
Equivalence of Reductions in Higher-Order Rewriting

Equivalentie van reducties in hogere-orde herschrijven
(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag
van de rector magnificus, prof. dr. J. C. Stoof, ingevolge het besluit van het

college voor promoties in het openbaar te verdedigen op
donderdag mei des middags te . uur

door

Harrie Jan Sander Bruggink

geboren op juni
te Washington, Verenigde Staten van Amerika

Promotor: Prof. Dr. A. Visser
Co-promotor: Dr. V. van Oostrom

Contents

Contents i

Acknowledgements v

1 Introduction 1
1.1 Rewriting as a model of computation 1
1.2 Equivalence of reductions . 2
1.3 Motivations . 3
1.4 Three equivalences of reduction 5
1.5 Outline of this dissertation . 6
1.6 Mathematical preliminaries . 7

2 Rewriting and proof terms 11
2.1 Introduction . 11
2.2 Abstract rewriting . 11

2.2.1 Abstract Rewrite Systems 12
2.2.2 Reductions . 12
2.2.3 Properties of rewrite systems 15

2.3 The simply typed λ-calculus . 16
2.3.1 λ-Terms and β-rewriting 16
2.3.2 Proof terms for β-multisteps 17
2.3.3 Positions and tracing . 20

2.4 Higher-order Rewrite Systems 23
2.4.1 Terms and the rewrite relation 23
2.4.2 Higher-order rewrite logic 29
2.4.3 Proof terms for higher-order multisteps 31
2.4.4 Positions and static tracing 36
2.4.5 Orthogonality of proper steps 38

2.5 Meta-equivalence and meta-rewriting 40
2.6 Discussion . 40

3 Permutation equivalence 41
3.1 Introduction . 41
3.2 Permutation equivalence for finite reductions 41

i

3.3 Permutation equivalence for infinite reductions 45
3.4 Discussion . 47

4 Finite Family Developments 49
4.1 Introduction . 49
4.2 Labelling HRSs with natural numbers 50
4.3 The Prefix Property . 53

4.3.1 The Prefix Property of the λx-calculus 55
4.3.2 Translating between terms, preterms and λx-terms . . . 60
4.3.3 Proof of the Prefix Property 64

4.4 Finite Family Developments for non-collapsing HRSs 66
4.5 Dealing with collapsing HRSs 69
4.6 Applications . 72

4.6.1 Finite Developments . 73
4.6.2 Termination of the simply typed λ-calculus 73

4.7 Related work . 75
4.7.1 Match-bounds . 76
4.7.2 Dependency pairs . 76

4.8 Discussion . 77

5 Standardization 79
5.1 Introduction . 79
5.2 Standard reductions . 80
5.3 Selection standardization . 82

5.3.1 The standardization procedure 82
5.3.2 Existence of standard reductions 87
5.3.3 Uniqueness of standard reductions 90

5.4 Inversion standardization . 92
5.4.1 The standardization procedure 92
5.4.2 Existence and uniqueness of standard reductions 95

5.5 The Standardization Theorem and standardization equivalence 101
5.6 Non-local HRSs . 102
5.7 Standardization of infinite reductions 102
5.8 Related work . 104

5.8.1 Standardization in other h.-o. rewriting paradigms . . . 105
5.8.2 Abstract standardization results 105
5.8.3 Standardization results with similar methodology 106

5.9 Discussion . 107

6 Residuals 109
6.1 Introduction . 109
6.2 Abstract residual theory . 111

6.2.1 Residual systems . 111
6.2.2 Residuals of reductions 113

6.3 Residuals for higher-order multisteps 117
6.3.1 Projection terms . 117

ii

6.3.2 A first attempt . 117
6.3.3 Definition of the residual operator 119
6.3.4 Correctness of the residual operator 124
6.3.5 Computing the simplification relation 127

6.4 Compatibility is orthogonality 128
6.5 The projection order and projection equivalence 129
6.6 Equivalence of projection and permutation equivalence 132
6.7 Related work . 134
6.8 Discussion . 135

7 Results 137
7.1 Summary . 137
7.2 Main result . 138

Bibliography 141

Nederlandse samenvatting 147

iii

Acknowledgements

When I graduated from Cognitive Artificial Intelligence I was actively looking
for a Ph.D. position in computer linguistics, but I ended up doing research
on higher-order term rewriting, a completely different area of research. I’m
sure I would have worked on a more linguistics oriented subject with great
pleasure, but in the end I’m glad I chose the more mathematical one. The
subject of rewriting is, in my opinion, a very interesting one, which uncovers
deep insights in the modern, more and more computerized world.

Writing a Ph.D. thesis, even in an area one likes, is not something one can
do entirely on his own. So here I would like to spend a page or two thanking
those people who, in various ways, helped me to find my way in the world
of theoretical computer science, to overcome the obstacles that every Ph.D.
student seems to have to cope with from time to time, and, in general, just to
have a nice life during this period.

First of all, I would like to express my gratitude to my promotor Albert
Visser for the opportunity for doing this research. Albert’s views and teachings
on the subjects of logic and philosophy have helped me a lot in understanding
the foundations of mathematics, and as such, the foundations and methodology
of theoretical computer science.

Second, I am indebted to Vincent van Oostrom, my copromotor and daily
supervisor. He was always there when I had questions, needed pointers into the
existing literature, or faced difficult obstacles. I remember the time that I had
almost given up hope of finishing this thesis at all; but Vincent’s encouraging
comments and clear schedule put me on track again. Also, his – sometimes
controversial – world views (“everything is rewriting”) were entertaining, and
yet, insightful.

Third, I thank the members of my reading committee, Jan Bergstra, Marc
Bezem, Delia Kesner, Jan Willem Klop and Roel de Vrijer.

Also, thanks to Jelke van Hoorn and Rick van Ewijk, for agreeing to be
my “paranimfen”, and my ‘local ears and eyes’ in Utrecht.

Writing a thesis is not possible without a pleasant working environment. In
particular I would like to thank my respective roommates at Utrecht University:
Joost Joosten (who couldn’t beat me at penguin throwing), Dimitri Hendriks
(who had a passion for chess) and Joop Leo (who magically turns a 10 euro
note into a 20 euro one). Also I want to thank them and the other members

v

ACKNOWLEDGEMENTS

of the Theoretical Philosophy group for their interesting conversations during
our daily lunches and weekly seminar.

One cannot conduct science 24 hours a day. For the necessary ‘extra-
curricular’ diversion I would like to thank the “Marktoberdorf posse”, Jeroen,
Martijn, Hendrik Wietse and Arthur; my former roommates at the Tuindorp-
West Complex, in particular Andreas, Anouk, Engel, Ion, Jeanine, Johan,
Simone, Suzanne, Yvonne and Wouter; the “Sunday evening games crew”,
Joachim, Sander v.d. M. and Tomas; the members of my darts team, Dieuwertje,
Eeske, Erik, Jelke, Maarten and Robbert; and all my other friends (insofar
not previously mentioned), in particular Anne, Bouke, Fleur, Karianne, Paul,
Roos, Sijmen and Wietse. And for all the people I forgot to mention: rest
assured, it may have slipped my mind to mention you, but that doesn’t mean
I’ve forgotten you!

A special mention goes to my colleagues in Duisburg, Barbara König,
Tobias Heindel and Vitali Kozioura. We had a great time together while I
was waiting for my thesis to get accepted, and I hope we can continue our
collaboration in the future.

Last but not least, I wish to thank my parents, Bia and Jos, my brother
Sjoerd and his girlfriend Jiska for their support and love during the writing of
this thesis.

vi

One

Introduction

1.1 Rewriting as a model of computation

Theoretical computer science is to computer science what logic is to mathemat-
ics and theoretical philosophy to the natural sciences: it provides foundations
and models of computations and programming languages. In this dissertation
we investigate the realm of rewriting, in particular its subfield of rewriting
theory. In general, rewriting is a computational paradigm in which computa-
tions are modelled by transitions (called steps or productions) between objects.
The objects represent program states and the steps actions that change the
state of the program. These steps are described by rewrite rules. A rewrite
rule consists of a left-hand side and a right-hand side and applying a rewrite
rule to an object consists of removing the left-hand side of the rule from that
object (called redex, after reducible expression) and replacing it with the
right-hand side. Many types of mathematical objects and rewrite rules can
be used, including first-order terms, strings and graphs, giving rise to various
rewriting paradigms. The different concrete formats of rewriting share the
following common properties:

• Rewriting is discrete. If we apply a rewrite rule to an object, we
immediately obtain a new object. There are no objects ‘in between’.

• Rewriting is local. Rewrite rules are applied to part of the object, and
leave the rest of the object ‘as-is’.

• A related property is that rewriting is asynchronous. Steps which
do not depend on each other can be applied in any order, or at the
same time. A consequence of this is that rewriting is very suitable for
modelling parallel and concurrent computations, that is, computations
in which independent parts of the same computation are carried out
synchronously.

1

1. Introduction

• In principle, rewriting is non-deterministic. There is no a priori prefer-
ence on the possible steps, although much research is done on the subject
of strategies, where such a preference on the steps is added. Also, most
actual (rewriting based) programming languages employ some predefined,
evaluation strategy, such as strict evaluation or lazy evaluation.

The form of rewriting that we investigate here is higher-order rewriting,
in particular the class of Higher-order Rewrite Systems, as introduced by
Nipkow [36, 37, 31]. Higher-order rewriting is a symbiosis of two classical
rewriting paradigms: the λ-calculus, which features higher-order variables
and variable binding, and first-order term rewriting, which features algebraic
pattern matching. Higher-order Rewrite Systems (hrss) are a powerful tool to
study the meta-theory of declarative programming languages, such as λProlog
and Haskell, on the one hand, and theorem provers and proof assistants, such
as Isabelle, on the other. Additionally, many rewriting paradigms, such as
first-order term rewrite systems and (extensions of) λ-calculi can be encoded
as instances of hrss (see for example Sect. 4.6.2 for an hrs which encodes the
simply typed λ-calculus), so that results obtained for hrss easily carry over
to other interesting domains.

1.2 Equivalence of reductions

As noted above, rewriting is an asynchronous, non-deterministic computa-
tional paradigm: steps which do not depend on each other by locality, can be
performed in any order or even at the same time. We want to equate compu-
tations which are the same except for the order in which such independent
steps are performed. As a metaphor, we consider lists of natural numbers.
Two lists are considered equivalent if they contain the same numbers, in any
order. Likewise, two reductions are equivalent, if they contain the same steps.
Formalizing the notion of equivalence of lists is, of course, trivial, but when
dealing with reductions this is not the case, because steps may be duplicated,
erased, nested, etc. We give examples of duplication and erasure in first-order
term rewriting systems (trss), a form of rewriting which I assume the reader
is familiar with:

• Consider the following trs:

f(x)→ g(x, x)
a→ b

The term f(a) contains two independent redexes: the f-redex and the
a-redex. Consider the following two reductions:

f(a)→ f(b)→ g(b, b)
f(a)→ g(a, a)→ g(b, a)→ g(b, b)

The first reduction contract the a-redex first and then the f-redex, while
the second contracts the f-redex first and the a-redexes afterwards.

2

Motivations

Intuitively, both reductions are equivalent. However, they do not even
have the same number of steps, because the redex a of the source term
is duplicated in the second reduction.

• Consider the following trs:

f(x)→ c

a→ b

and the following two reductions:

f(a)→ f(b)→ c

f(a)→ c

Again, both reductions are intuitively equivalent, but, because the step
from a to b was erased in the second reduction, both reductions do not
have the same number of steps.

Above is demonstrated how duplication and erasure make defining a notion
of equivalence of reductions already non-trivial in the first-order case. In
higher-order rewriting, we will need to deal with the additional problem of
nesting. Examples of this will be given in later chapters.

1.3 Motivations

What are the reasons for studying equivalence of reductions? First, studying
equivalence of reductions is interesting from a conceptual point of view. The
answers to (related) questions like “What makes one step in one reduction ‘the
same’ as another step in another reduction?” and “What does it mean for two
reductions to be equivalent?” gives us insight in the nature of computation.
However, answering these questions is not only interesting by itself. It is
also required if one wants to investigate, for example, strategies or optimal
reductions.

Strategies and the needed strategy. A strategy for a rewrite system is
defined in [53, Chap. 9] as a sub-rewrite system which shares the same normal
forms. In practice, a strategy can be seen as a (potentially non-deterministic)
algorithm which selects the step which must be taken from a given object.
Equating reductions and steps helps in defining and investigating strategies
for rewriting systems. For example, the property of fairness, which states that
every redex must be contracted at some point, requires a notion of persistence
of redexes, and thus a notion of equivalence of reductions.

This is also required to define the so-called needed strategy. A step is needed
in a reduction if it is present in all equivalent reductions. (This means that
the descendents of the step are never erased; for the notion of standardness
we define in Chapter 5, the steps which are needed in a reduction are exactly
the ones which are present in the equivalent standard reduction.)

3

1. Introduction

In orthogonal term rewrite systems, all reductions to normal form are
equivalent. We define that a step is needed if it is needed in some reduction
to normal form, that is, if, in order to reach a normal form, the step must be
performed at some point. The needed strategy can now be defined as being
the strategy which alway performs a needed step. It is well-known that the
needed strategy is normalizing for orthogonal, first-order trss, that is, if a
normal form can be reached, it will be reached by the strategy. Unfortunately,
whether a redex is needed or not is undecidable in general.

Optimality. The question which redex must be contracted in order to reach
a normal form in the least number of steps, is in general undecidable. Lévy
[29] showed that, in case of the λ-calculus, the question is decidable if, instead
of steps, we take ‘family steps’ to be the atomic transitions. Family steps
are steps, in which redexes, which are created ‘in the same way’, may be
contracted at the same time. For example, in the first example of the previous
page, a family step may reduce the two copies of the duplicated a-redex in
one go. The notion of equivalence of reductions is essential to formally define
the notion of redex family.

It is not immediately clear that a family step is an appropriate unit of
computation, but the graph implementation of Lamping [27] made it seem
plausible to assume that it is. In his graph representation, terms are represented
by graphs. It appeared that things could be set up in such a way, that redexes
which are part of the same redex family, could be represented by the same
part of a graph, and, since graph rewrite steps operate locally, be contracted
at the same time.

Consider for example the rewrite system consisting of the rules

f(x)→ h(x, x)
a→ b

and the reduction

f(a)→ h(a, a)→ h(b, a)→ h(b, b).

The a-redex is duplicated, and therefore two proper steps are needed to reduce
to a normal form. When the terms are represented as graphs, the same normal
form can be reached as follows:1

f

a

◦−→

g

a

◦−→

g

b

1Note that the figure is only an illustration; actual implementations of the idea require
control nodes to carry out duplication and, in the presence of bound variables, to keep track
of those bound variables.

4

Three equivalences of reduction

Although it was subsequently proved that family steps are not an appropriate
unit of computation [2], because the number of control steps needed to isolate
the ‘family’ redexes is only bounded by a superexponential function, in practice
promising results have been obtained (see below) and the field of optimality is
still alive.

Optimal (in the sense of Lévy) graph-based implementations have been
devised for the λ-calculus [27, 3] and first-order TRSs [48, 49, 50]. Interestingly,
in the first case the difficult part is to keep track of nested bound variables,
while in the second case the difficult part is making sure that matching works
without ‘unsharing’ too much of the graph. An optimal implementation of
higher-order rewriting would need to cope with both of those difficulties.

1.4 Three equivalences of reduction

In this dissertation we formalize the notion of equivalence of reductions in
higher-order rewriting in three different ways:

• permutation equivalence,

• standardization equivalence, and

• projection equivalence.

All of these notions were previously introduced for other rewriting paradigms,
but they were all called “permutation equivalence”. Van Oostrom & De Vrijer
[42, 43] were the first to distinguish between the various ways in which to
formalize permutation equivalence, and to explicitly prove them equivalent.
We mostly adopt their terminology.

Permutation equivalence. Two reductions are permutation equivalent if
the one can be transformed into the other by permuting adjacent, independent
steps. In the list metaphor, lists are equivalent if one can be transformed into
the other by swapping adjacent numbers.

Permutation equivalence is formalized, by giving a set of equations between
reductions. Two reduction are permutation equivalent if the one can be
converted into the other by these equations.

Standardization equivalence. In a standard reduction the redexes are
contracted from outside to inside and left to right. Standardization consists
of finding a permutation equivalent standard reduction for a given input
reduction. This can be compared to sorting lists of natural numbers.

We formalize standardization equivalence by giving two standardization
procedures, called weak and strong standardization by Klop [25], and selection
and inversion standardization by Van Oostrom & De Vrijer [42, 43], respectively.
The first can be seen as a specific strategy for the second.

Because, in the case of lists, each equivalence class of lists contains a
unique sorted list, two lists can be considered equivalent if sorting the one

5

1. Introduction

yields the same list as sorting the other. We show that each permutation
equivalence class of reductions also contains a unique standard reduction.
Hence, standardization can be used to decide permutation equivalence: two
reductions are equivalent if and only if they have the same standard reduction.
This form of equivalence of reductions will be called standardization equivalence.

Projection equivalence. Two reductions are projection equivalent if pro-
jection of either reduction over the other yields the empty reduction. In the
list metaphor: lists A and B are equivalent if removing all numbers in B from
A yields the empty list and vice versa.

We formalize projection equivalence by defining a projection operation / on
higher-order reductions. For reductions R,S, the formula R /S denotes the
residual of R after S has been performed. This projection operator satisfies
the laws of abstract residual theory.

The main result of this thesis (Theorem 7.2.1) will be that, for reductions
on which all of the notions of equivalence are defined, the three notions of
equivalence are the same.

1.5 Outline of this dissertation

Below, I give a short overview of the topics which will be covered in the various
chapters of this dissertation:

Chapter 1: Introduction. You are currently reading the introduction. We
give motivation for and an overview of this dissertation. Additionally,
in the next section some mathematical preliminaries are introduced.

Chapter 2: Rewriting and proof terms. We introduce the various no-
tions of rewriting that are used in this dissertation: Abstract Rewrite
Systems, the λ-Calculus and Higher-order Rewrite Systems. But the
chapter also discusses new results, in particular proof terms for Higher-
order Rewriting Systems. These proof terms are a term representation
of (multi)steps and reductions and are very convenient to manipulate
steps and reductions.

Chapter 3: Permutation equivalence. In this (short) chapter we define
the notion of permutation equivalence for both finite and infinite reduc-
tions, and we prove some handy properties of this notion.

Chapter 4: Finite Family Developments. In this chapter we show that
Higher-order Rewriting Systems enjoy the property of Finite Family
Developments. This property ensures that every reduction in which
the ‘creation depth’ of every function symbol is bounded is finite and
vice versa. The proof is quite technical but the result is essential in
Chapter 5.

Chapter 5: Standardization. We prove that for every reduction there is a
permutation equivalent reduction in which the redexes are contracted

6

Mathematical preliminaries

visually from left to right. We prove this by giving two independent
procedures which transform an arbitrary reduction into an equivalent
standard one. The result of this chapter is then used to define an alter-
native notion of equivalence of reductions, standardization equivalence:
two reductions are equivalent if they have the same standard reduction.
An easy corollary of the earlier results of the chapter is finally that
standardization equivalence is equivalent to permutation equivalence.

Chapter 6: Residuals. We define the notions of projection and residuals,
which together answer the question: what remains of a reduction after
another reduction has been performed. These notions are then used
two define a third notion of equivalence of reductions, which is then
proved to be equivalent to permutation equivalence and standardization
equivalence.

Chapter 2 and 3 are required to understand the proceeding chapters and
Chapter 5 uses the result of Chapter 4 but can be understood separately.
Chapter 6 can be read independently of chapters 4 and 5, except for Sect. 6.6,
which establishes a correspondence between the results of Chapters 5 and 6.

1.6 Mathematical preliminaries

In this section we fix some terminology and notations for common mathematical
structures, such as relations, functions and sequences. It is not meant as a
general introduction to the foundations of mathematics; a basic understanding
of set theory is assumed.

Sets. We employ the usual notion of a set, for example as axiomatized in a
formal set theory like zfc. We use the notation A ⊆ B to denote that A is a
subset of B, and A ⊂ B to denote that A is a proper subset of B. The inverses
of ⊆ and ⊂ are denoted ⊇ and ⊃, respectively. We denote n-ary tuples by
〈a1, . . . , an〉. The Cartesian product of two sets A and B is denoted:

A×B = {〈a, b〉 | a ∈ A & b ∈ B}.

Relations. A relation R is a set of tuples together with its domain and
codomain. Formally: a relation is a triple R = 〈R0, A,B〉 such that R0 ⊆ A×B.
We write Dom(R) = A and Cod(R) = B, and we will say in this case that
R is a relation from A to B. The expression a R b denotes the fact that
a ∈ Dom(R), b ∈ Cod(R) and 〈a, b〉 ∈ R0.

Note that we explicitly allow the possibilities that Dom(R) ⊃ {a | a R
b for some b} and Cod(R) ⊃ {b | a R b for some a}. We call a relation total
if Dom(R) = {a | a R b for some b} and surjective if Cod(R) = {b | a R
b for some a}.

Let R be a relation from A to B. The inverse of R, denoted R−1, is the
relation such that Dom(R−1) = Cod(R), Cod(R−1) = Dom(R) and a R−1 b
if and only if b R a.

7

1. Introduction

Let S be an arbitrary set. The following notations are used w.r.t. a relation
R from S to S:

• R= is the reflexive closure of R;

• R+ is the transitive closure of R;

• R∗ is the reflexive, transitive closure of R, i.e. R∗ = R= ∪R+;

• R! denotes normalization with respect to R, that is a R! b if a R∗ b and
there is no c such that b R c.

Let R = 〈R0, A,B〉 be a relation from A to B, and S = 〈S0, B,C〉 a relation
from B to C. The composition of R and S is a relation from A to C and is
defined as: R ; S = 〈R0 ; S0, A,C〉, where

R0 ; S0 = {〈a, c〉 | ∃b ∈ B : 〈a, b〉 ∈ R0 & 〈b, c〉 ∈ S0}.

Let R be a relation from S to S, and A ⊆ S a set. An R-maximal element
of A is an x ∈ A such that ∀y ∈ A.x R y → y R x. An R-minimal element of
A is a R−1-maximal element of A.

Functions. A function F is a relation such that for each a ∈ Dom(F) there
is exactly one b ∈ Cod(F) such that a F b. The expression F (a) denotes the
unique b ∈ Cod(F) such that a F b; if a 6∈ Dom(F), then F (a) is said to be
undefined. The symbol idA denotes the identity function on the domain A,
defined as idA(a) = a, for all a ∈ A. If the domain is clear from the context,
it will be omitted.

Let F be a function from A to B. The function F �C is the function F
restricted to C, that is, if F ′ = F �C, then Dom(F ′) = A ∩ C, Cod(F ′) = B
and F ′(a) = F (a) for all a ∈ A ∩ C.

Ordinal numbers. We employ the Von Neumann definition of ordinal
numbers (or ordinals for short): a set A is an ordinal if and only if A is totally
ordered with respect to the subset relation and every element of A is also
a subset of A. We are only interested in ordinals up to ω, the first infinite
ordinal. The natural numbers, denoted by N, are the finite ordinals. The
“ordinals smaller than or equal to ω” are then N∪{ω}. Greek lowercase letters
α, β range over ordinal numbers, while i, j, k, n,m range over natural numbers
(unless otherwise indicated).

We explicitly state that according to the definition, every ordinal is equal
to the set of its predecessors. That is: 4 = {0, 1, 2, 3} and ω = N.

Sequences. A sequence a over a set A is a function from an ordinal α ≤ ω
to A; here, α is called the length of the sequence, denoted |a| = α. Sequences
of length ω are called infinite, other sequences are finite. The sequence of
length 0, the empty sequence, is denoted by ε.

8

Mathematical preliminaries

If b = a�α, then b is called the α-prefix of a, also written a[α]; a sequence b
is a prefix of a, written b v a, if it is the α-prefix of a for some α. Composition
of sequences a and b, denoted by a ; b, is defined as follows:

(a ; b)(i) =
{

a(i) if i < |a|
b(i− |a|) otherwise

Note that the subtraction in the second clause is defined, because |a| < ω (if
not, the first clause would always apply). A related observation is the fact
that, according to this definition, if a is an infinite sequence, then a ; b = a.

We introduce the following shorthand for finite sequences: a sequence
a1, . . . , an of length n will be written as an, or as a if n is not important.

If A is a set of sequences over A, and a is a sequence over A, then we write:

• a ;A for {a ; b | b ∈ A}; and

• A ; a for {b ; a | b ∈ A}.

Lexicographic ordering. Let A be a set and @ a strict ordering on A.
The lexicographic ordering @lex on sequences on A is defined as follows:

a @lex b if ∃k
((

a(k) @ b(k)
)

& ∀i < k
(
a(i) = b(i)

))
.

It is well-known that @lex is well-founded on sequences of bounded length if
and only if @ is well-founded.

Notational conventions. Let a1, . . . , an and b1, . . . , bn be sequences. We
will write

a1, . . . , bk, . . . , an for a1, . . . , ak−1, bk, ak+1, . . . , an,

that is, the same sequence where the element ak is replaced by bk.
More notational conventions will be introduced in the respective chapters.

9

Two

Rewriting and proof terms

2.1 Introduction

In this chapter we introduce the various notions of rewriting that are used in
this thesis. The most notable of those is the class of Higher-order Rewrite
Systems (hrss). hrss are built ‘on top of’ the simply typed λ-calculus, which
is therefore also briefly introduced. Also, we define Abstract Rewrite Systems
(arss), firstly because they allow us to introduce some rewriting notions
without restricting ourselves to a particular form of rewriting, and secondly,
because they allow us to develop some theory from a more abstract viewpoint.
Additionally, in Chapter 4 we define a λ-calculus with explicit substitutions,
the λx-calculus, but since it is only used locally, we do not give it any attention
here.

Additionally, we define proof terms, which are explicit witnesses to steps, for
both the λ-calculus and hrss. In a sense, proof terms are to steps what typed
λ-expressions are to proofs: they are term representations of non term-like
structures. Just like proof unfolding is much easier to describe as β-reduction
on λ-terms than as an operation on proofs, our proof terms will prove to be
very convenient to express meta-operations on and meta-equivalences of steps
and reductions, such as permutation equivalence (Chapter 3), standardization
(Chapter 5) and a residual operator (Chapter 6).

The idea of proof terms for rewriting paradigms is not new. They were also
used for the λ-calculus by Hilken [17] and for first-order term rewrite systems
(trss) by Van Oostrom & De Vrijer [42, 43]. In the second case, proof terms
were introduced for the same reasons as here: in order to define operations on
proof terms more easily.

2.2 Abstract rewriting

In this section, we explore the most abstract form of rewriting, abstract rewrite
systems (arss). In arss, no structure of the objects which are rewritten is

11

2. Rewriting and proof terms

assumed. This allows us to distinguish properties of rewriting that depend on
the structure of the object (for example terms) from properties which hold for
arbitrary forms of rewriting. Additionally, it avoids repeating definitions of
similar notions for all sorts of rewriting. In later sections, specific instances of
arss are given, in particular Higher-order Rewrite Systems and the simply
typed λ-calculus with β-reduction.

2.2.1 Abstract Rewrite Systems

Abstract rewrite systems (arss) consist of a set of steps, giving rise to the
one-step rewrite relation.

Definition 2.2.1 (cf. [53, Def. 8.2.2]). An Abstract Rewrite System (ars) is
a structure A = 〈A,Φ, src, tgt〉, where:

• A is an arbitrary set of objects, called the domain of A;

• Φ is a set of steps; and

• src and tgt are functions from Φ to A, returning the source and target
of each step, respectively.

An ars, as defined above, describes what the objects are that are being
rewritten and has a set of (explicit witnesses to) steps, each of which is
associated with a source and a target. If ϕ is a step with s = src(ϕ) and
t = tgt(ϕ), we write ϕ : s→A t. The subscript A may be omitted if clear from
the context. Diagrammatically, we write:

•
s

•
tϕ

Note, that we allow that two distinct steps have the same source and target.
This is a desired feature: it allows us to cope with syntactic accidents (see
for example [53, page 37]). However, often we are not interested in which
specific step between two terms is performed, but only in which objects can
be reached in one step from a particular object. For this purpose we introduce
the notion of rewrite relation: s→A t if there exists a ϕ such that ϕ : s→A t.

2.2.2 Reductions

In general, given some object a ∈ A, we will not only be interested in objects
that are reachable from a in exactly one step, but we will be interested in
objects that are reachable from a in any number of steps.

Definition 2.2.2. Let A = 〈A,Φ, src, tgt〉. An A-reduction is a tuple R =
〈R, s〉, where:

• R = ϕ0, ϕ1, . . . is a (possibly infinite) sequence of A-steps such that
tgt(ϕi) = src(ϕi+1), for all consecutive steps ϕi, ϕi+1 of R.

12

Abstract rewriting

• s ∈ A, the source of the reduction, is a designated object such that, if
|R| > 0, s = src(ϕ0).

Keeping an explicit reference to the source of the reduction is necessary in
order to distinguish between empty reductions from different objects: if a
and b are distinct objects, then the empty reductions from a to a and from b
to b should be distinct reductions. However, in practice we will usually not
mention the source: in most cases, it is just the source of the first step. If
the reduction under consideration is empty, then the source will be stated
explicitly or clear from the context.

The functions src and tgt are extended to reductions in the following way.
The function src(R) just returns the source component of the reduction R. In
the definition of tgt(R) the following three cases are distinguished:

• If R is empty, then tgt(R) := src(R).

• If R is the finite reduction ϕ0, . . . , ϕn−1 of length n, then tgt(R) :=
tgt(ϕn−1).

• If R is an infinite reduction, then tgt(R) is undefined.

Reductions and steps with the same source are called coinitial. Reductions
and steps with the same target (if defined) are called cofinal.

Reductions R = 〈R, r〉 and S = 〈S, s〉 are composable if R is a finite
reduction and tgt(R) = src(S). The composition of the two reductions is then
defined as: R;S := 〈R;S, r〉. It is easy to see that, like composition of sequences,
composition of reductions is associative, that is, (R ; S) ; T = R ; (S ; T).

We write R : a �A · · · if R is a reduction with src(R) = a. R : a �A b
means that R is a (finite) reduction with src(R) = a and tgt(R) = b. We
write a �A b if there exists a R such that R : a �A b. In all cases, the
subscript is omitted if clear from the context.

There is a small semantic difference between� and→∗: a� b means that
there is a reduction between a and b, while→∗ is the reflexive, transitive closure
of the one-step rewrite relation. Of course, the two notions are equivalent:

Lemma 2.2.3. a�A b if and only if a→∗A b.

Proof. (⇒): By induction on the length of the reduction R. If R is the empty
reduction, then a = b and we have that a →∗ b by reflexivity. Otherwise,
R = ϕ ;R′, where tgt(ϕ) = src(R′). Let c = tgt(ϕ). We know a → c, and
thus a→∗ c. By the induction hypothesis, c→∗ b. So, by transitivity, a→∗ b.

(⇐): By induction on the derivation of a →∗ b. In the base case either
a → b or a = b, and in both cases a � b follows immediately. If there is
a c such that a →∗ c and c →∗ b, then the induction hypothesis yields two
composable reductions.

We use the notation 〈〈a〉〉A, or just 〈〈a〉〉 if A is clear from the context, to denote
the set of objects which are reachable from a in the rewrite system A, that is:

〈〈a〉〉A := {b | a�A b}.

13

2. Rewriting and proof terms

An ars is a directed graph, where A are its nodes, Φ its edges and
reductions are its paths. We can therefore use the following graph-theoretic
result, which is well-established in the literature:

Lemma 2.2.4 (König’s Lemma). A finitely branching, connected graph is
infinite if and only if it has an infinite simple path.

For some abstract results, it is convenient to consider finite reductions as steps.
In the following definitions we set up an ars which has as its steps the finite
reductions of another ars.

Definition 2.2.5 (cf. [53, Def. 8.2.8]). An Abstract Rewrite System with
Composition (arsc)1 is a structure A = 〈A,Φ, src, tgt, 1, ;〉 where:

• B = 〈A,Φ, src, tgt〉 is an ars,

• 1 is a (total) function from A to Φ such that 1a : a→ a and

• ; is a (total) function from pairs 〈ϕ,ψ〉 ∈ Φ2 with tgt(ϕ) = src(ψ) to Φ,

such that the following identities hold:

1a ; ϕ = ϕ

ϕ ; 1b = ϕ

(ϕ ; ψ) ; χ = ϕ ; (ψ ; χ)

where a = src(ϕ) and b = tgt(ϕ).

We will usually omit the subscript of the 1. A step in the range of 1 will be
called an empty step.

To each ars, we associate a canonical arsc in the following way:

Definition 2.2.6. Let A = 〈A,Φ, src, tgt〉 be an ars. Its reflexive, transitive
closure A∗ = 〈A∗,Φ∗, src∗, tgt∗, 1, ;〉 is defined by:

• A∗ = A;

• Φ∗ is the set of finite A-reductions;

• src∗ and tgt∗ return the source and target of the reductions;

• 1 is the function which maps each object a to the empty reduction from
a to a;

• ; is the concatenation function for reductions.

Lemma 2.2.7. For each ars R, R∗ is an arsc.

Proof. The requirements of Def. 2.2.5 are trivially satisfied.

Lemma 2.2.8. a→A∗ b if and only if a�A b.

1What we call Abstract Rewrite System with Composition is called a category in [53].

14

Abstract rewriting

Proof. Let A = 〈A,Φ, src, tgt〉 be an ars and A∗ = 〈A∗,Φ∗, src∗, tgt∗, 1, ;〉.
The equivalence between a→A∗ b and a�A b is trivial, because Φ∗ is the set
of finite reductions. The only remark we have to make is that a�A b if and
only if there is a finite reduction from a to b, because infinite reductions don’t
have a target.

We have now introduced three ways to go from steps to reductions. All three
are equivalent:

Corollary 2.2.9. a→A∗ b⇔ a�A b⇔ a→∗A b.

Proof. Directly from Lemma 2.2.3 and Lemma 2.2.8.

2.2.3 Properties of rewrite systems

The following properties of rewrite systems are frequently distinguished:

Definition 2.2.10. Let A = 〈A,Φ, src, tgt〉 be an (abstract) rewrite system,
and a ∈ A an object.

(i) a is irreducible, if ¬∃b : a →A b; in this case, we will say that a is a
normal form;

(ii) a has the diamond property if a→A b & a→A c⇒ ∃d : b→A d & c→A

d;

(iii) a is locally confluent if a→A b & a→A c⇒ ∃d.b�A d & c�A d;

(iv) a is confluent if a�A b & a�A c⇒ ∃d.b�A d & c�A d;

(v) a is normalizing (also called weakly normalizing) if there is a normal
form b such that a�A b;

(vi) a is terminating (also called strongly normalizing) if there are no infinite
A-reductions from a.

A is/has X, where X is one of diamond property, locally confluent, confluent,
normalizing or terminating, if for all a ∈ A, a is/has X.

The following correspondences are well-known in the literature (see for example
[53, Ch. 1]):

Lemma 2.2.11. Let A be an ars.

(i) (Newman’s Lemma) If A is locally confluent and terminating, then A is
confluent.

(ii) A is confluent if and only if A∗ has the diamond property.

For a confluent and terminating rewrite system A, we will write a↓A for the
unique normal form b such that a�A b.

15

2. Rewriting and proof terms

2.3 The simply typed λ-calculus

The style of Higher-order Rewriting that we employ uses β-reduction (and
restricted η-expansion) in the simply typed λ-calculus as meta-theory (called
substitution calculus in [39]). In this section we briefly introduce this calculus,
and define proof terms and multisteps for it.

2.3.1 λ-Terms and β-rewriting

The set Type of simple types (in the following just called types), is generated
from a set of base types by the type constructor →, which associates to the
right. The set of types is usually left implicit. Each type α can be written as

τ = τ1 → · · · → τn → τ0

where, for 1 ≤ i ≤ n, τi is a type and τ0 is a base type. The arity of this type,
written ar(τ), is n.

A typed set is a set S with associated type function tS : S → Type. For a
typed set S, we write a : τ ∈ S, (or just a : τ if S is clear from the context),
for a ∈ S and tS(a) = τ . We fix in advance a countably infinite typed set Var
of variables. In the following, x, y, z (, u, w) range over these variables.

A signature is a finite or countably infinite typed set, disjoint from Var,
the elements of which are called function symbols. The arity of a function
symbol is equal to the arity of its type. In the following, f, g, h range over
arbitrary function symbols, and a, b, c over function symbols of arity 0 (also
called constants . On the other hand, sans-serif letters and words (for example
a, b, f, g, let,map) are used to denote specific function symbols and constants
(these are mainly used in examples).

Let a signature Σ be given. We define the typed set Λ(Σ) of simply typed
λ-terms over Σ to be the smallest set such that:

• if x : τ ∈ Var, then x : τ ∈ Λ(Σ);

• if f : τ ∈ Σ, then f : τ ∈ Λ(Σ);

• if M : τ1 → τ2, N : τ2 ∈ Λ(Σ), then (MN) : τ2 ∈ Λ(Σ);

• if x : τ1 ∈ Var and M : β ∈ Λ(Σ), then λx.M : τ1 → τ2 ∈ Λ(Σ).

