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Chapter 1

Introduction

1.1 The Topic of this Thesis

A very important question in such diverse research areas as philosophy, lin-
guistics, psychology and artificial intelligence is how we can determine the
meaning of a sentence or discourse. In this thesis, I will take a look at a part
of this problem from the perspective of dynamic semantics.

In most linguistic theories, the process of deriving the meaning of a dis-
course is divided in three stages:

1. A superficial parsing of the language. In linguistics the most commonly
used format is syntax trees. In this thesis, however, I will use Context
Modification Logic (CML), a dynamic logic designed by Albert Visser.
I will use this logic, because it shares a few important properties of
natural language: most notably, its formulas are, like natural language,
linear strings, and the order of the symbols is quite similar, too.

2. The construction of some conceptually plausible, intermediary repre-
sentation of the meaning of the discourse. In Montague Grammar,
formulas of Intensional Logic (IL) are used, and in Dynamic Semantics
the most common form of representation is a Discourse Representation
Structure (DRS). I, too, will use DRS’s.

3. The derivation of the actual meaning of the sentence from the interme-
diary representation. In Dynamic Semantics, meaning is represented
by a set of assignments, usually combined with a representation of the
context.

In this thesis, I will only address the second stage.

1



2 CHAPTER 1. INTRODUCTION

Before one can even begin an attempt to find the meaning of a discourse,
one has to give a clue what meaning is. Without deluding myself into the
belief that I know exactly what meaning is (a convincing definition of meaning
will perhaps never be given), I would like to remark the following.

When trying to give an intuitive image of the meaning of a discourse,
most people draw graphs. The nodes of the graphs denote objects, and the
edges denote the properties, actions, etc. that the objects have or carry out.
For example, the meaning of the sentence “Harry met Sally” is intuitively
represented by drawing two nodes, and one edge between those nodes with a
label ‘met’. The fact that graphs are such an intuitive method of representing
meaning suggest that they are, at least, a metaphor of how real people store
meanings of discourses.

Therefore, I found it very interesting to try to use graphs for dynamic
semantics in a more formal way. For this reason, I want to do the second
stage of the process above with graph rewriting, a formal computational
framework based on graphs. More formal reasons for using graph rewriting
are:

• We want to focus on the process of determining the meaning of a sen-
tence, which can be very well expressed using a computational frame-
work like graph rewriting.

• Graph rewrite rules operate on a local level, and they do not modify
irrelevent parts of the graph. Words and sentences, too, do not modify
the parts of the information state that they are not about.

• The duality between nodes and edges resembles the duality between
objects and predicates.

I will not pay any attention to negation, implication and universal quantifi-
cation; although very interesting these are not within the scope of this thesis.
So, to summarize, in this thesis, I will formulate an answer to the following
research question:

How can we use techniques from graph rewriting to calculate a
DRS for a formula of (the positive fragment of) CML.

The answer to this question is of particular interest to the research area of
artificial intelligence. Because of the characteristics of CML, it is supposed to
be relatively easy to translate an utterance of natural language into CML. In
this research, I make a start in finding a method of deriving (a representation
of) meaning that is both intuitively plausible (cf. strong AI) and computa-
tionally solvable. So, the results of this research could eventually be used to
write a computer program that really ‘understands’ natural language.
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1.2 Research method

To find an answer to the research question, I have first studied the literature
on both dynamic semantics and graph rewriting, and I used the outcomes of
this preliminary study to design two methods of doing ‘Discourse Represen-
tation by Hypergraphs’.

1.3 Prerequisites

I will assume that the reader has some basic logical as well as linguistic skills,
and possesses some knowledge of computational techniques and structures.
In particular, students who successfully finished the ‘basisdoctoraal’ phase of
CKI, should be able to follow this text. Some interest in logic and linguistics
will certainly help in obtaining a good understanding of the matter.

1.4 Overview

Below I will give an overview of the chapters to come. In general, we can
say that chapters 2 and 3 outline the preliminary notions and formalizations,
while chapters 4 and 5 discuss the results of my project.

Chapter 2. In this chapter I will briefly discuss two theories from the field
of Dynamic Semantics, viz. Discourse Representation Theory (DRT)
and Context Modification Logic (CML).

Chapter 3. In this chapter I will define hypergraphs and give an introduc-
tion into (hyper)graph rewriting. In the last section I will discuss graph
rewriting with (negative) application condition also, an extension to
graph rewriting which will be used in section 5.4

Chapter 4. In this chapter we will design a way of using techniques from
graph rewriting for representing discourse. As the basis we will take
the language of CML. We will define a stack-based graph to represent
discourse. We will then associate to each of the symbols of CML a graph
rewrite rule, and apply these rules to an initial graph in sequence.

Chapter 5. In the system developed in the previous chapter we had to do
a lot of work: we had to select the graph rewrite rules that we wanted
to apply. In this chapter we will build a graph rewrite system which
will do this work for us. In section 5.4 we will extend our system to
automatically create stacks when needed.
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Chapter 6. In this chapter the conclusions of my research are stated, and
an answer is given to the question raised in section 1.1. Also, some
directions for further research are given.

Now, let’s do some work!



Chapter 2

Dynamic Semantics

2.1 Introduction

The meaning of a sentence is traditionally equated with its truth conditions,
in the form of a formula in first-order predicate logic, or one of its higher
order pendants (see e.g. [Can93]). In the early 80s, however, it was discovered
that taking only truth conditions as the basis of meaning introduces some
problems, most of which are related to anaphora (see [GS98] for an overview).
In response to these problems, a number of theories were formalized, which,
together, are called Dynamic Semantics. In Dynamic Semantics, meaning is
taken to consist of both information about the world (truth conditions), and
information about the current context of the discourse.

In this chapter, I will first give a general account of Dynamic Semantics.
Then, we will take a more detailed look at two of the theories within this
field: Discourse Representation Theory (DRT), and Context Modification
Logic (CML). I will pay a little more attention to the second one, because it
is less well-known than DRT.

2.2 Discourse

More traditional linguistic theories often focus on single sentences, and try
to formulate truth-conditions for them. Some of those theories yield good
results on some intra-sentential phenomena. However, when we try to apply
the same theories to pieces of text larger than one sentence, they often make
wrong predictions [GS98].

Theories of Dynamic Semantics, on the other hand, usually focus on
larger pieces of natural language, called discourses. The discourses under
consideration typically consist of one or more sentences, that depend on each

5



6 CHAPTER 2. DYNAMIC SEMANTICS

other through anaphora. Generally, the sentences under consideration in
Dynamic Semantics are of a less complex structure, but this is made up for
by the better results on inter-sentential phenomena.

2.3 Definites and Indefinites

In traditional linguistics all noun phrases (NP’s) are considered to be similar:
they refer to one or more distinct objects in the domain of discourse. As a
result, it is very difficult to describe the difference between, for example, the
NP’s “the man” and “a man”. Both refer to exactly one object, which is a
man. But, obviously, the two have different meanings.

In the Russellian tradition, which is more or less adopted in Montague
Grammar and Categorial Grammar, uttering “The author of Waverley was
Scotch.” is equivalent to uttering the following three utterances [Rus96]:

• At least one person wrote Waverley.

• At most one person wrote Waverley.

• Whoever wrote Waverley was Scotch.

Even when this is applied to “The author of Waverley”, it is a bit awkward,
but it gets worse when we are applying the same rules to an NP like “the
man”. Then “the man” would mean something like “a man, and there exists
only one man”. This is of course plain untrue (there certainly exist more than
one men), but even if we perform the obvious repairs and restrict ourselves
only to the objects in the current context, it is utterly unintuitive. Also, it
misses the crucial point: “the man” refers back to a man that was talked
about earlier, while the object to which “a man” refers has not necessarily
been talked about before.

In Dynamic Semantics there is a principal difference between definite
NP’s, like “the man”, and indefinite NP’s, like “a man”. The basic assump-
tion is: when we hear an indefinite NP, we introduce a new discourse referent,
and when we hear a definite NP, we look through the discourse referents pre-
viously introduced by an indefinite NP and use the one that best matches
the definite NP. This referent is selected in different ways in all theories, but
they share the above basic assumption.

2.4 Discourse Representation Theory

Discourse Representation Theory (DRT) is currently the major branch of
research within the field of Dynamic Semantics. In DRT, discourses are
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given graphical representations, so called Discourse Representation Struc-
tures (DRS’s). A detailed discussion of DRT and DRS’s can be found in
[KR93]. Here, I will only give a brief overview of DRT.

2.4.1 Discourse Representation Structures

Although DRS’s are of a graphical nature, I will first give a ‘linear’ definition
[KR93, Gam91], for two reasons: firstly, it saves room; and secondly, it will
make more clear how I will formally treat a DRS in this thesis, namely as a
tuple of two sets.

Definition 2.4.1 (DRT-signature). A signature S for DRT is a structure
〈P , arity, C,X〉, in which P is a non-empty, finite set of predicate symbols,
arity is a function from P to N, C is a finite set of constants, and X is
a non-empty (possibly infinite) set of discourse referents. If P ∈ P and
arity(P ) = n, we will call P an n-ary predicate.

Definition 2.4.2 (DRS). Let S be a DRT-signature. A term is either a
discourse referent x ∈ X or a constant c ∈ C. Then, an S-DRS can be
defined by simultaneous induction:

1. If P is an n-ary predicate symbol, and t1, . . . , tn are terms, then
P (t1, . . . , tn) is a condition.

2. If t and t′ are terms, then t = t′ is a condition.

3. If Φ is an S-DRS then ¬Φ is a condition.

4. If Φ and Ψ are S-DRS’s, then Φ ∨Ψ and Φ→ Ψ are conditions.

5. If x1, . . . , xn are discourse referents, and ϕ1, . . . , ϕm conditions, then
〈{x1, . . . , xn}, {ϕ1, . . . , ϕm}〉 is an S-DRS.

6. Nothing else is either a condition or an S-DRS.

In the rest of this section, the signature is usually left implicit. We will
use lowercase roman letters from the latter half of the alphabet for discourse
referents, lowercase roman letters from the first half of the alphabet for con-
stants, and uppercase roman letters for predicates.

As was mentioned above, DRS’s are usually represented graphically. A
DRS is written as a box, with its discourse referents at the top, and the
conditions below. Consider, for example, the DRS of the discourse “John
owns a car.”

〈{x, y}, {x = John,Car(y), Owns(x, y)}〉
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x, y

x = John
Car(y)
Owns(x, y)

Figure 2.1: DRS of “John owns a car.”

x, y

Farmer(x)
Donkey(y)
Owns(x, y)

⇒
Beats(x, y)

Figure 2.2: DRS of “If a farmer owns a donkey, he beats it.”

This DRS would be graphically represented as in figure 2.1. Also more com-
plex DRS’s are easily represented graphically, such as the DRS for the clas-
sical donkey sentence “If a farmer owns a donkey, he beats it.”:

〈∅, {〈{x, y}, {Farmer(x), Donkey(y), Owns(x, y)}〉 → 〈∅, {Beats(x, y)}〉}〉

of which the graphical representation is shown in figure 2.2.

2.4.2 Obtaining a DRS

Kamp & Reyle define an algorithm to derive a DRS from a given discourse
in English. They assume that the discourse can be easily parsed into a
series of linguistic trees. Below I will give a very brief, informal sketch of
how this algorithm works, conveniently skipping disjunction, implication and
negation. For a full account, refer to [KR93].

