, Technische

Universiteit Eindhoven, 1980.
15. Vincent van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD

thesis, Vrije Universiteit Amsterdam, 1994.
16. Vincent van Oostrom. Finite family developments. In RTA, 1997.
17. Vincent van Oostrom and Roel de Vrijer. Four equivalent equivalences of reduc-

tions. ENTCS, 70(6), 2002.
18. C. P. Wadsworth. The relation between computational and denotational properties

for Scott’s D∞-models of the λ-calculus. SIAM Journal on Computing, 5, 1976.