With Sym(M) we denote the set of function symbols which occur in the λ-term
M . A variable in a term is bound by the first matching λ above it. The free
variables are variables which are not bound. The set of free variables of a term
M , denoted FV(M), is inductively defined as follows:

FV(x) := x

FV(f) := ∅
FV(M1M2) := FV(M1) ∪ FV(M2)
FV(λx.M0) := FV(M0)− {x}

16

The simply typed λ-calculus

A substitution is a mapping from variables to λ-terms of the same type.
Applying a substitution σ to a term M , denoted Mσ (or Mσ if this is more
clear), is defined as follows:

xσ := σ(x) if x ∈ Dom(σ)
xσ := x otherwise
fσ := f

(MN)σ := MσNσ

(λx.M)σ := λy.M [x 7→ y]σ where y is the first fresh variable

A context C is a term over an extended signature which includes a special
symbol �, called a hole, which can be of any type. A context which contains
n �’s is called an n-ary context. If C is an n-ary context, then the expression
C[M1, . . . ,Mn] is defined when Mi has the same type as the ith � from the
left, for each 1 ≤ i ≤ n, and denotes C with the ith � from the left literally
replaced by Mi, for each i.

Although substitutions and contexts serve a similar purpose, there is one
crucial difference: a λ-expression in a context may bind a free variable of a
term which is replaced for a hole. On the other hand, when a substitution is
applied, it is made sure, by renaming bound variables, that a variable in the
term can never bind a free variable in a term that is substituted for a variable.
To illustrate the difference, consider the term M = λx.y on the one hand, and
the context C = λx.� on the other. Then:

M [y 7→ x] = λz.x but C[x] = λx.x.

In the left case, the free variable x of the substitution remains free, while in
the right case the variable becomes bound by the leading abstraction.

The three most important equivalence relations between λ-terms are α-, β-
and η-equivalence, which are generated by the following equations:

α : λx.M =α λy.M [x 7→ y] if y 6∈ FV(M)
β : (λx.M)N =β M [x 7→ N]
η : λx.Mx =η M if x 6∈ FV(M)

As usual, α-equivalent λ-terms are identified. We employ the Variable Conven-
tion [4], which states that, in a given context all bound variables are named
differently from other bound variables and the free variables.

The β-equation can be oriented from left to right, resulting in the following
rewrite relation:

C[(λx.M)N]→β C[M [x 7→ N]].

It is well-known that β-reduction is terminating on simply typed terms [52];
see also Sect. 4.6.2.

2.3.2 Proof terms for β-multisteps

Next, we define β-multisteps, that is, steps in which zero, one or more than
one β-redexes can be contracted at the same time. We define multisteps by

17

2. Rewriting and proof terms

x ∈ Var
var

x : x ◦−→β x

f ∈ Σ
fun

f : f ◦−→β f

γ : M ◦−→β N
abs

λx.γ : λx.M ◦−→β λx.N

γ : M ◦−→β P δ : N ◦−→β Q
app

γδ : MN ◦−→β PQ

γ : M ◦−→β P δ : N ◦−→β Q
beta

βx(γ, δ) : (λx.M)N ◦−→β P [x 7→ Q]

Table 2.1: Proof terms for β-steps.

means of an inference system, and also define proof terms, which are explicit
witnesses of steps. Our proof terms are equal to Hilken’s [17], except that
we use named variables rather than De Bruijn indices. We postpone a more
detailed discussion of the advantages and potential problems of proof terms to
Sect. 2.4.3, where multisteps and proof terms for higher-order rewriting are
defined.

A β-proof term is a λ-term (see pag. 16) with an extra constructor which
represents β-steps. Let a signature Σ be given. The typed set Pt(Σ) of proof
terms over Σ is defined to be the smallest set such that:

• if x : τ ∈ Var, then x : τ ∈ Pt(Σ);

• if f : τ ∈ Σ, then f : τ ∈ Pt(Σ);

• if γ : τ1 → τ2, δ : τ1 ∈ Pt(Σ), then (γδ) : τ2 ∈ Pt(Σ);

• if x : τ1 ∈ Var and γ : τ2 ∈ Pt(Σ), then λx.γ : τ1 → τ2 ∈ Pt(Σ);

• if x : τ1 ∈ Var and γ : τ2, δ : τ1 ∈ Pt(Σ), then βx(γ, δ) : τ2 ∈ Pt(Σ).

β-Multisteps are defined by means of the inference system in Table 2.1, together
with the witnessing β-proof terms. The inference system has judgements of
the form γ : M ◦−→β N , which mean that γ is a proof term which witnesses
that λ-term N can be reached by performing one β-multistep starting from
M . Consider the following example:

Example 2.3.1. The following inference proves that βx(f(x), a) witnesses the
step (λx.f(x))a ◦−→β f(a):

fun
f : f ◦−→β f

var
x : x ◦−→β x

app
f(x) : f(x) ◦−→β f(x)

fun
a : a ◦−→β a

beta
βx(f(x), a) : (λx.f(x))a ◦−→β f(a)

Note that the inference system allows proof terms to contain zero, one or more
than one βx-symbols. Such proof terms correspond to multisteps that contract

18

The simply typed λ-calculus

zero, one or more than one β-redexes, respectively.2 We use the inference
system to define the β-multistep rewrite relation in the following way:

M ◦−→β N if there is a γ such that γ : M ◦−→β N.

Example 2.3.2. The following inference proves that βx(x, βy(y, a)) witnesses
the multistep (λx.x)((λy.y)a) ◦−→ a:

var
x : x ◦−→β x

var
y : y ◦−→β y

fun
a : a ◦−→β a

beta
βy(y, a) : (λy.y)a ◦−→ a

beta
βx(x, βy(y, a)) : (λx.x)((λy.y)a) ◦−→β a

In the following proposition it is established that ◦−→∗β and �β are actually
the same rewrite relation between λ-terms:

Proposition 2.3.3. →β ⊆ ◦−→β ⊆ →∗β.

Proof. →β ⊆ ◦−→β is shown by induction on the context of the →β-step.
◦−→β ⊆ →∗β is show by induction on the inference with γ : M ◦−→β N as a

conclusion.

We now construct an ars from the simply typed λ-calculus:

Definition 2.3.4. Let Σ be a signature. The ars λβ(Σ) is defined as λβ(Σ) =
〈A,Φ, src, tgt〉 where:

• A is the set of typed λ-terms over Σ;

• Φ is the set of proof terms over Σ;

• src(γ) = M and tgt(γ) = N if and only if γ : M ◦−→β N .

As said above, β-Proof terms can be seen as λ-terms with an extra term
constructor βx(·, ·). Substitutions can thus be defined for β-proof terms
analogously to λ-terms. A (proof term) substitution σ is a mapping from
variables to proof terms of the same type. We write src(σ) and tgt(σ) for the
substitutions such that

(src(σ))(x) := src(σ(x)) and (tgt(σ))(x) := tgt(σ(x)).

Applying a substitution σ to a β-proof term γ is defined as follows:

xσ := σ(x) if x ∈ Dom(σ)
xσ := x otherwise
fσ := f

(MN)σ := MσNσ

(λx.M)σ := λy.M [x 7→ y]σ where y is the first fresh variable
βx(γ, δ)σ := βy(γ[x 7→ y]σ, δσ) where y is the first fresh variable

2Multisteps are also sometimes called parallel steps. We follow the terminology of [43],
where parallel steps are distinguished from multisteps, in that the latter may contract two
nested redexes in one go, while the former may not.

19

2. Rewriting and proof terms

Using this definition of substitution, we can define α-, β- and η-equivalence
analogous to α-, β- and η-equivalence of λ-terms. We can now show that
terms and proof terms play nicely together with respect to these equivalences.

Lemma 2.3.5. Let γ : M ◦−→β N be a proof term and σ a proof term substi-
tution. Then γσ : M src(σ) ◦−→β N

tgt(σ).

Proof. By induction on the structure of γ, using the observation that the
same variables occur in the proof term and its source, so that “the first fresh
variable” is the same variable in both cases.

Proposition 2.3.6. Let γ : M ◦−→β M and γ′ : M ′ ◦−→β N
′ be proof terms.

(i) If γ =α γ
′, then: M =α M

′ and N =α N
′.

(ii) If γ =β γ
′, then: M =β M

′ and N =β N
′.

(iii) If γ =η γ
′, then: M =η M

′ and N =η N
′.

Proof. All three items follow easily from Lemma 2.3.5.

2.3.3 Positions and tracing

λ-Terms may be considered as trees with function symbols, variables, applica-
tions and abstractions as nodes. Every node of the tree is uniquely determined
by the path from the root of the tree to the node in question. Positions are
representations of such paths, and therefore representations of specific places
within the term.

Definition 2.3.7.

(i) A λ-position p is a finite sequence over {1, 2}.
λ-Position composition is denoted by juxtaposition, that is pq = p ; q.
For a set of positions P and position q, we use the following notation:

q ; P := {qp | p ∈ P}

(ii) Let M be a λ-term. The set of λ-positions of M , denoted Pos(M) and
the symbol at λ-position p, denoted M(p):

• If M = �, then:
Pos(M) := ∅.

• If M = x, then:
Pos(M) := {ε}
M(ε) := x

• If M = f , then:
Pos(M) := {ε}
M(ε) := f

20

The simply typed λ-calculus

• If M = M1M2, then:
Pos(M) := {ε} ∪ (1 ; Pos(M1)) ∪ (2 ; Pos(M2))
M(ε) := @ and M(ip) := Mi(p), for i ∈ {1, 2}.

• If M = λx.M0, then:
Pos(M) := {ε} ∪ (1 ; Pos(M0))
M(ε) := λx, M(1p) := M0(p).

Example 2.3.8. Consider the term M = λx.fx. This term is represented by
the following tree:

λx

@

f x

1

1 2

Positions of occurences of symbols can be found by composing the num-
bers found on the path from the root to the occurrence. Thus Pos(M) =
{ε, 1, 11, 12} and:

• M(ε) = λx;

• M(1) = @;

• M(11) = f; and

• M(12) = x.

We define two orderings on positions. We write p v q if p is a prefix of q, that
is there is a position p′ such that p ; p′ = q. Furthermore, the ordering ≤lex

is the lexicographic extension of <. We extend this second ordering to an
ordering of sets of positions as follows:

P ≤lex Q if p ≤lex q for all p ∈ P, q ∈ Q.

In practice, the above orderings mean the following: if p v q, then position p
is closer to the root than q; if p ≤lex q, then position p is closer to the root
than or to the left of q.

Next we define a trace relation, which keeps track of how symbols move
when a step is done. Consider for instance the β-step (λx.x)a →β a. The
position of the a in the source of this step is 2, while the position of the a in
the target is ε. Still, in a sense, the a in the target is the same symbol as the a
in the source. The trace relation formalizes this idea by stating exactly which
positions in the source and target of a step (or reduction) are ‘the same’.

21

2. Rewriting and proof terms

@

λx

x x

N

M

1

1

2
M

N N

Figure 2.1: Visual representation of the λ-trace relation.

Definition 2.3.9. The β-trace relation over a β-step γ : M ◦−→β N , denoted
by [[γ〉〉β , is defined as follows:

[[x〉〉β := id{ε}

[[f〉〉β := id{ε}

[[λx.γ〉〉β := λ.[[γ〉〉β
[[γδ〉〉β := @([[γ〉〉β , [[δ〉〉β)

[[βx(γ, δ)〉〉β := βX([[γ〉〉β , [[δ〉〉β)

where, for relations of positions R, R1, R2:

• λ.R is notation for the relation which relates ε to ε and 1p to 1q iff
p R q;

• @(R1, R2) is notation for the relation which relates ε to ε and ip to iq
iff p Ri q, for i ∈ {1, 2}; and

• βP (R1, R2) is notation for the relation which relates 11q to q′ iff q R1 q
′

and q 6∈ P and 2q to pq′, for any p ∈ P , iff q R2 q
′.

• in the last equation, X = {p |M(p) = x}, where M = tgt(γ);

The β-trace relations of a β-reduction M, denoted [[M〉〉β , is the composition
of the β-trace relations of its respective steps.

Note that the well-definedness of X in the fourth item of the definition above
depends on the variable convention (see pag. 17), which ensures that variables
which occur within the scope of another variable are named differently. In
Fig. 2.1 a visual representation of the λ-trace relation is given.

Example 2.3.10. Let the β-proofterm γ = βx(fx, a) : (λx.fx)a ◦−→β fa. The
trace relation [[γ〉〉 is as follows:

11 7→ ε 111 7→ 1 2 7→ 2

22

Higher-order Rewrite Systems

The trace relation has the property that there is at most one position in the
source of the β-step that traces to a given position in the target of the step; for
linear λ-terms – that is λ-terms that have the property that in each subterm
of the form λx.M , x occurs exactly once in M – the converse is also true. This
is formally stated in the next lemma:

Lemma 2.3.11.

(i) If p [[M〉〉 q and p′ [[M〉〉 q, then p = p′.

(ii) If src(M) is linear, p [[M〉〉 q and p [[M〉〉 q′, then q = q′.

Proof. Both items are proved by induction on the length of M, using for (ii)
the fact that, for some β-step γ, tgt(γ) is linear if src(γ) is.

2.4 Higher-order Rewrite Systems

This thesis is about Higher-order Rewrite Systems (hrs), as introduced by
Nipkow [36, 37, 31]. In fact, we consider hrss as horss [39] with the simply
typed λ-calculus as substitution calculus.

2.4.1 Terms and the rewrite relation

Preterms. Let Σ be a signature. A Σ-preterm (or just “preterm” if Σ is clear
from the context or not important) is a typed λ-term over Σ (see Sect. 2.3).
Also, Σ-precontexts and Σ-presubstitutions are defined to be λ-contexts and
λ-substitutions over Σ, respectively.

We want to consider preterms (and precontexts and presubstitutions)
modulo β- and η-equivalence. Unique representatives of βη-equivalence classes
can be computed using the union of β-reduction (presented in Sect. 2.3) and
restricted η-expansion:

Definition 2.4.1 (Restricted η-expansion). The relation of restricted η-ex-
pansion is the smallest relation such that C[M]→η C[λx.Mx] if the following
conditions are satisfied:

(i) M is of functional type;

(ii) x does not occur free in M ;

(iii) M is not of the form λy.M0; and

(iv) the hole of C does not occur as the left part of an application.

Conditions (iii) and (iv) of the above definition are equivalent to the condition
that a restricted η-expansion step can never create new β-redexes. Restricted
η-expansion has the following important properties:

23

2. Rewriting and proof terms

Lemma 2.4.2.

(i) The relation →η is confluent and terminating.

(ii) The set of η-normal forms is closed under β-reduction.

(iii) Every βη-equivalence class has a unique βη-normal form.

Proof. See [53, Pag. 594, 595].

Terms. As written above, we want to consider βη-equivalence classes of
preterms. By Lemma 2.4.2(iii) we can take βη-normal forms as the unique
representatives of the βη-equivalence classes and define:

Definition 2.4.3. Let Σ be a set of simply typed function symbols.

(i) A Σ-term is a Σ-preterm in βη-normal form.

(ii) A Σ-context is a Σ-precontext in βη-normal form.

(iii) A Σ-substitution is a Σ-presubstitution of which the codomain consists
of Σ-terms.

As usual, the signature Σ will be omitted if clear from the context. Unless
otherwise indicated, in the following the lowercase roman letters s, t will range
over terms, the capital roman letters C,D,E will range over contexts and σ, τ
will range over substitutions. In the following, a term of the form as1 . . . sn,
where a is either a function symbol or a variable, will be written as a(s1, . . . , sn)
or even a(s); a term of the form λx1. . . . λxn.s will be written as λx1 . . . xn.s
or λx.s.

Because of Lemma 2.4.2 (ii), we can forget about restricted η-expansion
altogether if we make sure that all ‘input’ terms are in η-normal form. In the
following, this will be implicitly done.

Contexts are often used in definitions and proofs to ‘focus’ on the important
part of a term. However, they can have nasty nesting behavior which is
undesired in such cases. Therefore, often contexts of a simple form are used.
We define: a base context is a context in which the holes do no occur in the
arguments of other holes.

Patterns. We restrict the left-hand sides of rules to be patterns. Patterns,
as introduced by Miller [35], are terms in which every free variable has only
distinct bound variables as arguments. Patterns have first-order-like properties
with respect to unification: unification for patterns (and thus matching) is
decidable, and if two patterns p, q are unifiable, then a unique most general
unifier exists. Usually we will also require the left-hand sides to be linear (each
free variable occurs at most once in it) and fully-extended (free variables have
all bound variables in scope as argument). The notions of pattern, linear and
fully extended pattern are formally defined below:

Definition 2.4.4 (Pattern). Let Σ be a signature and x be a sequence of
variables.

24

Higher-order Rewrite Systems

(i) A Σ-term s is a (Σ, x)-pattern if:

• s = y(s1, . . . , sn), where y 6∈ x and s1, . . . , sn is η-equivalent to a
sequence of pairwise distinct variables from x; or

• s = a(s1, . . . , sn), where a ∈ x∪Σ and s1, . . . , sn are (Σ, x)-patterns;
or

• s = λy.s0 and s0 is a (Σ, xy)-pattern.

(ii) A Σ-term s is linear outside x if each free variable not in x occurs in it
at most once.

A Σ-term s is a fully extended (Σ, x)-pattern, if it is a (Σ, x)-pattern,
and in the first case of item (i), it is always the case that s1, . . . , sn =η x.

A Σ-term s is a local (Σ, x)-pattern if it is a fully extended (Σ, x)-pattern
which is linear outside x.

The Σ-parameter will usually be clear from the context, and is then omit-
ted. The x-parameter is omitted if x = ∅, that is “(Σ,∅)-pattern” may be
abbreviated to “Σ-pattern” or even just to “pattern”.

Example 2.4.5.

• Examples of local patterns are: f(x), g(λxy.f(z(x, y))) and h(λx.z(x)).
Consider, as an example, the derivation of the fact that g(λxy.f(z(x, y)))
is a local pattern:

– g(λxy.f(z(x, y))) is a local pattern by the second clause, because:
– λxy.f(z(x, y)) is a local pattern by the third clause (twice), because:
– f(z(x, y)) is a local x, y-pattern by the second clause, because:
– z(x, y) is a local x, y-pattern by the first clause.

• Examples of non-local patterns are: lam(λx.app(z, x))3 (not fully ex-
tended, because the bound variable x does not occur as an argument of
z) and h(λx.z(x), λx.z(x)) (not linear, because the free variable z occurs
twice in the term).

• Examples of non-patterns are: g(z(a)) and g(z(x)). In the first term, the
free variable z has a function symbol a as argument, and in the second
term a free variable x. In both cases, this is not a bound variable, as
required.

The requirements of linearity and fully-extendedness have a similar purpose as
the requirement of linearity for left-hand sides of first-order trss: they keep
matching ‘local’ (hence the name “local pattern”) in the following sense: to
match a non-linear pattern, two subterms outside of the pattern need to be
checked for equality; to match a non-fully extended pattern, a subterm outside
of the pattern needs to be checked for the non-occurrence of variables. Many

3 This non-local pattern corresponds to the left-hand side of the η-reduction rule,
λx.Mx → M . The fact that the bound variable x does not occur as an argument of the
free variable z represents the condition that x may not occur free in M .

25

2. Rewriting and proof terms

theorems of first-order rewriting only hold if all left-hand sides are left-linear.
Similarly, a lot of theory of higher-order rewriting is only applicable to hrss
in which all of the left-hand sides are local patterns.

The rewrite relation. We are now ready to define Higher-order Rewrite
Systems (hrss) and the rewrite relation:

Definition 2.4.6.

(i) Let Σ be a signature. A Σ-rule is a pair 〈λx.l0, λx.r0〉 (usually written
λx.l0 → λx.r0) of closed Σ-terms of the same type, such that l0 is a
pattern of the form l0 = f(s1, . . . , sn), and all of x occur free in l0.

(ii) A Higher-order Rewrite System (hrs) H is a structure 〈Σ, R〉 such that
R is a set of Σ-rules.
H is a linear/fully extended/local hrs, if for all λx.l0 → r ∈ R, l0 is a
linear/fully extended/local pattern.

(iii) The rewrite relation →H is defined as follows:

s→H t if s =β C[l] and t =β C[r], where l→ r ∈ R.

Note that, because l0 is required to be of the form f(s1, . . . , sn) in item (i) of
the above definition, it must be the case that l0, and hence r0, are of base
type.

The rewrite relation is extended to a rewrite relation on substitutions in
the following way: σ →H τ if:

• Dom(σ) = Dom(τ);

• there is a x ∈ Dom(σ) such that σ(x)→H τ(x); and

• for all y ∈ Dom(σ) such that x 6= y, it holds that σ(y) = τ(y).

The subscript H of →H will be omitted if clear from the context.
In this dissertation, we will mainly restrict our attention to local hrss.

However, in some cases (auxiliary) results can be extended to a more general
class of hrss.

Example 2.4.7. Let the hrs Map, implementing the higher-order function
map, be defined by:

λz.map(λx.z(x), nil)→ λz.nil

λzuv.map(λx.z(x), cons(u, v))→ λzuv.cons(z(u),map(λx.z(x), v))

Here, cons and nil are the list constructors, namely list composition and the

26

Higher-order Rewrite Systems

empty list, respectively. A reduction of two Map-steps is the following:

map(λx.f(x), cons(a, nil))
=β (λzuv.map(λx.z(x), cons(u, v)))(λx′.f(x′), a, nil)

→Map (λzuv.cons(z(u),map(λx.z(x), v)))(λx′.f(x′), a, nil)

=β cons(f(a),map(λx.f(x), nil))
=β cons(f(a), (λz.map(λx.z(x), nil))(λx′.f(x′)))

→Map cons(f(a), (λz.nil)(λx′.f(x′)))
=β cons(f(a), nil)

Note how the (underlined) left-hand sides are literally replaced by the (also
underlined) right-hand sides.

Remark 2.4.8. In the literature, often different but essentially equivalent
definitions of hrss are given. For example, a much more first-order-like
definition is frequently found. Rules are tuples l→ r of the same base type,
such that FV(r) ⊆ FV(l) and l = f(l1, . . . , ln) is a pattern, and the rewrite
relation is defined as follows:

s→ t if there is a context C and substitution σ such that C[lσ] =β s
and C[rσ] =β t, for some rule l→ r.

We can translate both approaches to each other by removing/adding the
leading abstractions. Which one to use is essentially a matter of taste. Let
A be the variant with leading abstractions, and B the variant without them.
Some comparisons:

• VariantB needs substitutions to be defined. This means that substitution
is a primitive operation on two levels: on the preterm level and on the
term level. This is not a theoretical problem but mostly an aesthetic
one.

• In variant A a step is performed by literally replacing the left-hand side
of a rule by the right-hand side (modulo β-equivalence).

We chose variant A here mainly because it makes it a bit easier to define proof
terms later on (see Sect. 2.4.3). Sometimes, however, we change to variant B
if this aids clarity.

For the sake of clarity, we will often employ the following convention in
examples:

Convention 2.4.9. We will often not write the leading abstractions, and
leave them implicit. When a rule with free variables in the left-hand side is
encountered, the reader may add leading binders for the free variables in the
order in which they occur in the left-hand side. For example:

h(y, λx.z(x))→ z(y) is equal to λyz.h(y, λx.z(x))→ λyz.z(y).

27

2. Rewriting and proof terms

Collapsing rules. Intuitively, a rewrite rule is collapsing if it can bring
previously unconnected parts of the context (and substitution) together. In
first-order trss, the only way for a rule to be collapsing is if it has a single
variable as right-hand side. Higher-order rewrite rules can also be collapsing
due to nesting. We formally define the notion of collapsing rule by first defining
what a collapsing term4 is.

Definition 2.4.10. A term s is collapsing, if one of the following applies:

• (context-subst): s = x(s1, . . . , sn), where x is a free variable; or

• (subst-subst): s = C[x(s1, . . . , sn)], and for some k,

sk = λz.y(t1, . . . , tm)

where C is a context, x is a free variable, and y a free or bound variable.

A rewrite rule λx.l → λx.r is collapsing, if r is collapsing, and an hrs is
collapsing, if at least one of its rules is.

Example 2.4.11.

• The rules λx.f(x)→ λx.x and λz.mu(λx.z(x))→ λz.z(mu(λx.z(x))) are
collapsing due to the (context-subst) condition.
Suppose that g(a) is a redex, and consider the step g(f(a))→ g(a). This
step creates the redex g(a) without creating one of its function symbols.

• The rule λyz.g(λx.z(x), y)→ λyz.f(z(y)) is collapsing due to the (subst-
subst) condition.
Suppose that f(a) is a redex. Then the step g(λx.f(x), a)→ f(a) creates
the redex f(a) without creating one of its function symbols.

• The rule λyz.app(lam(λx.z(x)), y)→ λyz.z(y) is collapsing due to both
the (context-subst) and the (subst-subst) conditions.

Termination. Mainly due to the possibility of nested variables, proving
termination of hrss is much more difficult than proving termination of first-
order trss. Many well-known first-order termination techniques cannot be
generalized to the higher-order case, or only in a much weaker form. In
Chapter 4, we prove the property of Finite Family Developments, which is
usable in some cases to prove termination of hrss. Here we just mention the
following convenient lemma:

Lemma 2.4.12 (Right-hand side lemma). Let H = 〈Σ, R〉 be an hrs. H is
terminating if and only if rσ is terminating for every λx.l → λx.r ∈ R and
terminating substitution σ.

Proof. This is Lemma 8 of [41].

4Although the name “collapsing” is arguably a bad name for a property of a static
concept like “term”.

28

Higher-order Rewrite Systems

Let H = 〈Σ, R〉 and ρ : l→ r ∈ R.

ϕ1 : s1 ◦−→−→H t1 · · ·ϕn : sn ◦−→−→H tn
var

x(ϕ1, . . . , ϕn) : x(s1, . . . , sn) ◦−→−→H x(s1, . . . , sn)

ϕ1 : s1 ◦−→−→H t1 · · ·ϕn : sn ◦−→−→H tn
fun

f(ϕ1, . . . , ϕn) : f(s1, . . . , sn) ◦−→−→H f(s1, . . . , sn)

ϕ : s ◦−→−→ Ht
abs

λx.ϕ : λx.s ◦−→−→H λx.t

ϕ1 : s1 ◦−→−→H t1 · · ·ϕn : sn ◦−→−→H tn
rule

ρ(ϕ1, . . . , ϕn) : l(s1, . . . , sn) ◦−→∗H r(t1, . . . , tn)

ϕ : s ◦−→−→H t ψ : t ◦−→−→H u
trans

ϕ · ψ : s ◦−→−→H u

Table 2.2: Higher-order rewrite logic.

2.4.2 Higher-order rewrite logic

Let H = 〈Σ, R〉 be an hrs. In this subsection we give an alternative definition
of the rewrite relation of H by means of a higher-order rewrite logic, that is, a
higher-order equational logic (see for example [56, 38]) without the symmetry
rule. Rewrite logics were introduced for the first-order case by Meseguer [34].
We give a rewrite logic with an extra component, namely an explicit witness,
called a proof term, which is similar to the proof terms we defined for the
λ-calculus. A proof term is considered as an ordinary higher-order term over
an extended signature: besides all the normal function symbols from Σ, it has
a binary, polymorphic function symbol:

“·” : α→ α→ α

(called the composition symbol, which is written infix) and for each rule
λx.l → λx.r, with label ρ, a function symbol (a so-called rule symbol) ρ of
the same type as l and r. Since proof terms are considered as terms, they are
viewed modulo αβη-equality.

The rules of our higher-order rewriting logic are listed in Table 2.2. They
have conclusion of the form ϕ : s ◦−→−→H t. Proof terms in which no rule symbol
occurs, are called empty and may be denoted by 1. Note that the var, fun and
rule can function as axioms when n = 0.

We now can prove that rewrite logic induces the same rewrite relation as
before:

29

2. Rewriting and proof terms

Lemma 2.4.13. Let s, t be terms. There is a proof term ϕ such that ϕ :
s ◦−→−→ t if and only if s� t.

Proof. (⇒): By induction on the inference of ϕ : s ◦−→−→ t. We distinguish the
following cases:

• Suppose var or fun is the last rule of the inference. We show only fun;
var is similar. We know that ϕ = f(ϕ1, . . . , ϕn), where ϕi : si ◦−→−→ ti.
By the induction hypothesis, si →∗ ti. But then:

f(s1, s2 . . . , sn)→∗ f(t1, s2 . . . , sn)→∗ · · · →∗ f(t1, t2 . . . , tn)

as required.

• Suppose abs is the last rule of the inference. This is an easy variant of
the above case, because there is only one direct subterm, and is proved
analogously.

• Suppose rule is the last rule of the inference. We know now that ϕ =
ρ(ϕ1, . . . , ϕn), where ϕi : si ◦−→−→ ti. By the induction hypothesis si →∗
ti. But then:

l(s1, . . . , sn)→∗ l(t1, . . . , tn)→ r(t1, . . . , tn)

as required.

• Suppose trans is the last rule of inference. We know now that ϕ = ϕ1 ·ϕn,
where ϕ1 : s ◦−→−→ u and ϕ2 : u ◦−→−→ t, for some term u. By the induction
hypothesis, s→∗ u and u→∗ t. But then s→∗ t, as required.

(⇐): By induction on the derivation of s→∗ t. If s→ t, then by definition:

s =β C[l(s1, . . . , sn)] and t =β C[r(s1, . . . , sn)]

The claim follows by a nested induction on the size of C and the observation
that, for any term u without rule or composition symbols, it holds that
u : u ◦−→−→ u. If s = t, then s : s ◦−→−→ t by the same observation.

If, on the other hand, there is a u such that s→∗ u and u→∗ t, then it
holds by the induction hypothesis that there are proof terms ϕ1, ϕ2 such that
ϕ1 : s ◦−→−→ u and ϕ2 : u ◦−→−→ t. But then:

(ϕ1 · ϕ2) : s ◦−→−→ t

as required.

Note that proof terms, as defined in this section, may have nested composition
symbols, that is compositions which occur within the argument of a function
symbol, abstraction or even a rule symbol. For example, in the hrs with the
two rules:

ρ : f(x)→ g(x)
θ : g(x)→ h(x)

30

Higher-order Rewrite Systems

we can infer:
λx.(ρ(x) · θ(x)) : λx.f(x) ◦−→−→ λx.h(x)

Nested compositions are allowed in [42, 43] for the first-order case. There, they
are convenient because of the fact that, for some context C containing no rule
symbols or compositions, C[ϕ · ψ] and C[ϕ] · C[ψ] are identified, which makes
it easier to define relations between and operations on proof terms. However,
the above identification is problematic in the higher-order case, because it
conflicts with the intuitively valid equation 1 · 1 = 1: Let ρ : a→ b be the only
rule of an hrs. Then:

ρ =β (λx.x)ρ = (λx.(x · x))ρ =β ρ · ρ

The proof term ρ is well-formed, but the proof term ρ · ρ isn’t because
tgt(ρ) 6= src(ρ). So we cannot consider proof terms modulo βη-equivalence.

Because we introduced proof terms in particular for easily defining meta-
operations on reductions, we have two options: do not allow nested compo-
sitions or do not consider proof terms modulo βη-equivalence. I have opted
for the first solution. It is left to further research to devise an elegant form of
proof term which includes nested compositions but does not have the problem
observed above.

2.4.3 Proof terms for higher-order multisteps

The solution is to define proof terms only for multisteps (steps that may
contract any number of independent redexes at a time)5 and not for reductions
of such steps (reductions are created from multisteps in the way of Def. 2.2.2).
In the rest of this dissertation, we will use the following definition for proof
term:

Definition 2.4.14 (Proof term). Let H = 〈Σ, R〉. We assume that all rules
of R carry a unique label. A H-proof term is a higher-order term over the
signature Σ+, where

Σ+ := Σ ∪ {ρ : α | ρ : l→ r ∈ R, l : α}.

In other words, proof terms are higher order terms with an extended signature,
which includes for each rule ρ a rule symbol for that rule of the same type
as its left-hand side (and thus of the same type as its right-hand side). The
function Rules(ϕ) returns the set of rule symbols occurring in ϕ.

To define the multistep rewrite relation, we leave out the composition
rule of Table 2.2 (that is, we leave out trans, the last rule). This yields the
inference rules of Table 2.3. Note again that the inference rules var, fun and
rule function as axioms if n = 0. The judgements that are proven by this

5Multisteps are also sometimes called parallel steps. We follow the terminology of [43],
where parallel steps are distinguished from multisteps, in that latter may contract two
nested redexes in one go, while the former may not.

31

2. Rewriting and proof terms

Let H = 〈Σ, R〉 and ρ : l→ r ∈ R.

ϕ1 : s1 ◦−→H t1 · · ·ϕn : sn ◦−→H tn
var

x(ϕ1, . . . , ϕn) : x(s1, . . . , sn) ◦−→H x(s1, . . . , sn)

ϕ1 : s1 ◦−→H t1 · · ·ϕn : sn ◦−→H tn
fun

f(ϕ1, . . . , ϕn) : f(s1, . . . , sn) ◦−→H f(s1, . . . , sn)

ϕ : s ◦−→H t
abs

λx.ϕ : λx.s ◦−→H λx.t

ϕ1 : s1 ◦−→H t1 · · ·ϕn : sn ◦−→H tn
rule

ρ(ϕ1, . . . , ϕn) : l(s1, . . . , sn) ◦−→H r(t1, . . . , tn)

Table 2.3: Proof terms for higher-order steps.

inference system are again of the form ϕ : s ◦−→ t, stating that ϕ is a proof
term witnessing that t can be reached from s by performing one multistep.
The multistep relation is defined, analogously to the case of the λ-calculus, as
follows:

s ◦−→ t if there is a ϕ such that ϕ : s ◦−→ t

In the following, we will conflate (multi)steps and proof terms, that is, we will
occasionally say “the step ρ(a)” if we really mean “the step witnessed by the
proof term ρ(a)”.

Example 2.4.15. Consider the hrs consisting of the single rule:

µ : mu(λx.z(x))→ z(mu(λx.z(x)))

The following inference shows that the proof term µ(λx.f(x)) witnesses a step
from mu(λx.f(x)) to f(mu(λx.f(x))):

var
x : x ◦−→ x

fun
f(x) : f(x) ◦−→ f(x)

abs
λx.f(x) : λx.f(x) ◦−→ λx.f(x)

rule
µ(λx.f(x)) : mu(λx.f(x)) ◦−→ f(mu(λx.f(x)))

In the last rule, note that:

(λz.mu(λx.z(x)))(λx.f(x)) =β mu(λx.f(x))
(λz.z(mu(λx.z(x)))(λx.f(x)) =β f(mu(λx.f(x)))

32

Higher-order Rewrite Systems

ρ

source proof term target

Figure 2.2: Intuition of rule symbols. The source of a proof term is obtained
by ‘replacing’ all rule symbols by the left-hand side of the corresponding rule,
and the target is obtained by ‘replacing’ all rule symbols by the right-hand side.

Example 2.4.16. Consider the hrs from Ex. 2.4.15 with the additional rule:

ρ : f(x)→ g(x)

The following inference shows that the proof term µ(λx.ρ(x)) witnesses a step
from mu(λx.f(x)) to g(mu(λx.g(x))):

var
x : x ◦−→ x

rule
ρ(x) : f(x) ◦−→ g(x)

abs
λx.ρ(x) : λx.f(x) ◦−→ λx.g(x)

rule
µ(λx.ρ(x)) : mu(λx.f(x)) ◦−→ g(mu(λx.g(x)))

Intuitively, the rule symbols within the proof terms indicate where the ‘action’
takes place. Consider, for example, Fig. 2.2. In the middle of this figure we
see the proof term, to the left its source and to the right its target. The rule
symbol in the proof term indicates where the left-hand side of the rule in the
source is replaced by the right-hand side of the rule.

We can show the following correspondence between the reduction relations
→ and ◦−→:

Proposition 2.4.17. → ⊆ ◦−→ ⊆ →∗.

Proof. The first part, → ⊆ ◦−→, is shown by induction on the context C of the
→-step. If C = a(C1, . . . , Cn) (where a is a function symbol or a variable) then
the result follows easily from the induction hypothesis. If C = �(s1, . . . , sn),
then C[l] =β l(s1, . . . , sn) and C[r] =β r(s1, . . . , sn), and so this in an instance
of rule.

The second part, ◦−→ ⊆ →∗, follows by induction on the inference of the
◦−→-step ϕ. We distinguish the following cases:

33

2. Rewriting and proof terms

• Suppose var or fun is the last rule of the inference. We show only fun.
We know that ϕ = f(ϕ1, . . . , ϕn), for ϕi : si ◦−→ ti. By the induction
hypothesis, si →∗ ti. But then:

f(s1, s2 . . . , sn)→∗ f(t1, s2 . . . , sn)→∗ · · · →∗ f(t1, t2 . . . , tn)

as required.