The algorithm’s input consists of a series of sentences, parsed into syn-
tactical trees. In the process of the algorithm’s execution, a DRS Φ of the
input is built. Initially, Φ is the empty DRS, 〈∅, ∅〉. All the sentences of the
input are sequentially processed. For all the NP’s that a sentence contains,
a new referent is added to the DRS, and a condition that constrains the
referent to ‘hold’ only objects of the specified type. If the NP is definite, an
extra condition is added that equates the referent with the referent that best
matches the NP (which referent that is, is deliberately kept quite vague).
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Let me illustrate this with an example. Consider the discourse “A man
sees a dog. It barks.”. When the algorithm encounters the first indefinite
NP, “a man”, it adds a new referent to the empty DRS that is a man, as
follows:

x

man(x)

The same happens when the algorithm encounters the second NP, “a dog”,
and when the conditions are added we have the following DRS:

x, y

man(x)
dog(y)
sees(x, y)

Now in the second sentence, a definite NP is found that refers to an earlier
referent. So, a new referent is added, that is equated with the referent to
which it refers:

x, y, z

man(x)
dog(y)
sees(x, y)
z = y
barks(z)

Obviously, this DRS is equivalent to the following one:

x, y

man(x)
dog(y)
sees(x, y)
barks(y)

2.4.3 Assignments and Truth

Given a DRS and a model of the world, we want to determine whether the
DRS is true. In order to do this formally, we have to define what a model
looks like. We will use the same models as first order predicate logic [Vis01].

Definition 2.4.3 (Model). A modelM is a structure 〈D, I〉 in which D is
a non-empty set of objects (the domain of discourse) and I the interpretation
function, such that: for all constants a of the language, I(a) ∈ D; and for all
predicates P of the language, I(P ) ⊆ Darity(P ).
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Before we can see if a DRS is true, we must assign an object in the domain
to each discourse referent. This is done by an assignment, a function from
discourse referents to the domain. Now we can verify, given an assignment,
whether the DRS is true in a model. What we are interested in, is which
assignments make the DRS true. First, however, it is convenient to define
some notational conventions:

[[t]]M,g =

{
IM(t) if t is a constant
g(t) if t is a discourse referent

h[x1, . . . , xn]g: Assignment h differs from assignment g at most
in the values it assigns to the discourse referents x1, . . . , xn.

Now we proceed by defining the following two notions simultaneously:

|=M,g ϕ Condition ϕ is true in modelM with respect to assign-
ment g.

h |=M,g Φ Assignment h is a verifying embedding for DRS Φ in
modelM with respect to assignment g.

Definition 2.4.4. LetM be a model and g be an assignment. Then:

(i) h |=M,g 〈{x1, . . . , xm}, {ϕ1, . . . , ϕn}〉 iff h[x1, . . . , xm]g and |=M,h ϕ1 ∧
. . .∧ |=M,h ϕn

(ii) |=M,g P (t1, . . . , tn) iff 〈[[t1]]M,g, . . . , [[tn]]M,g〉 ∈ IM(P ).
|=M,g t = t′ iff [[t]]M,g = [[t′]]M,g.
|=M,g ¬Φ iff for no assignment h: h |=M,g Φ.
|=M,g Φ → Ψ iff for each assignment h: if h |=M,g Φ then there is a k
such that k |=M,h Ψ.
|=M,g Φ∨Ψ iff there is an assignment h such that h |=M,g Φ or there is
an assignment h such that h |=M,g Ψ.

A DRS Φ is true (in a model M) with respect to an assignment g iff
there exists an assignment h such that h |=M,g Φ. The DRS Φ is true, if
there exists an assignment k such that Φ is true with respect to k.

2.5 Context Modification Logic

Context Modification Logic CML is a formal, dynamic logic designed by Al-
bert Visser [Vis01]. It was designed in such a way that the order of the
symbols of the formal logic resembles the order of their counterparts in natu-
ral language as closely as possible. Thus, parsing a string of natural language
into CML is supposed to be relatively easy.
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In this section I will briefly discuss the positive fragment of CML, since
that is the fragment I will focus on in this thesis. Also, I will not pay much
attention to the determiners and, conveniently, consider the determiner and
the noun as a whole. The language of CML that I am going to use is an
adaption of Visser’s example language CML0 [Vis01]. I will call the modified
language CML1. The most important difference between CML0 and CML1 is
the following: CML1 uses different markers for the term and predicate level,
where CML0 uses the same marker. Also, where Visser likes the referents to
be typed, I use a typeless version of CML.

2.5.1 Informal Introduction to CML

The syntax of CML is very loose. There is a number of symbols, and a
CML-formula consists of an arbitrary sequence of those symbols (hence we
will speak of CML-strings in the sequel). Some symbols represent words or
groups of words from natural language, and other symbols add structure to
the string; they specify where sentences start or end, what parts of the string
are terms rather than predicates, which of the terms is the subject of the
predicate, etc. .

We use ‘[’ and ‘]’ to denote the beginning and the end of predicates (at
any level of a sentence), and ‘〈’ and ‘〉’ to denote the beginning and the end
of terms. Furthermore, the symbol ‘ob’ means that the current term is the
object, and ‘sub’ that the current term is the subject of the current predicate.
This allows us to write the following CML string for the discourse “A man
sees a dog.”

[〈a-man sub〉 sees 〈a-dog ob〉]

When analyzing this discourse, we begin with an empty information state.
Then we look at all the symbols of the CML-string one by one, from left to
right. Each of the symbols has an effect on the information state, just like in
Dynamic Predicate Logic [GS91]. Before we go into what these effects are,
we need to know what an information state in CML looks like.

Information states consist of stacks of referents, and assignments that
assign objects in the real word to these referents. There are stacks for noun-
like words like ‘father’, ‘dog’ and ‘he’, there are stacks for predicate-level
arguments (roles) like ‘sub’, ‘ob’ and ‘with’, and there are stacks for term-
level arguments like ‘val’.

Now what effect do the different symbols have on the information state?
Let’s find out by looking at the symbols of the example of sequentially.

The symbol ‘[’ prepares the information state to receive a new predicate.
It does this by pushing new referents (to be precise, empty places that can
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be filled with referents at a later time) to the stacks of the predicate-level
arguments (‘sub’, ‘ob’, etc.). Next, the ‘〈’ symbol prepares the information
state to receive a new term, by pushing new referents to the term-level stacks
(‘val’).

The next symbol is ‘a-man’. It denotes an indefinite NP, so it creates
a new referent. We want to be able to refer to this referent later by using
either ‘the-man’ or ’he’. So, we push the new referent to the tops of both the
‘man’ and the ‘he’-stacks. And, since the man is the ‘value’ of the term, we
identify the referent with the top referent of the ‘val’ stack. Furthermore, it
updates the assignments so that all assignments assign to the new referent
an object that is a man. The ‘sub’ symbol identifies the referent with the top
of the ‘sub’ stack.

The next symbol, ‘〉’, removes the top elements from the term-level stacks.
Then, ‘sees’ changes the information state in such a way that all assignments
assign to the top referent of the subject stack an object that sees the object
assigned to the top referent of the object stack.

The next few symbols work the same as the first few, only they push a
new referent to the ‘dog’ and ‘it’ stacks and identify it with the ‘ob’ stack
rather than the ‘sub’ stack. And we finish the first sentence of our discourse
with the ‘]’ symbol, which restores the predicate-level stacks.

Remark. An important thing to note is, that not every CML-string has a
meaning. For example, the CML-string,

[sub 〈a-man〉 enters]

has no meaning, because the ‘sub’ symbol occurs in a location where there
is no sub stack (yet).

2.5.2 Labelled Sets and Information States

The stacks in CML1 are implemented by using labelled sets. Labelled sets are
like normal sets, only some of their elements may have a label (two different
elements never have the same label, but one element may have more than
one label). Formally:

Definition 2.5.1 (Labelled Set). Let a set Σ of labels be given. Then, a
labelled Σ-set (`,Σ-set for short) is a triple 〈V, lab, X〉, in which V ⊆ Σ is a
set of labels, X an arbitrary set, and lab a function from V to X. The empty
labelled set ∅ is the triple 〈∅, ∅, ∅〉.
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In the following Σ will sometimes be left implicit. Note that I will use
much of the same notation for normal sets and labelled sets, but it will always
be clear what kind of set a symbol represents.

We will assume, without loss of generality, that for all labelled sets
〈V, lab, X〉, X ⊆ {0, . . . , n} for some n ∈ N. Then we can use the following
style to represent labelled sets: of each element (starting with 0) we write the
labels in arbitrary order, between ()’s (if an element has no labels, we write
ε). Thus, a labelled set 〈{a, b, c}, lab, {0, 1, 2}〉, with lab(a) = 0, lab(b) = 0
and lab(c) = 1, can be represented as (ab)(c)(ε).

The labels of a labelled set are used as an interface to the objects them-
selves. We can access the objects through the labels, and thus, objects with-
out a label cannot be accessed. For this reason, I have chosen to ignore
unlabelled objects: the ‘sum’ operation just identifies all unlabelled objects
with one ‘garbage’ object.

Definition 2.5.2 (Morphism).

(i) Consider two labelled sets χ = 〈Vχ, labχ, Xχ〉 and ξ = 〈Vξ, labξ, Xξ〉,
with Vχ ⊆ Vξ. Then a morphism ϕ from χ to ξ is a function from Xχ

to Xξ such that for all v ∈ Vχ: ϕ(labχ(v)) = labξ(v).

(ii) Two labelled sets χ and ξ are isomorphic if there exists a bijective
morphism from χ to ξ.

Definition 2.5.3 (Sum). Let χ and ξ be labelled sets. Then η is a sum of
χ and ξ iff there exists a morphism ϕχ from χ to η and a morphism ϕξ from
ξ to η, such that for all labelled sets δ for which there exist a morphism ψχ

from χ to δ and a morphism ψξ from ξ to δ, there exists a unique morphism
θ from η to δ such that θ ◦ ϕχ = ψχ and θ ◦ ϕξ = ψχ.

Note that if η and δ are both sums of χ and ξ, then they are isomorphic.
So, we will write η = χ⊕ ξ if η is a sum of χ and ξ. Calculating the sum of
two labelled sets has the effect of disjointly putting all objects together, but
identifying those objects that have a label in common.

CML uses labelled sets of referents. In our version of CML, the labels will
specify in what stack(s) a referent is (if any), and which places it occupies
within those stacks. To define the set of possible labels we need to specify in
advance three pairwise disjoint sets, a set ARG of predicate-level argument
roles, a set TERM of term-level argument roles, and a set VAR of global
variables. We assume that {arg, term} ∩ VAR = ∅. In our example we will
take:
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• ARG = {sub, ob}

• TERM = {val}

• VAR = {man, he, it, dog}

Now we can define our label space, ΛARG,TERM,VAR, as follows:

• Λa
ARG = {〈arg, a, i〉 | a ∈ ARG, i ∈ N}

• Λt
TERM = {〈term, t, i〉 | t ∈ TERM, i ∈ N}

• Λv
VAR = {〈v, ?, i〉 | v ∈ VAR, i ∈ N}

• ΛARG,TERM,VAR = Λa
ARG ∪ Λt

TERM ∪ Λv
VAR

In the following we will speak of Λ, and leave the parameters VAR, TERM
and ARG implicit. We define VAR+ = VAR ∪ {arg, term}. Also, it will be
convenient later on to introduce the following abbreviations for elements of a
stack, which specify both the stack name and the positions within the stack:

• ai (with a ∈ ARG) for 〈arg, a, i〉.

• ti (with t ∈ TERM) for 〈term, t, i〉.

• vi (with v ∈ VAR) for 〈v, ?, i〉.

We only employ specific subsets of Λ, viz. the subsets that contain stacks
with no ‘holes’. To accomplish this, we will often use a function ν that assigns
to each of the elements of VAR+ a natural number, that represents the height
of the specific stack. We define:

Λν = {〈s, o, i〉 ∈ Λ | i < ν(s)}

Such a function to the natural numbers can be seen as a multiset over the
elements of VAR+ (in the rest of this section will confuse functions from VAR+

to the natural numbers with multisets). A multiset is an in-between between
sets and sequences. The order of the elements does not matter, but there can
be duplicates within a multiset. A multiset that contains arg twice, and man

once (and nothing else) will be denoted by: (arg, arg, man), or (arg(2), man).
We can add two multisets ν and µ by taking:

(ν + µ)(v) = ν(v) + µ(v)

for all v. The multiset that assigns 0 to all elements will be denoted by ∅.
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As I mentioned above, an information state consists of stacks of referents
(formally implemented by a labelled set) and a set of assignments. This part
of the information state is modelled by a content (later on we will see that the
formal definition of an information state consists of some extra information
as well). Let the domain of discourse D be fixed in advance. Then we can
define assignments and contents as follows:

Definition 2.5.4 (Assignment). Let a labelled set ξ = 〈V, lab, X〉 be given.
Then a ξ-assignment is a total function from X to D (the assignment assigns
an object to each referent).