• Suppose abs is the last rule of the inference. This is an easy variant of
the above case, because there is only one direct subterm, and is proved
analogously.

• Suppose rule is the last rule of the inference. We know now that ϕ =
ρ(ϕ1, . . . , ϕn), where ϕi : si ◦−→ ti. By the induction hypothesis si →∗ ti.
But then:

l(s1, . . . , sn)→∗ l(t1, . . . , tn)→ r(t1, . . . , tn)

as required.

Since, as indicated above, proof terms are terms over an extended alphabet,
the definition of substitution on proof terms is inherited from terms. Again,
we define, for a (proof term) substitution σ, the (term) substitution src(σ)
and tgt(σ) as follows:

(src(σ))(x) := src(σ(x)) and (tgt(σ))(x) := tgt(σ(x)).

We can now prove the following useful fact, which is the hrs analogue of
Lemma 2.3.5.

Lemma 2.4.18. Let ϕ : s ◦−→ t be a proof term, and σ a proof term substitu-
tion. Then ϕσ : ssrc(σ) ◦−→ stgt(σ).

Proof. By induction on the structure of ϕ.

We can now construct an ars out of a hrs.

Definition 2.4.19. Let H = 〈Σ, R〉 be an hrs. The ars of the hrs is defined
as H = 〈Term(Σ),Φ, src, tgt〉, where Φ is the set of proof terms of H and src
and tgt are defined such that:

src(ϕ) = s and tgt(ϕ) = t if and only if ϕ : s ◦−→ t

In the following, we will conflate H and H. In particular, we will speak of
H-reductions rather than H-reductions. We introduce the following notations
to project reduction without head steps to argument reductions:

Definition 2.4.20. Let, for 0 ≤ i ≤ n, Ri = ϕi0, ϕi1, . . . be (finite or infinite)
reductions of the same length, f an n-ary function symbol, C an n-ary context

34

Higher-order Rewrite Systems

C and s a term of type α1 → · · · → αn → β. We define:

f∗(R1, . . . ,Rn) := f(ϕ01, . . . , ϕ0n), f(ϕ11, . . . , ϕ1n), . . .
λx∗.R0 := λx.ϕ00, λx.ϕ10, . . .

C∗(R1, . . . ,Rn) := C(ϕ01, . . . , ϕ0n), C(ϕ11, . . . , ϕ1n), . . .
s∗(R1, . . . ,Rn) := s(ϕ01, . . . , ϕ0n), s(ϕ11, . . . , ϕ1n), . . .

Multisteps can contract any number of redexes in a single turn, because they
may contain any number of rule symbols. We define the following subclasses
of multisteps:

• An empty step is a step which contains no rule symbols. It is therefore
equal to some term s and it holds that s : s ◦−→ s.

• A proper step is a step which contains precisely one rule symbol. Such a
step is equivalent to the kind of steps defined in Def. 2.4.6, as can be
shown by an easy inductive argument. A reduction which consists of
only proper steps will be called a proper reduction.

There are two kinds of empty and infinite reductions. Reductions are sequences,
so the notions of empty and infinite are inherited from sequences. However,
it may be the case that an infinite reduction has only finitely many non-
empty steps, or, on the other hand, a non-empty reduction consists of only
empty steps. We want to explicitly distinguish these two forms of infinity and
emptiness:

Definition 2.4.21. Let R be a reduction.

(i) R is relatively finite if it contains only finitely many non-empty steps.

(ii) R is relatively empty if it contains only empty steps.

The notions of “finite” and “empty” are directly inherited from sequences,
that is a reduction is finite if it has finitely many empty or non-empty steps,
and a reduction is empty if has no empty or non-empty steps at all. Observe
that:

• Finiteness implies relative finiteness and emptiness implies relative empti-
ness.

• Since proper steps are by definition non-empty, for proper reductions,
finiteness and relative finiteness coincide, as do emptiness and relative
emptiness.

• A reduction which consists of infinitely many empty steps is both rela-
tively empty and infinite.

The existence of infinite but relatively finite and non-empty but relatively
empty reductions is a side-effect of our choice to view reductions as a sequence
of (multi)steps and to allow empty multisteps. In practice they do not occur,
but they need to be dealt with formally. To facilitate this, we define:

35

2. Rewriting and proof terms

@

@

@

f

s3

s2

s1

1 2

1 2

1 2

Figure 2.3: Tree representation of the term f(s1, s2, s3).

Definition 2.4.22.

(i) Let R be a reduction. The reduction [[R]]/1 is defined to be R from
which all empty multisteps are removed.

(ii) Let R,S be reductions. R =/1 S if and only if [[R]]/1 = [[S]]/1.

2.4.4 Positions and static tracing

The positions of terms are the same as the positions for λ-terms (we just look
only at the βη-normal form). We have to realize here, that our notational
conventions complicate the correspondence between positions and parts of the
term a little. For example, a term of the form f(s1, s2, s3) is really of the form
fs1s2s3: So, the position of the root of s1 is 112, the position of the root of s2

is 12, the position of the root of s3 is 2 and the position of the function symbol
f is 111 (see Fig. 2.3). In general, given a term f(s1, . . . , sn), the position of
the root of the subterm si is 1n−i2 and the position of the function symbol is
1n, where pk is short for p repeated k times. This observation is important
for understanding definitions concerning positions.

The trace relation of higher-order rewriting is a bit more complicated
than the trace relation of β-reduction: because we consider terms modulo
β-equivalence, we must trace the positions over the implicit β-reductions as
well.

Definition 2.4.23. The higher-order trace relation over a proof term ϕ,
denoted by [[ϕ〉〉, is defined as follows:

[[x(ϕ1, . . . , ϕn)〉〉 := F ([[ϕ1〉〉, . . . , [[ϕn〉〉)
[[f(ϕ1, . . . , ϕn)〉〉 := F ([[ϕ1〉〉, . . . , [[ϕn〉〉)

[[λx.ϕ〉〉 := λ.[[ϕ〉〉

[[ρ(ϕ1, . . . , ϕn)〉〉 := ([[M〉〉β)−1 ; ρ([[ϕ1〉〉, . . . , [[ϕn〉〉) ; [[N〉〉β

36

Higher-order Rewrite Systems

where, for relations on positions Ri:

• M and N , in the 4th equation, are the standard6 β-reductions from the
preterms l(src(ϕ1), . . . , src(ϕn)) and r(tgt(ϕ1), . . . , tgt(ϕn)) to normal
form, respectively;

• λ.R is notation for the relation which relates ε to ε and 1p to 1q iff
p R q;

• F (R1, . . . , Rn) relates ε to ε and for each 1 ≤ i ≤ n, 1n−i2p to 1n−i2q
iff p Ri q; and

• ρ(R1, . . . , Rn) relates, for each 1 ≤ i ≤ n, 1n−i2p to 1n−i2q iff p Ri q.

Lemma 2.4.24. Let ϕ : s ◦−→ t be a multistep, and let P = Pos(s). Then:

[[ϕ〉〉 = id�P if and only if ϕ = 1.

Proof. By induction on the size of ϕ, noting that non-empty steps do not trace
the positions in the left-hand side of the rule to any position in the right-hand
side of the rule.

The trace relation traces positions that are not involved in the step (in [53],
this kind of tracing relation is called a static tracing relation). Because of this,
the positions of the target of a reduction which were involved in (touched by)
the reduction can be distinguished from the other positions because they do
not trace to any position in the source.

Definition 2.4.25. Let R be a finite reduction.

(i) A position p ∈ Pos(tgt(R)) is touched by R if there is no q ∈ src(R)
such that q [[R〉〉 p.

(ii) Suppose R = C∗[R1, . . . ,Rn], where Ri : si ◦−→−→ ti. A position p ∈
Pos(tgt(R)) is touched by Rk, if it touched by C∗[t1, . . . ,Rk, . . . , tn].

In local hrss, there is at most one position in the source of a step that traces
to a given position in the target of a step.

Lemma 2.4.26. Let H be a local hrs. If p [[ϕ〉〉H q and p′ [[ϕ〉〉H q, then p = p′.

Proof. By induction on ϕ. The cases that ϕ = λx.ϕ0 and ϕ = f(ϕ1, . . . , ϕn)
are easy. In the case that ϕ = ρ(ϕ1, . . . , ϕn) we need Lemma 2.3.11(i) and
Lemma 2.3.11(ii) together with the assumption that H is linear to prove that,
for each position q, there is at most one position p such that p ([[M〉〉β)−1

q
and at most one position p such that p [[N〉〉β q.

6We claim that all β-reductions from a term to normal form induce the same trace
relation, so we could have said “arbitrary” here. We use “standard” because it is well-known
from the literature that each β-reduction has a unique standard reduction (for example [25,
Theorem 9.8.3]) and thus the definition is well-defined without the requirement to actually
prove that all β-reductions to normal form induce the same trace relation.

37

2. Rewriting and proof terms

In the following lemma an important auxiliary result is proved which will be
used in following chapters. The lemma expresses that positions ‘outside’ the
redex pattern of a step are not touched by that step. Formally:

Lemma 2.4.27. Let ϕ : s→ t, with ϕ = C[ρ(s1, . . . , sn)]p, be a proper step.
It holds that:

(i) For any position q such that p ≤ q, if q [[ϕ〉〉 q′, then p ≤ q if and only if
p ≤ q′;

(ii) For any other position q, q [[ϕ〉〉 q′ if and only if q = q′.

Proof. By a simple induction on the structure of the context C.

2.4.5 Orthogonality of proper steps

In the familiar rewriting theory, orthogonality is a property of rewrite systems:
a left-linear rewrite system is orthogonal, if none of its left-hand sides overlaps
with another left-hand side. Here, we want to consider orthogonality as a
property of steps: two steps are orthogonal if they are independent, that
is, if the redex patterns they contract do not overlap. The two notions
of orthogonality are connected in the following way: if a rewrite system is
orthogonal (in the conventional sense), then all steps from the same source
are orthogonal (in our sense). In this section we formally define the notion of
orthogonality for higher-order, proper steps. The notion is easily generalized
to multisteps.

Definition 2.4.28 (Redex pattern). The set of redex positions, or redex
pattern, of a proper step ϕ, denoted by RPos(ϕ), is defined as follows:

RPos(x(ϕ1, . . . , ϕn)) :=
⋃

1≤i≤n

1n−i2 ;RPos(ϕi)

RPos(f(ϕ1, . . . , ϕn)) :=
⋃

1≤i≤n

1n−i2 ;RPos(ϕi)

RPos(λx.ϕ0) := 1 ;RPos(ϕ0)
RPos(ρ(s1, . . . , sn)) := Pos(l(�, . . . ,�))

where ρ : l→ r is a rule.

As said, two proper steps are called orthogonal if their redex patterns do not
overlap. Formally we can define:

Definition 2.4.29 (Orthogonal).

(i) Let ϕ,ψ be proper steps. ϕ and ψ are orthogonal to each other if
RPos(ϕ) ∩RPos(ψ) = ∅.

(ii) Let H be a hrs. H is orthogonal, if are coinitial proper steps are
orthogonal.

38

Higher-order Rewrite Systems

@

µ λx

@

f x

RPos(ϕ)

RPos(χ)

RPos(ψ)

Figure 2.4: Redex patterns of ϕ = µ(λx.f(x)), ψ = mu(λx.ρ(x)) and χ = θ.

Example 2.4.30. Consider the following (little bit contrived) hrs:

µ : mu(λx.z(x))→ z(mu(λx.z(x)))
ρ : f(x)→ g(x)
θ : mu(λx.f(x))→ a

First of all, we note that the hrs is not orthogonal in the traditional sense
of the word because of the overlap between rules µ and θ and rules ρ and θ.
Consider the following steps:

ϕ = µ(λx.f(x)) : mu(λx.f(x))→ f(mu(λx.f(x)))
ψ = mu(λx.ρ(x)) : mu(λx.f(x))→ mu(λx.g(x))
χ = θ : mu(λx.f(x))→ a

We calculate the positions of the redex patterns of all steps (see Fig. 2.4):

RPos(ϕ) = {ε, 1, 2, 21, 212}
RPos(ψ) = {211}
RPos(χ) = {ε, 1, 2, 21, 211, 212}

By definition, ϕ and ψ are orthogonal to each other, whereas ϕ and χ (and ψ
and χ) are not. The hrs is not orthogonal because it allows non-orthogonal,
coinitial, proper steps.

The definition of a set of redex positions of a proper step, also allows to define
the position of a step. It is easy to see that, for a proper step ϕ, RPos(ϕ) has
a unique v-minimal position, which corresponds to the position of the hole of
the context in the step C[l]→ C[r]. We define:

Definition 2.4.31. Let ϕ be a proper step. The step ϕ contracts a redex R
at position p, if p is the v-minimal position of RPos(ϕ).

39

2. Rewriting and proof terms

2.5 Meta-equivalence and meta-rewriting

In definitions and proofs we will sometimes employ rewrite systems on the
meta-level that operate on finite reductions rather than (higher-order) terms.
In this section we will investigate some of the theory concerning such meta-
rewrite systems. Since we represent reductions as sequences of (multi)steps,
and strings are commonly defined as finite sequences, it is natural to use
techniques from string rewriting to define our meta-equivalence and meta-
rewriting, so that meta-rewriting inherits useful properties from string string
rewriting, most notably the critical pair lemma, which establishes that a
rewrite system is confluent if all its critical pairs can be joined.

Definition 2.5.1. Let A be a rewrite system.

(i) A A-meta rewrite system is a set of tuples 〈L,R〉 such that L,R are
A-reductions.

(ii) Let Mrw be an A-meta rewrite system. The one-step rewrite relation
⇒Mrw is the smallest relation such that:

• if 〈R,S〉 ∈ Mrw then R ⇒Meq S;
• if R ⇒Meq S, then T1 ;R ; T2 ⇒Mrw T1 ; S ; T2.

(iii) Let Meq be an A-meta rewrite system (in such a case also called A-meta
equational system). The equivalence relation ⇔Meq is defined as follows:

⇔Meq := (⇒Meq ∪⇒−1
Meq)

We will usually use meta-rewrite systems with infinitely many rules, where
the rules are given by rule schemas.

Often we distinguish between steps of the reduction which are involved
in a meta-rewrite step and steps which are not. This distinction can be
formally defined as follows. The steps which are involved in the meta-rewrite
step are the ones that where used to match against the left-hand side of the
meta-rewrite rule.

2.6 Discussion

This chapter served two purposes: to introduce the notions of rewriting that
are used in the proceeding chapters, in particular higher-order rewriting; and
to define explicit witnesses to steps and reductions, called proof terms. Proof
terms have two advantages:

• They enable us to easily use recursion to define notions of steps. For
example, in Def. 2.4.23, the tracing relation of a step is defined by
recursion on that step.

• They are convenient when defining operations which manipulate steps
and reductions. Chapters 3 (Permutation equivalence), 5 (Standardiza-
tion equivalence) and 6 (Residuals) make extensive use of proof terms.

40

Three

Permutation equivalence

3.1 Introduction

In this chapter we will investigate permutation equivalence for reductions in
fully extended hrss. Permutation equivalence states that two reductions are
the same if the one can be transformed into the other by repeatedly permuting
adjacent, independent steps. In later chapters two more methods of formalizing
the notion of equivalence of reductions will be defined, to wit standardization
equivalence and projection equivalence, and proven equivalent to permutation
equivalence.

In the literature, permutation equivalence is often defined only for finite
reductions. In the first part of the chapter (Sect. 3.2), we also consider only
finite reductions. In the second part (Sect. 3.3), however, we also pay some
attention to permutation equivalence for infinite reductions and the various
problems which arise in this case.

3.2 Permutation equivalence for finite reductions

Unless otherwise indicated, in this section we restrict our attention to finite
reductions. Also, we assume that hrss are fully extended. We define permu-
tation equivalence of finite reduction by means of a meta-equivalence system
(see Sect. 2.5), each equivalence of which performs one permutation.

Definition 3.2.1. Let H = 〈Σ, R〉 be a hrs. The permutation equivalence
meta-equivalence system ⇔P is defined as follows:

C[ρ(ϕ)]⇔ C[ρ(s)], C[r(ϕ)] (flat-l)
C[ρ(ϕ)]⇔ C[l(ϕ)], C[ρ(t)] (flat-r)

C[ϕ1, . . . , ϕn]⇔ C[s1, . . . , ϕk, . . . , sn], C[ϕ1, . . . , tk, . . . , ϕn] (serk-l)
C[ϕ1, . . . , ϕn]⇔ C[ϕ1, . . . , tk, . . . , ϕn], C[t1, . . . , ϕk, . . . , tn] (serk-r)

1⇔ ε (unit)

41

3. Permutation equivalence

where:

• C is a base context containing no rule symbols;

• ϕ : s ◦−→ t, ψ : u ◦−→ v and ϕi : si ◦−→ ti, ψi : ui ◦−→ vi;

• ρ : l→ r ∈ R.

We define permutation equivalence as:

R ≈ S if R ⇔∗P S

Lemma 3.2.2. The following are derived rules of ≈:

C[l(ϕ)] ; C[ρ(t)] ≈ C[ρ(s)] ; C[r(ϕ)] (std)
C[s, ψ] ; C[ϕ, v] ≈ C[ϕ, u] ; C[t, ψ] (par)

where C is a base context containing no rule symbols, ϕ(i) : s(i) ≥ t(i),
ψ(i) : u(i) ≥ v(i), and ρ : l→ r ∈ R.

Proof. By the following conversions:

C[l(ϕ)] ; C[ρ(t)]⇐⇒(flat-r) C[ρ(ϕ)]⇐⇒(flat-l) C[ρ(s)] ; C[r(ϕ)] (std)
C[s, ψ] ; C[ϕ, v]⇐⇒(ser1-r) C[ϕ,ψ]⇐⇒(ser2-l) C[ϕ, u] ; C[t, ψ] (par)

The derived rules (std) and (par) will in the following be used without reference
to the lemma.

Example 3.2.3. Let the following hrs be given:

µ : mu(λx.z(x))→ z(mu(λx.z(x)))
ρ : f(x)→ g(x)

and the following reductions:

R : mu(λx.f(x))→ mu(λx.g(x))→ g(mu(λx.g(x)))
S : mu(λx.f(x))→ f(mu(λx.f(x)))→ f(mu(λx.g(x)))→ g(mu(λx.g(x)))

The following conversion shows that both reductions are permutation equiva-
lent:

mu(λx.ρ(x)), µ(λx.g(x))
⇔(par) µ(λx.f(x)), ρ(mu(λx.ρ(x)))
⇔(flat-r) µ(λx.f(x)), f(mu(λx.ρ(x))), ρ(mu(λx.g(x)))

Lemma 3.2.4. Let R,S be finite reductions. If R ≈ S, then src(R) = src(S)
and tgt(R) = tgt(S).

42

Permutation equivalence for finite reductions

Proof. By induction on the derivation of R ⇔∗P S. The induction step (the last
rule of the derivation is reflexivity, symmetry or transitivity) is easy. In the base
case we have that R ⇔ S is an instance of an equation of Def. 3.2.1. An easy
case analysis shows that, indeed, src(R) = src(S) and tgt(R) = tgt(S).

The previous lemma makes it possible to compose reductions which are
permutation equivalent to composable reductions. That is: if R ≈ R′ and
S ≈ S ′, and R ;S is well-defined, then R′ ;S ′ is well-defined (and by definition,
R ; S ≈ R′ ; S ′). In the future, we will implicitly use this fact.

The following useful property of permutation equivalence that we will
prove, is the fact that permutation equivalent reductions induce the same
tracing relation.

Proposition 3.2.5. Let H be a local hrs, and R,S H-reductions. If R ≈ S
then [[R〉〉 = [[S〉〉.

Proof. The lemma follows from the fact that, by construction, [[L〉〉 = [[R〉〉 for
each equation L ≈ R from Def. 3.2.1.

Remark 3.2.6. Permutation equivalence has some unexpected properties if
we consider hrss with erasing rules. In particular, it is not the case that if
R 6≈ S, then R ; T 6≈ S ; T . Consider for example the hrs:

ρ : a→ a

θ : f(x)→ c

Then:

f(ρ) ; θ(a)⇐⇒(unit) f(ρ) ; θ(a) ; c⇐⇒(std) f(ρ) ; f(ρ) ; θ(a)

but f(ρ) 6≈ f(ρ) ; f(ρ). Note that the inverse does hold: if R ≈ S, then by
definition R ; T ≈ S ; T .

We now proceed by proving a useful auxiliary result, to wit that each finite
reduction (possibly containing multisteps or empty steps) has a permutation
equivalent proper reduction. In fact, the theorem is proved by explicitly
constructing a proper reduction from an arbitrary reduction. The result is
useful, because it can be used to disregard non-proper reductions in some proofs,
making the proofs less cumbersome. It will be considerably strengthened in
Chapter 5 (Standardization), where it will be shown that each reduction not
only has a permutation equivalent proper reduction, but even a permutation
equivalent standard reduction, where a standard reduction is a proper reduction
in which the redexes are contracted visually from left to right.

Lemma 3.2.7. Let R1, . . . ,Rn and S1, . . . ,Sn be reductions, such that |Ri| =
|Rj |, |Si| = |Sj |, and Ri ≈ Si, for i, j ∈ {1, . . . n}. Then:

C∗[R1, . . . ,Rn] ≈ C∗[S1, . . . ,Sn].

43

3. Permutation equivalence

Proof. First we show that if R ≈ S, then D∗[R] ≈ D∗[S]. This is proved by
induction on the length of the derivation of R ≈ S, and a nested induction on
the size of D. The lemma follows from this and transitivity.

Theorem 3.2.8.

(i) For each multistep ϕ, there exists a finite proper reduction R such that
ϕ ≈ R. R is empty if and only if ϕ is.

(ii) For each finite reduction R, there exists a finite proper reduction R′ such
that R ≈ R′. R′ is empty if and only if R is.

Proof. (i) By induction on the length of ϕ, distinguishing the following cases:

• If ϕ = c, for some nullary function symbol c, then we simply take R to
be the empty reduction starting at c.

• Suppose ϕ = C[ϕ1, . . . , ϕn] for some non-empty context C containing
no rule symbols, and ϕi : si ◦−→ ti. By the (ser-l) and (ser-r) equations

ϕ ≈ C[ϕ1, s2, . . . , sn], . . . , C[t1, . . . , tn−1, ϕn].

By the induction hypothesis, there are finite Ri such that ϕi ≈ Ri and
Ri is empty if and only ϕi is. By repeated application of Lemma 3.2.7
we obtain

ϕ ≈ C∗[R1, s2, . . . , sn] ; · · · ; C∗[t1, . . . , tn−1,Rn].

We take R to be the right part of this equation (with all empty steps
removed). If ϕ is empty, all Ri are empty by induction hypothesis, and
thus R is empty. If, on the other hand, ϕ is non-empty, then some Ri
must be non-empty, and thus R is non-empty.

• Suppose ϕ = ρ(ϕ1, . . . , ϕn) for ϕi : si ◦−→ ti. By (flat-r) it holds that

ϕ ≈ l(ϕ1, . . . , ϕn), ρ(t1, . . . , tn).

We act as in the previous case to obtain a finite proper reduction S such
that S ≈ l(ϕ1, . . . , ϕn), and then we take R := S ; ρ(t1, . . . , tm) (with
all empty steps removed). Both ϕ and R are non-empty.

(ii) By induction on the length of R, using (i).

The proof of the previous theorem gives rise to the following useful definitions:

• for a multistep ϕ, we call the proper reduction created by the construction
in the proof of Theorem 3.2.8(i) the canonical development of ϕ;

• the canonical development of a reduction R = ϕ0, ϕ1, . . . is the proper
reduction S0 ; S1 ; · · · , where Si is the canonical development of the step
ϕi.

44

Permutation equivalence for infinite reductions

Example 3.2.9. The canonical development of the multistep µ(λx.ρ(x)) of the
hrs from Ex. 3.2.3 is:

mu(λx.ρ(x)), µ(λx.f(x))

Proposition 3.2.10. The canonical development of a reduction R is infinite
if and only if R is relatively infinite

Proof. Directly from the claim of Theorem 3.2.8 that the canonical develop-
ment of a multistep ϕ is empty if and only if ϕ is empty.

3.3 Permutation equivalence for infinite reductions

Defining permutation equivalence for infinite reductions is not as easy as
defining permutation equivalence for finite reductions. The problem is not
defining the notion of one permutation, because it is a completely local
operation. The problem is that it is not always clear what the result of
performing an infinite amount of permutations should be. In fact, it is not
even intuitively clear what the desired properties of permutation equivalence
for infinite reductions are. Consider, for example, the following TRS:

f(x)→ g(f(x))
a→ b

and the following infinite reductions:

R : f(a)→ f(b)→ g(f(b))→ g(g(f(b)))→ · · ·
S : f(a)→ g(f(a))→ g(g(f(a)))→ · · ·

Should R and S be equivalent? On the one hand, it seems obvious that they
should not, because the descendants of the redex contracted by the first step
of R are not contracted by any step of S. On the other hand, the ‘result’ of
both reductions is the infinite term g(g(g(· · ·))), and the first step of R does
not participate in producing it. So, the situation is similar to the erased steps
situation in the previous section.

In this section we consider an infinite reduction as the limit of its finite
prefixes, and say that two infinite reductions are permutation equivalent if any
finite prefix of the one can be extended so that it’s permutation equivalent
to a finite prefix of the other, and vice versa. This is merely a design choice,
which is sufficient for our purposes.

Definition 3.3.1. Let R,S be reductions.

(i) R ≤∞ S if for each finite R0 such that R0 v R, there is a finite S0 such
that S0 ≈ R0 ; T for some T and S0 v S.

(ii) R ≈∞ S if R ≤∞ S and S ≤∞ R.

45

3. Permutation equivalence

Note that in the example above, R and S are not permutation equivalent
according to this definition. Let R0 be the reduction consisting of only the
first step of R. Because no descendant of the redex a is contracted in S,
there is no prefix S0 of S which is permutation equivalent to R ; T , for some
reduction T .

The new notion of permutation equivalence is conservative over the old,
finitistic one. The proof of this depends on the following property. We prove
the property by using standardization from the next chapter (Of course, we
have made sure that standardization itself does not need this lemma.)

Lemma 3.3.2. Let R be a finite reduction. If R ≈ R ; ϕ, then ϕ = 1.

Proof. (Sketch) Without loss of generality, we assume that R is a standard
reduction. Now we calculate the standard reduction equivalent to R ;ϕ. This is
done by iteratively permuting ϕ to its correct place. Thus, Std(R;ϕ) = R′;ϕ′;S,
such thatR = R′ ;T . The only way thatR = Std(R′ ;ϕ′ ;S) is when ϕ = 1.

Remark 3.3.3. The symmetrical claim to Lemma 3.3.2, viz. that R ≈ ϕ ;R
implies ϕ = 1, does not hold, because the hrs may contain erasing rules.
Consider again the hrs from Remark 3.2.6. In this hrs it holds that

f(ρ) ; θ(a) ≈ θ(a) ; c ≈ θ(a).

This asymmetry is due to the fact that the variables of right-hand sides may
be a strict subset of the variables of the left-hand sides of rules; in other words,
it is (again) caused by erasing rules.

Proposition 3.3.4. Let R,S be finite reductions. Then R ≈ S if and only if
R ≈∞ S.

Proof. (⇒): Suppose R ≈ S. First we show R ≤∞ S. Suppose R0 v R. The
conditions of the definition are satisfied by taking T to be the reduction such
that R0 ; T = R, and S0 := S. The requirement that S ≤∞ R is proved
symmetrically.

(⇐): Suppose R ≈∞ S. Since R v R, there is some S0 v S such that
S0 ≈ R. Symmetrically, there is some R0 v R such that R0 ≈ S. So, we
have T1,R2 such that: R0 ; T1 = R and S0 ; T2 = S. Substitution yields
R ; T2 ; T1 ≈ R and S ; T1 ; T2 ≈ S. By (repeated application of) Lemma 3.3.2,
T1 and T2 consist of empty steps, and thus: R ≈ R0 ≈ S.

Theorem 3.3.5. For every relatively infinite reduction R, there exists a
permutation equivalent, infinite, proper reduction S with the same source.

Proof. Let R = ϕ1, ϕ2, By Theorem 3.2.8, each ϕi is mapped to a finite
proper reduction Si. Since R is relatively terminating, infinitely many of
these reductions are non-empty, and so S = S1 ; S2 ; . . . is an infinite proper
reduction. Trivially, R ≈∞ S. The fact that src(S) = src(R) follows from the
fact that S1 ≈ ϕ1 and Lemma 3.2.4.

46

Discussion

3.4 Discussion

In this chapter we have defined a notion of equivalence of reductions, permu-
tation equivalence. This notion expresses that two reductions are equivalent
to each other, if the one can be transformed into the other by repeatedly
permuting independent steps.

This notion of equivalence does only consider the ‘needed’ parts of the
reductions, the parts that, as it were, help in producing the end result. This
property implies that it is not the case that each permutation equivalence
class of reductions has an upper bound on the length (the equivalence in the
example on page 43 can be repeated indefinitely). The termination proofs
of the standardization procedures of Chapter 5, however, do depend on such
an upper bound. For this reason, the proofs in that chapter are a bit more
involved, because we have to restrict the equivalence class a bit.

Alternatively, we could devise a notion of permutation equivalence which
does not forget unneeded parts of the reduction. For this, a possible solution
would be to add ‘memory symbols’ to the signature, whose function it is to
‘remember’ the parts of the terms and reductions that have been erased. For
example, for each finite sequence of types α = α1, . . . , αn, we could add a
function symbol:

memα : α1 → · · · → αn → α1.

The first argument of mem corresponds to ‘normal’ term; the other arguments
are called the memory part and correspond to the erased terms. Every erasing
rule can now be mapped to a non-erasing one. The rule f(x) → c can, for
example, be replaced by f(x)→ mem(c, x). Rewriting with memory symbols
can be elegantly defined, see for instance [25, Chap. II.4]. It does have different
problems, however. For example, the non-erasing reductions can never be
uniquely associated to the erasing reductions, because steps in the memory
part of the reduction are erased.

47

Four

Finite Family Developments

4.1 Introduction

In this chapter, we prove that hrss enjoy the property of Finite Family
Developments (ffd). We prove the property by first proving the Prefix
Property for hrss, and then reducing ffd to it. The Prefix Property, in turn,
is proved by reducing it to a prefix property for a λ-calculus with explicit
substitutions, the λx-calculus.

The result of this chapter is not directly related to equivalence of reductions,
but it is required to prove the results of the next two chapters.

Prefix property. The Prefix Property says that, given a step, the ancestor
of a prefix of the target is a prefix of the source. Consider, as an example, the
(first-order) rewriting system with the single rule f(x) → g(f(x), x) and the
step

f(h(a))→ g(f(h(a)), h(a)).

Now, p = g(f(�), h(�)) is a prefix of the target. Intuitively, its ancestor is
f(h(�)), because it is the smallest prefix q of the source such that q → p′ and
p is contained in p′. Observe:

q = f(h(�))→ g(f(h(�)), h(�)) = p′

Indeed, q = f(h(�)) is a prefix of the source.
Many different prefix properties are possible: we can, for example, vary in

how the notions of prefix and ancestor are formalized, and we may impose
additional conditions on the form of the prefixes. Prefix properties are already
known for first-order trss [5, 53] and (a labelling of) the λ-calculus with β-
reductions [5], and have many applications, such as (head) needed reductions
[53, Chap. 8] and normalization of outermost-fair reductions [53, Chap. 9]. A
similar property is proved in Van Daalen’s Square Brackets Lemma [11].

49

4. Finite Family Developments

Finite Family Developments. The Finite Family Developments property
states that each reduction in which the creation depth, or family, of function
symbols is bounded, is finite. The intuition behind the notion of creation
depth is that in a step C[lσ]→ C[rσ], the symbols of r depend on the symbols
of l, and therefore have a higher creation depth, while the symbols in the
context C and substitution σ do not take part in the step and have the same
creation depth in both source and target.

Consider, for example, the following infinite (first-order) reduction, using
the rewrite system above, where the function symbols are labelled with their
creation depth:

f0(a0)→ g1(f1(a0), a0)→ g1(g2(f2(a0), a0))→
g1(g2(g3(f3(a0), a0), a0))→ g1(g2(g3(g4(f4(a0), a0), a0), a0))→ · · ·

Clearly, in this infinite reduction, the creation depth of the f’s grows without
bound. In a rewriting paradigm which enjoys the ffd property, restricting
the creation depth to a finite bound yields finite reductions. ffd is a useful
tool to prove various properties of rewrite systems, such as termination (for
example, termination of the simply typed λ-calculus follows from ffd; see
Sect. 4.6.2) and the existence of standard reductions (see Chapter 5), etc.

Remark. The material of this chapter was previously published as [9].

4.2 Labelling HRSs with natural numbers

In the introduction, we already labelled the function symbols with their
creation depth. In this section, we formalize this idea.

Labelling (or marking) rewriting systems is a well-known method to for-
malize the notion of redex family; see for example [29, 30]. Here, we give a
labelling, in the sense of [42, 43], for hrss, analogous to the labelling for the
λ-calculus used by Hyland [20] and Wadsworth [54]. Each function symbol is
labelled by a natural number, representing the creation depth of the function
symbol, and the rules are labelled such that every function symbol of the
right-hand side is labelled with the largest label of the left-hand side plus one.

Definition 4.2.1 (ω-labelling). Let H = 〈Σ, R〉 be an hrs.

(i) The ω-labelling of the signature Σ is defined as:

Σω := {f ` | f ∈ Σ, ` ∈ N}

The projection operation [[·]]Σω is the mapping from Σω to Σ given by
[[f `]]Σω := f . The operation is homomorphically extended to terms.

(ii) The creation depth of a term s, denoted D(s), is the largest label of s,
that is:

D(s) := max{` | f ` ∈ Sym(s)}

50

Labelling HRSs with natural numbers

(iii) Let s be a term, and ` ∈ N a label. Then:

x(s1, . . . , sn)` := x(s`1, . . . , s
`
n)

f(s1, . . . , sn)` := f `(s`1, . . . , s
`
n)

(λx.s0)` := λx.s`0

The initial labelling of a term s is given by the map Iω, which is defined
as follows: Iω(s) := s0.

(iv) The ω-labelling Rω of the set of rules R contains, for every rule ρ ∈ R,
where ρ : l → r, and every Σω-term l′ such that [[l′]]Σω = l, the rule
ρl′ : l′ → r(D(l′)+1).

The projection operation [[·]]Rω is the mapping from Rω to R given by
[[ρs]]Rω := ρ.

(v) The ω-labelled version of H is defined as: Hω := 〈Σω, Rω〉

(vi) The creation depth of a step ϕ is the highest label of its target, and the
creation depth of a reduction R is the highest label of its steps:

D(ϕ) := D(tgt(ϕ))
D(R) := max

ϕ∈R
D(ϕ)

We write [[·]]ω for [[·]]Σω ∪ [[·]]Rω . This map is homomorphically extended to terms
(just as in item (i) of the definition above), proof terms and reductions. Note
that D(R) may be undefined (viz. if R is an infinite reduction). However, for
terms s and steps ϕ, D(s) and D(ϕ) are always defined.

The ω-labelling only labels function symbols, not variables, abstractions
or applications. The reason for this is that we want the ω-labelling of an
hrs to be an hrs itself (otherwise it would not be a labelling in the sense of
[42, 43]). Labelling variables is impossible, because α-equivalent terms are
identified. Labelling abstractions and applications is impossible because we
have fixed the (unlabeled) simply typed λ-calculus as substitution calculus.
The consequence of not labelling abstractions and applications is that some
extra work has to be done for hrss which contain collapsing rules. The reason
for this is that applying such a rule may create a redex which does not contain
any function symbols whose label were increased by the application of the
rule. In Sect. 4.4, this problem will be investigated in more detail and solved.
Until then, we often restrict our attention to non-collapsing hrss.

Example 4.2.2. Consider the hrs Mape:

map(λx.z(x), nil)→ nil

map(λx.z(x), cons(u, v))→ cons(z(e(u)),map(λx.z(x), v))

This hrs is a slight adaptation of the hrs Map from page 2.4.7. The e function
symbol is included in the second rule in order to make sure that the hrs is

51

4. Finite Family Developments

non-collapsing. (In Sect. 4.5, a general method to produce a non-collapsing
hrs out of a collapsing one is developed.) The labelled hrs Mapωe consists,
among others, of the following rules:

map0(λx.z(x), nil0)→ nil1

map1(λx.z(x), nil1)→ nil2

· · ·
map0(λx.z(x), cons0(u, v))→ cons1(z(e1(u)),map1(λx.z(x), v))

map0(λx.z(x), cons1(u, v))→ cons2(z(e2(u)),map2(λx.z(x), v))
· · ·

A labelled reduction is the following:

map0(λx.f0(x), cons0(a0, nil0))

=β (λzuv.map0(λx.z(x), cons0(u, v)))(λx′.f0(x′), a0, nil0)

→Map (λzuv.cons1(z(e1(u)),map1(λx.z(x), v)))(λx′.f0(x′), a0, nil0)

=β cons1(f0(e1(a0)),map1(λx.f0(x), nil0))

=β cons1(f0(e1(a0)), (λz.map1(λx.z(x), nil0))(λx′.f0(x′)))

→Map cons1(f0(e1(a0)), (λz.nil2)(λx′.f0(x′)))

=β cons1(f0(e1(a0)), nil2)

Notice how only the labels of function symbols involved in the step (that is,
the underlined ones) are increased.

The following two lemmas provide a correspondence between labelled and
unlabeled reductions:

Lemma 4.2.3. Let H be an hrs. Hω is orthogonal/collapsing/erasing, if and
only if H is.

Proof. By induction on the length of s we easily prove that s` is orthogonal/col-
lapsing/erasing, if and only if s is, where in the case of orthogonality we take
into account that s` is uniformly labelled.

Lemma 4.2.4. Let H = 〈Σ, R〉 be an hrs.

(i) Let s be a Σ-term and s′ a Σω-term with [[s′]]ω = s. For each H-step
ϕ with source s, there is a unique Hω-step ϕ′ with source s′ such that
[[ψ]]ω = ϕ.

(ii) If ϕ : s ◦−→Hω t, then [[ϕ]]ω : [[s]]ω ◦−→H [[t]]ω.

Proof. (i) By induction on the inference of ϕ : s ◦−→H t. The interesting
case is when ϕ = ρ(ϕ1, . . . , ϕn), for some ρ : l → r and ϕi : si ◦−→H ti. It
must be the case that s = l(s1, . . . , sn) and s′ = l′(s′1, . . . , s

′
n), where [[l′]]ω = l

52

The Prefix Property

and [[s′i]]ω = si. By induction hypothesis there are unique ϕ′i with source
s′i such that [[ϕ′i]]ω = ϕi. We take ϕ′ := ρl′(ϕ′1, . . . , ϕ

′
n), which satisfies the

requirements of the lemma.
(ii) By induction on the inference of ϕ : s ◦−→Hω t. The interesting

case is when ϕ = ρl(ϕ1, . . . , ϕn), for some ρl : l → r and ϕi : si ◦−→Hω ti,
i ∈ {1, . . . , n}. By induction hypothesis, [[ϕi]]ω : [[si]]ω ◦−→H [[ti]]ω. From this
and the fact that [[ρl]]ω : [[l]]ω → [[r]]ω, it follows that

[[s]]ω = [[l(s1, . . . , sn)]]ω ◦−→H [[r(t1, . . . , tn)]]ω = [[t]]ω.

The results of Lemma 4.2.4 easily generalize to reductions. This allows us to
canonically map unlabeled reductions to labelled ones: we take the one with
the initial labelling as source. Formally:

Definition 4.2.5. Let H be an hrs, and R a H-reduction. The canonical
ω-labelling Rω is the unique labelling such that [[Rω]]ω = R and src(Rω) =
Iω(src(R)).

We can use this canonical labelling to extend the notion of creation depth to
unlabeled reductions: if R is an unlabeled reduction, then D(R) := D(Rω).

Until now, we included multisteps as well as proper steps. In the rest of
this chapter, however, we will often restrict our attention to proper steps and
proper reductions. (By Theorems 3.2.8 and 3.3.5 the results are nonetheless
easily generalized to multistep reductions.)

4.3 The Prefix Property

We call p a prefix of term t, if it is a pattern, and there exists a substitution
σ such that pσ = t. Given a step s → t, a subterm q of s is the ancestor of
a subterm p of t, if the symbols of t ‘trace to’ the symbols of s. This notion
is formalized here using labelling together with the rewrite relation: q is an
ancestor of p, if D(p) ≥ D(q) and q �Hω p

υ. The substitution υ is necessary
because q might reduce to a ‘bigger’ term than p; typically, υ has only function
symbols which are also in p. Using these formalizations, we prove in this
section the following theorem (the proof itself begins on page 64):

Theorem 4.3.1 (Prefix Property). Let Hω be the ω-labelling of a non-col-
lapsing hrs, s a term, p a local x-pattern and σ a substitution. If s→Hω p

σ,
then there exist a local x-pattern q and a substitution τ , such that s = qτ ,
D(p) ≥ D(q), and either:

• q →Hω p
υ, for some substitution υ such that υ ; τ = σ; or (trm)

• q = p and τ →Hω σ. (sub)

The theorem states that, given a prefix of the target, its ancestor is a prefix
of the source. There are two possibilities: either the prefix takes part in the
step, or the step occurred fully in the substitution. Note that, in the first case,

53

4. Finite Family Developments

we do not only require that its ancestor is a prefix, but also that the suffix
stays the same (except for duplicated subterms). In this regard, the lemma is
stronger than the prefix property (for the λ-calculus) proved in [5, Prop. 7.4].

Example 4.3.2. Consider the following Mapω-step (see page 26):

h1(map3(λx.f2(x), cons2(a5, nil1))→
h1(cons4(f2(e4(a5)),map4(λx.f2(x), nil1)))

First, let the following prefix p and suffix σ be given:

p := h1(cons4(f2(y1), y2))

σ := [y1 7→ e4(a5), y2 7→ map4(λx.f2(x), nil1)]

Then the following assignments satisfy the conditions of the (trm) case:

q := h1(map3(λx.f2(x), cons2(y1, z2)))

υ := [y1 7→ e4(z1), y2 7→ map4(λx.f(x), z2)]

τ := [z1 7→ a5, z2 7→ nil1]

Second, let:

p := h(y)

σ := [y 7→ cons4(f2(e4(a5)),map4(λx.f2(x), nil1)))]

Then:

q := h1(y)

τ := [y 7→ map3(λx.f2(x), cons2(a5, nil1))]

satisfy the conditions of the (sub) case.

The interesting case in the proof of the Prefix Property is the case that the step
s→Hω p

σ occurs at the head. In this case we have that s = lρ and pσ = rρ,
for some rule l→ r and substitution ρ. This situation is depicted in Fig. 4.1.
In this case, we want to construct an ancestor q that satisfies the (trm) case.
It makes sense to try to do this by adding to the pattern l the parts of the
pattern p that are not in r (depicted in the figure by υ), and showing that the
resulting term is a pattern again. However, due to the implicit β-conversions,
these “parts of p that are not in r” are not easily obtained.

The key observation is that the β-reduction from pσ to normal form is of a
particularly simple form; basically, it carries out a variable renaming, because
p is a pattern and has only bound variables as arguments of free variables.
The trick is to translate the prefix and suffix in such a way, that the variable
renamings, in a sense, are already carried out (we need variable capturing,
first-order substitutions for this, called graftings), trace the prefix back over

54

The Prefix Property

lq

s

rp

σ

υ

pσ

Hω

Figure 4.1: The interesting case in the proof of the Prefix Property for hrss:
the step occurs at the head. We want to construct the prefix q of s by taking
the left-hand side of the rule l plus the “parts of p that are not in r”, denoted
by υ in the figure.

the β-reduction from rρ to normal form, and find the prefix’s ancestor, which
is a prefix of rρ. Now, we are dealing with terms that are exactly equal, instead
of only equal up to β-equality, and now the problem can be solved by using
first-order unification techniques, which are well investigated in the existing
literature.

The above sketch of a proof technique suggests that we need to prove a
prefix property for β-reductions in the λ-calculus. This is difficult, however,
since the λ-calculus does not cope well with graftings, because of the global
nature of substitution. Let me illustrate the problem with the following
example. Let C := (λx.�)a, D := � and s := x. Then C →β D, and
C[s]→β a, because the x in s is captured by the abstraction in the context
and substituted for. However, D[s] = x and thus C[s] 6→β D[s].

To tackle this problem, we use a λ-calculus with explicit substitutions
(a variant of the λx-calculus), and prove a prefix property for it. Then, we
simulate β-equality with this new calculus. In [12] a similar approach is taken
with respect to higher-order unification.

4.3.1 The Prefix Property of the λx-calculus

We use a variant of the λx-calculus [7], with explicit renamings. The calculus
has both object variables (x, y, z) and metavariables (X,Y, Z). In the following,
we will refer to this calculus simply as “λx-calculus”. The terms of the λx-
calculus over some signature Σ are first-order terms derivable by the following
grammar:

Λx := x | X | f | ΛxΛx | λx.Λx | Λx{x\Λx}

where f ∈ Σ and the object variables are considered as constants or names.
M,N will range over λx-terms. Terms of the form M{x\N} will be called
explicit substitutions, and the {x\N} part of an explicit substitution is called
a closure. With MV(M) we will denote the set of metavariables of M , and

55

4. Finite Family Developments

with Sym(M) the set of function symbols of M . The reduction rules of the
λx-calculus are:

(λx.M)N →B M{x\N}
x{x\N} →x N

y{x\N} →x y

f{x\N} →x f

(M1M2){x\N} →x M1{x\N}M2{x\N}
(λx.M){x\N} →x λx.M

(λy.M){x\N} →x λz.M{y\z}{x\N}

where x 6= y and z is a fresh object variable. The subcalculus x consists of
all rules except the B-rule. The reduction relations →Bx and →x are the
contextual closures of the above steps. Note that there is no reduction rule for
terms of the form X{x\N}, where X is a metavariable, and thus x-normal
forms are characterized by the fact that sequences of closures are only applied
to metavariables.

A λx-term is called passive if metavariables are never applied to some-
thing, that is, the λx-term does not contain any subterms of the form
Xµ(M1, . . . ,Mn), where X is a metavariable, µ is a sequence of closures
and n ≥ 1; it is called linear if every metavariable occurs in it at most once.
In the following P,Q will range over linear, passive λx-terms.

Lemma 4.3.3. The x-calculus is confluent and terminating.

Proof. Confluence follows because the calculus is clearly orthogonal. Termi-
nation follows by the observation that each x-rule strictly decreases the size
of the argument of the explicit substitution, and hence a strictly decreasing
multiset ordering can be devised.

Remark 4.3.4. Although, by the previous lemma, the x-calculus is confluent,
it is well-known that the λx-calculus is not confluent on terms containing
metavariables, as is witnessed by the following counterexample:

(λx.(λy.Z)Y)X
�Bx (λy′.Z{y\y′}{x\X})Y {x\X}
�Bx Z{y\y′}{x\X}{y′\Y {x\X}}

(λx.(λy.Z)Y)X
�Bx (λx.Z{y\Y })X
�Bx Z{y\Y }{x\X}

At first sight, non-confluence seems problematic, because we’re trying to use
the λx-calculus to simulate the (confluent) λ-calculus. However, the translation
to λ-calculus (see page 60) will remove all closures, and will project normal
forms of the same λx-term to the same λ-term (modulo α-equivalence).

A grafting is a mapping from metavariables to λx-terms. The greek lowercase
letters ζ, η, θ, κ will range over graftings. Applying a grafting ζ to a term M ,

56

The Prefix Property

written M [ζ], is defined exactly as first order substitution, that is:

x[ζ] := x

X[ζ] := ζ ′(X)
f [ζ] := f

(M1M2)[ζ] := M1[ζ]M2[ζ]
(λx.M)[ζ] := λx.M [ζ]

(M{x\N})[ζ] := M [ζ]{x\N [ζ]}

where ζ ′(X) := ζ(X), if X ∈ Dom(ζ), and ζ ′(X) := X, otherwise. A grafting
is called linear , if every metavariable occurs in its codomain only once, that is,
its codomain consists of linear λx-terms with mutually disjoint metavariables.
A grafting is called passive, if all the terms of its codomain are passive.

Because λx-terms are first-order terms, unification is decidable, by using
one of the various well-known first-order unification algorithms. In the proof
of the Prefix Property, we need the following property: if two λx-terms are
unifiable, there exists a most general unifier (mgu), and, if we assume the
unifiable terms to be linear and passive, then the mgu applied to one of the
terms is a linear, passive λx-term again:

Lemma 4.3.5. Let M,N be linear λx-terms, where MV(M) and MV(N) are
disjoint, and let ζ, η be graftings such that M [ζ] = N [η]. There exist graftings
ζ0, η0, κ such that M [ζ0] = N [η0], ζ0 ; κ = ζ, η0 ; κ = η, Sym(ζ0) ⊆ Sym(N)
and Sym(η0) ⊆ Sym(M). Moreover, if M (N) is passive, then η0 (ζ0) consists
of passive λx-terms.

Proof. Since we consider λx-terms here as first-order terms, the (first part) of
the lemma is essentially an instance of first-order unification.

By assumption, M and N are unified by 〈µ, ν〉 (the assumption that the
metavariables are disjoint allows us to consider ζ and η together as a unifier),
and thus have a most general unifier (mgu). We take 〈ζ0, η0〉 to be this mgu.
The desired κ exists because any unifier is an instance of an mgu.

Assume f ∈ Sym(η0), but f 6∈ Sym(M). Then it must be the case that
f ∈ Sym(ζ0). Since all the subterms of f must be in the graftings too, there
exist graftings ζ ′0, η

′
0, κ
′ such that ζ ′0 ; κ = ζ0 and η′0 ; κ = η0. It follows

by linearity that 〈ζ ′0, η′0〉 is a unifier, contradicting the assumption. For the
assumption that f ∈ Sym(ζ0), but f 6∈ Sym(N), a contradiction is derived
through a symmetrical argument.

For the second part of the lemma, suppose M is passive, but η0(X)
is not. Then N [η0] is not passive, and contains a subterm of the form
N0 = Xµ(N1, . . . , Nn). Because M [ζ0] = N [η0], so does M [ζ0]. There are
two possibilities: if the root application of N0 is in M , then M is not passive,
contradicting the assumption; otherwise, N0 must be a subterm of ζ0(Y), for
some Y ∈ Dom(µ0), but then 〈ζ0, η0〉 is not a mgu. Again, a symmetrical
arguments yields the desired result if N is passive, but µ0(X) is not.

57

4. Finite Family Developments

Example 4.3.6. Let:

M := λx.g(f1(X1), X2) N := λx.g(Y1, f2(Y2))
ζ := [X1 7→ a, X2 7→ f2(a)] η := [Y1 7→ f1(a), Y2 7→ a]

Then M [ζ] = λx.g(f1(a), f2(a)) = N [η]. We take:

ζ0 := [X2 7→ f2(Z1)]
η0 := [Y1 7→ f1(Z2)]
κ := [Zi 7→ a]

to satisfy the conditions of the lemma.

In the next theorem, we prove the Prefix Property of the λx-calculus. P is
a prefix of a λx-term M , if it is a linear, passive λx-term, and there exists a
grafting ζ such that P [ζ] = M . The notion of ancestor is again formalized
using labelling and the rewrite relation; however, because we do not count
creation depth in Bx-reductions, now the labels, or more generally, the function
symbols of the prefix must be the same as those of its ancestor. Just like in
Theorem 4.3.1, a prefix can either take part in the step, or not, resulting in
two cases. Item (ii) is the extension of the Prefix Property to Bx-reductions.

Theorem 4.3.7 (λx-Prefix Property). Let M be a closed λx-term, P a linear,
passive λx-term and ζ a grafting.

(i) If M →Bx P [ζ], then there exist a linear, passive λx-term Q and a
grafting η such that M = Q[η], Sym(Q) = Sym(P) and either:

• Q→Bx P [κ] where κ is some grafting such that κ ; η = ζ; or (trm)
• Q = P and η →x ζ. (sub)

(ii) If M �Bx P [ζ], then there exist a linear, passive λx-term Q and a
grafting η such that M = Q[η], Sym(Q) = Sym(P) and Q �Bx P [κ],
where κ is some grafting such that κ ; η �Bx ζ.

Proof. (i) By induction on the context of the step M →Bx P [ζ]. In this
proof, let idζ be the identity grafting on the domain of a grafting ζ, that is
idζ := [X 7→ X | X ∈ Dom(ζ)].

If P = X, then we take Q := X and η := ζ[X 7→M], satisfying the (sub)
case of the lemma. If the step does not occur at the head of the term, then
the lemma follows simply from the induction hypothesis. Otherwise we look
at the reduction rule which was applied (at the head).

The interesting case is when a closure is distributed over an application,
that is

M = (M1M2){x\N} →x (M1{x\N})(M2{x\N}) = P [ζ].

Since P is not a metavariable, P = P1P2, where P1[ζ] = M1{x\N} and
P2[ζ] = M2{x\N}. For P2, there are two possible cases:

58

The Prefix Property

(a) If P2 = X, for some metavariable X, then let κ′ := idζ ;[X 7→ Y {x\Z}] and
ζ ′ := ζ[X 7→ X,Y 7→M2, Z 7→ N], where Y,Z are fresh metavariables.

(b) Otherwise, let κ′ := idζ and ζ ′ := ζ.

In both cases, P2[κ′] = Q2{x\R2}, for some passive λx-terms Q2 and R2, and
κ′ ; ζ ′ = ζ.

Since P is passive, we know that P1 is not of the form Xµ, where µ is a list
of substitutions. In particular, P is not of the form X. Thus, P1 = Q1{x\R1}.
Because P is linear, and the κ′(X) = X for X ∈ MV(P1), P1[κ′] = P1. Also,
because in case (a), Y and Z are fresh metavariables, and in case (b), ζ ′ = ζ,
it holds that P1[ζ ′] = P1[ζ].

Because P is linear, and R1 and R2 are different subterms of P , R1 and R2

are linear and have no metavariables in common. Since R1[ζ ′] = N = R2[ζ ′],
we can apply Lemma 4.3.5, and obtain graftings ζ1, ζ2, η such that:

R1[ζ1] = R2[ζ2] Sym(ζ1) ⊆ Sym(R2)
ζ1 ; η = ζ ′ Sym(ζ2) ⊆ Sym(R1)
ζ2 ; η = ζ ′

Let R := R1[ζ1] (= R2[ζ2]). Because it is the case that Sym(ζ1) ⊆ Sym(R2)
and Sym(ζ2) ⊆ Sym(R1), it holds that Sym(R) = Sym(R1)∪Sym(R2). Next,
let κi = (κ′ ; ζi)�FV(Pi), for i ∈ {1, 2}. Since P is linear, κ1 and κ2 have
disjoint domains. Let κ := κ1 ∪ κ2. We define Q := (Q1Q2){x\R}. Now,

Q = (Q1Q2){x\R} →x (Q1{x\R})(Q2{x\R}) = P1[κ′ ; ζ1]P2[κ′ ; ζ2] = P [κ].

Also, suppose X ∈ Dom(κ). There are two subcases. If X ∈ MV(P2), then
(κ ; η)(X) = (κ′ ; ζ2 ; η)(X) = (κ′ ; ζ ′)(X) = ζ(X). Otherwise, κ′(X) = X and
ζ ′(X) = ζ(X). So κ ; η = ζ. Finally,

Sym(P) = Sym(Q1) ∪ Sym(Q2) ∪ Sym(R1) ∪ Sym(R2) =
Sym(Q1) ∪ Sym(Q2) ∪ Sym(R) = Sym(Q).

and so the requirements of the (trm) case are satisfied.
(ii) By induction on the length of the reduction sequence M �Bx P [ζ]. In

the base case, if M = P [ζ], we take Q := P and η := ζ, satisfying the lemma
with κ := ∅.

Otherwise, let M �Bx N →Bx P [ζ]. We apply item (i), obtaining a passive
λx-term P ′ and grafting ζ ′ such that M = P ′[ζ ′], Sym(P ′) = Sym(P) and
either the (trm) or (sub) case applies. Then we apply the induction hypothesis
on the reduction M �Bx P

′[ζ ′], obtaining a passive λx-term Q and grafting η
such that M = Q[η], Sym(Q) = Sym(P ′) (= Sym(P)), Q�Bx P

′[κ] for some
grafting κ such that κ ; η �Bx ζ

′. Now we distinguish the following cases:

• (trm) If P ′ →Bx P [κ0], for some κ0 such that κ0 ; ζ ′ = ζ, then

Q�Bx P
′[κ]�Bx P [κ0 ; κ] and κ0 ; κ ; η �Bx κ0 ; ζ ′ = ζ,

as required.

59

4. Finite Family Developments

• (sub) If P ′ = P and ζ ′ →x ζ, then

Q�Bx P
′[κ] = P [κ] and κ ; η �Bx ζ

′ �x ζ,

as required.

Example 4.3.8. Consider the Bx-reduction

(λx.g(x, x))(f(a))�Bx g(f(a), f(a))

and the prefix P = g(f(X), Y) of the target. This means that the suffix is
ζ = [X 7→ a, Y 7→ f(a)]. We can take:

• Q := (λx.g(x, x))(f(Y)),

• κ := [Y 7→ f(X)] and

• η := [X 7→ a],

satisfying the conditions of Theorem 4.3.7 (ii).

4.3.2 Translating between terms, preterms and λx-terms

We are now dealing with three types of expressions: terms, preterms and
λx-terms. Terms are equivalence classes of preterms, preterms are just λ-
terms over a signature of function symbols, and λx-terms are preterms with
explicit substitutions. In the following, it is often desired to make precise
which type of expression we are talking about, and as a result, to define an
explicit translation between the three types of expressions. Here, we define
the operations which carry out these translations:

• ·[and ·] from terms to preterms and back;

• ·	 and ·⊕ from preterms to λx-terms and back.

Translating between terms and preterms.

We introduce a pair of operations which interpret terms as preterms, and
vice versa: with s[(s-flat), we denote (the unique representative of) the
term s, interpreted as a preterm, and with s] (s-sharp), we denote (the βη-
normal form of) the preterm s, interpreted as a higher-order term. These
operations naturally generalize to substitutions. We will call a preterm s a
(fully extended/linear/local) x-prepattern, if it is in βη-normal form, and s]

is a (linear/fully extended/local) x-pattern.

Translating between preterms and λx-terms.

We assume a bijection between the metavariables of λx-terms and the variables
of preterms. The following convention is employed: a metavariable X is
associated with x, Y with y, etc. If necessary, α-Conversions will be carried
out to avoid name clashes.

60

The Prefix Property

Now we can introduce the operations ·	x and ·⊕, which map preterms to
λx-terms and vice versa, as follows:1

M⊕ := (M↓x)⊕N
y	x := Y if y 6∈ x (Y σ)⊕N := y

x	x := x if x ∈ x x⊕N := x

f	x := f f⊕N := f

(λy.s)	x := λy.s	xy (λy.M)⊕N := λy.M⊕

(s1s2)	x := (s1)	x (s2)	x (M1M2)⊕N := M⊕1 M
⊕
2

Note that ·⊕ also normalizes the term to x-normal form and removes explicit
substitutions, and that, for each preterm s and sequence of variables x,
(s	x)⊕ = s. The operations above are naturally generalized to translations
between substitutions and graftings.

Lemma 4.3.9. Let M,N be λx-terms. M �Bx N if and only if M⊕ �β N
⊕.

Proof. (⇒) and (⇐) are proved by induction on the length of the reductions
M �Bx N and M⊕ �β N

⊕, respectively, with a nested induction on the
context of the step in the base case.

Although the above lemma suggests that Bx-reduction in the λx-calculus can
easily simulate β-reduction, there is still a problem: ·⊕ does not distribute
properly over grafting application. The problem is similar to the problem
given on page 55. Consider the following λx-term and grafting:

M := (λx.f(Y))a
ζ := [Y 7→ x]

Now it holds that:

M [ζ]⊕ = (λx.f(x))a

M⊕ = (λx.f(y))a

ζ⊕ = [y 7→ x]

Note that (M⊕)(ζ⊕) = λz.f(x), because substitutions are capture-avoiding,
and thus M [ζ]⊕ 6=β (M⊕)(ζ⊕).

The solution is to add as arguments to the free variables of the preterms
as many (bound) variables as necessary (or more) to make the distribution

1 Actually, the operation ·	x is not a mapping, because α-equivalent preterms preterms
are identified as usual, and thus identical preterms can be mapped to different λx-terms.
This is not a problem in practice, and can be fixed in theory by considering only preterms
in ‘α-normal form’, for example by consecutively numbering the bound variables from left
to right.

61

4. Finite Family Developments

work. In the example above we could take:

s := (λx.f(y(x)))a
σ := [y 7→ λx.x]

Now, s and σ are, in a way that will be formalized in the next definition,
‘similar’ to M and ζ, but now M [ζ]⊕ =β s

σ.

Definition 4.3.10. Let M be a λx-term and ζ a grafting. A tuple 〈s, σ〉 of
preterm and substitution is a λ-extension of 〈M, ζ〉 if there are graftings θ1, θ2

such that:

• s = M [θ1]⊕ and σ = (θ2 ; ζ)⊕;

• for each X ∈ MV(M), θ1(X) = X(z) and θ2(X) = λz.X, where z is a
list of variables containing at least the bound variables of M in scope
that occur in ζ(X) (in arbitrary order).

The notion of λ-extension is, again, naturally generalized to graftings and
substitutions as the first component of the tuples.

Lemma 4.3.11. Let 〈s, σ〉 be a λ-extension of 〈M, ζ〉. Then:

(i) sσ =β M [ζ]⊕;

(ii) for each λx-term N such that M �Bx N , sσ =β N [ζ]⊕.

Proof. (i) Follows from the fact that for all X ∈ MV(M) it holds that

(θ1 ; θ2)↓x(X) = X{z1\z1} · · · {zn\zn}

and thus sσ =β M [θ1 ; θ2 ; ζ]⊕ =β M [ζ]⊕.
(ii) Assume that M �Bx N . Let t = N [θ1]⊕. From Lemma 4.3.9, the fact

that M [θ1]�Bx N [θ1], because M �Bx N by assumption, and the facts that
sσ =β M [ζ]⊕ and t = N [θ1]⊕, it follows that

s�β t. (?)

Now observe that, by definition, if N1{x\N2} is a subterm of N , then for all
X ∈ MV(N1), x does only occur bound in θ2 ; ζ, and thus

pM [θ1]↓x[(θ2 ; ζ)↓x]q = pM [θ1 ; θ2 ; ζ]↓xq.

where pKq denotes K with all closures removed, for arbitrary K. Therefore:

tσ =β N [θ1 ; θ2 ; ζ]⊕ =β N [ζ]⊕. (??)

We conclude the proof by noting that, since s�β t by (?), it follows by (??)
that:

sσ =β N [ζ]⊕,

as required.

62

The Prefix Property

The lemma works, because the arguments of the free variables in the term and
the leading abstractions in the substitution, take over the role of the explicit
substitutions, as can be seen in the following example:

Example 4.3.12. Let the following pair of λx-term and grafting be given:

M := (λx.(λy.Z)b)a
ζ := [Z 7→ f(x, y)]

Now, according to Def. 4.3.10, 〈s, σ〉, where:

s := (λx.(λy.z(x, y))b)a
σ := [z 7→ λxy.f(x, y)]

is a λ-extension of 〈M, ζ〉, with, θ1 = [Z 7→ Z(x, y)] and θ2 = [λxy.Z]. We
check both cases of Lemma 4.3.11:

(i) sσ = (λx.(λy.(λxy.f(x, y))(x, y))b)a =β (λx.(λy.f(x, y))b)a = M [ζ]⊕.

(ii) Let N = Z{y\b}{x\a}. Then M �x N . Let t = z(a, b). Now:

tσ =β f(a, b) = M [ζ]⊕

Since s =β t, this means that sσ =β M [ζ]⊕, as required.
(Note that the ·⊕ operation also reduces to x-normal form.)

Translating (pre)patterns.

Now we define a translation between pairs of prepatterns and presubstitutions,
on the one hand, and linear, passive λx-terms and graftings on the other.
For this translation we use the same bijection between metavariables of λx-
terms and variables of preterms as before. Because the notion of pattern is
parametrized by a sequence of variables, the translation operations must be
as well.

Definition 4.3.13. Let P+
x , a mapping which maps pairs of linear, passive

λx-terms containing no explicit substitutions and graftings to pairs of local
x-prepatterns and substitutions, be defined as follows:

P+
x 〈Y, [Y 7→M]〉 := 〈y(x), [y 7→ λx.M⊕]〉

P+
x 〈y(Pn), ζ〉 := 〈y(pn), σ〉 if P+

x 〈Pi, ζ�Pi〉 = 〈pi, σ�pi〉
P+
x 〈f(Pn), ζ〉 := 〈f(pn), σ〉 if P+

x 〈Pi, ζ�Pi〉 = 〈pi, σ�pi〉
P+
x 〈λy.P, ζ〉 := 〈λy.p, σ〉 if P+

xy〈P, ζ〉 = 〈p, ζ?〉

where ζ�P denotes the restriction of grafting/substitution ζ to the metavaria-
bles/variables of λx-term/preterm P . With P−x we denote the inverse of
P+
x .2

2 Like ·	x , the P−x operation is not actually a mapping, but this is no problem for the
same reason. See footnote 1.

63

4. Finite Family Developments

As usual, we generalize the above operations to (local pattern) substitutions
and (linear, passive) graftings, in the obvious way. Note that the first element
of the result of P−x 〈·, ·〉 and P+

x 〈·, ·〉 does not depend on the second.

Lemma 4.3.14. Let P be a linear, passive λx-term and ζ a grafting, both
containing no explicit substitutions. Then P+

x 〈P, ζ〉 is a λ-extension of 〈P, ζ〉,
for an arbitrary list of variables x.

Proof. By the fact that all bound variables in scope are added as arguments
to the free variables.

Example 4.3.15. Consider the linear, local λx-terms:

P := f(λxy.g(Z, x))
Q := map(λx.Z, nil)

and the grafting ζ = [Z 7→ f(x)]. Then:

P+
∅〈P, ζ〉 = 〈f(λxy.g(z(x, y), x)), [z 7→ λxy.f(x)]〉

P+
∅〈Q, ζ〉 = 〈map(λx.Z(x), nil), [z 7→ λx.f(x)]〉

Both satisfy the requirements of being a λ-extension, as can be easily checked.

4.3.3 Proof of the Prefix Property

We have now set up the necessary tools to prove the Prefix Property. We
repeat the statement of Theorem 4.3.1 for convenience:

Theorem 4.3.1 (Prefix Property). Let Hω be the ω-labelling of a non-col-
lapsing hrs, s a term, p a local x-pattern and σ a substitution. If s→Hω p

σ,
then there exist a local x-pattern q and a substitution τ , such that s = qτ ,
D(p) ≥ D(q), and either:

• q →Hω p
υ, for some substitution υ such that υ ; τ = σ; or (trm)

• q = p and τ →Hω σ. (sub)

Proof. In the course of this proof we use letters subscripted with a ? (for ex-
ample s?, P?, σ? . . .) to denote preterms and presubstitutions. Letters without
?-subscript denote terms and substitutions on the term level, or λx-terms and
graftings.

We prove the theorem by induction on the context of the step s→Hω p
σ.

If p has a variable as head, then the (sub) case is trivially satisfied. If the step
does not occur at the head, then the result follows easily from the induction
hypothesis.

So, assume s = lρ and pσ = rρ, for some rule λx.l → λx.r ∈ R and
substitution ρ. We ‘cast’ everything down to the preterm level, that is:

s? := s[l? := l[ρ? := ρ[r? := r[p? := p[and σ? := σ[.

64

The Prefix Property

Furthermore, let 〈P, ζ〉 := P−x 〈p?, σ?〉. Now, by definition, P is a linear, passive
λx-term, and P [ζ]⊕ =β p

σ?
? .

Because p has no β-redexes, and the P−x 〈·, ·〉 operation does not add
closures, we know that P [ζ] is a Bx-normal form and

rρ?? =β p
σ?
? =β P [ζ]⊕.

Therefore, rρ?? �β P [ζ]⊕, and from this and Lemma 4.3.9 it follows that

R[µ]�Bx P [ζ],

where R := (r?)	x and µ := (ρ?)	x . Now, we can apply Theorem 4.3.7(ii) and
obtain a linear, passive λx-term P ′, with Sym(P ′) = Sym(P), and graftings
η, κ such that

P ′[η] = R[µ], P ′ �Bx P [κ] and κ ; η �Bx ζ

Because of the first equality above, we can apply Lemma 4.3.5 and obtain a
linear, passive grafting µ′ and graftings η′, κ′ with Sym(η′) ⊆ Sym(R) and
Sym(µ′) ⊆ Sym(P ′), such that

P ′[η′] = R[µ′], η′ ; κ′ = η and µ′ ; κ′ = µ.

We now have the situation as in Fig. 4.2. Arrows with open arrow heads
represent graftings, arrows with closed arrow heads represent Bx-reductions.
The substitution required by the theorem is (the translation of) the grafting
which is represented by the dashed arrow. We can however not directly compose
κ and η′. However, by translation back to the term level, the Bx-reductions
become equalities (modulo β-equivalence), and then the the translations κ
and η′ can be composed, yielding the desired substitution υ. The translation,
using the techniques developed in the previous subsection, is, in principle, not
hard, but it is a cumbersome operation.

Let 〈ρ′?, τ?〉 := P+
∅〈µ′, κ′〉. Then ρ′? is a local pattern substitution, and by

Lemma 4.3.14, 〈ρ′?, τ?〉 is a λ-extension of 〈µ′, κ′〉. Let θ be the grafting such
that ρ′? = (µ′ ; θ)⊕ (θ exists by definition of λ-extension), and let η′′ := η′ ; θ.

Because the (object) variables of r? and τ? can be assumed, without loss
of generality, to be disjoint, and because 〈ρ′?, τ?〉 is a λ-extension of 〈µ′, κ′〉, it
follows that 〈rρ

′
?
? , τ?〉 is a λ-extension of 〈R[µ′], κ′〉 and thus of 〈P ′[η′], κ′〉.

Next, let 〈P ′?, η′′? 〉 := P+
x 〈P ′, η′′〉. By definition, there exists a grafting

θ′ such that P ′? = P ′[θ′]⊕, and because P ′ �Bx P [κ] it is, by definition of
λ-extension, the case that

P ′? =β P [κ ; θ′]⊕.

Now, let 〈P?, κ?〉 := P+
x 〈P, κ ; θ′〉. Since P? does not depend on κ ; θ′, P? = p?.

We know now that

Pκ?? =β P [κ ; θ′]⊕ =β P
′[θ′]⊕ =β P

′
?.

Finally, we take: q? := l
ρ′?
? , υ? := κ? ; η′′? . Then:

65

4. Finite Family Developments

• P

•

•

•P ′

•

• R

•

ζ

κ

η

µ
µ′

η′

κ′

Bx

Bx

Figure 4.2: Proof of the Prefix Property. This figure shows the constructed λx-
terms and graftings in the proof of the Prefix Property and their relationships.
Open arrows represent graftings, closed arrows represent Bx-reductions. The
dashed open arrow represents the grafting which is transformed back into the
required substitution υ.

• q? is a local x-prepattern, because l? is a local x-prepattern and ρ′? is a
local pattern substitution;

• rρ
′
?
? =β P

′
?
η′′? =β P

κ?;η′′?
? =β p

υ?
? ;

• s? = lρ?? =β l
ρ′?;τ?
? =β q

τ?
? ;

• υ? ; τ? =β κ? ; η′′? ; τ? =β σ?;

• D(p?) = D(P ′) = D(P ′[η′]) = D(R[ρ′]) ≥ D(l◦[ρ′]) = D(q?), where the
second equality holds because Sym(η′) ⊆ Sym(r), all labels in r are
the same, p and r have at least one symbol in common because r is
non-collapsing, and thus Sym(η′) ⊆ Sym(p).

Now we take q := q]?, υ := υ]? and τ := τ? to satisfy the (trm) case.

4.4 Finite Family Developments for non-collapsing
HRSs

In this section we apply the prefix property of the previous section to prove
that all family developments of hrss are finite: the Finite Family Developments
property. We restrict our attention to non-collapsing hrss first. In the next
section, we will describe a way to generalize the result to collapsing hrss as
well.

Families are formalized by labelling all function symbols with natural
numbers, as defined in Def. 4.2.1. We prove that the resulting system is
terminating if we restrict the labels to some finite bound. The proof is inspired

66

Finite Family Developments for non-collapsing HRSs

by the proof by Van Oostrom [41]. The differences between this proof and the
one by Van Oostrom are the following:

• We use a different method of labelling. Our labelling has the property
that one step of the labelled hrs corresponds exactly to one step in
the original. Also, our notion of labelling is an instance of the abstract
notion of labelling put forth in [42, 43].

• In Van Oostrom’s paper, the proof of Lemma 15 is omitted. Here, we
give a proof of that lemma (it is Lemma 4.4.1), adapted for the different
method of labelling, by reducing it to the Prefix Property.

Lemma 4.4.1. Let Hω be the labelling of a non-collapsing hrs, s be a term,
p a local pattern, ` ∈ N a label and τ and σ substitutions such that for any
x ∈ Dom(σ), σ(x) has a function symbol labelled with ` as head. If sσ �Hω p

τ ,
then either:

• D(p) ≥ `; or (int)

• s�H pυ, for some υ such that υ ; σ �Hω τ . (ext)

Proof. By induction on the length of the reduction sσ �Hω p
τ . If the length

is 0, there are two cases: if a substitution υ exists such that s = pυ, then the
conditions of the (ext) case are trivially satisfied; otherwise, we show (int) by
induction on p, using the assumption that σ(x) has a function symbol labelled
with ` as head, for all x ∈ Dom(σ).