Definition 2.5.5 (Content). A content is a tuple 〈ξ, F 〉 such that ξ is a
labelled set and F is a set of ξ-assignments.

The definition of the sum of two contents is quite straightforward. We put
everything together, but we ignore the ‘assignments’ that are not assignments
anymore after the union (i.e. they assign multiple objects to a single referent).
Formally:

Definition 2.5.6 (Sum of Contents). Let S = 〈ξ, F 〉 and T = 〈χ,G〉 be
contents. Then the sum of S and T (written: S ⊕ T ) is the content 〈η,H〉
such that:

• η = ξ ⊕ χ

• Let ϕS be the morphism from ξ to η and ϕT be the morphism from χ
to η (see definition 2.5.3). We define the following auxiliary operation
on assignments f ∈ F and g ∈ G:

f ? g = {〈ϕS(x), f(x)〉 | x ∈ Xξ} ∪ {〈ϕT (x), g(x)〉 | x ∈ Xχ}

Then: H = {f ? g | f ∈ F, g ∈ G, f ? g is a function}.

2.5.3 Relabellings

Pushing and popping referents to and from stacks is done by relabelling the
labelled sets. The sets are relabelled in such a way that the referents in the
sets have now labels that correspond to their new position.

Definition 2.5.7. Consider two label spaces, V1 and V2, and let E be a
(possibly partial) injective function from V1 to V2. We can relabel a `, V1-set
ξ = 〈Vξ, labξ, Xξ〉 via E to ξ′ (written: ξ ? E = ξ′) by taking:

• ξ′ = 〈E[Vξ], labξ ◦ E−1, X〉
where E[Vξ] = {E(v) | v ∈ Vξ and E(v) is defined}.
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The ? operation will be used on contents, too. For a content S = 〈ξ, F 〉
we define S ? E = 〈ξ ? E, F 〉.

We will use special relabellings. Let’s define the injective functions Sa,ν

from Λν to Λν+(a), for all a ∈ VAR+:

Sa,ν(〈s, o, i〉) =

{
〈s, o, i+ 1〉 if a = s
〈s, o, i〉 if a 6= s

Sa,ν will be used to mimic a ‘push’ operation, while S−1
a,ν (its inverse function)

will be used to mimic a ‘pop’ operation.

2.5.4 The Language of CML

In order to process a CML-string, we have to know what symbols we may
expect. There are two types of CML symbols. (Note that these types do not
correspond to the types I used in section 2.5.1, where I talked about symbols
that correspond to natural language, and symbols that add structure to the
CML-string.)

The first type of symbols, the predicate symbols, form, in a sense, the
static part of CML. They are used to ‘add content’ to the information state,
but do not modify the context. In other words, they change the referents
and the assignments, but not the labels. The predicate symbols are specified
by the signature.

Definition 2.5.8 (CML-signature). A CML-signature is a structure
〈P , I, ind, lab, ref〉, in which P is a set of predicate symbols, I is a partial
order of indices, ind is a function that assigns an index to each predicate (we
write indP for ind(P )), lab is a function that assigns to each index i ∈ I a
label space labi ⊆ Σ, and ref is a function that assigns to each predicate
P ∈ P a finite `, lab(indP )-set.

The indices are used to identify a state of the stacks. In our set-up, we
use the multisets over VAR+ as indices, ordered in the following way:

ν ≤ µ iff ν(v) ≤ µ(v) for all v

Furthermore, we take: lab(ν) = Λν

The predicates are verified in a model. Note that the below definition
differs from the one we used in DRT. This is necessary because in CML the
arguments of a predicate have a label, rather than a syntactical order.

Definition 2.5.9 (CML-model). A model M for a signature S =
〈P , I, ind, lab, ref〉 is a tuple 〈D, I〉, where D is a non-empty domain of dis-
course, and I, the interpretation function, assigns to each predicate P ∈ P
a set of functions from the referents of lab(indP ) to D.



2.5. CONTEXT MODIFICATION LOGIC 17

In our example we will use the following predicates:

• man ∈ P
ind(man) = (term, man, he)
ref(man) = (val0man0he0)
I(P ) = The functions f such that f(0) ∈ D is a man.

• sub ∈ P
ind(sub) = (term, arg)
ref(sub) = (val0sub0)
I(P ) = All functions f such that f(0) ∈ D.

• sees ∈ P
ind(sees) = (arg)
ref(sees) = (sub0)(ob0)
I(P ) = All functions f such that f(0) ∈ D sees f(1) ∈ D.

• that ∈ P (such as in “a dog that barks”)
ind(that) = (term(2))
ref(that) = (val0val1)
I(P ) = All functions f such that f(0) ∈ D.

The definitions of the other predicate symbols can be easily derived from the
above ones.

The second type of symbols are the relabelling symbols. They add dy-
namic behavior to CML. To each of the relabelling symbols A, we assign an
indexed set of relabellings JA, in the following way. For each i ∈ I, JA(i), if
defined, is an index, and JA,i is a relabelling from lab(i) to lab(JA(i)). We re-
quire that if i ≤ i′ and JA is defined, then JA(i′) is defined and JA(i) ≤ JA(i′)
and Ja,i extends Ja,i′ .

In CML1, we define the set RELAB of relabelling symbols as follows:

RELAB = {dv,v e | v ∈ VAR+}

We will write ‘[’ and ‘]’ for ‘darg’ and ‘arge’, respectively, and ‘〈’ and ‘〉’ for
‘dterm’ and ‘terme’. We define:

• Jda(ν) = ν + (a)

• Jda,ν = Sa,ν

• Jae(µ) =

{
ν if ν = µ+ (a)
undefined otherwise
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• Jae,ν+(a) = S−1
a,ν

NP’s in natural language have both static and dynamic components.
Since all atomic CML-symbols are either static or dynamic, the CML-symbols
that correspond to natural language NP’s, are molecular symbols. We define:

• a-man = dmandheman

• the-man = dheman

The equivalents for the molecular symbols corresponding to other NP’s, are
easily derived.

Note that the language of CML lacks constants. Constants are considered
to be a special kind of predicate, that only applies to one object. For example:
in DRT ‘John’ would be considered a constant; in CML it is a predicate. I
will not go into the advantages and disadvantages of this approach in this
thesis.

2.5.5 Updating Information States

In this subsection we describe how we determine if a given CML-string is
true in a model. Like in all dynamical logics, the symbols of CML update a
certain information state. As said, an information state consists of a content.
But besides that, we record the state of the stacks.

Definition 2.5.10 (Information State). Let S = 〈P , I, ind, lab, ref〉 be a
CML-signature. Then, an information state σ is a tuple 〈i, S〉, where i is an
index and S = 〈ξ, F 〉 is a content, with ξ an `, labi-set.

The initial information state, 〈∅, 〈∅, {∅}〉〉, contains no information at all.
The symbols of the strings, however, modify the information state, as follows:

Definition 2.5.11 (Update). Let S = 〈P , I, ind, lab, ref〉 be CML-
signature, M = 〈D, I〉 a CML-model for S, and σ = 〈i, S〉 an information
state.

(i) Let A ∈ P ∪ RELAB be a CML-symbol. Then:

• If A ∈ P :

σ[A] =

{
〈i, S ⊕ contP 〉 if indP ≤ i
undefined otherwise

where cont(P ) = 〈ref(P ), I(P )〉
• If A ∈ RELAB:

σ[A] =

{
〈JA(i), S ? Ja,i〉 if JA(i) is defined
undefined otherwise
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(ii) Let ϕ, ψ ∈ (P ∪ RELAB)∗ be CML-strings. Then:

• σ[ε] = σ

• σ[ϕψ] = σ[ϕ][ψ]

We can see if the discourse that has been analyzed so far is true by looking
at the set of assignments: it is true if the set of assignments is non-empty.

Remark. In the previous sections, we have implicitly assumed that the
term-level and the predicate level markers alternate. However, the following
CML-string is, of course, not forbidden:

[〈〈the-man sub〉 a-dog ob〉sees ]

However, in all normal discourses that are translated from natural language,
the predicate-level and term-level arguments do alternate. I leave it to the
reader to calculate the final information state of the discourse above.

2.5.6 An example

Now, let’s work out an example. We are going to analyze the discourse “A
man sees a dog that barks.”. This discourse is represented in a CML-string
as follows:

[〈a-man sub〉 sees 〈a-dog ob [〈that sub〉 barks] 〉]

We are going to update the empty information state σ with this CML-string.
We assume that there are two men, Art and Ben, and two dogs, Pluto and
Mars, and that Art sees Pluto, Mars and Ben, and Ben sees Art. Further-
more, we assume that Pluto is the only one of the three who barks. Then:
(note that I occasionally skip a few steps)

• σ[‘[’] = 〈(arg), 〈∅, {∅}〉〉

• σ[‘[〈’] = 〈(arg, term), 〈∅, {∅}〉〉

• σ[‘[〈dman’] = 〈(arg, term, man), 〈∅, {∅}〉〉

• σ[‘[〈dmandhe’] = 〈(arg, term, man, he), 〈∅, {∅}〉〉

• σ[‘[〈dmandheman’] = 〈(arg, term, man, he), α0〉, where α0 is given by the
following table (the top line specifies the labels of a referent, and the
lines below specify the assignments):
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val0 man0 he0

Art
Ben

• σ[‘[〈dmandheman sub’] = 〈(arg, term, man, he), α1〉, where α1 is given by
the following table:

val0 man0 he0 sub0

Art
Ben

• σ[‘[〈dmandheman sub〉’] = 〈(arg, man, he), α2〉, where α2 is given by the
following table:

man0 he0 sub0

Art
Ben

• σ[‘[〈dmandheman sub〉 sees ’] = 〈(arg, man, he), α3〉, where α3 is given by
the following table:

man0 he0 sub0 ob0

Art Ben
Art Pluto
Art Mars
Ben Art

• σ[‘[〈dmandheman sub〉 sees 〈ddogdita-dog’] =
〈(arg, man, he, term, dog, it), α4〉, where α4 is given by the following
table:

man0 he0 sub0 ob0 val0 dog0 it0

Art Ben Pluto
Art Ben Mars
Art Pluto Pluto
Art Pluto Mars
Art Mars Pluto
Art Mars Mars
Ben Art Pluto
Ben Art Mars
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• σ[‘[〈dmandheman sub〉 sees 〈ddogdita-dog ob’] =
〈(arg, man, he, term, dog, it), α5〉, where α5 is given by the following
table:

man0 he0 sub0 ob0 val0 dog0 it0

Art Pluto
Art Mars

Note how the last two referents are identified.

• σ[‘[〈dmandheman sub〉 sees 〈ddogdita-dog ob [〈’] =
〈(arg(2), man, he, term(2), dog, it), α6〉, where α6 is given by the follow-
ing table:

man0 he0 sub1 ob1 val1 dog0 it0

Art Pluto
Art Mars

• σ[‘[〈dmandheman sub〉 sees 〈ddogdita-dog ob [〈 that sub’] =
〈(arg(2), man, he, term(2), dog, it), α7〉, where α7 is given by the follow-
ing table:

man0 he0 sub1 ob1 val1 dog0 it0 val0 sub0

Art Pluto
Art Mars

Note how the stacks make it possible to distinguish between the subject
of the main sentence and the subject of the subordinate clause.