Otherwise, suppose sσ �Hω s
′ →Hω p

τ . By Theorem 4.3.1, there exist a
local pattern q and substitution σ′ such that s′ = qσ

′
, D(p) ≥ D(q) and either

(trm) q �Hω p
υ′ and υ′ ; σ′ = τ ; or (sub) p = q and σ′ �Hω τ . Applying the

induction hypothesis to sσ �Hω q
σ′ yields that one of the following cases must

apply:

• (int) D(q) ≥ `, but then D(p) ≥ ` by transitivity of ≥.

• (ext) s�Hω q
υ and υ ;σ �Hω σ

′, for some substitution υ. We distinguish
the following cases:

– (trm) s�Hω q
υ �Hω p

υ′;υ and υ′ ; υ ; σ �Hω υ
′ ; σ′ = τ .

– (sub) s�Hω q
υ = pυ and υ ; σ �Hω σ

′ �Hω τ .

In both cases the (ext) case of the lemma is satisfied.

The above lemma allows us to prove the Finite Family Developments property
for non-collapsing hrss.

Theorem 4.4.2 (ffd). Let Hω be the labelling of a non-collapsing hrs, and
let R : s1 →Hω s2 →Hω · · · be a Hω-reduction. R is relatively finite, if and
only if there is a `max ∈ N such that D(si) ≤ `max for all si.

67

4. Finite Family Developments

Proof. (⇒): An infinite but relatively finite reduction must have an infinite
tail of empty steps. These empty steps are all the same, so removing them does
not change which labels occur in the reduction and yields a finite reduction.
Now, the result is trivial, because a finite reduction has a finite amount of
steps and therefore a finite amount of labels, by definition.

(⇐): We prove the theorem by showing that Hω = 〈Σω, Rω〉 is terminating
if we restrict it to rules l → r ∈ Rω where D(r) ≤ `max. By the Right-hand
Side Lemma (Lemma 2.4.12), it suffices to show termination of (s`)σ, for every
right-hand side s, terminating substitution σ and label ` ∈ N. We prove a
stronger result: we assume of s only that it is not (subst-subst)-collapsing.3

We prove this by induction on (`max − `).
Let (s`)σ be a minimal term from which a relatively infinite reduction R

exists. By Prop. 3.2.10 there exists an infinite proper reduction from (s`)σ, so
we can assume without loss of generality that R is a proper reduction. Since
(s`)σ is minimal, we can assume that R contains at least one head step, and
that s = a(s1, . . . , sn), so s` = a′((s`1)σ, . . . , (s`n)σ). By minimality, the s`i are
terminating. We distinguish the following cases:

• If a is the function symbol f , then a′ = f `. Since the first head
step strictly increases the label, termination follows from the induction
hypothesis.

• If a is a variable, then it must be in the domain of σ (otherwise, a head
step would not be possible, contradicting minimality). Suppose

σ(a) = λx.b(t1, . . . , tm)

and thus (s`)σ = b(tσ
′

1 , . . . , t
σ′

m), where σ′ = [x1 7→ s`1, . . . , xn 7→ s`n]. By
a nested induction on the order →Hω starting from σ(a), which is well-
founded by the assumption that σ is terminating, we prove that (s′)σ

′
is

terminating if σ(a)�Hω s
′. The following cases can be distinguished:

– Suppose b = f `
′
. Then an infinite reduction from (s`)σ looks like:

f `
′
(tσ
′

1 , . . . , t
σ′

m)�Hω f
`′(t1, . . . , tm) = lτ →Hω (r`

′′
)τ �Hω · · ·

where l→ r`
′ ∈ Rω. Since a is a variable and s is not (subst-subst)-

collapsing, we know that the s`i have function symbols labelled with
` as head, and we can apply Lemma 4.4.1 to lτ and σ′:

∗ (int): D(l) ≥ `: It follows by the fact that, by construction,
`′′ = D(l) + 1, that `′′ ≥ `. Thus, by the outermost induction
hypothesis, (r`

′′
)τ is terminating, contradicting the assumption

that (s`)σ is not.

3We drop the (context-subst) condition of Def 2.4.10, because subterms of non (context-
subst)-collapsing terms can be (constext-subst)-collapsing, meaning that an infinite reduction
from a minimal counter example might not contain a head step.

68

Dealing with collapsing HRSs

∗ (ext): aσ �Hω l
υ and υ ; σ′ �Hω τ : We know that

aσ �Hω l
υ →Hω (r`

′′
)υ and (r`

′′
)(υ;σ′) �Hω (r`

′′
)τ .

Since the left reduction consists of at least one step (the last
one), (r`

′′
)(υ;σ′) is terminating by the nested induction hypoth-

esis, which yields termination of (r`
′′
)τ by the right reduction,

contradicting the assumption that (s`)σ is not terminating.

– Suppose b is a variable, it must be in the domain of σ. Suppose
b = xi, and si = λy.c(u1, . . . , ul). Then (s`)σ = c(u1, . . . , ul)(σ;τ)

where τ =
⋃

1≤i≤m[yi 7→ tσ
′

i]. Now σ is terminating by assumption,
and the tσ

′

i are terminating by the nested induction hypothesis,
so σ ; τ is a terminating substitution. Since c(u1, . . . , ul) is a
proper subterm of s, termination of c(u1, . . . , ul)(σ;τ) follows by
minimality.

4.5 Dealing with collapsing HRSs

In the previous sections we restricted our attention to non-collapsing hrss.
This is not without reason: both the Prefix Property and ffd do not hold for
collapsing hrss, as is witnessed by the following two counterexamples:

Example 4.5.1 (Prefix Property). Consider the collapsing hrs Mu:

mu(λx.z(x))→ z(mu(λx.z(x))

and the following Muω-step:

mu3(λx.f2(x))→Muω f2(mu4(λx.f2(x)))

It is easy to check that the prefix p = f2(u) of the target of the step has no an-
cestor q that satisfies the requirements of the Prefix Property (Theorem 4.3.1).

Example 4.5.2 (ffd). Consider the collapsing hrs Lam:

app(lam(λx.z(x), y))→ z(y)

Then one Lamω-step is the following:

app1(lam1(λx.app1(x, x)), lam1(λx.app1(x, x)))

→Lamω app1(lam1(λx.app1(x, x)), lam1(λx.app1(x, x)))

So we see that Lamω has a one-step cycle, and thus an infinite reduction with
bounded labels.

The problem in both cases is that, because of applying a collapsing rule, a
function symbol can be directly connected to a previously unconnected function
symbol from the context or substitution, or to the root of the term, without

69

4. Finite Family Developments

the rule leaving any trace in between, in the form of a (labelled) function
symbol. This can be remedied by including ‘empty’ function symbols, named
εα, for each base type α, in the right-hand sides of rules, and ‘saturating’
the left-hand sides of rules with those empty function symbols. The same
approach is taken for the first-order case in [42, 43].

Definition 4.5.3 (ε-lifting). Let H = 〈Σ, R〉 be an hrs.

(i) The ε-lifting Σε of the signature Σ, consists of all function symbols of Σ,
and, for each base type α, a function symbol εα : α→ α.

(ii) The ε-lifting of a term s of type α, written sε, is defined as follows:

x(s1, . . . , sn)ε := εα(x(sε1, . . . , s
ε
n)))

f(s1, . . . , sn)ε := f(sε1, . . . , s
ε
n)

(λx.s0)ε := λx.sε0

(iii) The set of ε-saturations of a pattern p, denoted by Satε(s), is defined as
Satε(p) = Satεout(p), where:

Satεout(x(yn)) := {x(yn)}
Satεout(f(pn)) := {f(qn) | qi ∈ Satεin(pi)}
Satεout(λx.p0) := {λx.q0 | q0 ∈ Satεin(p0)}
Satεin(x(yn)) := {x(yn)}
Satεin(f(pn)) := {εmα (f(qn)) | m ∈ N, qi ∈ Satεin(pi)}
Satεin(λx.p0) := {λx.q0 | q0 ∈ Satεin(p0)}

where α is the type of p, and εmα (p) is inductively defined by ε0α(p) = p,
εm+1
α (p) = εα(εmα (p)).

(iv) The ε-lifting of an hrs H = 〈Σ, R〉 is defined as Hε = 〈Σε, Rε〉, where

Rε :=
⋃

ρ:l→r∈R

{ρl′ : l′ → rε | l′ ∈ Satε(l)}.

(v) The projection operation [[·]]ε is the mapping from Σε-terms to Σ-terms
and Hε-proof terms to H-proof terms, which removes all εα-symbols, that
is, the operation is given by:

[[εα(ϕ)]]ε := [[ϕ]]ε
[[λx.ϕ]]ε := λx.[[ϕ]]ε

[[x(ϕ1, . . . , ϕn)]]ε := x([[ϕ1]]ε, . . . , [[ϕn]]ε)
[[f(ϕ1, . . . , ϕn)]]ε := f([[ϕ1]]ε, . . . , [[ϕn]]ε)
[[ρl(ϕ1, . . . , ϕn]]ε := ρ([[ϕ1]]ε, . . . , [[ϕn]]ε)

(vi) For each Σε-term s, we define the relation ms between Pos([[s]]ε) and
Pos(s) as follows:

70

Dealing with collapsing HRSs

• if s = x(s), then ε ms ε and ip ms iq if p msi q;
• if s = f(s), then ε ms ε and ip ms iq if p msi q;
• if s = λx.s′, then ε ms ε and 1p ms 1q if p ms′ q;
• if s = ε(s′), then p ms 1q if p ms′ q.

Observe that, above, there is a distinction between ε, the empty sequence
(here, in particular, the root position), and ε, the empty function symbol.
Note that the mapping ms is a function because it is total and injective. The
ε-lifting produces non-collapsing hrss and terms, steps and reduction in such
reductions, as follows from the following proposition:

Proposition 4.5.4. For any hrs H, its ε-lifting Hε is a non-collapsing hrs.

Proof. By definition, all right-hand sides of Hε are of the form sε, for some s.
It is easy to see, that for all collapsing terms s, sε is non-collapsing.

The ε-liftings of the two counter examples introduced earlier in this section do
not have the same problems as their originals:

Example 4.5.5. The ε-lifting of Mu is the following (types of ε’s omitted):

mu(λx.z(x))→ ε(z(ε(mu(λx.ε(z(ε(x))))))).

A (Muε)ω step corresponding to the step of Ex. 4.5.1 is:

mu3(λx.f2(x))→(Muε)ω ε
4(f2(ε4(mu4(λx.ε(f2(ε(x))))))).

Take the corresponding prefix p = ε4(f2(y)). Now, the Prefix Property is satis-
fied with q = mu3(λx.f2(x)), τ = ∅ and υ = [z 7→ ε4(mu4(λx.ε(f2(ε(x)))))].

Example 4.5.6. The ε-lifting of Lam consists of (among others) the following
rules:

app(lam(λx.z(x), y))→ ε(z(ε(y)))
app(ε(lam(λx.z(x))), y)→ ε(z(ε(y)))

app(ε(ε(lam(λx.z(x)))), y)→ ε(z(ε(y)))

Then a (Lamε)ω-step corresponding to the step of Ex. 4.5.2 is the following:

app1(lam1(λx.app1(x, x)), lam1(λx.app1(x, x)))
→(Lamε)ω ε2(app1(ε2(lam1(λx.app1(x, x))), ε2(lam1(λx.app1(x, x))))).

Now, all redex patterns have a maximum label of 2, instead of 1.

Lemma 4.5.7. Let H = 〈Σ, R〉 be an hrs.

(i) Let s be a Σ-term and s′ a Σε-term with [[s′]]ε = s. For each H-step
ϕ with source s, there is a unique Hε-step ϕ′ with source s′ such that
[[ψ]]ε = ϕ.

71

4. Finite Family Developments

(ii) If ϕ : s ◦−→Hε t, then [[ϕ]]ω : [[s]]ε ◦−→H [[t]]ε.

Proof. (i) By induction on the inference of the step ϕ : s ◦−→H t. The
interesting case is if ϕ = ρ(ϕ1, . . . , ϕn) for some rule ρ : l → r. Then it is
the case that s = l(s1, . . . , sn) and s′ = εn(l′(s′1, . . . , s

′
n)). By the induction

hypothesis, there are unique ϕ′i with source s′i such that [[ϕ′]]ε = ϕ. We take
ϕ′ := εn(ρl′(ϕ1, . . . , ϕn)) to satisfy the requirements of the lemma.

(ii) By induction on the inference of the step ϕ : s ◦−→Hε t. The interesting
case is the case that ϕ = ρl(ϕ1, . . . , ϕn), for some ρl : l→ r and ϕi : si ◦−→ ti.
By the induction hypothesis [[ϕi]]ε : [[si]]ε → [[ti]]ε. From this and the fact that
[[ρl]]ε : [[l]]ε → [[r]]ε we conclude that

[[s]]ε = [[l(s1, . . . , sn)]]ε ◦−→H [[r(t1, . . . , tn)]]ε = [[t]]ε.

Just as in Section 4.2, the results of Lemma 4.5.7 can be easily generalized to
reductions. Now, we can use the ε-lifting to prove ffd for arbitrary hrss:

Theorem 4.5.8 (ffd). Let (Hε)ω be the εω-labelling of an hrs, and let
R : s1 →(Hε)ω s2 →(Hε)ω · · · be a (Hε)ω-reduction. R is relatively finite, if
and only if there is a `max ∈ N such that D(si) ≤ `max for all si.

Proof. By Prop. 4.5.4 and Theorem 4.4.2.

Again, we want to canonically map reductions of a potentially collapsing hrs
to reductions of a non-collapsing hrs: we take the ε-lifting starting in the
source of the reduction itself. Formally:

Definition 4.5.9. Let H be an hrs, and R : s ◦−→−→ · · · a reduction.

(i) The canonical ε-lifting of R is the Hε-reduction S such that [[S]]ε = R
and src(S) = s.

(ii) The canonical εω-labelling of R is the (Hε)ω-reduction S such that

[[[[S]]ε]]ω = R and src(S) = s0.

Def. 4.5.9 is well-defined by Lemma 4.2.4 and Lemma 4.5.7. In the following,
we will often refer to the creation depth or family of a function symbol, term or
step in a reduction of an unlabeled and possibly collapsing hrs. In such cases,
we actually mean the creation depth or family of the corresponding function
symbol (given by the map ms), term or step in the canonical εω-reduction.

4.6 Applications

The result of this chapter will be applied in several places in the rest of
this thesis. In this section we highlight two applications that have no direct
relevance to other parts of this work: finite developments and a proof of
termination of the simply typed λ-calculus.

72

Applications

4.6.1 Finite Developments

Finiteness of Developments is a well-known and important property of the
λ-calculus, Combinatory Logic and first-order trss, and has proven to be a
useful technique for proving, for example, confluence. The property says that
any reduction which only contracts (descendants of) redexes that occur in the
source term, is finite.

The Finite Developments property is usually proved by a technique called
marking or underlining (see for example Prop. 4.4.5 and Theorem 4.5.4 of
[53]). In this section we define a similar technique for hrss and show that
finite developments are essentially equivalent to reductions with a maximum
creation depth of 1, and therefore finite by a simple application of the Finite
Family Developments theorem. We restrict our attention to non-collapsing
hrss, again. Collapsing hrss may be lifted to non-collapsing hrss by using
the technique developed in Sect. 4.5.

Definition 4.6.1 (Underlining). Let H = 〈Σ, R〉 be an hrs. The underlining
H = 〈Σ, R〉, is defined as follows:

(i) Σ := Σ ∪ {f : α | f : α ∈ Σ}
(ii) R := {l→ r | l→ r ∈ R}

where l is obtained by replacing all function symbols f in l by their
underlined version f .

Theorem 4.6.2 (Finite Developments). The underlining H of every hrs H
is terminating.

Proof. By the observation that each H-reduction maps to a Hω-reduction
if ‘normal’ function symbols are changed to function symbols with creation
depth 0, and underlined function symbols are changed to function symbols
with creation depth 1. By Theorem 4.5.8, this Hω-reduction is finite because
every creation depth is smaller or equal than 1, and therefore also the original
reduction is finite.

4.6.2 Termination of the simply typed λ-calculus

The most well-known proof of termination of the simply typed λ-calculus
is the proof using strong computability due to Tait [52]. Here we present a
termination proof of an hrs which encodes the simply typed λ-calculus, using
the Finite Family Developments result of the present paper.4

4It is noted in [25, p. 31] that termination of simply typed λ-calculus follows from
termination of the Hyland–Wadsworth-labelling, a variation of which we use to formalize
ffd.

73

4. Finite Family Developments

The hrs we consider has an infinite number of rules. Let α, β range over
(codes of) types, and let the following signature be given:

Tα : term → term
app : term → term → term
lam : (term → term)→ term

The simply typed λ-calculus can be encoded as the following hrs, Lam→:

app(Tnα→β(lam(λx.Z(x))), Y)→ Tβ(Z(Tα(Y)))

for every n > 0, where fn(s) is defined (here) as: f0(s) = s and fn+1(s)
= f(fn(s)). Termination of Lam→ cannot be proved by any higher-order
termination technique that the author is aware of. However, it does follow
from Finite Family Developments:

Proposition 4.6.3. Lam→ is terminating.

Proof. Note that Lam→ is non-collapsing, and consider the ω-labelling of
Lam→, which consists of rules of the form:

app`(((Tkα→β)n(lamj(λx.Z(x))), Y)→ Tpβ(Z(Tpα(Y)))

where `, j are labels representing the creation depth of the symbols, k is a
sequence of n such labels and p = max(`, k, j). The symbols of the form Tα
will be called type symbols.

Let the height of a type be defined as follows: ht(a) = 1 (where a is
a base type); ht(α → β) = max(ht(α), ht(β)) + 1. Now we can define the
value of a type symbol as Val(T`α) = ` + ht(α) and the value of a term as
Val(s) = max{Val(f) | f ∈ Sym(s)}. Now, a simple induction on the context
of the step reveals that, if s→Lam→ t, then Val(s) ≥ Val(t).

Let R : s0 → s1 → s2 → · · · be an arbitrary Lam→-reduction. Because
Val(si) ≥ Val(sj) if i < j, the value of every term in R is less or equal to
Val(s0), and thus every symbol occurring in the reduction has a creation
depth less than or equal to Val(s0). Therefore, by Finite Family Developments
(Theorem 4.4.2), R is finite.

We conclude this subsection by showing that the hrs introduced above encodes
the simply typed λ-calculus in the following sense: every reduction in the
simply typed λ-calculus can be lifted to a Lam→-reduction. For this, we use
the following map h, which maps each simply typed λ-term to a set of possible
Lam→-encodings of it:

h(xα) := {Tnα(x) | n > 0}
h(fα) := {Tnα(f) | n > 0}

h(Mα→βNα) := {Tnβ(app(s, t)) | s ∈ h(M), t ∈ h(N), n > 0}
h(λxα.Mβ) := {Tnα→β(lam(λx.s)) | s ∈ h(M), n > 0}

74

Related work

It follows directly from the definition that h(M) 6= ∅, for all simply typed
λ-terms M . Additionally, we show that the map h commutes over substitution:

Lemma 4.6.4. h(M [x 7→ N]) = h(M)[x 7→ h(N)].

Proof. By induction on M .

We have the following correspondence between the simply typed λ-calculus
and Lam→:

Lemma 4.6.5. If M →β N and s ∈ h(M), then there is a t ∈ h(N) such
that s→Lam→ t.

Proof. By induction on the derivation of M →β N . The interesting case is if
the β-step occurs at the head, that is:

M = (λxα.M1)M2 and N = M1[x 7→M2]

By definition, this means that s = Tnβ(app(Tmα→β(lam(λx.t1)), t2)), where
ti ∈ h(Mi), for i ∈ {1, 2}, and m,n > 0. Now:

s→ Tn+1
β (t1[x 7→ Tα(t2)]) ∈ h(N)

where the last inclusion follows from Lemma 4.6.4 and the facts that Tn+1
β ∈

h(M1) because t1 ∈ h(M1), and Tα(t2) ∈ h(M2) because t2 ∈ h(M2).

Theorem 4.6.6. The simply typed λ-calculus is terminating.

Proof. By Lemma 4.6.5, the existence of an infinite reduction in the simply
typed λ-calculus implies the existence of an infinite Lam→-reduction, which
is impossible by Prop. 4.6.3.

At first glance, the proof above looks like cheating: we already use the
simply typed λ-calculus as the substitution calculus of higher-order rewriting.
However, in the proof of ffd, we only require normalization: we assume that
from each preterm a β-reduction to normal form exists, but not that every
β-reduction is finite.

4.7 Related work

As mentioned before, the result of this chapter builds on the work of Van
Oostrom [41]. In first-order trss, Finiteness of Family Developments follows
from a simple argument involving a recursive path ordering. Interestingly, to
my knowledge, all higher-order variants of the recursive path ordering (for
example [21, 45]) are too weak to prove higher-order ffd.

The property of ffd is also similar to results in other rewriting paradigms:
match bounded string rewrite systems and dependency pairs in first-order
TRSs.

75

4. Finite Family Developments

4.7.1 Match-bounds

Geser, Hofbauer & Waldmann introduced the class of match-bounded String
Rewrite Systems (srss) [13]. Proving that a srs is match-bounded, is a
very successful technique for (automatically) proving termination of srss.
Just like in our approach, symbols are labelled with natural numbers, called
match heights, which are increased during the rewriting process. The srs is
terminating if there is a bound on the match heights of the reductions of the
srs. In this respect the match-bound criterion is a stronger criterion than
the ffd property: ffd requires that every reduction has a bound, while the
match-bounds approach requires there to be a global bound which holds for
all reductions.

There is a second notable difference between match bounds and ffd: where
in our approach symbols of the right-hand side are labelled with a creation
depth higher than the maximum creation depth of the left-hand side, in the
match-bounds approach the symbols of the right-hand side are labelled with a
match height higher than the minimum match height of the left-hand side.

Note, that in hrss, and even first-order trss, it is not possible to obtain
a termination result when labelling the right-hand side with the minimum
creation depth of the left-hand side plus one; it is essential that the maximum
creation depth is used. Consider, as a counter-example the one-rule trs
f(x, a)→ f(x, x). Then:

f0(a0, a0)→ f1(a0, a0)→ f1(a0, a0)→ · · ·

is an infinite reduction in the labelled trs.
The problem is seemingly caused by the duplication behavior of the trs.

In fact, the technique has been generalized to trss in [14], and it is shown
there that, for linear trss, it is sufficient to label the right-hand sides with
the minimum label of the corresponding left-hand side plus one, while for
non-linear trss the maximum label plus one is required.

4.7.2 Dependency pairs

Arts & Giesl introduced the Dependency Pair approach [1], which turned out
to be a very successful technique for (automatically) proving termination of
first-order trss. In the Dependency Pair approach termination is proved by
showing that infinite dependency chains cannot exist, which is, in many cases,
easier than showing termination of the trs directly.

Although the similarity is harder to spot than in the case of match-bounds,
the Dependency Pairs approach and the Finite Family Development approach
follow from the same basic principle: that in every finite reduction there is
a bound on the creation depth of the function symbols in the term. In the
(original, first-order) Dependency Pair approach only the defined symbols
(the head symbols of the left-hand sides of the rules) need to be considered,
which is why dependency chains are often compared to chains of function calls.
The existence of infinite dependency chains is essentially the Dependency

76

Discussion

Pair equivalent of the unboundedness of the creation depths of the function
symbols.

In order to generalize Dependency Pairs to the higher-order case, some
method must be devised to consider other symbols than the defined symbols
as well. Many attempts have been made for hrss and other higher-order
rewriting paradigms (for example [47, 46, 15, 6]) but most are rather weak in
comparison to first-order dependency pairs, even if restricted to ‘first-order’
hrss, that is hrss in which all variables are of base type.

It is my opinion that the similarities between Finite Family Developments
and the techniques mentioned above warrant a closer investigation into their
relationships. Perhaps a termination technique can be found which is powerful
for both first- and higher-order rewriting paradigms.

4.8 Discussion

In this chapter we gave a proof of the Finite Family Developments property
of hrss. Interestingly, the proof of Finite Family Developments is much
more involved in the higher-order case than in the first-order case. In the
first-order case it follows, even for collapsing trss, by a simple application of
the Recursive Path Ordering. Higher-order Recursive Path Orderings do exist,
but are, to my knowledge, presently not strong enough to prove higher-order
Finite Family Developments.

Finiteness of Family Developments is a very useful technical property: in
Chapter 5 it helps to show termination of two higher-order standardization
procedures, by the following observation: if some operation on (finite) re-
ductions preserves the bound on the labels of the function symbols, then by
König’s Lemma there is a bound on the length of the reductions obtained by
the operation (see for example Lemma 5.4.8).

Finite Family Developments can also be useful to prove termination of
hrss, as is demonstrated in Sect. 4.6.2, and since many rewriting paradigms
can be encoded as hrss, the result of this chapter may be useful to other
forms of rewriting as well.

77

Five

Standardization

5.1 Introduction

Standardization is the property that for each reduction, there exists an equiv-
alent reduction in which the redexes are contracted in a pre-defined, standard
order (usually the outermost-innermost, left-right order, also called the stan-
dard order). Such a reduction is called a standard reduction. Standardization
is useful in various cases:

• Standardization often makes it possible to simplify proofs considerably:
because each reduction has an equivalent standard reduction, it suffices
in many cases to consider only standard reductions. For example, if
we want to find out that some term t can be reached from s, we now
only have to find a standard reduction from s to t, which considerably
narrows the search space.

• Standardization is helpful to study the semantics of (functional) pro-
gramming languages. In lazy functional programming languages such
as Haskell, for example, program traces roughly correspond to standard
reductions in the sense of this chapter.

• If it can be shown that each (finite) reduction has a unique equivalent
standard reduction, which is the case in this chapter, standard reduc-
tions can be considered as the unique representatives of (permutation)
equivalent reductions, and standardization becomes a method to decide
equivalence of reductions. It is this useful fact that motivated the study
of standardization in this dissertation.

Here, we consider a reduction to be standard if the redexes are contracted
from left to right.

In his dissertation, Klop [25] identified two methods to ‘calculate’ an equiv-
alent reduction for a given reduction. One is a deterministic procedure which
finds the step contracting the left-most redex and moves this step to the
beginning of the reduction, which we call Selection Standardization here. The

79

5. Standardization

other, called Inversion Standardization here, is a non-deterministic procedure
which permutes adjacent steps which are in the wrong order (modulo an equiv-
alence which permutes parallel steps). Here, we translate both standardization
methods to hrss. We also show that each reduction has a unique equivalent
standard reduction, making our notion of standard suitable for formalizing
equivalence of reductions.

Standardization theorems have been proved for, among others, the λ-calcu-
lus [10, 44, 25], first-order trss [19, 53] and Combinatory Reduction Systems
[25, 55]. Also, standardization has been studied from an abstract point of
view [16, 33]. We will spend some time comparing our approach to other
approaches in Sect. 5.8.

We restrict our attention to local (that is linear and fully extended) hrss.
This is because only these kinds of hrss are compatible with our notion of
standardness and permutation equivalence. In Sect. 5.6 we show this by giving
two counter examples.

5.2 Standard reductions

We will call a reduction “standard” if the redexes are contracted in strictly
left-to-right order. We can formally define the notion of standardness as
follows:

Definition 5.2.1.

(i) Let ϕ : s→ t be a proper step contracting redex pattern R at position p,
and R = ψ0, ψ1, . . . a proper reduction starting at t. R is standard for
ϕ, if there is no index k such that:

• ψk contracts a redex pattern S such that S <lex R;
• for all i < k, ψi contracts a redex pattern T such that R ≤lex T ;

and
• p 6∈ S.

(ii) Let ϕ : s→ t be a proper step contracting redex pattern R at position
p, and R a reduction containing multisteps. R is standard for ϕ, if the
canonical development of R is standard for ϕ.

(iii) A reduction R = ϕ1, ϕ2, . . . is standard if it is proper and, for each i, the
reduction starting at ϕi+1 is standard for ϕi.

Item (i) of the definition can be informally stated as follows: a proper reduction
R is standard for a proper step ϕ contracting a redex at position p, if for the
first step ψk which contracts a redex to the left of the redex of ϕ, it holds that
p ∈ RPos(ψ). The intuition behind this is the following. We want that the
redexes in a reduction are contracted from left to right. A step ψk may only
contract a redex to the left of the redex contracted by ϕ, if ϕ is involved in
creating the redex.

80

Standard reductions

Example 5.2.2. Let the following hrs be given:

ρ : let(λx.z(x), y)→ z(y)
θ : f(x)→ g(x)
η : a→ b

The reduction

let(λx.f(x), η) ; let(λx.θ(x), b) ; ρ(λx.g(x), b)

is not standard because, because the second step let(λx.f(x), η) contracts
the redex R2 = {121, 1211}, the first step let(λx.θ(x), b) contracts a redex
R1 = {2} at position 2, and while R2 ≤lex R1, it is also the case that 2 6∈ R2.
Alternatively, the last step ρ(λx.g(x), b) contracts the redex R3 = {ε, 1, 11, 12},
and although R3 ≤lex R1, it is also the case that 121 6∈ R3.

On the other hand, the reduction

ρ(λx.f(x), a), θ(a), g(η)

is standard (and, as a matter of fact, equivalent to the first one).

Example 5.2.3. Let the following hrs be given:

ρ : let(λx.z(x), y)→ z(y)
θ : f(f(x))→ f(x)

Consider the steps:

ϕ1 := f(ρ(λx.f(x), a)) : f(let(λx.f(x), a))→ f(f(a))
ϕ2 := θ(a) : f(f(a))→ f(a)

These steps contract the following redexes, resp. R1 and R2:

R1 = {2, 21, 211, 212}
R2 = {ε, 1, 2, 21}

Although R3 ≤lex R2, the reduction ϕ1 ; ϕ2 is standard, because 2 ∈ R2.

The following lemma expresses that the labellings of the previous chapter
preserve the property of standardness:

Lemma 5.2.4. Let R be a relatively finite reduction standard for ϕ, and
suppose R ≈ S. Then S is a reduction standard for ϕ.

Proof. By induction on the derivation of R ≈ S.

The main result of this chapter is the Standardization Theorem (Theorem
5.5.1), which states that each reduction has a unique, permutation equivalent
standard reduction. This theorem will be proved by giving two standardization
procedures which transform an arbitrary reduction into an equivalent stan-
dard one, selection standardization (Sect. 5.3) and inversion standardization
(Sect. 5.4).

81

5. Standardization

5.3 Selection standardization

In this section we define a procedure which, given an arbitrary reduction,
produces a standard reduction equivalent to the input reduction. The pro-
cedure corresponds to weak standardization of Klop [25], but is called the
Selection Standardization procedure here, after [43], due to its similarity to
the selection sort algorithm. In selection sort, the smallest item of the list is
selected and moved to the beginning of the list, after which the procedure is
recursively called in order to sort the rest of the list. Similarly, the Selection
Standardization procedure selects the left-most, outermost step (or, rather,
the step which contracts the left-most and outermost redex) in the reduction
and permutes it to the beginning of the reduction. Then the procedure is
recursively applied to the rest of the reduction, producing a standard reduction
in the end.

5.3.1 The standardization procedure

We define the standardization procedure by defining an algorithm which finds
the left-most, outermost step of a reduction, and removes it from the reduction.
This yields two objects: the left-most, outer-most step, and the tail of the
reduction, that is, the reduction from which the left-most, outermost step
has been removed. Now, the procedure is recursively applied to the tail of
the reduction, and so on. The sequence steps which were removed in each
iteration, now forms a standard reduction.

The result is defined here as the limiting reduction of a series of reductions
which are only standard up to a certain point. This has the advantage that
the heart of the procedure is a normal, finitistic algorithm, but still the
method is well-defined for infinite reductions also. In Sect. 5.7 we investigate
standardization of infinite reductions in some more detail.

The procedure presented in this section is a straight-forward adaption of
the procedures 8.5.14 and 8.5.46 of [43], where only the first-order case is
handled. However, the proof that the procedure terminates is much more
involved due to the following reason. In first order term rewriting, the residuals
of two parallel, un-nested redexes are parallel, un-nested redexes again. This
fact helps in obtaining a well-founded ordering in which the recursive calls of
the standardization function have a strictly smaller argument. In higher-order
rewriting, however, applying a rule may nest two previously un-nested redexes,
which makes the first-order proof method unavailable, because contracting a
redex can now duplicate one of the redex’s own ‘family members’. Consider
the hrs

h(λx.z(x), y)→ z(z(y))
f(x)→ g(x, x)

and the reduction

h(λx.f(x), a)→ f(f(x))→ g(f(x), f(x)).

82

Selection standardization

We see that the second step duplicates the redex f(x), although the redex
contracted in this step is a descendant of the same redex as the redex it
duplicates. Because of the presence of these nestings, we require here Finite
Family Developments to obtain an upper bound on the length of the reductions
which can occur in the calculation of the standard reduction.

Definition 5.3.1 (Selection standardization). Let R be a reduction starting
at s.

(i) We define the functions Lmc and Nlmc, returning the (step contracting
the) left-most contracted redex, and the rest of the reduction, respectively.

• If R contains no head steps, then one of the following two cases
applies:
Case 1A: Suppose R = f∗(R1, . . . ,Rn), for reductions Ri starting
at si. Let Rk be the left-most non-empty reduction among those.
Then:

Lmc(R) := f(s1, . . . , sk−1,Lmc(Rk), sk+1, . . . , sn)
Nlmc(R) := f∗(s1, . . . , sk−1,Nlmc(Rk),Rk+1, . . . ,Rn)

Case 1B: Suppose R = λx∗.R′. Then:

Lmc(R) := λx.Lmc(R′)
Nlmc(R) := λx∗.Nlmc(R′)

• Otherwise, R can be written as S ; ϕ ; T , where ϕ = ρ(ϕ1, . . . , ϕn),
for some rule ρ : l → r and ϕi : ui ◦−→ vi, is the first head step of
R. Let C be the largest context such that Pos(C) ⊆ Pat(l) and
S = C∗[S1, . . . ,Sm], for reductions Si : si ◦−→−→ ti.
Case 2A: If Pos(C) = Pat(l), then S = l∗(S1, . . . ,Sn), and

Lmc(R) := ρ(s1, . . . , sn)
Nlmc(R) := r∗(S1, . . . ,Sn) ; r(ϕ1, . . . , ϕn) ; T

Case 2B: Otherwise, by maximality of C, some of the Si must touch
the redex pattern of ϕ. Let Sk be the leftmost such reduction. Now
we define:

Lmc(R) := C[s1, . . . , sk−1,Lmc(Sk), sk+1, . . . , sn]
Nlmc(R) := C∗[S1, . . . ,Sk−1,Nlmc(Sk),Sk+1, . . . ,Sn] ; ϕ ; T

(ii) The n-bounded standard form of a reduction R, written StdnS(R), is
defined as follows: StdnS(R) = ε if R consists of empty steps only, and
otherwise:

Std0
S(R) := R

Stdn+1
S (R) := Lmc(R) ; StdnS(Nlmc(R))

83

5. Standardization

(iii) The selection standard form of a reduction R, written StdS(R), is defined
as the shortest reduction of which StdnS(R)[n] is a prefix for all n.

The algorithm for finding the left-most, outermost redex of a reduction intu-
itively works as follows:

• If the reduction does not contain a head step, then all the proof terms
in the reduction have the same function symbol as head. Cases 1A and
1B ‘zoom in’ to the left-most non-empty reduction taking place in one
of the arguments, by calling the algorithm recursively on it, and return
the left-most, outermost step (and the tail) of this reduction.

• If the reduction does contain a head step, then there are to subcases. If
none of the steps before the head step are involved in creating the redex
pattern of the head step, then the head step contracts the left-most,
outermost redex (Case 2A). On the other hand, if there is a step before
the head step then the algorithm is recursively applied to the part of
the reduction before the head step.

Before proving that the algorithm actually works, let’s see some examples:

Example 5.3.2. Consider the one-rule hrs

µ : mu(λx.z(x))→ z(mu(λx.z(x)))

of Ex. 2.4.15 and let the multistep ϕ = µ(λx.ρ(x)) be given. We apply the
standardization procedure to this multistep:

• First, Lmc(ρ(x)) = ρ(x) and Nlmc(ρ(x)) = ε by Case 2A.

• Then, Lmc(λx.ρ(x)) = λx.ρ(x) and Lmc(ρ(x)) = ε by Case 1B.

• Finally, Lmc(ϕ) = µ(λx.f(x)) and Nlmc(ϕ) = ρ(mu(λx.ρ(x))) by Case
2A.

So: StdS(ϕ) = µ(λx.f(x)),StdS(ρ(mu(λx.ρ(x)))). By a similar derivation, we
obtain

StdS(ϕ) = µ(λx.f(x)), ρ(mu(λx.f(x))), f(mu(λx.ρ(x))).