And, finally:

• σ[‘[〈a-man sub〉 sees 〈a-dog ob [〈that sub〉 barks] 〉]’] =
〈(man, he, dog, it), α6〉, where α6 is given by the following table:

man0 he0 dog0 it0

Art Pluto

The set of assignments is non-empty, so the discourse is true.
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2.6 Summary

In this chapter I have discussed two theories within the field of Dynamic
Semantics.

The first theory I discussed is Discourse Representation Theory (DRT).
In DRT, discourses are given graphical representations, so called Discourse
Representation Structures (DRS’s). DRS consist of two parts: in the top,
there is a box with discourse referents. And below that, there is collection of
conditions. Like:

x, y, z

man(x)
dog(y)
sees(x, y)
barks(y)

Intuitively, a DRS is true, if there exists an assignment that assigns to each
of the referent in the top box an object in the domain of discourse, in such
a way that the conditions are satisfied.

The second theory is Context Modification Logic (CML). CML is a dy-
namic logic. Like natural language, CML-formulas are strings of symbols,
like the following:

[〈a-man sub〉 sees 〈a-dog ob [〈that sub〉 barks] 〉]

An information state consists of a labelled set of referents, organized in stacks,
and a set of assignments that assign an object in the domain to each referent.
We begin with the empty information state. Each of the symbols has a certain
effect on the information state, and these effects are applied in sequence. In
the end, a CML-string is true, if the set of assignments is non-empty.



Chapter 3

Hypergraphs and Graph
Rewriting

3.1 Introduction

Rewriting is a computational framework in which data objects are trans-
formed into other objects of the same kind by applying rewrite rules. Many
different mathematical objects may be used; in mathematics the most com-
mon form of rewriting is term rewriting, and in linguistic research phrase
structure grammars, which are essentially string rewrite systems, have been
very popular.

In this paper we use a different form of rewriting, (hyper)graph rewriting.
In graph rewriting the objects that are rewritten are not strings or terms, but
hypergraphs. In this chapter we will explore the basics of graph rewriting.
People with little interest in the formal treatment of graph rewriting, need
only read section 3.2 to get the general idea.

Formalizations and ideas set out in this chapter were partly based on
[BCK01], [HHT96], [Plu98], [KKSdV93] and [SS94].

3.2 Informal Introduction to Graph Rewrit-

ing

An ordinary graph is a set of nodes and (labelled) edges. Each edge con-
nects exactly two nodes. For our purposes this is not sufficient: we want
the edges to represent relations between objects, and relations are not nec-
essarily binary. Therefore, in this paper, we use an extended type of graph:
a hypergraph. The difference between an ordinary graph and a hypergraph

23
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Figure 3.1: An example hypergraph.

is the ‘arity’ of its edges: in a hypergraph an edge may connect any posi-
tive number of nodes. We denote the nodes of a graph by bullets, and the
edges by boxes, with the labels of the edges written inside. An example of a
hypergraph can be found in figure 3.1.

So how are we going to do rewriting with hypergraphs? It is not that
different from term and string rewriting. A graph rewrite rule consists of a
left-hand side and a right-hand side. When the rule is applied to a graph,
we search for a subgraph of the graph that matches the left-hand side of the
rule, and replace it with the right hand side.

However, terms and strings are linear. Thus, in terms, when we delete a
subterm from the term we can also delete its subterms (we even must do so).
In hypergraphs, however, some nodes of the subgraph may be connected by
edges of the graph that are not in the part matched by the left-hand side of
the rule. To prevent such edges from pointing to nothing when the rule has
been applied, a graph rewrite rule has a third component, the identification
function. Assume a node a in the left-hand side is identified to a node b in
the right-hand side. Then, when the rewrite is applied to a graph, all edges
that were connected to a are, in the result graph, connected to b instead.

• ((j _ T •

f

��

g

��
• 66T _ j •

Figure 3.2: An example graph rewrite rule.
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Figure 3.3: An non-injective graph rewrite rule.

An example of a graph rewrite rule is given in figure 3.2. The identification
function is given by the dashed arrows. This graph rewrite rule searches for
a binary edge labelled f, and replaces it with a binary edge labelled g. As an
example, consider the graph of figure 3.1. We are going to apply the graph
rewrite rule to this graph. We search for an occurrence of the left-hand side
of the rule in this graph, and replace it with an occurrence of the right-hand
side. The identification function tells us what nodes are identified. So, we
get the following result:
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•

x

Note, that the edge which was previously labelled ‘f’, is now labelled ‘g’.

In the graph rewrite rule of figure 3.2, all nodes of the left-hand side of
the rule are identified with a unique node of the right-hand side of the rule
(i.e. the identification function is injective). However, we can also formulate
a non-injective rewrite rule, such as the one of figure 3.3. Now let’s see what
happens if we apply this rule to the graph of figure 3.1. First, we seek an
occurrence of the left-hand side of the rule, and we find the same part as in
the previous example. Only now we replace this part by a single node, and
identify the two nodes of the left-hand side with this node. Thus, we get the
following result:
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•

h

����
•

x

Note that this graph has one node less than the original graph, since the
application of the graph rewrite rule had the effect of identifying two nodes
of the graph.

In the next few sections we will formalize the idea presented in this sec-
tion.

3.3 Hypergraphs and Morphisms

3.3.1 Hypergraphs

Definition 3.3.1 (Graph signature). A graph signature S is a tuple
〈Σ, arity〉, in which Σ is a finite set of function symbols, and arity a func-
tion from Σ to N− {0}.

Definition 3.3.2 (Hypergraph). Let S = 〈Σ, arity〉 be a graph signature.
Then, a (labelled) hypergraph G is a structure 〈V,E, lab, att〉, in which: V is
a non-empty finite set of nodes (vertices); E is a finite set of hyperedges; lab
is a function from E to Σ; and att (the attachment function) is a function
from E to V + such that |att(e)| = arity(lab(e)) for all e ∈ E.

In the sequel, the words graph and edge will refer to hypergraphs and hy-
peredges, respectively. Also, the graph signature will usually be left implicit.

Since the nodes that are connected to an edge are ordered, it is tempting
to view the graphs as being ‘directed’. We adopt the following terminology:
consider an edge e with att(e) = v0 . . . vn, then we will call v0 the source node
of e, and v1, . . . , vn the target nodes. Note that an edge always has exactly
one source node, but may have any number of target nodes or none at all.

We use the following style to graphically represent graphs. Nodes are
represented by bullets. Edges are drawn as rectangles, with the label of
the edge written inside, and lines exiting to the attached nodes, ordered
counter-clockwise. The line to the source node of the edge will be the only
one without an arrow on the far end. The graph in figure 3.1, for example,
could be given by: V = {a, b, c}, E = {d, e, f}, att(d) = acb, att(e) = bc,
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att(f) = c, lab(d) = h, lab(e) = f, and lab(f) = x. The codes of the nodes
and edges (a, b and c for the nodes, and d, e and f for the edges) do not
carry any information and are therefore not in the graphical representation
of the graph.

Definition 3.3.3 (Reachability). Let G = 〈V,E, lab, att〉 be a graph.

(i) A node w ∈ V is directly reachable from a node v ∈ V iff there exists an
edge e ∈ E with att(e) = v0 . . . vn such that v = v0 and w ∈ v1, . . . , vn.

(ii) A node w ∈ V is reachable from a node v ∈ V iff either w = v or there
is a u ∈ V such that u is reachable from v, and w is reachable from u.

(iii) The restriction of graph G by a node v ∈ VG (written: G|v), is the
graph that consists only of nodes that are reachable from v in G, and
the edges between them.

3.3.2 Homomorphisms and Isomorphisms

Definition 3.3.4 (Homomorphism). Let G and H be graphs. Then:

(i) A homomorphism from G to H is a function ϕ from VG∪EG to VH∪EH ,
such that:

• ϕ(x) ∈ VH iff x ∈ VG;

• for all edges e ∈ EG:

– labG(e) = labH(ϕ(e));

– ϕ∗(attG(e)) = attH(ϕ(e)).

We will call G homomorphic to H, if there exists a homomorphism from
G to H.

(ii) ϕ is an isomorphism, iff its inverse ϕ−1 is a homomorphism from H
to G. We will say that G and H are isomorphic, if there exists an
isomorphism between them.

Because isomorphicity is much more interesting than exact equality (we
only have to change the coding for the nodes, for example, to get a ‘different’
graph), in the following we will just write G = H if G and H are ‘only’
isomorphic.
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3.4 Graph Rewriting

In this section the following notation will be useful. Let f : A → B be a
function. Then we define:

• if S ⊆ A is a set, then: f [S] = {f(x) | x ∈ S};

• Dom(f) = A (the domain of f);

• Rng(f) = f [Dom(f)] (the range of f).

Note that, if f is not surjective, then Rng(f) 6= B.
Another useful notation is the following: if A is a set of sets, then we

write
⋃
A for {x | ∃B ∈ A : x ∈ B}.

3.4.1 Disjoint Union

In this paper, when we write A⊕B, we will assume that A∩B = ∅, so that
we can take:

A⊕B = A ∪B.

This assumption can be made without loss of generality, because we are
working with graphs: if for some reason A and B would have an element
in common, we replace one of the graphs of which A or B is a part, by an
isomorphic one.

3.4.2 Graph Rewrite Rules

Definition 3.4.1 (Graph Rewrite Rule). A graph rewrite rule is a struc-
ture 〈L,R, α〉, in which L (the left-hand side) and R (the right-hand side)
are graphs, and α (the identification function) is a total function from VL to
VR.

When representing graph rewrite rules graphically, we will draw the left-
hand side and the right-hand side next to each other, and denote the identifi-
cation function with dotted arrows. Note that we will often omit the isolated
nodes in the right-hand side and the dotted arrows of the identification func-
tion (α) that point to them. In fact, if you see a node v in the left-hand
side of the graphical representation of a rule, that has no exiting dotted ar-
row, then there is a unique isolated node w in the right-hand side such that
α(v) = w.

Definition 3.4.2. A graph rewrite rule 〈L,R, α〉 is injective (surjective) iff
its identification function α is.
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3.4.3 Applying a Rule to a Graph

A graph rewrite rule r = 〈L,R, α〉 can be applied to a graph G if a homo-
morphism ϕ exists from L to G. Intuitively the result graph H is the same as
G, except that the part to which the left-hand side of the rule was mapped
is replaced by the right-hand side of the rule. Now, we proceed by looking
at a rewrite step more formally.

To simplify the definition, we will assume, without loss of generality, that
Rng(α) ⊆ ℘(VL), (VR − Rng(α)) ∩ ℘(VL) = ∅, and that for all w ∈ Rng(α):
w = {v ∈ VL | α(v) = w}.

Definition 3.4.3 (Graph Rewrite Step). Let r = 〈L,R, α〉 be a graph
rewrite rule. Then, if a homomorphism ϕ exists from L to a graph G, there
exists a proper graph rewrite step G →r,ϕ H, in which H is constructed as
follows:

• EH = (EG − ϕ[EL])⊕ ER

• labH(e) =

{
labG(e) if e ∈ EG − ϕ[EL]
labR(e) if e ∈ ER

• Let: V ′
G = {ϕ[w] | w ∈ Rng(α)}.

Then:
VH = V ′

G ⊕ {{v} | v ∈ VG −
⋃
V ′

G} ⊕ (VR − Rng(α))

• Let α′ : VG → VH be given by: α′(v) = w iff v ∈ w (note that this w is
unique), and ψ(v) : VR → VH by: ψ(v) = ϕ[v].

Then:

attH(e) =

{
ψ∗(attR(e)) if e ∈ ER

α′∗(attG(e)) if e ∈ EG − ϕ[EL]

We will write G→r H if G→r,ϕ H for some homomorphism ϕ.

Note that nodes are never destroyed. The number of nodes can only
decrease if two or more nodes are identified.