Example 5.3.3. Let the following hrs be given:

ζ : h(λx1x2.z(x1, x2), y)→ z(y, y)
η : f(x, b)→ x

θ : a→ b

Consider the non-standard reduction

R = h(λxy.f(x, y), θ), ζ(λxy.f(x, y), b), η(b).

We execute the algorithm:

84

Selection standardization

• First, by Case 2A:

Lmc(R) = ζ(λxy.f(x, y), a)
Nlmc(R) = f(θ, θ), η(b)

• Let R′ = Nlmc(R). Then, by Case 2B:

Lmc(R′) = f(a, θ)
Nlmc(R′) = f(θ, b), η(b)

• Let R′′ = Nlmc(R′). Then, by Case 2A:

Lmc(R′′) = η(a)
Nlmc(R′′) = θ

• Finally, Lmc(θ) = θ and Nlmc(θ) = ε.

So: StdS(R) = ζ(λxy.f(x, y), a), f(a, θ), η(a), θ.

In order to prove properties about the selection standardization algorithm, we
need a measure on the reductions such that the arguments of each recursive
call to the Lmc and Nlmc functions are strictly decreasing. For this, we define
the ‘depth’ of the reduction as follows:

(i) The depth of a step ϕ is defined by:

dpt(λx.ϕ) := dpt(ϕ) + 1
dpt(f(ϕ1, . . . , ϕn)) := max

1≤i≤n
dpt(ϕi) + 1

dpt(ρ(ϕ1, . . . , ϕn)) := max
1≤i≤n

dpt(ϕi) + 1

where max ∅ = 0.

(ii) The depth of a reduction R is defined by the following cases:

• If R is an empty reduction, then dpt(S) = 0.
• If R contains a head step, then R = S ; ϕ ; T , where ϕ is the first

head step of R, and

dpt(R) := dpt(S).

• If R = f∗[R1, . . . ,Rn], for some n-ary function symbol f , then

dpt(R) := max
1≤i≤n

dpt(Ri) + 1

• If R = λx∗.R0, then

dpt(R) := dpt(R0) + 1

85

5. Standardization

It is now easy to observe that, in the definition of Lmc and Nlmc, the depth
of the argument of each recursive call is strictly decreasing. This makes it
possible to use induction on the depth of a reduction as a proof method when
proving properties of Lmc and Nlmc.

Lemma 5.3.4. Let R,S be (finite or infinite) reductions. If R =/1 S then:

(i) Lmc(R) = Lmc(S) and Nlmc(R) =/1 Nlmc(S);

(ii) for all n ∈ N, StdnS(R) = StdnS(S);

(iii) StdS(R) = StdS(S).

Proof. (i) By induction on the depth of R and (ii) by induction on n using
(i). Item (iii) follows directly from the definition and (ii).

We need to prove that StdS is well-defined. This claim boils down to a number
of subclaims, which we prove in the following three lemmas.

The first subclaim may seem a bit counter-intuitive at first sight: it
establishes that the length of the tail of the standard reduction is equal to
the length of the original reduction. However, it is less counter-intuitive once
we realize that the notion of length counts empty steps as well. The lemma
proves that the star notation in case 1A of the definition may indeed be used
(it is only defined if all subreductions have the same length).

Lemma 5.3.5. Let R be a (finite or infinite) reduction. |Nlmc(R)| = |R|.

Proof. By induction on the depth of R.

The next lemma establishes that StdS(R) is a well-formed reduction, for all
R, that is, that the target of each step is equal to the source of the step
immediately following it.

Lemma 5.3.6. Let R be a (finite or infinite) reduction.

(i) tgt(Lmc(R)) = src(Nlmc(R));

(ii) Nlmc(R) is a well-defined reduction.

Proof. Both items follow by induction on the depth of R

Since StdS(R) is defined as the limit of a sequence of reductions, we must
show that such a limit actually exists. This is established in the third lemma:

Lemma 5.3.7. StdnS(R)[n] is a prefix of Stdn+1
S (R)[n+ 1].

Proof. By induction on n.

Proposition 5.3.8. Std is well-defined.

Proof. By Lemmata 5.3.5, 5.3.6 and 5.3.7.

86

Selection standardization

5.3.2 Existence of standard reductions

In this subsection we show that for each relatively finite reduction there exists
at least one equivalent standard reduction. This is proven by showing that
we can use the standardization procedure of the previous subsection to find
such a reduction. This boils down to three subclaims: first, that the Selection
Standardization actually produces a reduction, that is, that it terminates when
given a finite reduction as input (Theorem 5.3.13); second, that the reduction
it returns is equivalent to the input reduction (Prop. 5.3.14); and third that
the reduction it produces is actually a standard reduction (Theorem 5.3.15).

Lemma 5.3.9. Let R = C∗[R1, . . . ,Rn] be a (finite or infinite) reduction,
with si = src(Ri). Suppose Rk ≈ ϕk ; R′k, for some 1 ≤ k ≤ n, such that
|R′k| = |Rk|. Then:

R ≈ C[s1, . . . , ϕk, . . . , sn] ; C∗[R1, . . . ,R′k, . . . ,Rn].

Proof. By Lemma 3.2.7, which can be applied due to the assumptions that
Rk ≈ ϕk ;R′k and |R′k| = |Rk| and the easy fact that, by definition, Ri ≈ si ;Ri,
we have:

C∗[R1, . . . ,Rn]
≈ C∗[s1 ;R1, . . . , ϕk ;R′k, . . . , sn ;Rn]
≈ C[s1, . . . , ϕk, . . . , sn] ; C∗[R1, . . . ,R′k, . . . ,Rn]

which proves the result.

Lemma 5.3.10. Let ρ : → r be a rule, and let R = l∗(R1, . . . ,Rn) be a finite
reduction, with Ri : si ◦−→−→ ti. Then:

l∗(R1, . . . ,Rn) ; ρ(t1, . . . , tn) ≈ ρ(s1, . . . , sn) ; r∗(R1, . . . ,Rn).

Proof. By induction on the length of R. If R is empty, then si = ti and
the result follows immediately. Otherwise, let ϕ be the last step of R, that
is: R = R′ ; ϕ, where R′ = l∗(R′1, . . . ,R′n) and ϕ = l(ϕ1, . . . , ϕn), with
R′i : si ◦−→−→ t′i and ϕi : t′i ◦−→ ti. We perform one permutation:

R′ ; l(ϕ1, . . . , ϕn) ; ρ(t1, . . . , tn) ≈ R′ ; ρ(t′1, . . . , t
′
n) ; r(ϕ1, . . . , ϕn)

By the induction hypothesis:

l∗(R′1, . . . ,R′n) ; ρ(t′1, . . . , t
′
n) ≈ ρ(s1, . . . , sn) ; r∗(R′1, . . . ,R′n)

which proves the desired result.

Lemma 5.3.11. Let R be a (finite or infinite) reduction.

(i) for non-empty R: Lmc(R) ; Nlmc(R) ≈ R;

(ii) for all n, StdnS(R) ≈ R.

87

5. Standardization

Proof. (i) By induction on the depth of R. Since R is non-empty, Case 2A
functions as base case, here. We distinguish the cases of Def. 5.3.1 (Rk, S and
Sk are defined in the text of the definition):

• Cases 1A and 1B. By the induction hypothesis,

Rk ≈ Lmc(Rk) ; Nlmc(Rk).

By Lemma 5.3.5 it is the case that |Nlmc(Rk)| = |Rk| and therefore we
can apply Lemma 5.3.9, yielding the desired result.

• Case 2A. Directly from Lemma 5.3.10, which can be applied because, in
the definition, S is finite by construction.

• Case 2B. By the induction hypothesis,

Rk ≈ Lmc(Rk) ; Nlmc(Rk).

By Lemma 5.3.5 it is the case that |Nlmc(Rk)| = |Rk| and therefore we
can apply Lemma 5.3.9, easily yielding the required result.

(ii) By induction on n. If n = 0, StdnS(R) = R, so the desired result follows
trivially. Otherwise:

StdnS(R) = Lmc(R) ; Stdn−1
S (Nlmc(R)).

By the induction hypothesis, Stdn−1
S (Nlmc(R)) ≈ Nlmc(R). Then the desired

result follows from (i).

Lemma 5.3.12. Let R be a (finite or infinite) reduction. For each n ∈ N:

(i) Rules(Stdn+1
S (R)) ⊆ Rules(StdnS(R));

(ii) D(Stdn+1
S (Rω)) ≤ D(StdnS(Rω));

Proof. Both items follow by induction on on the depth of R, using the fact
that for each rule l = λx.l0 → λx.r0 = r, l0 must be a pattern containing all
of x. By this fact all rule symbols and labels in r(ϕ) also appear in l(ϕ), so
that no ‘new’ rule symbols and labels are created in Case 2A of Def. 5.3.1.

We prove that the Selection Standardization procedure terminates when given
relatively finite reductions as input. The proof of this theorem given here
relies on the property of Finite Family Developments proved in the previous
chapter. We conjecture that an alternative proof can be found based on the
strictly weaker property of Finite Developments.

Theorem 5.3.13. Let R be a reduction. Then StdS(R) is finite if and only if
R is relatively finite. In fact, if R is relatively finite, then StdS(R) = StdnS(R)
for some n ∈ N.

88

Selection standardization

Proof. (⇒): Follows from the fact that for a relatively infinite R, Lmc(R) is
non-empty and Nlmc(R) is relatively infinite. This is the case, because at
each step of the procedure, only a finite prefix of the reduction is considered,
and the rest is left as-is.

(⇐): Assume that R is relatively finite. Let R0 contain only the non-
empty steps of R. Thus, R0 is finite. Also, since R0 =/1 R, it follows from
Lemma 5.3.4, StdS(R0) = StdS(R). So, it remains to show that StdS(R0) is
finite.

We construct the reduction graph G which has as edges all non-empty
steps that occur in some reduction StdnS(R0) for arbitrary n, and as vertices
the sources and targets of these steps. Because R0 is finite, only finitely many
rules are applied in it. So, by Lemma 5.3.12 (i), only finitely many rules occur
in G. Since all terms are finite by definition, this means that G is finitely
branching.
R0 is finite, and therefore there is a bound on its labels. In fact, by

Lemma 5.3.12, there is a bound ` ∈ N on the labels of each step in G, and
thus a bound on the labels of each path of G. Therefore, by Finite Family
Developments (Theorem 4.5.8) all paths of G are finite. Since StdS(R0) is one
of these paths, it, too, is finite.

By König’s Lemma (Lemma 2.2.4) G is finite, and therefore there must be
a longest path. Let n be the length of this path. Since Lmc(R) is non-empty
for non-empty R, it must be the case that StdnS(R0)[n] = StdS(R0).

Proposition 5.3.14. Let R be a relatively finite reduction. StdS(R) ≈ R

Proof. Follows from Lemma 5.3.11 and Theorem 5.3.13.

Theorem 5.3.15. Let R be a (finite or infinite) reduction:

(i) for non-empty R: Nlmc(R) is standard for Lmc(R);

(ii) StdnS(R)[n] is a standard reduction, for all n ∈ N;

(iii) Std(R) is a standard reduction.

Proof. (i) By induction on the depth of R. Because R is non-empty by
assumption, Case 2A must at some point occur, and function as base cases.
We distinguish the following cases from the definition (Sk is defined in the
text of the definition):

• Cases 1A and 1B. These follow easily from the induction hypothesis.

• Case 2A. In this case, Lmc(R) is a head step, so Nlmc(R) is standard
for it.

• Case 2B. The required result follows from the following two facts: first,
by the induction hypothesis, Nlmc(Sk) is standard for Lmc(Sk); and
second, i 6= k, the Si occur either below Lmc(R), or Lmc(R) contributes
to them.

89

5. Standardization

(ii) By induction on n we prove that for each step of StdnS(R)[n] it holds
that the rest of the reduction is standard for it. If n = 0 or R is empty, then
the claim follows trivially, because ε is standard by definition.

Otherwise, suppose that n = n′ + 1. Let R′ = Stdn
′

S (Nlmc(R)). Then
StdnS(R) = Lmc(R) ; R′. By Lemma 5.3.11 R′ ≈ Nlmc(R), and thus it
follows from (i) and Lemma 5.2.4 that R′ is standard for Lmc(R) and thus, in
particular, R′[n′] is standard for it. Furthermore, by the induction hypothesis
each step of R[k′]′ is standard for the rest of the reduction, which concludes
the proof.

(iii) Let S = Std(R). Suppose S = ϕ1, ϕ2, . . . is not standard. Then there is
some anti-standard pair ϕi, ϕj , where i < j. But now Std jS(R)[j] = ϕ1, . . . , ϕj
is not a standard reduction, which contradicts (ii).1

The fact that each relatively finite reduction has a permutation equivalent
standard reduction is now a trivial consequence of the previous results:

Corollary 5.3.16. For every relatively finite reduction there exists a permu-
tation equivalent standard reduction.

Proof. Let R be a relatively finite reduction. By Theorem 5.3.13 and The-
orem 5.3.15, StdS(S) is a standard reduction, and by Prop. 5.3.14, it is
permutation equivalent to R.

5.3.3 Uniqueness of standard reductions

In this section we prove that for permutation equivalent finite reductions the
Selection Standardization procedure yields the same standard reduction.

Lemma 5.3.17. Let R,S be finite, non-empty reductions. If R ≈ S, then
Lmc(R) = Lmc(S) and Nlmc(R) ≈ Nlmc(S).

Proof. By definition, it holds that R ≈ S if and only if R ⇔∗P S. We prove
the lemma by induction on the inference of R ⇔∗P S. If R ⇔∗P S is derived by
reflexivity, symmetry or transitivity, the result follows easily. Otherwise, one
of the equivalences of the definition has been applied, that is, R = T ; G ; U
and S = T ;D ; U , for some equivalence G ⇔ D.

We prove the lemma by induction on the depth of R. Suppose R =
C∗[R1, . . . ,Rn], for some non-empty base context C containing no rule symbols.
In this case it also holds that S = C∗[S1, . . . ,Sn] and, whichever equivalence
rule was applied, Ri ⇔∗P Si. So, by the (nested) induction hypothesis,

Lmc(Ri) = Lmc(Si) and Nlmc(Ri) ≈ Nlmc(Si).

One of the Cases 1A and 1B of the definition must apply. In both cases it is
easily seen that Lmc(R) = Lmc(S) and Nlmc(R) ≈ Nlmc(S).

1Note that, if S is finite, a more direct proof is possible. By Theorem 5.3.13, S = Stdm
S (R)

for some m, and then the claim follows directly from Theorem 5.3.15(ii).

90

Selection standardization

Otherwise R and S both contain at least one head step. If the first head
step occurs before or after G (and D), the result follows easily. If the first head
step occurs within G, then one of the (flat-l) or (flat-r) equivalences has been
applied, and G = ρ(ϕ), where ϕi : si ◦−→ ti. Suppose the (flat-l) equivalence
was applied, so D = ρ(s), r(ϕ). According to the definition there are two
possible cases:

• If T = l∗(T1, . . . , Tn), for reductions Ti : ui ◦−→−→ si, then Case 2A of the
definition applies and we have:

Lmc(R) = ρ(u1, . . . , un)
Nlmc(R) = r∗(T1, . . . , Tn) ; r(ϕ1, . . . , ϕn) ; U

Lmc(S) = ρ(u1, . . . , un)
Nlmc(S) = r∗(T1, . . . , Tn) ; r(s1, . . . , sn) ; r(ϕ1, . . . , ϕn) ; U

It is easy to see that this satisfies the requirements of the lemma, because
r(s1, . . . , sn) = 1.

• Otherwise, Case 2B applies. In this case, the result follows from the
induction hypothesis and the definition in much the same way as in
Cases 1A and 1B.

The case that the (flat-r) equivalence rule was applied, is similar to the
above.

Proposition 5.3.18. Let R,S be finite reductions. If R ≈ S, then it holds
that StdS(R) = StdS(S).

Proof. By induction on k we prove that StdkS(R)[k] = StdkS(S)[k]. In the
base case, k = 0, and StdkS(R)[k] = ε = StdkS(S)[k]. If k = k′ + 1, then, by
definition, StdkS(R)[k] = Lmc(R) ; Stdk

′

S (Nlmc(R))[k′]. By Lemma 5.3.18:

Lmc(R) = Lmc(S) (?)
Nlmc(R) ≈ Nlmc(S) (??)

By (??) we can apply the induction hypothesis, yielding:

Stdk
′

S (Nlmc(R))[k′] = Stdk
′

S (Nlmc(S))[k′] (???)

By (?) and (???) we have:

StdkS(R)[k]

= Lmc(R) ; Stdk
′

S (Nlmc(R))[k′]

≈ Lmc(S) ; Stdk
′

S (Nlmc(S))[k′]

= StdkS(S)[k]

The lemma follows from this and Theorem 5.3.13, which ensures that, for an
arbitrary reduction R, Std(R) = StdkS(R), for some k.

91

5. Standardization

Note that this is not a proof that each permutation equivalence class of
reductions contains at most one standard reduction: although it does show that
the Selection Standardization procedure yields the same standard reduction for
permutation equivalent reductions, it does not exclude the possibility that some
permutation equivalence class of reductions does contain a second standard
reduction which will never be obtained by the Selection Standardization
procedure. The stronger claim is true, however, and will be proved in the next
section, where an alternative standardization procedure is investigated.

5.4 Inversion standardization

In this section we explore a different method of finding standard reductions.
This standardization procedure corresponds to Klop’s strong standardization
[25], but is called Inversion Standardization here, after Van Oostrom &
De Vrijer [43], because of its resemblance to the inversion sort algorithm.
In inversion sort, sometimes also called exchange sort, a list is sorted by
exchanging adjacent list elements which are in the wrong order. Bubble sort,
cocktail-shaker sort and gnome sort are specific implementations of inversion
sort. Similarly, the Inversion Standardization procedure transforms a given
reduction into a permutation equivalent standard one by non-deterministically
exchanging adjacent (modulo inversion of steps which are parallel to each
other) non-standard steps. However, because, in the standardization process
(residuals of) redex patterns may be duplicated and nested, auxiliary work
must be done to ‘serialize’ and ‘un-nest’ the steps of the reductions. Selection
Standardization can be seen as a specific strategy for Inversion Standardization,
viz. the strategy that iteratively permutes the leftmost-outermost step of the
reduction to the front.

5.4.1 The standardization procedure

The Inversion Standardization algorithm is defined by a meta-rewrite system
operating on reductions, the rules of which are carried out modulo the (par)
equation of Def. 3.2.1. The normal forms of this system are then normalized
with respect to a rewrite system which orders the parallel steps from left to
right. All rules are instances of rules of permutation equivalence, or derived
rules thereof.

Again, the major difficulty of the transformation of the procedure from the
first-order to the higher-order case, is proving its termination. The problem is
again that in first-order term rewriting, the residuals of two parallel, un-nested
redexes are still un-nested, a fact which does not hold in higher-order rewriting.
This makes it more difficult to find a reduction order in which each step of
the meta-rewrite system strictly decreases the reduction. See also pag. 82.

Recall that a base context is a context in which the arguments of holes
do not contain holes themselves. This means that such contexts can be used
to distinguish nested and parallel subterms: if C is 2-ary base context, the

92

Inversion standardization

subterms M,N of C[M,N] do not occur nested. This fact is useful for defining
the meta-rewrite system:

Definition 5.4.1 (Inversion Standardization).

(i) Let the rewrite systems (on reductions) ⇒Std contain the following rules:

C[l(ϕ)] , C[ρ(t)]⇒ C[ρ(s)] , C[r(ϕ)] (std)
C[ρ(ϕ)]⇒ C[ρ(s)] , C[r(ϕ)] (flat)

C[ϕ1, . . . , ϕn]⇒ C[ϕ1, s2, . . . , sn] , C[t1, ϕ1, . . . , ϕn] (ser)
1⇒ ε (unit)

where C is a base context containing no rule symbols, ρ : l → r and
ϕ(i) : s(i) ◦−→ t(i). In the (std) and (flat) rules at least one of the ϕi is
required to be non-empty, while in the (ser) rule all ϕi are required to
be non-empty and n ≥ 2.

The rewrite rules are applied modulo the equivalence relation ≈par gen-
erated by the equation:

C[s, ψ] , C[ϕ, v] ≈ C[ϕ, u] , C[t, ψ] (par)

(ii) The rule of the system ⇒LR is the (par) equation oriented from left to
right:

C[s, ψ] , C[ϕ, v]⇒ C[ϕ, u] , C[t, ψ] (par)

where C is a base context containing no rule symbols and ϕ : s ≥ t and
ψ : u ≥ v are non-empty proof terms.

(iii) We use ⇒Std and ⇒LR to find an equivalent standard reduction of a
reduction as follows:

Std I(R) = S if R ⇒!
Std R0 and R0 ⇒!

LR S

where ⇒! denotes normalization w.r.t. ⇒.

The Std I(R) function of Def. 5.4.1 is not trivially well-defined: for that we
need that both ⇒Std and ⇒LR are terminating and confluent. This will be
proved in Sect. 5.4.2.

Note that the requirement that some (or all) of the ϕ(i), ψ(i) in the rules
of ⇒Std and ⇒LR are non-empty is required. Without this restriction, both
systems are trivially non-terminating. Consider for example the following
simple infinite reductions:

C[ρ(s)]⇒Std C[ρ(s)] , C[r(s)]⇒Std · · ·
C[s, u] , C[s, u]⇒LR C[s, u] , C[s, u]⇒LR · · ·

Before proving well-definedness and correctness of the algorithm, let’s
review some examples of how the algorithm works:

93

5. Standardization

Example 5.4.2. Consider one-rule hrs:

µ : mu(λx.z(x))→ z(mu(λx.z(x)))

of Ex. 2.4.15 and let the multistep µ(λx.ρ(x)) be given. We apply the stan-
dardization procedure to this multistep:

µ(λx.ρ(x))
⇒(flat) µ(λx.f(x)) , ρ(mu(λx.ρ(x)))
⇒(flat) µ(λx.f(x)), ρ(λx.mu(λx.f(x))), g(λx.mu(λx.ρ(x)))

The result is in normal form w.r.t. ⇒Std and ⇒LR.

Example 5.4.3. Let the following hrs be given:

ρ : let(λx.z(x), y)→ z(y)
θ : f(x)→ g(x)
η : a→ b

and consider the reduction let(λx.f(x), η) ; let(λx.θ(x), b) ; ρ(λx.g(x), b) from
let(λx.f(x), a) to g(b). Then a ⇒Std-reduction of this reduction looks like:

let(λx.f(x), η) , let(λx.θ(x), b) , ρ(λx.g(x), b)
⇒(std) let(λx.f(x), η) , ρ(λx.f(x), b) , θ(b)
⇒(std) ρ(λx.f(x), a) , f(η) , θ(b)
⇒(std) ρ(λx.f(x), a) , θ(a) , g(η)

The result is in normal form w.r.t. ⇒Std and ⇒LR.

Example 5.4.4. Let the following hrs be given:

ζ : h(λx1x2.z(x1, x2), y)→ z(y, y)
η : f(x, b)→ x

θ : a→ b

Consider the non-standard reduction

h(λxy.f(x, y), θ) , ζ(λxy.f(x, y), b) , η(b).

We obtain the following meta-reduction starting from here:

h(λxy.f(x, y), θ) , ζ(λxy.f(x, y), b) , η(b)
⇒(std) ζ(λxy.f(x, y), a) , f(θ, θ) , η(b)
⇒(ser) ζ(λxy.f(x, y), a) , f(θ, a) , f(b, θ) ; η(b)
≈par ζ(λxy.f(x, y), a) , f(a, θ) , f(θ, b) , η(b)
⇒(std) ζ(λxy.f(x, y), a) , f(a, θ) , η(a) , θ

The result is in normal form w.r.t. ⇒Std and ⇒LR.

94

Inversion standardization

In the following example it is shown that the definition does not have any
difficulties with non-orthogonal, even non-confluent hrss. The reason is that
we standardize reductions which are found beforehand. In other words, in
cases that to redexes overlap, it is already decided which of the two will be
contracted.

Example 5.4.5. Consider the following hrs:

ρ : h(λx.f(x), y)→ y

θ : h(λx.g(x), y)→ b

η : f(x)→ g(x)

We standardize the following two reductions from h(λx.f(x), f(a)) to normal
form:

h(λx.f(x), η(a)) , ρ(g(a))
⇒(std) ρ(f(a)) , η(a)

h(λx.f(x), η(a)) , h(λx.η(x), g(a)) , θ(g(a))
≈par h(λx.η(x), f(a)) , h(λx.g(x), η(a)) , θ(g(a))
⇒(std) h(λx.η(x), f(a)) , θ(f(a))

5.4.2 Existence and uniqueness of standard reductions

In this section we prove that each reduction has an equivalent standard
reduction, by showing that the procedure given above is well-defined and yields
standard reductions. Contrary to the section about selection standardization,
here we do not merely prove that the procedure yields the same standard
reductions for permutation equivalent reductions; because we show both
termination and confluence of the procedure, and because of the fact that the
normal forms of the meta-rewrite system exactly correspond to the standard
reductions, we also prove that each permutation equivalence class contains
precisely one standard reduction.

Showing well-definedness amounts to proving termination and confluence of
both the⇒Std and the⇒LR rewrite systems. First we show, that permutation
equivalence is actually equal to convertibility in the inversion standardization
meta-rewrite system:

Lemma 5.4.6. (⇒Std ∪ ⇒−1
Std ∪ ≈par)∗ = ≈.

Proof. (⇒): Simple, because all rules/equivalences of both ⇒Std and ≈par are
either instances of, or can be simulated by, the equations from Def. 3.2.1.

(⇐): This is a bit more work, but it follows because each equation from
Def. 3.2.1 can be simulated with a (⇒Std ∪ ≈par)-conversion.

95

5. Standardization

Lemma 5.4.7. Let R,S be finite reductions. If R ⇒Std S then:

(i) Rules(R) ⊆ Rules(S);

(ii) D(R) ≤ D(S).

Proof. Follows from the facts that in all the rules of Def. 5.4.1 the variables
of the right-hand side are a subset of the variables of the left-hand side, and
in the (par) equation the rule symbols on both sides of the equation are the
same. Therefore, applying such a rule cannot ‘make up’ new labels or rule
symbols.

The restriction to finite reductions above is due to the fact that ⇒Std is only
defined for finite reductions. Extending the meta-rewrite relation to infinite
reductions is not difficult, and in this case the above lemma also holds: the
proof does not depend on the finiteness of R.

Remember that 〈〈R〉〉⇒Std means {S | R ⇒∗Std S}, that is the set of
reductions ⇒Std-reachable from R. We can show, with the help of Finite
Family Developments, that there is a bound on the length |·| of the reductions
in 〈〈R〉〉⇒Std .

Lemma 5.4.8. Let R be a finite reduction. There is an n ∈ N such that for
all S ∈ 〈〈R〉〉⇒Std , |S| ≤ n.

Proof. Let G be the graph which has as edges the non-empty steps occurring
in one of the S ∈ 〈〈R〉〉⇒Std , and as vertices the sources and targets of those
steps. By Lemma 5.4.7 (ii) there is a bound on the labels of the steps of
such S, and therefore there is a bound on the labels of each path in G. Thus,
by Finite Family Developments (Theorem 4.5.8), each path in G is finite.
By Lemma 5.4.7 (i), G is finitely branching, and thus we can apply König’s
Lemma (Lemma 2.2.4) and obtain that G is finite. Therefore, there is a bound
on the length of the paths of G and thus there is a bound on the number of
non-empty steps in the reductions S ∈ 〈〈R〉〉⇒Std . The result of the lemma
follows from that and the fact the number of empty steps in the reductions
S ∈ 〈〈R〉〉⇒Std are lower than or equal to the number of empty steps in R.

By the previous lemma, the following definition is well-defined:

Definition 5.4.9. Let R be a reduction. The standard length of R, written
|R|Std, is defined as the smallest n such that |S| ≤ n for all S ∈ 〈〈R〉〉⇒Std .

Lemma 5.4.10. Let R,S be finite reductions. Then:

|R ; S|Std ≥ |R|Std + |S|Std.

Proof. Let R′,S ′ be maximal (w.r.t. length) reductions in 〈〈R〉〉⇒Std and
〈〈S〉〉⇒Std , respectively. Then R ;S ⇒∗Std R′ ;S ′ and thus R′ ;S ′ ∈ 〈〈R ;S〉〉⇒Std .
Therefore:

|R ; S|Std ≥ |R′ ; S ′| = |R′|+ |S ′| = |R|Std + |S|Std.

96

Inversion standardization

The following corollary is a direct consequence of the above lemma:

Corollary 5.4.11. Let R be a finite reduction, and ϕ a non-empty multistep.
Then:

(i) |R|Std < |R ; ϕ|Std

(ii) |R|Std < |ϕ ;R|Std

Proof. Directly from Lemma 5.4.10 and the fact that |ϕ|Std ≥ 1 because none
of the rules has a non-empty step in the left-hand side and an empty one in
the right-hand side.

With the above auxiliary results, we can prove termination of the ⇒Std meta-
rewrite system. Note that the auxiliary results make use of the property
of Finite Family Developments, and thus so does (indirectly) the following
theorem.

Theorem 5.4.12. The rewrite system ⇒Std (modulo ≈par) is terminating.

Proof. Before we begin the actual proof, we define the rule length of a step
ϕ, written #R(ϕ), as the number of rule symbols in ϕ. Furthermore, recall
that ϕ be called a head multistep if it is of the form ρ(ϕ1, . . . , ϕn), where ρ is
a rule symbol and the ϕi may contain other rule symbols.

Now, assume that ⇒Std is not terminating, and let

R ⇒Std R1 ⇒Std R2 ⇒Std · · ·

be a minimal (with respect to the length of the source term of the reduction
R) infinite meta-reduction from a finite reduction R.

Since R is finite, all R′ ∈ 〈〈R〉〉⇒Std are finite and can be uniquely written
as

R′ = S1 ; ϕ1 ; · · · ; Sn ; ϕn ; Sn+1

for some n ∈ N, where the ϕi are the head multisteps of R′ and the Si do not
contain any head multisteps. We associate with each reduction R′ ∈ 〈〈R〉〉⇒Std

the following value tuple:

V(R′) = 〈|S1|Std,#R(ϕ1), . . . , |Sn|Std,#R(ϕn), |Sn+1|Std〉.

Since < is well-founded on all its components and the number of head multi-
steps in the reductions is bounded (by Lemma 5.4.8 the length of the reductions
reachable from R is bounded, and thus also the number of head multisteps in
them), the lexicographic extension of < is well-founded on the tuples, and we
can order the reductions in 〈〈R〉〉⇒Std with this ordering.

Since a head step cannot be parallel to another step, all ≈par-steps occur
within the Si. Therefore, it holds that if R ≈par S, then V(R) = V(S). Now
we show, that a succession of⇒Std-steps will always eventually stricly decrease
the value of the reduction.

97

5. Standardization

Consider the (i− 1)th step of the infinite meta-reduction: Ri ⇒Std Ri+1,
and let Ri and Ri+1 be partitioned in the above way:

Ri = S1 ; ϕ1 ; · · · ; Sn ; ϕn ; Sn+1

Ri+1 = T1 ; ψ1 ; · · · ; Tn ; ψn ; Tn+1

where the ϕi and ψi are the head multisteps of Ri and Ri+1, respectively.
There are two possibilities.

• If the⇒Std-step does not involve a head step, it is the case that, for some
i ∈ {1, . . . , n+ 1}, Si ⇒Std Ti, and for all j 6= i, Sj = Tj . Additionally,
for all i ∈ {1 . . . n}, ϕi = ψi. Obviously, |Si|Std ≥ |Ti|Std, and thus
V(Ri) ≥lex V(Ri+1).
However, by the minimality assumption, such ⇒Std-steps cannot occur
infinitely many times after each other, because then an infinite meta-
reduction exists in which the object reductions have a smaller source.
So, at some point, the second case must occur.

• Suppose the ⇒Std-step involves a head step ϕk; this means that for all
i < k, ϕi = ψk and Si = Ti. We distinguish cases based on the⇒Std-rule
applied:

– (std): In this case we know that:

Sk ; ϕk = S ′k ; l(χ), ρ(t)⇒Std S ′k ; ρ(s), r(χ) = Tk ; ρ(s), r(χ)

for some rule ρ : l→ r multisteps χi : si ◦−→ ti.
It follows from Lemma 5.4.10, together with the assumption from
Def. 5.4.1 that at least one of the χi is non-empty, that:

|Sk|Std = |Tk ; l(χ)|Std > |Tk|Std

and therefore V(Ri) >lex V(Ri+1).
– (flat): In this case we know that Sk = Tk and

ϕk = ρ(χ)⇒Std ρ(s), r(χ) = ψk, r(χ)

for some rule ρ : l→ r multisteps χi : si ◦−→ ti.
Since one of the χj must be non-empty by definition, it holds that:

#R(ϕ) = #R(ρ(χ)) > #R(ρ(s))#R(ψk)

and therefore V(Ri) >lex V(Ri+1).
– (ser): Because of the requirement that n ≥ 2 in the application of

the (ser)-rule, the context cannot be empty and so the left-hand
side cannot be a head multistep.

– (unit): Since head multisteps cannot be empty, this case cannot
occur.

98

Inversion standardization

The above facts contradict the assumption that an infinite ⇒Std-reduction
exists, and therefore we must reject that assumption.

We are now going to prove that ⇒Std is also confluent. We could do this by
a critical pair analysis, but this is difficult because we are working modulo
≈par-equivalence. We chose the easy way out, and prove the property in a
somewhat weaker sense: if S1 ⇐Std R ⇒Std R2 we select StdS(R) as the
common reduct of S1 and S2. For this, we need the following auxiliary lemma:

Lemma 5.4.13. Let R,S be reductions.

(i) If R ⇒Std S, then StdS(R) = StdS(S).

(ii) R ⇒∗Std StdS(R).

Proof. (i) This follows immediately from Lemma 5.4.6 and Prop. 5.3.18.
(ii) The claim follows from the facts that, if R is empty, R = StdS(R),

and if R is non-empty, then

R ⇒∗Std Lmc(R) ; Nlmc(R). (?)

We prove (?) by induction on the depth of R. We distinguish the cases from
the definition (since R is non-empty by assumption, at some point Case 2A
must apply, which functions as the base case):

• Case 1A and 1B. In these cases, R = C∗[R1, . . . ,Rn]. Let k be the index
of the first of the Ri which is non-empty. If the left-most contracted
redex of Rk is part of a multistep containing at least two redexes,
then we perform as many (flat)- and (ser)-steps to isolate this redex,
yielding a reduction R′ = C∗[R′1, . . . ,R′n] such that R ⇒∗Std R′. By the
induction hypothesis, R′k ⇒∗Std Lmc(R′k) ; Nlmc(R′k). By construction,
Lmc(R′k) = Lmc(Rk) and Nlmc(R′k) = Nlmc(R′k), from which proving
the desired result is easy.

• Case 2A. In this case, R = l∗(S1, . . . ,Sn) ; ρ(ϕ1, . . . , ϕn) ; T . It is easy
to see that R ⇒∗Std ρ(s1, . . . , sn) ; r∗(S1, . . . ,Sn) ; T by a number of
applications of the (std)-rule.

• Case 2B. This case is analogous to cases 1A and 1B.

Theorem 5.4.14. The rewrite system ⇒Std (modulo ≈par) is confluent.

Proof. Since we have proved termination of⇒Std in Theorem 5.4.12, it suffices
to show local confluence here. Suppose

S1 ⇐Std R ⇒Std R2.

By Lemma 5.4.13(i),

StdS(S1) = StdS(R) = StdS(S2)

99

5. Standardization

and by Lemma 5.4.13 (ii),

S1 ⇒∗Std StdS(R)⇐∗(Std) S2,

as required.

Proposition 5.4.15. The rewrite system ⇒LR is complete.

Proof. In order to show completeness, we must show termination and conflu-
ence. The ⇒LR rewrite system sorts steps that are parallel to each other in
left-to-right order; the proof of completeness therefore closely follows the proof
of completeness of the inversion sort algorithm.

We begin by proving termination. Let R be a finite reduction. It is clear
from the definition of the⇒LR-rewrite system that it does not alter the number
of steps in the reduction, that is, if R ⇒∗LR S, then |R| = |S|. Given this fact,
the following ordering on reductions is well-founded on S ∈ 〈〈R〉〉⇒LR :

C[s, ψ] ;R >LR C[ϕ, u] ; S
ϕ ;R >LR ϕ ; S if R >LR S

where ϕ is a non-empty step in the first equation and a possibly empty step
in the second. Now, termination follows from the fact that if R ⇒LR S, then
R >LR S.