A graph rewrite step can also be described in category theory by a double
pushout. In this sense, a graph rewrite rule is represented by a pair 〈ϕl, ϕr〉
of homomorphisms, such that L

ϕl← K
ϕr→ R. Here, L and R are the left and

right-hand side of the rewrite rule, respectively, and K is the so-called inter-
face graph, which specifies what nodes must be identified. When applying
this rule to a graph G, we construct the following diagram:

L
��

Koo //

��

R

��
G Doo // H
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in which the two squares are required to be pushouts. Then H will be the
result of the rewrite step.

We can convert a graph rewrite rule s = 〈Ls, Rs, αs〉, as given in definition
3.4.1, to a category theoretic rewrite rule by taking L = Ls, R = Rs, K =
〈Dom(αs), ∅, ∅, ∅〉, ϕl = id (the identity), and ϕr = αs. Now, the category
theoretic notion of graph rewriting will yield the same results as definition
3.4.3 (modulo isomorphicity).

3.4.4 Graph Rewrite Systems

Definition 3.4.4 (Graph Rewrite System). A graph rewrite system
(GRS) S is a finite set of graph rewrite rules. We will write G ⇒S H if
G →r H for some r ∈ S. The reflexive and transitive closure of ⇒S will be
denoted by ⇒∗

S.

Definition 3.4.5 (Normal Form). A graph G is a normal form of a GRS
S iff there is no graph H such that G⇒S H.

Usually, normal forms are what we are interested in. They are, in a sense,
the ‘output’ of the rewrite system. We give a very crude algorithm to find a
normal form of a graph rewrite system, starting with an arbitrary graph G.

Algorithm 3.4.1. Let S be a GRS, and G be a graph. Then a normal form
H of S from G is found as follows:

(i) H ← G.

(ii) While there are rules in S that can be applied to H:

a. Non-deterministically select a rule r ∈ S and a homomorphism ϕ
from Lr to H such that H →r,ϕ K exists.

b. H ← K.

(iii) H is the result graph.

Let a GRS S be given. Then this algorithm will always terminate (for
S), if the following condition holds:

There is an n ∈ N such that for all sequences G0, . . . , Gk with
Gi−1 ⇒S Gi for all 0 < i ≤ k: k ≤ n.

In the framework that we are going to develop in chapter 5 this condition
will hold.
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3.5 Graph Rewriting with Application Con-

ditions

In the previous sections, I have described a general form of graph rewriting.
The condition for a rule to be applied to a graph G (application condition)
in this form of graph rewriting, is that there exists a homomorphism from
the left-hand side of the rule to G. This application condition is positive: it
requires the existence of a homomorphism.

Although this form of graph rewriting (in the sequel I will call it normal
graph rewriting if there is a chance of ambiguity) is very powerful, it is
sometimes not very convenient. In section 5.4, for example, a lot of rules
would be required to establish the desired effect. The reason for this is, that
we want to define rules that can only be applied if a certain homomorphism
does not exist. In other words, we need negative application conditions as
well as positive ones. Therefore, in section 5.4, we will use an extended form
of graph rewriting, in which the application conditions are explicitly defined.
To each of the graph rewrite rules a number of additional constraints, which
are either positive or negative, will be associated. These constraints must all
be satisfied for the rule to be applied. In this section I will briefly discuss this
form of graph rewriting, which I will call graph rewriting with application
conditions, or conditional graph rewriting — although, strictly, normal graph
rewriting has an (implicit) application condition, also —, along the lines of
[HHT96] (but converted to hypergraphs).

The techniques of this section are only used in section 5.4. Perhaps a
good reading strategy is, therefore, to read chapter 4 and sections 5.1–5.3
first.

3.5.1 Application Conditions

In graph rewriting with application conditions, to each of the graph rewrite
rules a condition is added. Such a condition consists of two sets of constraints,
a set of positive constraints and a set of negative constraints. Constraints
can be seen as ‘contexts’, of which the presence is either required (in the case
of positive constraints) or forbidden. Naturally, the left-hand side of a rule
is a part of the context.

Definition 3.5.1 (Application Conditions). Let r = 〈L,R, α〉 be a graph
rewrite rule.

(i) A constraint for r is a tuple 〈λ, L̂〉, where L̂ is a graph, and λ is a
homomorphism from L to L̂.
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• koo • ((h _ V •

f
��

g

��
• 66V _ h •

Figure 3.4: A rewrite rule with one positive constraint.

(ii) An application condition A for r is a tuple 〈A+, A−〉, where A+ and A−

(the set of positive and the set of negative constraints, respectively) are
two sets of constraints for r.

(iii) Let l = 〈λ, L̂〉 be a constraint for r, and ϕ a homomorphism from L to
a graph G. Then ϕ satisfies l iff there exists a homomorphism ψ from
L̂ to G such that ψ ◦ λ = ϕ.

(iv) A homomorphism ϕ satisfies an application condition A = 〈A+, A−〉 iff
ϕ satisfies all constraints a ∈ A+ and ϕ satisfies no constraint b ∈ A−.

Definition 3.5.2 (Conditional Graph Rewrite Rule). A conditional
graph rewrite rule is a tuple r̂ = 〈r, A〉, where r is a (normal) graph rewrite
rule, and A is an application condition for r. We will call r the underlying
graph rewrite rule of r̂.

When graphically representing a graph rewrite rule with an application
condition, we will use dotted regions to denote the constraints. An example
of a rewrite rule with one (positive) constraint can be found in figure 3.4.
Let r̂ = 〈r, A〉 be this rule, with r = 〈L,R, α〉 and A = 〈{〈λ, L̂〉}, ∅〉. Then,
L is the part on the left, outside the region, L̂ is the left-hand side and the
part in the region, and λ is the obvious homomorphism from L to L̂. Note
that the rule r̂ is almost the same as the rule r from figure 3.2 (which is its
underlying graph rewrite rule), only the constraint has been added. Negative
constraints are represented by a dotted region with a line through it, as can
be seen in figure 3.5. Again, the underlying rewrite rule of this graph is r,
only this time A = 〈∅, {〈λ, L̂〉}〉.

3.5.2 Conditional Graph Rewriting

The idea of conditional graph rewriting, is that we pose additional conditions
for a rule to be applicable to a graph. So, intuitively, a conditional graph
rewrite rule r̂ can be applied to a graph if the underlying graph rewrite rule
can be applied to the graph, and the constraints of the application condition
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• koo • ((h _ V •

f
��

g

��
• 66V _ h •

Figure 3.5: A rewrite rule with one negative constraint.

are satisfied. If so, the result of the rewrite is the same as the result of
applying the underlying rewrite rule r of r̂ to the graph. Formally:

Definition 3.5.3 (Conditional Graph Rewrite Step). Let r̂ = 〈r, A〉 be
a graph rewrite rule with an application condition, and G a graph. Then, if
there is a homomorphism ϕ from Lr to G such that ϕ satisfies A, there exists
a graph rewrite step G→cond

r̂,ϕ H, where G→r,ϕ H.

I leave it to the reader to extend the notion of graph rewrite system and
algorithm 3.4.1 on page 30 to work with conditional graph rewrite rules also.

3.5.3 Examples and Remarks

Let r̂ be the conditional graph rewrite rule of figure 3.4 and ŝ the one of
figure 3.5. Now let’s see what happens if we try to apply these rules to the
graphs G1 and G2:

G1 : •

k
���

�����
f

111

��1
11

• •

G2 : •

l
��
�

����
�

f

111

��1
11

• •

First, we try to apply r̂ to G1, via the obvious homomorphism. We see that
this homomorphism satisfies the application condition of r̂, so we may apply
the rule and get the following graph:

H1 : •

k
���

�����
g

111

��1
11

• •

Now, let’s try to apply ŝ to G1. Since its application condition is the opposite
of the application condition of r̂, of course it is not satisfied. Thus, ŝ cannot
be applied to G1, although its underlying graph rewrite rule can.
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Next, we try to apply r̂ to G2. The application condition is not satisfied
(there is no edge labelled l from the top node), so r̂ cannot be applied to G2

(again, its underlying graph rewrite rule r can). The application condition ŝ,
on the other hand, is satisfied, and so that rule can be applied on G2, with
the following result:

H2 : •

l
��
�

����
�

g
111

��1
11

• •

Note that it is the negative constraints which actually make graph rewrit-
ing with application conditions such a useful extension to normal graph
rewriting. As Habel et al. note in [HHT96], positive constraints are eas-
ily simulated in normal graph rewriting by ‘lifting’ the context of the rule.
For example, the following normal graph rewrite rule has the same effect as
r from figure 3.4.

•

k
��

����
f

22

��2
2

++g d b _ \ Z W •

k
��

����
g

22

��2
2

• 33W Z \ _ b d g• 33W Z \ _ b d g• •

For this reason, in this thesis, I will only use negative constraints.

3.6 Summary

In this chapter we have discussed graph rewriting. In graph rewriting graphs
are transformed into other graphs by using graph rewrite rules.

Graph rewrite rules consist of two graphs (a left-hand side and a right-
hand side) and an identification function. When we want to apply a rule
to a graph, we search for an occurrence of the left-hand side in the graph,
and replace with the right-hand side of the rule. The identification function
specifies which nodes are replaced by which.

Optionally, we may use graph rewriting with application conditions. In
this form of graph rewriting, additional constraints are specified, which may
be negative. All constraints must be satisfied before the rule may be applied.



Chapter 4

Representing Discourse by
Hypergraphs

4.1 Introduction

In this chapter we will do Dynamic Semantics by making use of techniques
from graph rewriting. As the basis, we will take the language of CML. Our
strategy will be, to represent the information state of the discourse by a
hypergraph, and the discourse itself by a sequence of graph rewrite rules.
Just as the CML-symbols update the information state, our graph rewrite
rules update the graph that models such an information state. The graph
rewrite rules are applied to the initial graph in the correct order. When all
the rules have been applied, the result is a graph that can be easily converted
into a DRS.

4.2 Stacks in Graph Rewriting

As is clear from section 2.5, in CML, an information state consists of stacks.
In our graph representations, we will require stacks too. Therefore, in this
section we will discuss handling stacks with graph rewriting.

Stacks are represented by a sequence of nodes connected by edges. The
edges in the stack are labelled next. In this section, the examples have only
one stack, but there can be multiple stacks within one graph. To discriminate
between all the different stacks, we give them a unique name (in this section
we have only one stack, so we will just call it ‘stack’). We add a node, and
a binary edge, labelled with the name of the stack, from it to the top node
of the stack.

To determine the number of elements in a stack, we need to count the

35
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• stack // • next // • next // •

top ‘plate’

Figure 4.1: A stack with two elements.

edges labelled next, not the nodes. The reason for this is that the last node
serves as a ‘bottom’ of the stack: it is the plate all the stack elements rest
upon. This is necessary, because otherwise we cannot define graph rewrite
rules that can operate on an empty stack.

As an example, consider a stack with two elements in it. Such a stack
would be represented as in figure 4.1. This stack as such seems quite useless,
since all the information the stack elements contain is which position within
the stack they have. However, such stacks can be quite useful when we want
to represent natural numbers.

In this paper, however, we require the stack to contain more information.
This can be done by sharing the nodes in the stack. There are many ways in
which we can add information. The simplest would of course be to connect
the informative edges directly at the stack element. In this paper, however,
we have chosen an indirect approach: we use a ‘pointer’ edge, labelled ⇒,
that points to the actual content of the stack element, as in figure 4.2.

As we have chosen the representation of the stack, it is now time to model
the two elementary stack operations: push and pop. As we all know, push
creates a new top element, and moves the rest of the elements down, while
pop removes the top element, and makes the second element in the row the
new top element. We will design two graph rewrite rules, that, when applied
to a graph containing a stack (named ‘stack’), have the effect of pushing or
popping an element to or from the stack.