Given termination confluence follows from local confluence, which in turn
follows from the fact that there is one critical pair, which can be joined:

C[s1, s2, ϕ3] ; C[s1, ϕ2, t3] ; C[ϕ1, t2, t3]
⇒LR C[s1, ϕ2, s3] ; C[s1, t2, ϕ3] ; C[ϕ1, t2, t3]
⇒LR C[s1, ϕ2, s3] ; C[ϕ1, t2, s3] ; C[t1, t2, ϕ3]
⇒LR C[ϕ1, s2, s3] ; C[t1, ϕ2, s3] ; C[t1, t2, ϕ3]

C[s1, s2, ϕ3] ; C[s1, ϕ2, t3] ; C[ϕ1, t2, t3]
⇒LR C[s1, s2, ϕ3] ; C[ϕ1, s2, t3] ; C[t1, ϕ2, t3]
⇒LR C[ϕ1, s2, s3] ; C[t1, s2, ϕ3] ; C[t1, ϕ2, t3]
⇒LR C[ϕ1, s2, s3] ; C[t1, ϕ2, s3] ; C[t1, t2, ϕ3]

By the previous results, Std I(·) is actually a function, so each result is actually
unique. From this it follows that Def. 5.4.1 (iii) is well-defined. It remains to
show that the normal forms of the meta-rewrite system correspond exactly to
the standard reductions:

Proposition 5.4.16.

(i) If S is a standard reduction, it is a normal form w.r.t. ⇒Std and ⇒LR.

(ii) Normal forms w.r.t. ⇒Std and ⇒LR are standard reductions.

100

The Standardization Theorem and standardization equivalence

Proof. (i) Suppose R is a reduction which is not in normal form w.r.t. either
⇒Std or ⇒LR.

• If a (flat), (ser) or (unit) rule can be applied, then R has at least one
step with either more than one or zero rule symbols in it, and so is not
a proper reduction and thus not standard.

• If a (std) rule can be applied, then there are adjacent (modulo ≈par)
steps C[l(ϕ)] and ρ(t), which form an anti-standard pair.

• If a (par) rule can be applied, then there are adjacent steps C[s, ψ] and
C[ϕ, v], which form an anti-standard pair.

(ii) Let R be an arbitrary reduction. By Lemma 5.4.13 R ⇒∗Std StdS(R).
By Theorem 5.3.15, StdS(R) is a standard reduction, and therefore by item
(i) it is the normal form w.r.t. ⇒Std and ⇒LR.

5.5 The Standardization Theorem and standardization
equivalence

The main result of this chapter is the Standardization Theorem. Here, we
give its proof.

Theorem 5.5.1 (Standardization Theorem). For every finite reduction there
exists a unique, permutation equivalent, standard reduction. This standard
reduction is the same for permutation equivalent reductions.

Proof. Existence of standard reductions follows from Theorem 5.4.12, Theo-
rem 5.4.14 and Prop. 5.4.15 (well-definedness of Std I), Lemma 5.4.6 (the fact
that Std I produces equivalent reductions) and Prop. 5.4.16 (the fact that Std I

produces standard reductions). The claim of uniqueness in first sentence of the
theorem and the entire second sentence follow from the fact that confluence
in rewriting implies the Church–Rosser property.

Note that, Lemma 5.4.13, Selection Standardization and Inversion Standard-
ization produce the same results. In the following, we will therefore omit the
subscript and just write Std(R) for the equivalent standard reduction of R.

The Standardization Theorem provides an elegant way to formalize the
notion of equivalence of reductions: we call two reductions equivalent if they
have their unique equivalent standard reductions are the same.

Definition 5.5.2. Reductions R,S are standardization equivalent, written
R ≡ S, if Std(R) = Std(S).

Note that the = in the definition above denotes literal equality. The fact
that standardization and permutation equivalence are equivalent is an easy
corollary of the Standardization Theorem:

Corollary 5.5.3. Let R,S be finite reductions. R ≡ S if and only if R ≈ S.

101

5. Standardization

Proof. Follows directly from the definition and Theorem 5.5.1.

5.6 Non-local HRSs

In the previous sections we restricted our attention to local (that is linear and
fully extended) hrss. This is not without reason. In this section we show
by means of two counter examples that standardization of reductions of a
non-local hrs is problematic.

Example 5.6.1 (Non-fully-extended). Consider the following, non fully ex-
tended, hrs:

ρ : f(λx.y)→ g(y)
θ : h(x)→ a

and the reduction:

R : f(λx.h(x))→ f(λx.a)→ g(a)

So, R = f(λx.θ(x)) ; ρ(a). This reduction is not standard, according to our
definition, because the redex contracted in the first step is not to the left of
the redex contracted in the second step. However, the two steps cannot be
swapped: the first step removes the bound variable x, which is a prerequisite for
applying the second step. R does not have an equivalent standard reduction.

Example 5.6.2 (Non-linear). Consider the non-linear hrs:

ρ : f(x, x)→ x

θ : a→ b

and the reduction:
R : f(a, b)→ f(b, b)→ b

This reduction is not standard according to our definition. However, it is
not possible to swap the two steps because the first step makes sure that the
arguments of the function symbol f become equal, which is a prerequisite for
the second step to be applied. So, R does not have an equivalent standard
reduction.

5.7 Standardization of infinite reductions

The notion of standard reduction (Def. 5.2.1) can also be applied to infinite
reductions. However, the Standardization Theorem (Theorem 5.5.1) is limited
to finite reductions only. In this section we briefly investigate how much of
the Standardization Theorem can be retained for infinite reductions.

Inversion Standardization is defined by a rewrite system (which operates
on finite objects), and can therefore not be used with infinite reductions. In
the definition of Selection Standardization, on the other hand, we have made

102

Standardization of infinite reductions

sure that everything is well-defined for infinite reductions also (although, of
course, it will in practice not terminate). Still, it cannot be used to extend the
Standardization Theorem to infinite reductions in full, because Prop. 5.3.14
is limited to finite ones only. In fact, the Standardization Theorem does not
hold for infinite reductions, not even in the first-order case, as the following
counter example shows:

Example 5.7.1. Consider the following trs:

f(x)→ g(f(x))
a→ b

and the following non-terminating reduction sequence:

R : f(a)→ f(b)→ g(f(b))→ g(g(f(b)))→ · · ·

However, we have:

StdS(R) : f(a)→ g(f(a))→ g(g(f(a)))→ · · ·

Observe that the residuals of the redex contracted in the first step of R
are never contracted in any step of StdS(R) (the first step is, as it were,
postponed indefinitely). This is undesired in a reduction which is supposed to
be equivalent.

A different counter-example to the same claim, which is more complex but
not even head-normalizing, is presented as Ex. 4.1 in [22].

In this section we will prove a weaker version of the Standardization
Theorem which does hold for infinite reductions. First, we need to extend the
result of Lemma 5.3.11(ii) to the infinite notion of permutation equivalence.

Lemma 5.7.2. Let R be a (finite or infinite) reduction. For all n it holds
that StdnS(R) ≈∞ R.

Proof. Follows from the fact that the definition of StdnS(R) depends only on a
finite prefix ofR. We can take this finite prefix and then apply Lemma5.3.11(ii).

In order to weaken the Standardization Theorem, we can do one of three
things: weaken the notion of equivalence, weaken the notion of standard, or
drop the requirement that each reduction is actually equivalent to its standard
form. Here, we choose the last option.

Definition 5.7.3.

(i) A standard reduction S is a standard part of a reduction R, if for all
finite S ′ such that S ′ v S, there exists some S ′′ such that S ′ ; S ′′ ≈∞ R.

(ii) A standard approximation of R is a v-maximal element of the set of
standard parts of R.

103

5. Standardization

Theorem 5.7.4. Every reduction has a standard approximation.

Proof. What we prove is that, in fact, StdS(R) is a standard approximation
of R. First, we have to prove that StdS(R) is a standard part of R. We
already know from Theorem 5.3.15 that StdS(R) is standard. Furthermore,
by definition, the finite prefixes of StdS(R) are of the form StdnS(R)[n]. Thus
they are prefixes of StdnS(R), and by Lem. 5.7.2, StdnS(R) ≈∞ R.

Now we need to show that StdS(R) is a v-maximal element of the set
of standard parts of R. Suppose R has a standard approximation S such
that StdS(R) v S. If R is infinite, then so is StdS(R), and thus it must be
the case that S = Std(R). If R is finite, then the result follows from the
Standardization Theorem (Theorem 5.5.1).

Although we have established the existence of a standard approximation for
each reduction, we have not shown uniqueness. In fact, uniqueness does not
hold, as is witnessed by the following counter example (again, a first-order
example suffices):

Example 5.7.5. Consider the following trs:

f(x)→ f(x)
a→ a

and the following non-terminating reduction (contracted redexes are under-
lined):

R : f(a)→ f(a)→ f(a)→ f(a)→ · · ·

Both of the following reductions are standard approximations of R:

R1 : f(a)→ f(a)→ f(a)→ f(a)→ · · ·
R2 : f(a)→ f(a)→ f(a)→ f(a)→ · · ·

Although the previous negative result invalidates standardization for formaliz-
ing equivalence of reductions, it has other applications. For example, in [24],
an infinite standardization result is used to prove that the λx−-calculus [7] (a
λ-calculus similar to the λx-calculus defined in Sect. 4.3.1) preserves strong
normalization of the λ-calculus.

5.8 Related work

A standardization procedure for hrss was described previously by Van Oostrom
[40], however only sketchy. The inversion standardization procedure of the
present chapter fills in a lot of details for Van Oostrom’s procedure, among
which detailed proofs. The selection standardization procedure was, to my
knowledge, not previously described for hrss. Standardization is a well-known
property, and therefore standardization results have been obtained in many
guises for many different rewriting paradigms. In this section, we compare our
result to some of the related work. Comparable standardization results can

104

Related work

be divided in three categories: standardization results in other higher-order
rewriting paradigms, abstract standardization results and standardization
results which use similar methodology.

5.8.1 Standardization in other higher-order rewriting
paradigms

hrss are not the only higher-order rewriting paradigm. First, higher-order
functions can be formulated in the λ-calculus. In fact, the first standardization
results were obtained for the λ-calculus [10, 44]. Proving standardization for
the λ-calculus is relatively easy, because it is non-overlapping and left-normal.
Second, standardization theorems have also been proved for Combinatory
Reduction Systems (crss) [25, 26], a class of rewrite systems which is very
close to hrss; they can be seen as ‘second-order’ hrss, that is every variable
represents either an object or a function operating on objects. The current
work improves on those results in important aspects; see below.

1980: Klop. In his PhD dissertation, Klop [25] proves the Standardization
Theorem for the λ-calculus. He devises two methods to produce a standard
reduction for a given reduction: weak standardization, which works by finding
the step contracting the left-most redex, moving it to the front of the reduction
and then recursively applying the procedure to the rest of the reduction;
and strong standardization, which works by permuting steps which are in
the wrong order until a normal form is reached. The idea of defining the
second standardization procedure by a meta-rewrite system which operates on
reductions is also due to Klop. Klop also extends his standardization result
to left-normal, orthogonal crss. In contrast, the present result applies to all
(local) hrss: left-normality and orthogonality are not assumed.

2000–: Wells and Muller. In their working paper [55], Wells & Muller
prove a standardization result for crss. They use a variant of the strong
standardization procedure of Klop. Their notion of “standard reduction”,
however, does not take into account the fact that anti-standard steps do not
need to be directly adjacent to each other. As a result, it is not the case that
each class of equivalent reductions contains at most one standard reduction.
In contrast, standard reductions in this chapter are unique in their equivalence
class.

5.8.2 Abstract standardization results

Investigating standardization from an abstract, axiomatic point of view is an
interesting area of research because it uncovers general, syntax-independent
principles of standardization. Theoretically, abstract standardization results
apply to any rewriting paradigm for which it can been shown that the axioms
hold. In practice, however, proving that the axioms hold is not much easier than
proving the standardization theorem directly. Also, abstract standardization

105

5. Standardization

results typically provide standardization algorithms on a more abstract level,
making them much harder to implement for specific rewriting paradigms such
as hrss.

1992: Gonthier, Lévy and Melliès. In [16] an abstract standardization
theorem is proved from 5 axioms. The authors restrict their attention to
orthogonal rewrite systems, and prove that a unique (up to a “square equiv-
alence”, which corresponds to our ≈par) standard reduction exists in each
permutation equivalence class of reductions, by giving a standardization pro-
cedure which corresponds to Klop’s weak standardization. The axioms in the
paper are true for orthogonal hrss.

2005: Melliès. Melliès [33] extends the result of [16] to potentially non-
orthogonal rewrite systems. Additionally, he gives an axiomatization of
“2-dimensional transition systems”, which are comparable to what we call
“meta-rewrite systems”, and a method to obtain such a 2-dimensional transition
system when given an (abstract) rewrite system.

Melliès’ axioms for 1-dimensional transition systems do hold for hrss, but
his axioms for 2-dimensional transition systems do not apply directly to the
meta-rewrite system for inversion standardization. Already the first axiom,
which puts conditions on the shape of the meta-rewrite rules, does not hold!
The ‘problem’ seems to be that we use multisteps, and Melliès’ axiomatization
presupposes proper steps.

5.8.3 Standardization results with similar methodology

2002/2003: Van Oostrom and De Vrijer. Van Oostrom & De Vrijer
[42, 43] derive standardization results for first-order trss. In [42] only a
standardization procedure based on Klop’s strong standardization is inves-
tigated, up to permutation of parallel steps. In [43] both weak and strong
standardization procedures are defined.

In both works, the strong standardization procedure is defined by a meta-
rewrite system on proof terms. This is comparable to the approach followed in
this chapter. There are some notable differences, however. First, Van Oostrom
& De Vrijer use proof terms which include a composition operator, which may
be nested within a function symbol. Reductions can be represented by a single
proof term. Second, as a consequence, their meta-rewrite system is a rewrite
system on proof terms, rather than a meta-rewrite system on sequences of
proof terms, like ⇒Std in this chapter.

It is shown in Sect. 2.4.2 that this approach is not viable for higher-order
rewriting, because the possibility of nesting composition operators conflicts
with the presence of bound variables. To recuperate, in a sense, Van Oostrom
& De Vrijer’s proof terms are a bit more complex than ours, while their
meta-rewrite system is easier to state.

106

Discussion

5.9 Discussion

In this chapter we defined the notion of standard reduction and gave two
standardization procedures which find, given an arbitrary (finite) reduction
find a permutation equivalent standard one. Both procedures produce the
same output for finite reductions. Still, there are some notable differences:

• Inversion standardization is only defined on finite reductions. Selection
Standardization, on the other hand, is well-defined on infinite reductions.
The notion of permutation equivalence, however, is not trivially extended
to infinite reductions, and therefore the Standardization Theorem as
such does not hold. We spent some time discussing a possible solution
in Sect. 5.7.

• Selection Standardization is, in some sense, a particular strategy for
Inversion Standardization, viz. the strategy that iteratively swaps the
left-most step of the reduction to the start of the reduction. It is inter-
esting to further investigate possible other strategies and the differences
between them and Selection Standardization with respect to, for example,
efficiency.

107

Six

Residuals

6.1 Introduction

In this chapter we study residuals in hrss, with the ultimate goal of devel-
oping a third notion of equivalence of reductions besides permutation and
standardization equivalence (but other applications of residual theory will also
be briefly considered).

In general, two approaches to studying residuals can be identified. The
first focusses on specific redex occurrences and traces them along a reduction,
much in the same way as that positions were traced in Chapter 2. The second
approach takes into account entire reductions, and tries to give an answer
the following question: “What remains of a reduction after another reduction
starting from the same object has been performed?” Since the second approach
does not require the notion of “redex occurrence” to be formalized, it is more
suitable for building up the theory of residuals from an abstract, axiomatic
point of view towards a more applied one. For this reason, in this chapter we
take the second approach to investigating residuals.

The idea of the approach of this chapter is the following. Let R and S be
reductions. Intuitively, the residual of R after S, written R /S, should consist
of exactly those steps of R which are not in S. As a first example, consider
the (first-order) trs consisting of the rules:

d(x)→ f(x, x)
a→ b

and consider the following reductions:

R : d(a)→ f(a, a)→ f(b, a)→ f(b, b)
S : d(a)→ f(a, a)→ f(a, b)

The first step of both reductions is the same. Intuitively, the second step of S
contracts the redex in the second argument of f, and thus corresponds to the
third step of R (but note the steps are not equal, because their source is not

109

6. Residuals

the same). The second step of R does not correspond to any step in S, and
so R /S should consist of a step which corresponds to the second step of R:
R /S : f(b, a)→ f(b, b).

Even in first-order term rewriting, calculating residuals is a non-trivial task,
for two reasons. First, it is conceptually non-trivial to define what residuals are.
Even in a relatively simple rewriting paradigm as string rewriting, contracted
redexes may be replaced by strings which are strictly longer, causing other
redexes to be ‘pushed away’.

Second, performing a step may duplicate and erase the redexes of other
steps. For example, suppose we add the following rule to the rewrite system
above:

b→ c.

Consider the following two reductions:

T : d(a)→ d(b)→ d(c)→ f(b, b)
U : d(a)→ f(a, a)

Intuitively, we have

T /U : f(a, a)→ f(b, a)→ f(b, b)→ f(c, b)→ f(c, c).

Although, intuitively, T /U ‘does less work’ than T , the reduction T /U
contains more steps than T .

In higher-order rewriting, the problems caused by duplication are more
severe: now, copies of the same redex may get nested. Consider the orthogonal
hrs which consists of the following two rules:

µ : mu(λx.z(x))→ z(mu(λx.z(x)))
δ : d(x)→ f(x, x)

Consider the term s = mu(λx.d(x)). The rule µ can be applied to the whole
term and the rule ρ can be applied to the subterm d(x), so the following steps
exist from s:

ϕ : mu(λx.d(x))→ d(mu(λx.d(x)))
ψ : mu(λx.d(x))→ mu(λx.f(x, x))

The residual of ψ after ϕ is the reduction:

d(mu(λx.d(x)))
→ f(mu(λx.d(x)),mu(λx.d(x))
→∗ f(mu(λx.f(x, x)),mu(λx.f(x, x)))

in which we see that one copy of the ρ-redex duplicates another (nested) copy
of the ρ-redex.

This chapter is concerned with defining a residual operation for higher-
order multisteps. The outline is as follows. First, we introduce residual

110

Abstract residual theory

theory in an abstract, axiomatic way. Then we develop a residual operation
for higher-order reductions which satisfies the axioms of the abstract theory.
Finally, we present two important applications of the results of this chapter:
we give an alternative proof of confluence of orthogonal hrss and we define a
notion of equivalence of reductions.

Remark. The material in this chapter is based on [8].

6.2 Abstract residual theory

Residual theory is studied in, among others, [18, 19, 23, 29, 32]. In this section,
we present residuals in an abstract, axiomatic setting, partly following [53, 42],
which is, in turn, based on [51]. The plan for this section is as follows: first, in
Sect. 6.2.1, we present axioms, which must be satisfied by a residual operator
on steps of a certain rewrite system; then, in Sect. 6.2.2, we give a general way
of extending residual operators for steps to residual operators for reductions.

6.2.1 Residual systems

A residual system is a rewrite system with an additional residual operator and
a function mapping each term to an empty step from this term.

Definition 6.2.1. A residual system is specified by a triple 〈R, 1, /〉 where:

• R is an (abstract) rewriting system;

• 1 is a function from objects (of R) to steps, such that src(1a) = a =
tgt(1a); and

• /, the projection function, is a (total) function from pairs of coinitial
steps to steps, with src(ϕ/ψ) = tgt(ψ) and tgt(ϕ/ψ) = tgt(ψ/ϕ);

such that the following residual laws hold:

1a /ϕ = 1b
ϕ/ 1a = ϕ

ϕ/ϕ = 1b
(ϕ/ψ) /(χ/ψ) = (ϕ/χ) /(ψ /χ)

where, in all cases above, a = src(ϕ) and b = tgt(ϕ).

The result of projecting ϕ over ψ (that is ϕ/ψ) is called the residual of ϕ after
ψ. Steps in the range of 1 are called empty steps. We will, in practice, omit
the argument of 1, and just write 1 for any empty step; usually, the intended
one is determined by the context.

111

6. Residuals

In Fig. 6.1 we can see visually depicted the conditions to the source and
target of residuals: if ϕ,ψ are two coinitial1 steps, say from a to b and from a
to c, respectively, then there exist steps ϕ/ψ and ψ /ψ from c to d and from
b to d, respectively. This basic diagram can be used to build more complex
diagrams: by ‘iteratively’ drawing it, diagrams can be formed which give
intuitive insight into the meaning of the axioms. The fourth identity in the
definition above, for example, which is called the cube identity and is depicted
in Fig. 6.2, expresses that the order in which the projections are resolved, does
not matter.

•

• •

•

ϕ ψ

ψ /ϕ ϕ/ψ

Figure 6.1: Conditions
to sources and targets
of residuals.

•

•

•

•

•

•

•

•

(ϕ/ψ) /(χ/ψ) =
(ϕ/χ) /(ψ /χ)

ϕ/χ

ψ /χ
χ /ψ

ϕ/ψ

ϕ

ψ

χ

Figure 6.2: Cube axiom.

From Fig. 6.1, we easily obtain the following important theorem:

Theorem 6.2.2. If 〈R, 1, /〉 is a residual system, then R has the diamond
property.

Proof. By Fig. 6.1: let ϕ be a step from a to b and ψ a step from a to c. Then
ψ /ϕ is a step from b to some d and ϕ/ψ a step from c to the same object
d.

Note, that the diamond property does not hold for every rewrite system.
So, not every rewrite system can be used as the basis of a residual system.
However, the diamond property does hold for orthogonal hrss (and trss), if
we allow multisteps, as will be shown later.

1 In later sections we will restrict this even further, to coinitial and compatible steps.
Intuitively the notion of compatibility expresses that two steps can be performed indepen-
dently of each other. Later, it will be proved that it corresponds exactly to the notion of
orthogonality.

112

Abstract residual theory

6.2.2 Residuals of reductions

Above, residuals of steps are defined. We also want to define residuals for
reductions. For this, we use the notion of Abstract Rewriting System with
Composition (as defined in Def. 2.2.5).

Definition 6.2.3. A residual system with composition (RSC) is a triple
〈R, 1, /〉, such that:

• R is an ARS with composition,

• 〈R, 1, /〉 is a residual system, and

• for each step χ and composable steps ϕ,ψ with src(ϕ) = src(χ), it holds
that:

χ/(ϕ ; ψ) = (χ/ϕ) /ψ
(ϕ ; ψ) /χ = (ϕ/χ) ; (ψ /(χ ; ϕ)))

Again by using the diagram of Fig. 6.1 as the basic building block, we can
construct the diagram of Fig. 6.3, which depicts the identities of the definition
above.

•

•

•

•

•

•

ϕ

χ

ϕ/χ

(χ/ϕ) /ψ

ψ

χ/ϕ

(ψ /χ) /ϕ

ϕ ; ψ

(ϕ/χ) ; ((ψ /χ) /ϕ)

Figure 6.3: Axioms of residual systems with composition

Now we de define a canonical way to transform a residual system to
a residual system with compositions. Let an (abstract) rewriting system
R = 〈A,Φ, src, tgt〉 and a residual system R = 〈R, 1, /〉 be given. We define
the reflexive, transitive closure of R by: R∗ = 〈R∗, 1∗, /∗, ;〉, where:

• R∗ is the reflexive, transitive closure of R, as defined in Def. 2.2.5;

• 1∗ is the function which maps each object a to the empty reduction from
a to a; and

113

6. Residuals

• /∗ is defined in terms / by the following (meta-)rewriting system ⇒R:

1⇒ ε (unit)
ϕ/∗ ψ ⇒ ϕ/ψ (step)

R /∗(S1 ; S2)⇒ (R /∗ S1) /∗ S2 (comp-r)
(R1 ;R2) /∗ S ⇒ (R1 /

∗ S) ; (R2 /
∗(S /∗R1)) (comp-l)

where R,S (possibly with subscript) denote arbitrary reductions (se-
quences of steps), while ϕ,ψ denote arbitrary steps (reductions of length
1).

Note that the symbol 1 in the first meta-rewrite rule, by convention, denotes
any object in the range of the function 1. In this case, it is a single, empty step.
Also observe that the / symbol in the second rewrite rule of the meta-rewrite
system is already defined in the residual system R.

Example 6.2.4. Let R be the two-step reduction ϕ1, ϕ2 and S the one-step
reduction ψ. The residual of S after R is:

(ϕ1 ; ϕ2) /∗ ψ
⇒(comp-l) (ϕ1 /

∗ ψ) ; (ϕ2 /
∗(ψ /∗ ϕ1)

⇒∗(step) (ϕ1 /ψ) ; (ϕ2 /(ψ /ϕ1)

The final term is defined by the original residual system.

In Ex. 6.3.3 an example of the use of the above rewrite system together with
a previously defined residual operation on steps is given.

Proposition 6.2.5. The operator /∗ is well-defined, that is the rewrite relation
⇒R is confluent and terminating.

Proof. We use standard first-order rewriting theory in the course of this proof.
We begin by proving termination. This can be proved by semantic labelling
[57], cf. [53, Ex. 6.5.43]. As quasi-model for the rewrite system we take the
strictly positive integers with

|ϕ| = 1 |x ; y| = x+ y and |x /∗ y| = x.

We only label the symbol /∗, by the sum of the values of its arguments. The
resulting labelling is proved terminating with the recursive path ordering,
using the following precedence on the function symbols:

/∗

i

> /∗

j

> ; > ϕ

for all i, j such that i > j.
Given termination, by Newman’s Lemma, confluence follows from local

confluence, which in turn follows from the fact that there is one critical pair,

114

Abstract residual theory

which can be be joined:

(R1 ;R2) /∗(S2 ; S2)
⇒R ((R1 ;R2) /∗ S1) /∗ S2

⇒R ((R1 /
∗ S1) ; (R2 /

∗(S1 /
∗R1))) /∗ S2

⇒R ((R1 /
∗ S1) /∗ S2) ; ((R2 /

∗(S1 /
∗R1)) /∗(S2 /

∗(R1 /
∗ S1)))

(R1 ;R2) /∗(S2 ; S2)
⇒R (R1 /

∗(S1 ; S2)) ; (R2 /
∗((S1 ; S2) /∗R1))

⇒R ((R1 /
∗ S1) /∗ S2) ; (R2 /

∗((S1 ; S2) /∗R1))
⇒R ((R1 /

∗ S1) /∗ S2) ; ((R2 /
∗(S1 /

∗R1)) /∗(S2 /
∗(R1 /

∗ S1)))

This proves confluence.

Proposition 6.2.6. For any residual system R, its reflexive, transitive closure
R∗ is a residual system with composition.

Proof. The proof boils down to showing that the identities of Def. 6.2.1 and
Def. 6.2.3 hold, that is, for all reductions R,S, T :

1 /∗R ⇔∗ 1
R /∗ 1⇔∗ R
R /∗R ⇔∗ 1

(R /∗ S) /∗(T /∗ S)⇔∗ (R /∗ T) /∗(S /∗ T)

Let R be a reduction. The three unit identities of Def. 6.2.1 are easily proved
by induction on the length of R. If the length of R is 1, then the result follows
easily because then /∗ is defined solely in terms of /. Otherwise, R = R1 ;R2.
Then:

(i) 1 /∗(R1 ;R2)⇒ (1 /∗R1) /∗R2 ⇒∗IH 1 /∗R2 ⇒∗IH 1

(ii) (R1 ;R2) /∗ 1
⇒ (R1 /

∗ 1) ; (R2 ; (1 /∗R2))
⇒∗IH R1 ; (R2 ; (1 /∗R2))
⇒∗(i) R1 ;R2

(iii) (R1 ;R2) /∗(R1 ;R2)
⇒ ((R1 ;R2) /∗R1) /∗R2

⇒ ((R1 /
∗R1) ; (R2 /

∗(R1 /
∗R1))) /∗R2

⇒∗IH (1 ; (R2 /
∗ 1)) /∗R2

⇒∗(ii) R2 /
∗R2

⇒IH 1

115

6. Residuals

as required. In order to show that the fourth identity also holds, we use the
layered size | · |, as defined in [53]:

|ϕ| = 1
|R ; S| = |R|+ 1 + |S|
|R /∗ S| = |R|

where R,S are reductions and ϕ is a step (reduction of length 1). Now we
can prove the fourth identity by induction on the sum of the layered sizes of
R,S, T . Because ⇒R is confluent and terminating, we may assume that all
three are reductions and contain no /∗-symbols. If all of R,S, T are steps,
the result follows trivially because then /∗ equals / by definition. Otherwise,
one of R,S, T must contain at least two steps.

• If R = R1 ;R2, then we do:

((R1 ;R2) /∗ S) /∗(T /∗S)

⇒ ((R1/
∗S) ; (R2/

∗(S/∗R1))) /∗(T /∗S)

⇒ (R1/
∗S) /∗(T /∗S) ; ((R2/

∗(S/∗R1)) /∗ ((T /∗S) /∗(R1/
∗S)))

⇔∗IH (R1/
∗T) /∗(S/∗T) ; ((R2/

∗(S/∗R1)) /∗((T /∗R1)/∗(S/∗R1)))

⇔∗IH (R1/
∗T) /∗(S/∗T) ; ((R2/

∗(T /∗R1)) /∗((S/∗R1)/∗(T /∗R1)))

⇐ ((R1/
∗T) ; (R2/

∗(T /∗R1))) /∗(S/∗T)

⇐ ((R1 ;R2)/∗T) /∗(S/∗T)

• If S = S1 ; S2, then we do:

(R/∗(S1 ; S2)) /∗ (T /∗(S1 ; S2))

⇒∗ ((R/∗S1)/∗S2) /∗((T /∗S1)/∗S2)

⇔∗IH ((R/∗S1) /∗(T /∗S1)) /∗(S2/
∗(T /∗S1))

⇔∗IH ((R/∗T)/∗(S1/
∗T)) /∗(S2/

∗(T /∗S1))

⇐ (R/∗T) /∗ (S1/
∗T ; S2/

∗(T /∗S1))

⇐ (R/∗T) /∗((S1 ; S2)/∗T)

• The case that T = T1 ; T2 is the inverse of the previous case.

Theorem 6.2.7. If 〈R, 1, /〉 is a residual system, then R is confluent.

Proof. Let R = 〈R, 1, /〉. By Prop. 6.2.6, R∗ is a residual system, and thus
R∗ has, by Theorem 6.2.2, the diamond property. Therefore, by Lemma 2.2.11,
R is confluent.

In the following, we will often just write / for /∗, except when the distinction
is important. Usually, however, the distinction does not make a difference:
the second rule of the rewrite system ⇒R (see pag. 114) makes sure that /
and /∗ behave the same for steps, and / is not defined for reductions.

116

Residuals for higher-order multisteps

6.3 Residuals for higher-order multisteps

In this section we will develop a residual operation for higher-order multisteps.
In the first subsection we will define projection terms as terms which contain
so-called projection operators, and in the rest of the section we will associate
to each projection term a unique term, in such a way that the projection
operator calculates a projection operation which satisfies all the axioms of the
previous section.

6.3.1 Projection terms

We want to define the projection operation by syntactic means. To do so, we
add, for each type α, a new function symbol to the language of proof terms,
the projection operator:

/α : α→ α→ α.

Terms over this extended signature will be called projection terms.2 Note that
the arity of /α depends on the type α: ar(/α) = 2 + ar(α). We will write

(t1 /α t2)(t3, . . . , tn) for /α(t1, t2, . . . , tn).

Usually, t3, . . . , tn are just bound variables. If this is the case, we will often
refrain from writing the term in βη-normal form; instead, we write, for example,
(λx.ϕ) /α(λx.ψ), rather than its η-expansion λz./α(λx.ϕ, λx.ψ, z). This means
the function symbol /α will usually be written with only two arguments. We
make use of this fact and write it as a binary, infix symbol. In the following,
the subscript α of /α will usually be omitted.

The goal of the next subsections is to associate to each projection term a
unique proof term (that is a projection term containing no projection operators)
in such a way that the residual laws are satisfied.

6.3.2 A first attempt

In [53, Sect. 8.7], such unique projection terms are calculated (for first-order
rewriting) by means of a trs on projection terms: given a projection term
ϕ, typically of the form ϕ1 /ϕ2, the normal form ψ represents the proof term
for the residual of ϕ1 after ϕ2. Using a trs has the advantage that standard
rewriting theory can be easily applied. We have used meta-rewriting systems
to transform reductions in earlier chapters for the same reason.

However, in higher-order rewriting it is problematic to use an hrs on
projection terms to calculate residuals, due to nesting. The naive extension of
the system in [53] to the higher-order case is the following hrs on projection

2Projection terms are called slash-dot terms in [8].

117

6. Residuals

terms:

x(ϕ1, . . . , ϕn) / x(ψ1, . . . , ψn)⇒ x(ϕ1 /ψ1, . . . , ϕn /ψn)
f(ϕ1, . . . , ϕn) / f(ψ1, . . . , ψn)⇒ f(ϕ1 /ψ1, . . . , ϕn /ψn)
ρ(ϕ1, . . . , ϕn) / ρ(ψ1, . . . , ψn)⇒ r(ϕ1 /ψ1, . . . , ϕn /ψn)
ρ(ϕ1, . . . , ϕn) / l(ψ1, . . . , ψn)⇒ ρ(ϕ1 /ψ1, . . . , ϕn /ψn)
l(ϕ1, . . . , ϕn) / ρ(ψ1, . . . , ψn)⇒ r(ϕ1 /ψ1, . . . , ϕn /ψn)

λx.ϕ / λx.ψ ⇒ λx.(ϕ(x) /ψ(x))

The first five rules are directly from [53]. The last rule moves the projection
operator inside an abstraction.3 The proposed hrs, however, does not correctly
calculate residuals. Consider the hrs Mu:

µ : λz.mu(λx.z(x))→ λz.z(mu(λx.z(x)))
ρ : λx.f(x)→ λx.g(x)

and the two Mu-steps:

mu(λx.ρ(x)) : mu(λx.f(x))→ mu(λx.g(x))
µ(λx.f(x)) : mu(λx.f(x))→ f(mu(λx.f(x)))

Note that here mu is a function symbol, while µ is the name of the first rule
of the hrs. Now we see that:

mu(λx.ρ(x)) / µ(λx.f(x))
⇒ (λx.ρ(x) / λx.f(x))(mu(λx.ρ(x) / λx.f(x)))
⇒ ρ(mu(λx.ρ(x) / λx.f(x))) / f(mu(λx.ρ(x) / λx.f(x)))
⇒∗ ρ(mu(λx.f(x)))

The final proof term is incorrect because it witnesses a (multi)step from
f(mu(λx.(f(x)))) to g(mu(λx.(f(x)))), and thus this hrs on projection terms
does not satisfy the residual laws. Inspection of the above⇒-reduction reveals
that the problem is that instances of the same /-operator get nested, and
then ‘cancel each other out’ because ϕ/ϕ⇒∗ 1, while, in this case, we need
ϕ/ϕ⇒∗ ϕ. At first sight, the problem can be solved by introducing a new
function symbol ⊥, changing the sixth rule of the hrs to:

λx.ϕ(x) / λx.ψ(x)⇒ λx.(ϕ(⊥(x)) /ψ(⊥(x))).

and adding rules to make sure that ⊥(ϕ) /⊥(ϕ)⇒∗ ϕ, but this solution has
an ad-hoc flavor to it, and may have other nesting-related problems. We
will leave it to future research to investigate whether this approach offers
an elegant solution to the problem posed above. Here, we will define the
projection operation by another means.

3This rule is given in [8] as (λx.ϕ / λx.ψ)z ⇒ ϕ(z) /ψ(z). This is the same rule,
but transformed to βη-normal form (and, following the convention, removing leading
abstractions).

118

Residuals for higher-order multisteps

Residual rules:

ϕ1 /ψ1 < χ1 · · ·ϕn /ψn < χn
Rx

x(ϕ1, . . . , ϕn) / x(ψ1, . . . , ψn) < x(χ1, . . . , χn)

ϕ1 /ψ1 < χ1 · · ·ϕn /ψn < χn
Rf

f(ϕ1, . . . , ϕn) / f(ψ1, . . . , ψn) < f(χ1, . . . , χn)

ϕ1 /ψ1 < χ1 · · ·ϕn /ψn < χn
Rρ

ρ(ϕ1, . . . , ϕn) / ρ(ψ1, . . . , ψn) < r(χ1, . . . , χn)

ϕ1 /ψ1 < χ1 · · ·ϕn /ψn < χn
RR

ρ(ϕ1, . . . , ϕn) / l(ψ1, . . . , ψn) < ρ(χ1, . . . , χn)

ϕ1 /ψ1 < χ1 · · ·ϕn /ψn < χn
RL

l(ϕ1, . . . , ϕn) / ρ(ψ1, . . . , ψn) < r(χ1, . . . , χn)

ϕ/ψ < χ
Rλ

λx.ϕ / λx.ψ

ϕ < ϕ′ ψ < ψ′ ϕ′ /ψ′ < χ
r + t/

ϕ/ψ < χ

Replacement rules:

ϕ1 < ψ1 · · ·ϕn < ψn
replx

x(ϕ1, . . . , ϕn) < x(ψ1, . . . , ψn)

ϕ1 < ψ1 · · ·ϕn < ψn
replf

f(ϕ1, . . . , ϕn) < f(ψ1, . . . , ψn)

ϕ < ψ
replλ

λx.ϕ < λx.ψ

ϕ1 < ψ1 · · ·ϕn < ψn
replρ

ρ(ϕ1, . . . , ϕn) < ρ(ψ1, . . . , ψn)

Table 6.1: Residual operator for multisteps: the inference system Res.