Let’s start with push. The left-hand side of the rule should match any

• stack // • next // • next // •

⇒

��

⇒

��
• •

Figure 4.2: A stack with two elements and content.
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stack. As we said above, all stacks contain at least one node, the bottom
node, so we match a stack containing a single node. In the right hand side
contains an extra node. The top node of the left-hand side is identified with
the second node of the right-hand side. The complete push rule is in figure
4.3.

• **f _ X •

stack

��

stack

��
•

""

0
2

5
9

<
@

D

• ⇒
��

next

��

•

•

Figure 4.3: The push operation.

The pop rule is the inverse of the push rule. The left-hand side matches
a stack with at least one stack element in it (so there are at least two nodes
in the stack). The right-hand side has one node less. The top node of the
left-hand side is discarded, and the second node is identified with the top
node of the right-hand side, as in figure 4.4.

• **f _ X •

stack

��

stack

��
•⇒





•

• next

��
•

GG

z
~

�
�

	
�

�

Figure 4.4: The pop operation.

Note that by applying graph rewrite rules, nodes are never removed.
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Thus, both the popped stack element and its content node are maintained,
they are only disconnected from the stack structure (but, they may still be
connected to other parts of the graph, as we will see in the following sections).
The graph rewrite rule does have the effect of destroying some edges, though.

4.3 Context Graphs

In this section we turn to the question of how to use hypergraphs (and
the stack representations presented in the previous section) to represent dis-
course. In CML, the information states model the knowledge about the
world as a set of assignments for the discourse referents to the objects in the
domain. Here, we use a more DRS-like representation.

The graph representations that we are going to use consist of two parts,
the model graph and the stack graph.

The Model Graph. The model graph represents a model of the knowledge
of the ‘real world’ that was encountered in the discourse so far. It is, really,
just a formalization of the intuitive graphs we draw when we want to represent
relations in a graphical manner, as I described in the introduction.

Remember that in CML we did not use constants. I will adopt this
approach here, too. If I talk about a model in this chapter, I will mean a
DRT-model for a DRT-signature without constants.

Definition 4.3.1 (Model Graph). Let M = 〈D, I〉 be a model. Then
the model graph M = 〈V,E, lab, att〉 for M is given by: V = D, E =
{〈P, ~x〉 | ~x ∈ I(P )}, lab(〈P, ~x〉) = P , and att(〈P, ~x〉) = ~x. We will call M
the underlying model of M .

In our set-up, we use a model graph to represent a state of knowledge
about the world, not the world itself. The nodes in the model graph do
not represent the objects themselves, they represent referents. However, of
course we can also use a model graph to represent a real model in a graph
like way. We will use this fact later.

In this chapter, the labels we are using in the model graphs are ‘man’,
‘dog’, ‘sees’ and ‘barks’, but obviously in real-life applications we need many
more labels.

The Stack Graph. The stack graph represents the current state of the
discourse. In CML, this is represented by stacks, hence the name and the
structure. A stack graph consists of a number of stack representations in the
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style of section 4.2. The top node will be shared by all the stack representa-
tions. In this chapter this is not really necessary, but in chapter 5 it will be
useful to keep the stacks connected to each other.

Definition 4.3.2 (Stack Graph). Let N be the set of stack names. A
graph S = 〈V,E, lab, att〉 is a stack graph for N if there exists a unique root
v ∈ V such that:

• S|v = S;

• there is a set EN ⊆ E of edges, such that:

– for all e ∈ EN , att(e) = vw, for some w ∈ V , and lab(e) ∈ N ;

– for all n ∈ N there is at most one e ∈ EN such that lab(e) = n;

– there are no e ∈ E − EN such that lab(e) = vw for some w ∈ V ;

• for all u ∈ V − {v} there is at most one d ∈ E with att(d) = xw for
some w ∈ V − {v}, and if this d exists, then lab(d) = next;

• for all u ∈ V − {v} there is at most one d ∈ E with att(d) = wu for
some w ∈ V − {v}.

• there is no e ∈ E with att(e) = ww for some w ∈ V .

Note that the definition of the stack graph does not forbid us to use
only a subset of the set of stack names. In the rest of this chapter, the set
of stack names is given by N = {$man, $he, $dog, $it, $SUB, $OB, $OB}. All the
stack names are of the form $x, in order to easily distinguish them from the
other labels. Of course, the above set too small for real-life situations, but it
will be enough in our example.

As said, our graph representation of the context (which we will call a
context graph in the sequel), consists of a model graph and a stack graph.
There are also reference edges (labelled ‘⇒’ that go from the stack elements
of the stack graph to the nodes of the model graph. Or, formally:

Definition 4.3.3 (Context Graph). A graph C = 〈VC , EC , labC , attC〉
is a context graph if there is a model M with a model graph M =
〈VM , EM , labM , attM〉 and a stack graph S = 〈VS, ES, labS, attS〉 such that

• VC = VM ⊕ VS

• EC ⊆ EM ⊕ ES



40 CHAPTER 4. REPRESENTING DISCOURSE BY HYPERGRAPHS

•

stack0

ssssss

��

. . . stackn

KKKKKK

��

•JJ

⇒

• • •**
⇒

•

next
��

next
��

•..⇒

• • •88

⇒�� ��

Figure 4.5: Illustration of a context graph.

• For all v ∈ VS that has an e ∈ ES with labS(e) = next and attS(e) = vw
for some w ∈ VS, there is a d ∈ EC with labC(d) = ‘⇒’ and attC(d) =
vu for some u ∈ VM .

Note that a stack graph S is a model graph, too. Let N be the set of stack
names of S. Then we can define a model over a signature 〈N ∪ next, arity〉
(where arity assigns 2 to everything), of which the model graph is S. However,
we will assume that the label spaces of the stack graph and model graph are
disjoint, so that we can distinguish between the two.

An illustration of a context graph can be seen in figure 4.5. Note the two
parts that can be easily distinguished: on the left is the stack graph, and on
the right the model graph.

In the following, we will refer to the nodes of a context graph as referent
nodes if they come from the model graph, and as control nodes if they come
from the stack graph.

4.4 Using Rules to Represent Discourse

As I briefly stated above, our strategy will be to associate with each symbol
of the CML-string a (unique) graph rewrite rule, and apply these rules to the
context graph in sequence. Then, when all the rules have been applied, the
resulting context graph represents the context of the discourse. In the rest
of this thesis we will call this framework Graph Modification Logic (GML),
and to graph rewrite rules used for modifying context graphs I will refer as
GML-rules.
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Figure 4.6: The initial context graph.

Definition 4.4.1 (GML-reduction). Let ϕ = A1 . . . An be a string of
CML-symbols, and r1, . . . , rn the GML-rules that are associated with these
symbols (ri is the rule for the symbol Ai). Then a GML-reduction of ϕ is a
sequence of context graphsG0 . . . Gn such that for all 0 < i ≤ n: Gi−1 →ri

Gi.

Usually, the starting point of the reduction sequence, G0, will be the initial
context graph, i.e. the context graph that consists of only empty stacks and
no discourse referents. The initial context graph for the set of stack names
N introduced above is presented in figure 4.6.

In the rest of this section, I will describe how we can build a GML-rule
for CML-symbols from a number of linguistic classes, that has the desired
effect on the context graph. The rules will use N as the set of stack names,
but it is easy to extend the rules to use a larger set.

4.4.1 Relabellings

In CML, the relabelling symbols ‘[’ and ‘〈’ do not create referents, they only
relabel all the existing referents in the correspong argument stacks, in such a
way that the label for the top element falls free. In other words, the symbols
create a space in which a new referent can be stored later. The indefinite NP’s
create the referents, and the definite NP’s add labels to existing referents to
‘pull’ them up to the top of the stack.

Here, I have chosen a different approach. The ‘[’ and ‘〈’ symbols do not
merely create space, they also create the referents. Now, the indefinite NP’s
just obtain these newly created referents, and the definite NP’s identify them
with an existing referent. The result is the same in both approaches.

Below is the GML-rule for ‘[’. This rule pushes new referents to all the
sentence level stacks (in our case $sub and $ob). The reader will no doubt
easily derive the rule for ‘〈’, which pushes new referents to the term level
stacks (in our case only $val).
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The symbols ‘]’ and ‘〉’ clear up the stacks that were modified by ‘[’ and ‘〈’.
They pop the top referent from the term level and the predicate level stacks,
respectively. Note that both symbols do not destroy the discourse referents,
they only disconnect them from the stacks, so that they are no longer ‘visible’
from the stack graph of the context graph. Below is the GML-rule for ‘]’.
Again, the user will derive the rule for ‘〉’ easily.
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4.4.2 Indefinite NP’s

Natural language NP’s have both a static and a dynamic component. In
CML a definite or indefinite NP is a molecular symbol, that consists of re-
labelling symbols (the dynamic component), and a predicate symbol (the
static component). In GML, we don’t need to use molecular symbols: we
can define a single GML-rule that handles both the dynamic and the static.
I have chosen to construct such rules rather than to construct a separate rule
for each of the atomic CML-symbols, because, of course, the ultimate goal
is to create a graph-based semantics for natural language, rather than for a
formal logic like CML. Note, however, that it is easy to specify GML-rules
for the atomic CML-symbols also.

In our approach, indefinite NP’s do not introduce new discourse referents
as in CML. Instead, they push the discourse referent that was introduced by
the term level ‘〈’ symbol onto one or more stacks (it depends on the actual
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indefinite to which stack(s) it is pushed). Also, an edge is attached to the
referent, which tells us what kind of object it refers to. The GML-rule for
the CML-symbol ‘a-man’ can be seen below. Note the two push rules (see
figure 4.3) that are integrated into this rule. They do the job that dman and
dhe did in CML.
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Of course, the rule for ‘a-dog’ will not push the value of the current term
level to the $man and $he stacks, but to the $dog and $it stacks. It is also
possible that the referent is pushed to more (or less) than two stacks.

4.4.3 Definite NP’s

The simplest definite descriptions, which are mostly pronouns, identify two
or more discourse referents, viz. the top referents of the $VAL and one or
more other stacks, depending on the actual definite. For example, consider
the GML-rule for ‘he’:
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However, most definite descriptions need some extra work. For example,
after uttering “the man” we make the man we talked about salient, and can
refer back to him with “he”. To model this phenomenon, we push the referent
that results from identifying the top referent of the $VAL stack and the top
referent of the $man stack onto the $he stack, as in the following GML-rule:



44 CHAPTER 4. REPRESENTING DISCOURSE BY HYPERGRAPHS
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4.4.4 Verbs and Adjectives

Verbs and adjectives are handled alike: they only add information to the
existing discourse referents, and do not create, push, pop or identify any
referent. The only difference between verbs and adjectives is that they oper-
ate on a different level: verbs operate on the predicate level, and adjectives
operate on the term level.

Below is the GML-rule for the verb ‘sees’. The reader will be able to
derive rules for adjectives and other verbs.
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4.5 Example

Now, let’s work out an example. Let’s take the discourse ‘A man sees a dog
that barks.’ In CML1, this discourse is represented as follows:

[〈a-man sub〉 sees 〈a-dog ob 〉]

The graph rewrite rules of all symbols can be found in the previous section,
or can be easily derived.

I have chosen to put the model graph in the lower part of the context
graph rather than on the right side (as I did before), in order to keep the
reference edges, labelled ‘⇒’, as short as possible.

We begin by applying the rule for the CML-symbol ‘[’ to the initial context
graph, and we get:
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Next we apply the rule for ‘〈’ to this graph, which yields the following result:
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The next graph rewrite rule is the one for ‘a-man’, which pushes the referent
at the top of the $VAL stack to the $man and $he stacks:
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We apply the rule associated to ‘sub’, which unifies two referents, then we
apply the rule associated to ‘〉, which pops the top referent from the $val

stack, and then we apply the rule associated with ‘sees’. We now have the
following context graph (note that I do not display the isolated nodes):
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Again, we skip a few a steps, and apply the rules associated to ‘〈’ and ‘a-dog’,
respectively, which results in the following context graph:
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The rule associated to ‘ob’ identifies the top referents of the $VAL and $OB

stacks.
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Finally, the last two rules, associated to ‘〉’ and ‘]’, respectively, clear up the
term-level and predicate-level stacks.
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In the lower part of this context graph you can see the model graph,
which is exactly what we draw intuitively to represent the discourse.

4.6 Building a DRS

When we have applied all the graph rewrite rules, the result is a context graph
that represents the discourse. Context graphs can be trivially converted into
DRS’s. Since all the information about the world is in the model graph, we
only use that part of the context graph and ignore the stack graph.
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Definition 4.6.1 (DRS of a context graph). Let C = 〈VC , EC , labC , attC〉
be a context graph that consists of a model graph M = 〈VM , EM , labM , attM〉
and a stack graph S. Then the DRS drs(C) = 〈R, C〉 for C is given by:

• R = VM

• C = {P (x1, . . . , xn) | ∃e ∈ EM : lab(e) = P ∧ att(e) = x1 . . . xn}

For example, if we apply this technique to the final context graph of the
example above (we assume that the top referent of the model graph is called
x, and the other referent y), we get the desired DRS:

x,y

man(x)
dog(y)
sees(x, y)

We can determine the truth of the context graph C in a model by checking
if the DRS drs(C) is true in that model. This, however, is a detour. We will
define truth directly in graph terminology, in the following way:

Definition 4.6.2 (Truth). Let C be a context graph, consisting of a model
graph M and a stack graph S. Then C is true in a modelM iff there exists
a homomorphism from M to the model graph forM.

The homomorphism plays the role of an assignment from the referents to
the domain.

4.7 Uninitialized Referents

The system presented in this chapter fails to produce a correct DRS of the
discourse “He walks.” (CML itself has a comparable problem). In CML this
discourse is represented as follows:

[〈he sub〉 walks]

When we start with the initial context graph, by the time we want to apply
the GML-rule associated with ‘he’, we will see that there is no referent on
the $he stack, so the rule cannot be applied. We understand the discourse,
however, so it should have a DRS. Of course, the system does not forbid to
begin with a context graph that contains a pre-initialized $he stack. But still,
the resulting DRS will then be:



4.7. UNINITIALIZED REFERENTS 49

x

walks(x)

which is incorrect, because the referent x is introduced in the DRS, but in
the original discourse no referent is introduced at all. The correct DRS would
be:

walks(x)

Below I will briefly sketch a possible solution to this problem, along the lines
of Albert Visser, in an unfinished successor of [Vis01].

The general idea is to apply the rules to the smallest context graph to
which the rules can be successfully applied in sequence. The referents that
exist in this initial context graph are marked. We apply the GML-rules as
always, but when constructing the DRS, we only put the unmarked (new)
referents in the top box. We are now going to look at this in some more
detail.

Definition 4.7.1 (Sufficient Context Graph). Let ϕ be a string of CML-
symbols.

(i) A context graph C is sufficient for ϕ, iff there exists a GML-reduction
G0 . . . Gn for ϕ such that G0 = C.

(ii) A minimal sufficient context graph for ϕ is a context graph C which is
sufficient for ϕ, such that there is no context graph D 6= C which is
sufficient for ϕ and is homomorphic to C.

Theorem 1. For every string ϕ of CML-symbols, there exists a sufficient
context graph C.

I will not give a formal proof of the above theorem. It is, however, not
difficult to see it’s true intuitively. If you look at the GML-rules, you notice
that the only reason that a rule cannot be applied, is that there are not
enough referents on a specific stack. So, if a CML-string ϕ consists of n
CML-symbols, a sufficient context graph for ϕ would be the one that has n
referents on every stack (this is in most cases not a minimal sufficient context
graph for ϕ).

Now we define a marking operator, (·)#, that adds unary edges to the
model part of the context graph, labelled ‘#’. We define for an arbitrary
context graph C = 〈VC , EC , labC , attC〉, which is built up from a stack graph
S and a model graph M = 〈VM , EM , labM , attM〉, where VM = {v1, . . . , vn}:
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C# = 〈VC# , EC# , labC# , attC#〉, where:

• VC# = VC

• EC# = EC ⊕ {e1, . . . , en}
• labC# = labC ⊕ {〈ei,#〉 | 0 < i ≤ n}
• attC# = attC ⊕ {〈ei, vi〉 | 0 < i ≤ n}

Note that since the ‘#’-edges do not appear in the left-hand side of any
GML-rule, these edges are never removed. So, once a referent is marked, it
stays marked. When two unmarked referents are identified, the result is still
unmarked; when an unmarked (‘new’) referent is identified with a marked
(‘old’) referent, the result is marked (note is this is the desired effect), and
when two marked referents are identified, the result is marked (actually, in
the last case, there are two or more ‘#’-edges attached to the same node,
but that is not a problem).

Now, in the construction of a DRS from a context graph, we omit the
marked referents in the top box of the DRS. The conditions are created in
the same way as before (only we do not create conditions of the ‘#’-edges,
of course). To summarize, creating a DRS of a CML-string ϕ is now done as
follows:

1. Find a minimum context graph C for ϕ.

2. Find the GML-reduction G0 . . . Gn for ϕ, such that G0 = C#.

3. Transform Gn into a DRS as stated above.

In the following chapter we will not use the technique from this section,
but, in order to keep things simple, we stick to original version of GML.

4.8 Summary

In this chapter we have developed GML, a framework for doing dynamic
semantics by using techniques from graph rewriting. The framework works
as follows.

First we have defined context graphs, which are used to represent infor-
mation states in the form of a graph. A context graph consists of two parts.
The model graph models the information about the world that we have so
far. Nodes in the model graph represent the referents. The stack graph
models the stacks. The nodes in the stack graph are analogous to the labels
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of CML. The empty, or initial, context graph contains a number of empty
stacks and no referents (i.e. the model graph is empty).

To each possible CML-symbol a GML-rule is associated, which are applied
to the initial context graph in sequence. In the end, we have a context graph
which represent the entire discourse. We determine the truth of this context
graph in a model, by finding a homomorphism from the model graph of the
context graph to the graph representation of this model. Also, we can easily
convert a context graph to a DRS by taking the nodes as the referents of the
DRS, and the edges as the conditions.



52 CHAPTER 4. REPRESENTING DISCOURSE BY HYPERGRAPHS



Chapter 5

The Implementation in Graph
Rewriting

5.1 Introduction

In the previous chapter we have developed a method of representing discourse
with hypergraphs. Although our method works quite well, it is hardly graph
rewriting: we, and not the mechanisms built into graph rewriting, choose the
order in which the rules are applied.

In the first few sections of this chapter we will design a graph rewrite
system, SGML, that will reduce an (appropriate representation of a) CML-
string to a context graph without our help. This graph rewrite system can
be seen as an implementation of the mechanisms developed in the previous
chapter. In fact, actually, we ‘cheat’ by hard-coding the order in which the
rules are applied into the initial graph, by adding tags.

Finally, in section 5.4 we will extend the graph rewrite system in an
important way, that was not possible with GML. We will create a system
that does not require us to create all the stacks in the beginning. Instead,
the system will automatically add a stack when this stack is required by a
rewrite rule, but does not yet exist.

5.2 The representation of a CML-string.

As stated above, we are going to develop a graph rewrite system that is going
to do the work that we did by hand in the previous chapter. So, the system
must reduce a CML-string to a context graph. In order to produce such a
system, of course, we have to find a way of representing a CML string by
means of a hypergraph.

53
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Figure 5.1: The graph representation of a CML-string.

The most intuitive way to do that, is to represent the string as a series of
consecutive nodes, connected by edges that bear the symbols as their label.
In order to quickly locate the beginning and the end of the string, two unary
edges, labelled start and end, are connected to the first and the last node of
the sequence, respectively. Consider, for example, the following CML-string,
which is represented as in figure 5.1.

[〈a-dog sub〉 barks]

We are going to develop a graph rewrite system, SGML, which will reduce
‘string’ graphs in this style to context graphs. Note that the styles of the
input and output graphs of the system are different: the ‘input’ graph is a
string graph, while the ‘output’ graph (i.e. the normal form) is a context
graph. We need, therefore, an intermediary form that has properties of both
string graphs and context graphs. There is a rule that converts the input
string graph in the intermediate form, and there is a rule that converts the
intermediary form into a context graph at the end of the reduction sequence.

The intermediary form that we are going to use consists of the part of the
string which still needs to be processed, and the current state of the context
graph which is being built. The two parts are connected by a binary top
node. An illustration of the intermediary form is in figure 5.2. As is clear,
we have extended the graph signature from the previous chapter, the reader
will easily specify the signature herself.

5.3 Rules for String Processing

In this section we are doing the real work of this chapter: designing the graph
rewrite rules of SGML.

5.3.1 The Start Rule

First we need a graph rewrite rule that converts a string graph in the interme-
diary representation. We desire, of course, that this rule can only be applied
to a string graph, not to the intermediary representation. So, it matches the
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start edge, replaces it with the binary top edge and adds an empty context
representation. The following rule, which we will call the start rule has that
effect.
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Note that, provided that the input graph is a well-formed string graph
(i.e. it has only one edge labelled ‘start’), this rule can be applied only once
in a reduction sequence.

5.3.2 More Rules

Now we are going to build the graph rewrite rules that do the real work.
These are analogous to the GML-rules of chapter 4. In fact, it will seem,
we can translate any GML-rule to a rule that does the same job in the
framework of this chapter (the converse does not hold, because, among other
things, there is no GML counterpart of the start rule).

But before we turn to the systematic way of translating GML-rules into
their SGML counterparts, we are going to look what these new rules look like.
To do that, we design the rule that handles the CML-symbol ‘a-man’.
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Figure 5.2: Illustration of the intermediary representation.
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What must this rule do? First, it may only be applied if the currently
processed CML-symbol is ‘a-man’, i.e. the source node of the edge labelled
‘top’ is also the source node of an edge labelled ‘a-man’. We need to make
modifications to the part of the graph representing the current state of the
context, so we match the relevant parts of that also. In the right-hand side
of the graph the following things will be changed: the currently selected
CML-symbol is the following symbol; and the top referent of the $VAL stack
is pushed to the $man and $he stacks as well. The result is the following graph
rewrite rule:
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When we compare the above rule with the GML-rule for ‘a-man’, on page
43, we see that they are the same except for the bit at the top. It is not
surprising, therefore, that we can easily translate any GML-rule to a rule of
SGML. We add two new nodes to the left side of the rule, say a and b, and
we add an edge labelled ‘top’ from a to the root of the stack graph of the
left side, and an edge labelled with the CML-symbol in question from a to
b. The right side is modified by adding one new node, {b} (this corresponds
to the coding we assumed in section 3.4.3), and an edge labelled ‘top’ from
{b} to the root node. The identification function is updated in the obvious
way. Before I show the formal treatment of the above, for purists among you
I have to say that we need to add a second node to the right-hand side, {a}
(an isolated node, which is therefore not in the graphical representation).

Algorithm 5.3.1. Let ϕ be a CML-symbol, let r = 〈Lr, Rr, αr〉 be the
GML-rule that is associated with it, and let v be the root node of Lr and w
the root node of Rr. Then we can calculate the rule s = 〈Ls, Rs, αs〉 of SGML

as follows:
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(i) a. VLs ← VLr ⊕ {a, b}.

b. ELs ← ELr ⊕ {eL, c}.

c. labLs ← labLr ∪ {〈eL, top〉, 〈c, ϕ〉}

d. attLs ← attLr ∪ {〈eL, av〉, 〈c, ab〉}.

(ii) a. VRs ← VRr ⊕ {{a}, {b}}.

b. ERs ← ERr ⊕ {eR}.

c. labRs ← labRr ∪ {〈eR, top〉}

d. attRs ← attRr ∪ {〈eR, {b}w〉}.

(iii) αs ← αr ∪ {〈a, {a}〉, 〈b, {b}〉}.

5.3.3 The End Rule

When there are no more CML-symbols in the string part of the intermediary
representation, we do not yet have a context graph: there is still an edge
labelled ‘top’ and an edge labelled ‘end’, both of which may not be part of a
context graph. The end rule has no other purpose than to remove these two
edges, and produce a real context graph. The following rules does just that:

• end

top

��
• 99M S _ k q •

When the end rule has been applied, we have a context graph, which can be
transformed into a DRS in the way described in section 4.6.

5.3.4 An Example

I will not work out an example in this chapter. Instead, I refer to Thor
[Bru01], a Java program which does graph rewriting. In the standard dis-
tribution package of Thor, you will find the file S_GML.grs, which contains
all the rules of this chapter. The graphs discourseN.g, in which N is an
integer from 1 to 3 are string graphs of some typical examples you may try.
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5.4 Adding Flexibility

In chapter 4, all the stacks that could possibly be used in the discourse had
to be present from the start, and in sections 5.2 and 5.3, all the stacks were
created in one time by the start rule. In both cases, there was no way to
create new stacks in the process of analyzing the discourse.

In the examples we conveniently created just those stacks that we needed
to represent the discourse. In reality, however, there is no way to find out in
advance what stacks are going to be needed to represent a starting discourse.
So, in a general system, we will have to create all possible stacks in the
beginning, and most of those we’re not even going to use. What a waste. In
this section we are going to develop a graph rewrite system that automatically
creates a stack, when it is attempted to push an element to a stack that does
not already exist.

5.4.1 The first attempt

If the stacks are going to be created on-the-fly, we need a different start rule,
of course. The new start rule creates no stacks, it just changes the unary
start edge into a binary top edge, as follows:

• **f _ X •

start top

��
•

For each stack name we need a rule that create a stack of that name.
This is not too difficult. A rule that creates a new $he stack looks like:

• ))f _ X •

top

��

top

��
• ))f _ X •

$he

��
•

The above rule creates a $he stack. However, there is no way to control when
the rule is applied: any rule that can be applied may be chosen to be applied.
This introduces two problems. Firstly, the rule may be applied when the $he

stack is not required, so we would still have a lot of useless stacks. And
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secondly, the rule may also be applied if a $he stack does already exist; in
that case there would be two of the same stacks, which is of course a problem.

The second problem is a greater problem, so we are going to solve it first.
We will do that by using graph rewriting with application conditions, as
introduced in section 3.5. Then, solving the problem is almost trivial. Then,
we are going to look into the first problem.

5.4.2 Ruling out Duplicate Stacks

What we want, is to modify the graph rewrite rule above so that it can only
be applied if a stack of the specified name does not yet exist. If possible, we
want to maintain the current representation of the stacks. I will first give
the reasons why we cannot do that with normal graph rewriting, and then
I will formulate the graph rewrite rule with application condition that does
the job with ease.

Since a normal graph rewrite rule can only be applied to a graph if there
exists a homomorphism from the left-hand side of the rule to that graph, it
is impossible to define a single rule that can only be applied if an edge of the
left-hand side has a different label than the corresponding edge in the graph.
But, because we have fixed the set of possible labels in advance, we can define
a set of graph rewrite rules that has the same effect (we just enumerate all
the different labels).

However, in our present representation of the stacks, it is not possible to
create a set of rules, of which one can be applied if a stack with a specific
name does not exist: if there are two or more stacks with different names,
there is always a stack that has a different name than the name whish is
searched: if we have a set of graph rewrite rules of which one can be applied
if a $he stack does not exists, and there exists a $he stack, we just find
a homomorphism that points to one of the other stacks with a different
name, and apply one of the rules in the set after all. So, if we want to
maintain the present representation, we have to use the graph rewrite rules
with application conditions from section 3.51.

With this form of graph rewriting, it is not difficult anymore to solve the
problem: we just have to find an appropriate (negative) application condi-
tion. This application condition, of course, states that a stack of the specified
name does not already exist. For the $man stack, we get the following graph
rewrite rule with one negative constraint:

1We could also modify the representation and stick to general graph rewriting. However,
not only would the representation get too complex, we would also need a lot of rules.
Therefore, I prefer keeping our old representation and extending the notion of graph
rewriting.
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• ))f _ X •

top

��

top

��
• 55X _ f •

OOOOOOOOOOO $he

��

$he

��
• •

Note that we also could have used a positive constraint to formalize the fact
that the top edge is required. We would have used the following rule (which
is equivalent to the above rule):

•

top

��
• ))f _ X •

OOOOOOOOOOO $he

��

$he

��
• •

In the following, I will use the former format (without positive constraints),
to be more consistent with the previous part of this chapter, in which I used
normal graph rewriting.

5.4.3 Ruling out Useless Stacks

Now we are going to work on the first problem I raised. How are we going
to make sure that stacks are not created when they are not needed? In
other words: how can we see whether a stack is required or not? I find this
problem of a lesser magnitude than the previous one: when two stacks with
the same name have been created, wrong results may be produced because
there is no way to discover which stack was created most recently. So, the
top referent of the wrong stack may be selected as if it were the most recent
referent. However, when a stack is created that is not required, we only have
too many stacks: we do too much work. But the final DRS will be the same.

Still, the solution to this problem is quite simple: we know exactly which
CML-symbols push referents to which stacks. So, we define multiple rules
that create, for example, a $he stack; one for each CML-symbol that pushes
a referent to that stack. One of the rules is:
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• ))j f c _ [ X T
a-man // • ))j f c _ [ X T

• a-man // •

top

��

top

��
• ,,d c a _ ] [ Z •

SSSSSSSSSSSSSS $he

��

$he

��
• •

And we define the same rule with the symbols ‘the-man’, ‘a-boy’, etc. in the
top part.

5.5 Summary

In this chapter we have built a graph rewrite system that does dynamic
semantics exactly like GML. The difference is, that now we do not apply the
rules to the context graph as we go along (‘at run time’), but we build the
order of the rules into the graph ‘at design time’. We do this by a string
of CML-symbols that uniquely encode the order in which the rules must be
applied. Now, the normal forms of the graph rewrite system are context
graphs that can be converted into DRS as in the previous chapter.

In the second half of the chapter we have extended this system to auto-
matically create stacks when needed. For this, we have use graph rewriting
with application conditions. Especially, the possibility to define negative
constraints proved very useful.
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Chapter 6

Conclusion and Final Remarks

As became clear in chapters 4 and 5, it is possible to calculate a DRS for a
discourse represented in CML, by using techniques from graph rewriting. In
this thesis, I have presented two frameworks that do the job.

The first framework, which I called GML, associates to each (atomic or
molecular) CML-symbol a single graph rewrite rule. Information states are
modelled in a context graph. The rules are then applied to an initial context
graph in sequence, resulting in a context graph that represents the entire
discourse.

The second framework, which a called SGML, is a graph rewrite system
which takes a graph representation of a CML-string as input, and reduces it to
a normal form in the form of a context graph. The rules of the graph rewrite
system are derived from the GML-rules. Finally, I gave an extention to this
graph rewrite system, that automatically created stacks when required.

In both frameworks, the resulting context graph can be trivially trans-
formed into a DRS (in a way, context graphs are DRS’s in a slightly different
notation).

Although both do the job, they have different advantages and disadvan-
tages. I give a quick comparison of GML (chapter 4) and SGML (chapter
5).

• In the present form of GML, it is impossible to define rules that flexibly
create stacks when needed, as we did with relative ease in SGML. So,
all stack must be created in advance.

• SGML can only be used when the discourse is finished. So, we cannot
calculate a DRS of a discourse when it still going on.

In other words, neither of the systems is 100% perfect. Still, the results of my
project show that it is possible to use graph rewriting for dynamic semantics.
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Because of the intuitive nature of hypergraphs, in my opinion (extensions to)
the graph-based systems developed in this thesis are a good alternative to
encoding (representations of) meaning directly in set theory.

Still, some things need to be addressed in the future. Here are a few
topics that I couldn’t look into, but are, in my opinion, quite interesting:

Negation and Implication I have only paid attention to positive dis-
courses, i.e. discourses without negation, implication and universal
quantification. Of course, these topics are very important, and must
be addressed in the future.

Determining the truth at the same time In this thesis, we create a
DRS(-like graph) with graph rewriting. If we have done that, we can
see if it is true in a model, by finding an homomorphism from it to the
(model graph of a) model. It would be very interesting to see how we
can calculate the truth of a discourse during the creation of the DRS. I
think that the parallel nature of graph rewriting will truly come to its
right in this way.

Composition of Context Graphs Context graphs are of the same nature
as positive DRS’s. It would be interesting to know whether they share
other properties as well. In particular: is it possible to calculate the
composition of two context graphs by using graph rewriting, like we
can calculate the composition of two DRS’s.

I am confident, that extensions to GML and SGML can be developed that
solve the above problems.



Appendix A

Overview of Notations

General

iff if and only if
ε the empty sequence
A∗ the set of sequences of A
A+ A∗ − {ε}
A⊕B the disjoint union of A and B
∅ the empty set, empty labelled set, empty function, etc.
f ◦ g composition of functions, (f ◦ g)(x) = f(g(x))

Dynamic Semantics

g[x0, . . . , xn]h assignment g differs from assignment h at most in the values
it assigns to x0, . . . , xn

|=M,g ϕ condition ϕ is true in modelM w.r.t. assignment g
h |=M,g Φ assignment h is a verifying embedding for DRS Φ in model

M w.r.t. assignment g
`,Σ-set labelled set based on label space Σ
ν + µ for multisets ν and µ: (ν + µ)(x) = ν(x) + µ(x) for all x
ν ≤ µ for multisets ν and µ: ν ≤ µ iff ν(x) ≤ µ(x) for all x
ξ ? E labelled set ξ is relabelled by E

Graph Rewriting

f [S] {f(x) | x ∈ S}
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66 APPENDIX A. OVERVIEW OF NOTATIONS

Dom(f) the domain of f
Rng(f) the range of f , Rng(f) = f [Dom(f)]⋃
A {x | ∃B ∈ A : x ∈ B}

G→r,ϕ H H is the result of applying rule r to graph G via a homomorphism ϕ
G→cond

r̂,ϕ H same as G→r̂,ϕ H, with graph rewr. with app. cond.
G⇒S H G→r,ϕ H for some r ∈ S and some homomorphism ϕ
⇒∗

S reflexive and transitive closure of ⇒S.
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interpretation function, 9, 16
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label
in labelled sets, 12, 13, 16, 41
of an edge, 26, 54, 59

labelled set, 12, 13, 15, 22
left-hand side, 23–26, 28, 29, 31,
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`-set, see labelled set
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multiset, 14, 16
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normal form, 30
normal graph rewriting, 31
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phrase structure grammars, 23
pop, 15, 36, 37
positive constraint, 31, 60
predicate, 7, 9, 16, 18, 42
predicate level, 11, 19, 42, 44

pronoun, 43
push, 15, 36, 37, 43

reachable, 27
referent, 6–8, 11, 22, 38, 41–44
referent node, 40
relabelling, 15, 17, 41, 42
restriction, 27
right-hand side, 23–26, 28, 29, 34
root, 39, 56
rule, see graph rewrite rule

satisfies, 32, 33
sentence level, 41
SGML, 53–61
signature

CML, 16, 18
DRT, 7
graph, 26

source node, 26
stack, 11–13, 16, 35, 41, 43, 49, 58
stack graph, 38–40, 47, 50
start rule, 54, 58
sufficient context graph, 49
sum, 13, 15

target nodes, 26
term level, 11, 41–44
term rewriting, 23
truth

of a CML-string, 19
of a context graph, 48
of a DRS, 10

truth condition, 5

underlying graph rewrite rule, 32–
34

underlying model, 38
update, 18

verb, 44
verifying embedding, 10