6.3.3 Definition of the residual operator

We define the residual operation by defining a “simplification relation”, by
means of the inference system Res, which maps each projection term to a
proof term. Using an inferences system gives us more control of the ‘rewriting’
strategy and allows us to calculate subpropblems before they are duplicated
and nested. The inference rules of Res are listed in Table 6.1 on page 119.
The system proves judgements of the form ϕ < ψ, where ϕ is a projection
term and ψ a proof term. The most important rules of the system are the Rx,
Rf , Rρ, RR, RL and Rλ rules; they describe how the residual operator works on

119

6. Residuals

projection terms of different forms; the replacement rules, replx, replf , replλ
and replρ, ‘zoom in’ on the interesting parts of a projection term; and finally,
the r + t/ rule combines replacement of the /-symbol and transitivity.

We write Res `K ϕ < χ, or just `K ϕ < χ, to denote that Res-inference
K has ϕ < χ as its final conclusion. We write ` ϕ < χ or just ϕ < χ if the
inference is not important. If ϕ < χ, we say that projection term ϕ simplifies
to χ.

Example 6.3.1. Consider the hrs Mu and the steps

mu(λx.ρ(x)) and µ(λx.f(x))

from page 118. With the inference system we obtain the correct residual of
mu(λx.ρ(x)) after µ(λx.f(x)):

Rx
x /x < x

Rf
ρ(x)/f(x) < ρ(x)

Rλ
λx.ρ(x) / λx.f(x) < λx.ρ(x)

RL
mu(λx.ρ(x)) / µ(λx.f(x)) < ρ(mu(λx.ρ(x)))

The result is indeed the desired proof term:

ρ(mu(λx.ρ(x))) : f(mu(λx.f(x)))→ g(mu(λx.g(x))).

The next example shows the raison d’être of the replacement rules and the
r + t/ rule: they allow for projection symbols nested inside a context and other
projection symbols, respectively.

Example 6.3.2. Consider the hrs Mu from page 118. Let the following
projection term be given: f(µ(λx.f(x)) /mu(λx.(ρ(x) / f(x)))). The following
inference is used to calculate the proof term that the above projection term
simplifies to:

replx
x < x

replf
f(x) < f(x)

Rx
x /x < x

RR
ρ(x) / f(x) < ρ(x)

Rx
x /x < x

RL
f(x) / ρ(x) < f(x)

r + t/
f(x) /(ρ(x) / f(x)) < f(x)

Rλ
λx.f(x) / λx.(ρ(x) / f(x)) < λx.f(x)

RR
µ(λx.f(x)) /mu(λx.(ρ(x) / f(x))) < µ(λx.f(x))

replf
f(µ(λx.f(x)) /mu(λx.(ρ(x) / f(x)))) < f(µ(λx.f(x)))

In the next example we calculate the residual of one higher-order reduction
after another. For this, we combine the rewrite system ⇒R and the inference
system Res.

120

Residuals for higher-order multisteps

Example 6.3.3. Consider the hrs Mu from page 118. Let the following
reductions be given:

R : mu(λx.f(x))→ mu(λx.g(x))→ g(mu(λx.g(x)))
S : mu(λx.f(x))→ f(mu(λx.f(x)))→ g(mu(λx.f(x)))

We construct the sequences of proof terms that witness both reductions:

R = mu(λx.ρ(x)) ; µ(λx.f(x))
S = µ(λx.f(x)) ; ρ(mu(λx.f(x)))

We normalize R /S and S /R with the rewrite system⇒R (given on page 114).

R /∗ S = mu(λx.ρ(x)) ; µ(λx.f(x)) /∗ µ(λx.f(x)) ; ρ(mu(λx.f(x)))
⇒R ((mu(λx.ρ(x)) ; µ(λx.f(x))) /∗ µ(λx.f(x))) /∗ ρ(mu(λx.f(x)))
⇒∗R ((mu(λx.ρ(x)) / µ(λx.f(x)))

; (µ(λx.f(x)) /∗(µ(λx.f(x)) /mu(λx.ρ(x)))))
/∗ ρ(mu(λx.f(x)))

⇒∗R (ρ(mu(λx.ρ(x))) ; (µ(λx.f(x)) / µ(λx.f(x))))
/∗ ρ(mu(λx.f(x)))

⇒∗R (ρ(mu(λx.ρ(x))) ; 1) / ρ(mu(λx.f(x)))
⇒R ρ(mu(λx.ρ(x))) / ρ(mu(λx.f(x)))
⇒R f(mu(λx.ρ(x)))

and:

S /∗R = (µ(λx.f(x)) ; ρ(mu(λx.f(x)))) /∗(mu(λx.ρ(x)) ; µ(λx.f(x)))
⇒R ((µ(λx.f(x)) ; ρ(mu(λx.f(x)))) /∗mu(λx.ρ(x))) /∗ µ(λx.f(x))
⇒∗R ((µ(λx.f(x)) /mu(λx.ρ(x)))

; (ρ(mu(λx.f(x)) /∗(mu(λx.ρ(x)) / µ(λx.f(x)))))
/∗ µ(λx.f(x))

⇒∗R (µ(λx.f(x)) ; (ρ(mu(λx.f(x))) / ρ(mu(λx.ρ(x)))))
/∗ µ(λx.f(x))

⇒∗R (µ(λx.f(x)) ; 1) /∗ µ(λx.f(x))
⇒∗R 1

The reduction steps of the form ϕ/ψ ⇒R χ are due to simple inferences in
the Res inference system, for example the first one:

Rx
x /x < x

RR
ρ(x) / f(x) < ρ(x)

Rλ
λx.ρ(x) / λx.f(x) < λx.ρ(x)

RL
mu(λx.ρ(x)) / µ(λx.f(x)) < ρ(mu(λx.ρ(x)))

121

6. Residuals

With pr(K) we denote the principal rule of an inference K, that is the rule
which applied in the last step of the inference. Finally, the function dpt(K)
returns the depth of K, which, if we define that max ∅ = 0, can be recursively
defined as

dpt(K) = max{dpt(Ki) | 1 ≤ i ≤ n}+ 1.

where K1, . . . ,Kn are the immediate subinferences of K (if any). For example,
let K be the inference of Ex. 6.3.1. Then pr(K) = RL, dpt(K) = 4 and
`K mu(λx.ρ(x)) / µ(λx.f(x)) < ρ(mu(λx.ρ(x))).

It is easy to show that projection terms simplify to proof terms:

Lemma 6.3.4. If ϕ < χ, then χ is a proof term.

Proof. Suppose �K ϕ < χ. We use induction on dpt(K). The conclusion
follows because none of the inference rules of Res have projection symbols on
the right of the <-symbol, and thus χ must be a proof term.

First, we prove a few standardization-like properties of the inference system.
The next lemma proves the completeness of some sort of ‘inference strategy’:
given a projection term ϕ, in each case that more than one inference rule can
be applied to a desired goal of the form ϕ < χ, it is possible to deterministically
choose one of those rules such that a solution can be found. This property is
useful for two purposes:

• it allows us to prove (in Lemma 6.3.8) that each projection term simplifies
to a unique proof term;

• second, as a direct consequence of the property, it is, given a projection
term, decidable to which proof term it simplifies (we give an algorithm
to do this in Sect. 6.3.5).

Lemma 6.3.5. Suppose `K ϕ/ψ < χ.

(i) If ϕ = x(ϕ1, . . . , ϕn) and ψ = x(ψ1, . . . , ψn), then there exists an infer-
ence K′ with dpt(K′) ≤ dpt(K) such that `K′ ϕ/ψ < χ and pr(K′) = Rx.

(ii) If ϕ = f(ϕ1, . . . , ϕn) and ψ = f(ψ1, . . . , ψn), then there exists an infer-
ence K′ with dpt(K′) ≤ dpt(K) such that `K′ ϕ/ψ < χ and pr(K′) = Rf .

(iii) If ϕ = ρ(ϕ1, . . . , ϕn) and ψ = ρ(ψ1, . . . , ψn), then there exists an infer-
ence K′ with dpt(K′) ≤ dpt(K) such that `K′ ϕ/ψ < χ and pr(K′) = Rρ.

(iv) If ϕ = ρ(ϕ1, . . . , ϕn) and ψ = l(ψ1, . . . , ψn), then there exists an inference
K′ with dpt(K′) ≤ dpt(K) such that `K′ ϕ/ψ < χ and pr(K′) = RR.

(v) If ϕ = l(ϕ1, . . . , ϕn) and ψ = ρ(ψ1, . . . , ψn), then there exists an inference
K′ with dpt(K′) ≤ dpt(K) such that `K′ ϕ/ψ < χ and pr(K′) = RL.

Proof. We only prove item (iii); the other cases can be proved analogously. We
use induction on the depth of the inference. There are only two inference rules
which match the conclusion, Rρ and r + t/, so we distinguish the following two
cases:

122

Residuals for higher-order multisteps

• If pr(K) = Rρ, then we simply take K′ = K.

• If pr(K) = r + t/, then we know, by the induction hypothesis and the
observation that only the replρ-rule matches conclusions of the form
ρ(ϕ1, . . . , ϕn) < χ, that the following inference L exists:

· · ·ϕi < ϕ′i · · ·
replρ

ρ(ϕ) < ρ(ϕ′)

· · ·ψi < ψ′i · · ·
replρ

ρ(ψ) < ρ(ψ′)

· · ·ϕ′i /ψ′i < χi · · ·
Rρ

ρ(ϕ′) / ρ(ψ′) < r(χ)
r + t/

ρ(ϕ) / ρ(ψ) < r(χ)

Now, we construct the desired inference K′ as follows:

· · ·

ϕi < ϕ
′
i ψi < ψ

′
i ϕ′i /ψ

′
i < χi

r + t/
ϕi /ψi < χi · · ·

Rρ
ρ(ϕ) / ρ(ψ) < r(χ)

The relation < formalized by the inference system Res is not total, in the
sense that there are projection terms ϕ such that ϕ < χ is not defined for
any χ. First, of course, ϕ/ψ does not simplify to any proof term if ϕ and
ψ are not coinitial. For example, none of the rules have a conclusion of the
form f(ϕ′) / g(ψ′) < χ, where f and g are different function symbols and χ
is an arbitrary proof term. But, in fact, the relation is also not total if we
restrict our attention to projection terms of the form ϕ/ψ, where ϕ and ψ are
coinitial multisteps. Consider an hrs consisting of two rules ρ : f(x)→ g(x)
and θ : f(x)→ h(x). The reader can easily verify that there is no proof term
χ such that ρ(a) / θ(a) < χ. The system above is not confluent. But even for
confluent hrss, the simplification relation is not total. Let the hrs with the
single rule ρ : f(f(x))→ a be given. Then both f(ρ(a)) and ρ(f(a)) are proof
terms with source f(f(f(a))). Still, it is easily seen that no inference exists
with a conclusion of the form f(ρ(a)) / ρ(f(a)) < χ From now on, we restrict
our attention to projection terms for which the < relation is defined, that is
we restrict our attention to compatible projection terms:

Definition 6.3.6 (Compatible).

(i) A projection term ϕ is compatible if, for some proof term χ, an inference
exists with a conclusion of the form ϕ < χ.

(ii) A proof term ϕ is compatible with a proof term ψ, if the projection term
ϕ/ψ is compatible.
A reduction R is compatible with a reduction S if, for all T such that
R /∗ S ⇒∗R T , all projection terms in T are compatible.

(iii) An hrs H is compatible if all (proof terms witnessing) coinitial H-steps
are compatible.

123

6. Residuals

By definition, the simplification relation is total on compatible projection
terms. In Sect. 6.4 it is shown that the notion of compatibility naturally
corresponds to the notion of orthogonality.

Lemma 6.3.7. Let H be an hrs.

(i) H has pairs of incompatible reductions if and only if it has pairs of
incompatible multisteps.

(ii) H has pairs of incompatible multisteps if and only if it has pairs of
incompatible proper steps.

Proof. (i) Let R,S be incompatible reductions. By definition, there is a T
such that R /∗R′ ⇒∗R T and which has incompatible multisteps. So, H has
pairs of incompatible multisteps. The other direction is immediate, because a
multistep is also a reduction (of length 1).

(ii) By the facts that each proper step is a multistep by definition, and
that, given incompatible multisteps ϕ,ψ, it is easy to construct incompatible
proper steps ϕ′, ψ′ using Lemma 6.3.5.

In the following we will consider / as a binary function on proof terms, that
is, we will sometimes write ϕ/ψ = χ for ϕ/ψ < χ. That this function is
well-defined, and satisfies the residual laws, is proved in the next section.

6.3.4 Correctness of the residual operator

In this section we prove that the residual operator defined in the previous
section is well-defined (that is, it is actually a total function on compatible
projection terms) and satisfies the residual laws of Def. 6.2.1.

First, we prove that the operator is indeed a function. This is done by
showing that each projection term simplifies to a unique proof term, that is, if
ϕ < χ and ϕ < χ′, then χ = χ′. For this we use the standardization property
of Lemma 6.3.5.

Lemma 6.3.8. If ϕ < χ and ϕ < χ′, then χ = χ′.

Proof. Let `K ϕ < χ and `L ϕ < χ′. We prove the lemma by induction on
dpt(K) + dpt(L). If ϕ = ϕ1 /ϕ2, then, by Lemma 6.3.5, there exist inferences
K′,L′ such that `K′ ϕ < χ, `L′ ϕ < χ′ and pr(K′) = pr(L′). Otherwise, only
one rule of inference matches the desired conclusion, and so it must be the
case that pr(K) = pr(L). In this case, we take K′ := K and L′ := L.

In both cases the desired result follows from the induction hypothesis,
because dpt(K′) ≤ dpt(K) and dpt(L′) ≤ dpt(L), and thus the depth of the
direct subinferences is strictly smaller.

We define the relation ∼ to be the reflexive, transitive closure of <. By
Lemmas 6.3.4 and 6.3.8 it is the case that ϕ ∼ ψ if and only if there exists a
proof term χ such that ϕ < χ and ψ < χ. Proof terms can now be considered
the unique representatives of ∼-equivalence classes.

124

Residuals for higher-order multisteps

Lemma 6.3.9. ∼ is a congruence, that is, for projection terms ϕ,ψ it holds
that if ϕ ∼ ψ, we have:

(i) x(. . . , ϕ, . . .) ∼ x(. . . , ψ, . . .) and f(. . . , ϕ, . . .) ∼ f(. . . , ψ, . . .);

(ii) ρ(. . . , ϕ, . . .) ∼ ρ(. . . , ψ, . . .);

(iii) λx.ϕ ∼ λx.ψ;

(iv) ϕ/χ ∼ ψ /χ and χ/ϕ ∼ χ/ψ, for any χ.

Proof. Since ϕ ∼ ψ, there is a ξ such that ϕ < ξ and ψ < ξ. (i)-(iii) are then
easily proved by applying the appropriate replacement rule (resp. replx or
replf , replρ and replλ), using the facts that ϕ < ξ and ψ < ξ. The first part of
(iv) follows from the following two inferences:

ϕ < ξ χ < χ′ ξ / χ′ < ξ′

ϕ/χ < ξ′
ψ < ξ χ < χ′ ξ / χ′ < ξ′

ψ < χ/ ξ′

The second part of (iv) is similar.

In the next two lemmas we prove that the conditions of Def. 6.2.1 hold, that
is, that the requirements on sources and targets are satisfied, and the residual
laws hold.

Lemma 6.3.10. Sources and targets match, that is:

(i) src(ϕ/ψ) = tgt(ψ)

(ii) tgt(ϕ/ψ) = tgt(ψ /ϕ)

Proof. By induction of the inferences of ϕ/ψ < χ and ψ /ϕ < ξ we easily
show that src(χ) = tgt(ψ) and tgt(χ) = tgt(ξ).

Lemma 6.3.11. The residual laws hold, that is, for proof terms ϕ,ψ, χ:

(i) 1 /ϕ ∼ 1

(ii) ϕ/ 1 ∼ ϕ
(iii) ϕ/ϕ ∼ 1

(iv) (ϕ/ψ) /(χ/ψ) ∼ (ϕ/χ) /(ψ /χ)

Proof. (i) By induction on the length of ϕ. If ϕ = f(ϕ1, . . . , ϕn), then:

··· IH
ϕ1 / 1 < ϕ1 . . .

··· IH
ϕn / 1 < ϕn

Rf
f(ϕ1, . . . , ϕn) / f(1, . . . , 1) < f(1, . . . , 1)

where we note that f(1, . . . , 1) = 1. The cases that ϕ = x(ϕ1, . . . , ϕn),
ϕ = ρ(ϕ1, . . . , ϕn) and ϕ = λx.ϕ0 are handled in similar ways. (ii) and (iii)
are proved analogously.

125

6. Residuals

(iv) By induction on the total length of ϕ,ψ, χ. Suppose that we have ϕ =
f(ϕ1, . . . , ϕn), ψ = f(ψ1, . . . , ψn) and χ = f(χ1, . . . , χn). By Lemma 6.3.5
the following inferences must exist:

· · ·

··· K1

ϕi /ψi < ζ1,i · · ·

f(ϕ) / f(ψ) < f(ζ1)

· · ·

··· K2

χi /ψi < ζ
′
1,i · · ·

f(χ) / f(ψ) < f(ζ2)

· · ·

··· K3

ζ1,i / ζ
′
1,i < ξ1,i · · ·

f(ζ1) / f(ζ2) < f(ξ1)

(f(ϕ) / f(ψ)) /(f(χ) / f(ψ)) < f(ξ1)

· · ·

··· L1

ϕi /χi < ζ2,i · · ·

f(ϕ) / f(χ) < f(ζ1)

· · ·

··· L2

ψi /χi < ζ
′
2,i · · ·

f(ψ) / f(χ) < f(ζ2)

· · ·

··· L3

ζ2,i / ζ
′
2,i < ξ1,i · · ·

f(ζ2) / f(ζ ′2) < f(ξ2)

(f(ϕ) / f(χ)) /(f(ψ) / f(χ)) < f(ξ2)

Using the same subinferences, we prove (ϕi /ψi) /(χi /ψi) < ξ1:

··· K1

ϕi /ψi < ζ1,i

··· K2

χi /ψi < ζ
′
1,i

··· K3

ζ1,i / ζ
′
1,i < ξ1,i

(ϕi /ψi) /(χi /ψi) < ξ1

and similarly (ϕi /χi) /(ψi /χi) < ξ2. By induction hypothesis,

(ϕi /ψi) /(χi /ψi) ∼ (ϕi /χi) /(ψi /χi)

and therefore ξ1,i = ξ2,i. Thus:

(f(ϕ) / f(ψ)) /(f(χ) / f(ψ)) ∼ (f(ϕ) / f(χ)) /(f(ψ) / f(χ))

For the other triples of coinitial steps the proofs proceed in the same way.

We can now derive the following result:

Theorem 6.3.12. Let H be an hrs. The triple H = 〈H, 1, /〉 is a residual
system.

Proof. Directly by Lemma 6.3.10 and Lemma 6.3.11.

Confluence of compatible hrss follows directly from the previous theorem and
the fact that with the help of the residual operator is easy to find a common
reduct.

Corollary 6.3.13. A compatible hrs is confluent.

Proof. By Theorem 6.3.12 and Theorem 6.2.7.

126

Residuals for higher-order multisteps

6.3.5 Computing the simplification relation

In Sect. 6.3.3 only a specification of the simplification relation was given. Here,
we present an algorithm which, given a projection term ϕ, effectively computes
the proof term ϕ simplifies to. If a compatible projection term is given as
input, the proof term it simplifies to is printed; otherwise, the program prints
“incompatible”. The program is written in a (pseudo) functional programming
language that implements an eager reduction strategy.

Definition 6.3.14. The (recursive) function sim(π) on projection terms π,
is defined by the following program (in pseudo-code):

sim((ϕ1 /ϕ2) /ψ) = sim(ϕ′ /ψ)
where ϕ′ = sim(ϕ1 /ϕ2)

sim(ϕ/(ψ1 /ψ2)) = sim(ϕ/ψ′)
where ψ′ = sim(ψ1 /ψ2)

sim(x(ϕ1, . . . , ϕn) / x(ψ1, . . . , ψn)) = x(sim(ϕ1 /ψ1), . . . , sim(ϕn /ψn))
sim(f(ϕ1, . . . , ϕn) / f(ψ1, . . . , ψn)) = f(sim(ϕ1 /ψ1), . . . , sim(ϕn /ψn))
sim(ρ(ϕ1, . . . , ϕn) / ρ(ψ1, . . . , ψn)) = r(sim(ϕ1 /ψ1), . . . , sim(ϕn /ψn))
sim(ρ(ϕ1, . . . , ϕn) / l(ψ1, . . . , ψn)) = ρ(sim(ϕ1 /ψ1), . . . , sim(ϕn /ψn))
sim(l(ϕ1, . . . , ϕn) / ρ(ψ1, . . . , ψn)) = r(sim(ϕ1 /ψ1), . . . , sim(ϕn /ψn))
sim(λx.ϕ / λx.ψ) = λx.(ϕ/ψ)
sim(f(ϕ1, . . . , ϕn)) = f(sim(ϕ1), . . . , sim(ϕn))
sim(ρ(ϕ1, . . . , ϕn)) = ρ(sim(ϕ1), . . . , sim(ϕn))
sim(λx.ϕ) = λx.sim(ϕ)
if none of the above cases apply then

print “incompatible”

Basically, the algorithm does nothing more than apply the strategy that was
already hinted at in Lemma 6.3.5. However, it is useful anyway, because it
can also be applied to incompatible projection terms, thus providing a useful
method to analyse those as well.

Example 6.3.15. Consider the hrs Mu from Sect. 6.3.2. We apply the al-
gorithm of Def. 6.3.14 to the projection term mu(λx.ρ(x)) / µ(λx.f(x)). The
following is the trace of the algorithm:

sim(mu(λx.ρ(x)) / µ(λx.f(x)))
= (λz.z(mu(λx.z(x))))(sim(λx.ρ(x)/λx.f(x)))
= (λz.z(mu(λx.z(x))))(λx.sim(ρ(x)/f(x)))
= (λz.z(mu(λx.z(x))))(λx.ρ(sim(x/x)))
= (λz.z(mu(λx.z(x))))(λx.ρ(x))
�β ρ(mu(λx.ρ(x)))

We see that the result of the previous example is the same as the result of
Ex. 6.3.1. So why does the algorithm work, and doesn’t the rewriting system
presented in Sect. 6.3.2? The crucial difference is that the algorithm calculates

127

6. Residuals

subexpressions first, and does β-reductions afterwards, while the rewriting
system performs β-reductions first and only then calculates the subexpressions.
And even if this was fixed in the rewriting system, it would have to be equipped
with a depth-first strategy to make it correct.

Lemma 6.3.16. sim(ϕ) terminates for all projection terms ϕ.

Proof. Trivial, because the length of the arguments of recursive calls to sim
are strictly smaller.

Lemma 6.3.17.

(i) If ϕ is a compatible projection term, then sim(ϕ) = χ if and only if
ϕ < χ.

(ii) If ϕ is an incompatible projection term, then sim(ϕ) = “incompatible”.

Proof. (i) The ‘only if’ side is easily proved by recursively constructing an
inference K of ϕ < χ. The ‘if’ side follows easily by induction on the inference
of ϕ < χ, using Lemma 6.3.5.

(ii) From the fact that the cases of the program correspond exactly to the
conlusions of the inference rules.

6.4 Compatibility is orthogonality

In the previous sections we restricted our attention to compatible steps and
reductions. Compatibility, however, is not a part of the standard rewriting
jargon found in the literature. In this section, we prove that compatibility
coincides with the well-known property of orthogonality, which yields an
alternative proof of confluence of orthogonal hrss.

Proposition 6.4.1. An hrs is orthogonal if and only if it is compatible.

Proof. Let H = 〈Σ, R〉 be an hrs. Note that we restrict our attention to linear
hrss.

(⇒): Assume that H is not compatible. By Lemma 6.3.7 there are coinitial
proper steps ϕ,ψ that are incompatible. By Lemma 6.3.17, sim(ϕ/ψ) returns
“incompatible”. Without loss of generality, we assume that the projection
term ϕ/ψ was passed to sim in the last step before it terminated. Analysis
of the program reveals that either ϕ = ρ(s1, . . . , sn) and ψ 6= l(ψ1, . . . , ψn),
or ψ = ρ(s1, . . . , sn) and ϕ 6= l(ϕ1, . . . , ϕn), where ρ : l → r is a rule. We
consider only the first case; the second case is symmetrical.

This case can only occur if l = C[l0], and ψ = l′(ψ1, . . . , ψn), where
l′ = C[χ], for some proof term χ with a rule symbol as head. By induction on
l it is easily shown that ϕ and ψ are non-orthogonal.

(⇐): Assume that all coinitial multisteps are compatible. This implies, by
Lemma 6.3.7(ii), that all coinitial proper steps are compatible. Let ϕ,ψ be the
proof terms for such steps. There exists an inference K such that `K ϕ/ψ < χ.
We easily prove, by induction on K, that ϕ,ψ are orthogonal.

128

The projection order and projection equivalence

Confluence of orthogonal hrss was proved by Nipkow in [37]. Using the result
of the previous theorem, we give an alternative proof here by using residual
theory:

Theorem 6.4.2. An orthogonal hrs is confluent.

Proof. Directly by Prop. 6.4.1 and Cor. 6.3.13.

6.5 The projection order and projection equivalence

The projection operator provides an elegant way to (partially) order steps
and reductions, the projection order. In turn, the projection order gives
rise to an equivalence relation on reductions, projection equivalence. In this
section we define the projection order and projection equivalence and prove
that both relations have the expected properties. In the next section we will
prove that projection equivalence actually coincides with permutation and
standardization equivalence.

Definition 6.5.1. Let R = 〈R, 1, /〉 be a residual system. We define, for
R-steps ϕ,ψ:

ϕ . ψ if ϕ/ψ = 1
ϕ ' ψ if ϕ . ψ and ψ . ϕ

We also define: & = .−1. Note that finite reductions are the steps of ARSC’s,
and so we have also defined the relations . and ' on finite reductions.

Example 6.5.2. Consider the hrs Mu from page 118 and the reductions:

R = µ(λx.ρ(x))
S = µ(λx.f(x)), f(mu(λx.ρ(x))), ρ(mu(λx.g(x)))

First, we calculate R /S:

µ(λx.ρ(x)) /(µ(λx.f(x)), f(mu(λx.ρ(x))), ρ(mu(λx.f(x))))
⇒∗ ((µ(λx.ρ(x)) / µ(λx.f(x))) / f(mu(λx.ρ(x)))) / ρ(mu(λx.f(x)))
⇒ ρ(mu(λx.ρ(x))) / f(mu(λx.ρ(x)))) / ρ(mu(λx.f(x)))
⇒ ρ(mu(λx.g(x))) / ρ(mu(λx.g(x)))
⇒ 1

129

6. Residuals

Then, S /R:

(µ(λx.f(x)), f(mu(λx.ρ(x))), ρ(mu(λx.f(x)))) / µ(λx.ρ(x))
⇒ (µ(λx.f(x)) / µ(λx.ρ(x))) ;

((f(mu(λx.ρ(x))), ρ(mu(λx.f(x)))) /(µ(λx.ρ(x)) / µ(λx.f(x))))
⇒∗ 1 ; ((f(mu(λx.ρ(x))), ρ(mu(λx.f(x)))) / ρ(mu(λx.ρ(x))))
⇒ 1 ; (f(mu(λx.ρ(x))) / ρ(mu(λx.ρ(x)))) ;

(ρ(mu(λx.f(x))) /(ρ(mu(λx.ρ(x))) / f(mu(λx.ρ(x)))))
⇒∗ 1 ; 1 ; 1
⇒∗ 1

So, R ' S.

Example 6.5.3. Consider (again) the hrs Mu from page 118. Let the following
reductions be given:

R : mu(λx.f(x))→ mu(λx.g(x))→ g(mu(λx.g(x)))
S : mu(λx.f(x))→ f(mu(λx.f(x)))→ g(mu(λx.f(x)))
T : mu(λx.f(x))→ f(mu(λx.f(x)))→ f(mu(λx.g(x)))→ g(mu(λx.g(x)))

The witnesses to these reductions are as follows:

R = mu(λx.ρ(x)) ; µ(λx.f(x))
S = µ(λx.f(x)) ; ρ(mu(λx.f(x)))
T = µ(λx.f(x)) ; f(mu(λx.ρ(x))) ; ρ(mu(λx.g(x)))

From Ex. 6.3.3 we have already learned that R /S = f(mu(λx.ρ(x))) and
S /R = 1. Similar calculations show that R / T = 1 and R /R = 1. So, by
definition

R . S, R . T , T . R and R ' T .

Proposition 6.5.4.

(i) The relation . is a quasi-order, that is, it is reflexive and transitive.

(ii) The relation ' is an equivalence relation, that is, it is reflexive, symmetric
and transitive.

Proof. (i) Reflexivity follows directly from the residual law ϕ/ϕ = 1. For
transitivity, assume ϕ/ψ = 1 and ψ /χ = 1. Then

ϕ/χ = (ϕ/χ) / 1 = (ϕ/χ) /(ψ /χ) = (ϕ/ψ) /(χ/ψ) = 1 /(χ/ψ) = 1.

(ii) Reflexivity follows directly from reflexivity of .. Symmetry and
transitivity follow from the commutativity and associativity of the “and”
operator in the definition of ', respectively.

130

The projection order and projection equivalence

Lemma 6.5.5. Let R1,R2,S, T be finite reductions. If R1 ' R2, then

R1 ; S /R2 ; T = S / T .

Proof. By the following reduction:

R1 ; S /∗R2 ; T
⇒R ((R1 ; S) /∗R2) /∗ T
⇒R ((R1 /

∗R2) ; (S /∗(R2 /
∗R1))) /∗ T

⇒∗R (1 ; (S /∗ 1)) /∗ T
⇒∗R S /∗ T

and so R1 ; S /R2 ; T = S / T .

Corollary 6.5.6. Let R,S be finite reductions and ϕ a step. If R ' S, then:

(i) R ; ϕ ' S ; ϕ

(ii) ϕ ;R ' ϕ ; S

Proof. Both items follow easily from Lemma 6.5.5, the fact that ϕ/ϕ = 1,
and the assumption that R /S = 1 and S /R = 1.

Lemma 6.5.7. If (ϕ ;R) . S, then ϕ . S.

Proof. By definition, (ϕ ;R) /S = 1. We must prove that ϕ/S = 1. Suppose
ϕ/∗ S ⇒∗R T . Then

(ϕ ;R) /∗ S ⇒∗R (ϕ/∗ S) ; (R /∗(S /∗ ϕ)⇒∗R T ; (R /∗(S /∗ ϕ).

By confluence of ⇒R and the assumption that (ϕ ;R) /S = 1, it follows that

T ; (R /∗(S /∗ ϕ)⇒∗R 1

which is only possible if T ⇒∗R 1, as desired.

Proposition 6.5.8. Let ϕ,ψ be proof terms.

(i) If ϕ . ψ then f(ϕ) . f(ψ), λx.ϕ . λx.ψ and ρ(ϕ) . ρ(ψ).

(ii) If ϕ ' ψ then f(ϕ) ' f(ψ), λx.ϕ ' λx.ψ and ρ(ϕ) ' ρ(ψ).

Proof. (i) Assume ϕ/ψ = 1. Then f(ϕ) / f(ψ) = 1 by a single application
of the Rf rule, λx.ϕ / λx.ψ = 1 by a single application of the Rλ rule and
ρ(ϕ) / ρ(ψ) = 1 by a single application of the Rρ rule.

(ii) Follows directly from (i) and the definition of '.

Proposition 6.5.9. If ϕ ' ψ, then src(ϕ) = src(ψ) and tgt(ϕ) = tgt(ψ).

Proof. The condition on the sources of the steps follows directly because we
assume (implicitly) that ϕ ' ψ is well-defined. The condition on the targets
of the steps follows from the fact that, by definition,

tgt(ϕ) = src(ϕ/ψ) = src(ψ /ϕ) = tgt(ψ).

131

6. Residuals

6.6 Equivalence of projection and permutation
equivalence

In the previous chapter, the fact that standardization equivalence and permu-
tation equivalence are the same was a trivial corollary of the Standardization
Theorem. The equivalence of projection equivalence and permutation equiva-
lence is more cumbersome to show. One direction is easy:

Proposition 6.6.1. Let R,S be reductions. If R ≈ S, then R ' S.

Proof. By induction on the derivation of R ≈ S. The induction steps (reflexiv-
ity, symmetry, transitivity and context) follow from Prop. 6.5.4 and Cor. 6.5.6.
The base case follows from the fact that L /R = 1 and R /L = 1 for all
equations L ≈ R of Def. 3.2.1.

For the other direction, we want to use standardization equivalence. First, we
give some evidence that the claim is actually true.

Example 6.6.2. Consider the reductions R and S from Ex. 6.5.2. We have
already shown that R ' S. We calculate Std(R) and Std(S):

R = µ(λx.ρ(x))
⇒(flat) µ(λx.f(x)), ρ(mu(λx.f(x)))
⇒(flat) µ(λx.f(x)), ρ(mu(λx.f(x))), g(mu(λx.ρ(x)))

S = µ(λx.f(x)), f(mu(λx.ρ(x))), ρ(mu(λx.g(x)))
⇒(std) µ(λx.f(x)), ρ(mu(λx.f(x))), g(mu(λx.ρ(x)))

Since Std(R) = Std(S), we conclude that R ≡ S.

We need to prove a few auxiliary properties on the interplay between projection
and standardization.

Lemma 6.6.3. Let ϕ,ψ be compatible coinitial proper steps which contract
redexes at positions p, q, respectively, where p <lex q. Then ϕ/ψ is a proper
step and RPos(ϕ/ψ) = RPos(ϕ).

Proof. By structural induction on the source of ϕ and ψ. We distinguish the
following cases:

• Suppose ϕ = ρ(s1, . . . , sn) and ψ = l(s1, . . . , ϕk, . . . , sn), for a rule
ρ : l→ r and multistep ϕk : sk → tk. Then ϕ/ψ = ρ(s1, . . . , tk, . . . , sn),
which satisfies the conditions of the lemma.

• Suppose ϕ = f(s1, . . . , ϕk1 , . . . , sn) and ψ = f(s1, . . . , ϕk2 , . . . , sn),
where k1 < k2. Then:

ϕ/ψ = f(s1, . . . , ϕk1 , . . . , tk2 , . . . , sn).

which satisfies the conditions of the lemma.

132

Equivalence of projection and permutation equivalence

• Suppose ϕ = f(s1, . . . , ϕk, . . . , sn) and ψ = f(s1, . . . , ψk, . . . , sn). Then
the lemma follows directly from the induction hypothesis applied to ϕk
and ψk.

Given that p <lex q, there are no other possibilities.

Lemma 6.6.4. Let ϕ,ψ be proper steps contracting redexes at positions p, q,
respectively, where p <lex q, and let R be a proper reduction. If R is standard
for ϕ, then R /ψ is standard for ϕ.

Proof. If there is no step in R contracting a redex to the left of the redex of ϕ,
then it follows from Lemma 6.6.3 that there is no such step in R /ψ, either.

Otherwise, let χ be the first step of R which contracts a redex at position
r such that r <lex p. Let R = S ; ϕ ; T . By transitivity it holds that r <lex q,
and thus it follows from Lemma 6.6.3 that

RPos(χ/(ψ /S)) = RPos(χ) 3 p

as required.

Proposition 6.6.5. Let R,S be finite, standard reductions. If R ' S then
R = S.

Proof. Let R = ϕ ;R0 and S = ψ ;S0, where ϕ contracts a redex at position p
and ψ a redex at position q. Assume, without loss of generality, that p ≤lex q.
First, we prove, by induction on p and a nested induction on the length of S,
that ϕ = ψ.

Assume, to the contrary, that ϕ 6= ψ (in other words, that p <lex q). If
the redex pattern of ψ overlaps the redex pattern of ϕ, then ϕ/ψ is not
compatible, contradicting the implicit assumption that it R and S are. So,
the redex patterns of ϕ and ψ do not overlap.

Let S0 = ψ1, . . . , ψm, where each step ψi contracts a redex at position qi,
respectively. Furthermore, let k be the first index such that qk <lex q. If there
no such k, then, by transitivity p <lex qi for all 1 ≤ i ≤ m and it follows from
Lemma 6.6.3 that ϕ/S is a proper step, and thus not empty. However, by
Lemma 6.5.7 and the fact that R ' S by assumption, it must be the case
ϕ/S. This yields a contradiction.

So there must be such a k. By transitivity of <lex it follows that

p <lex qi for all i < k. (?)

Also, because S is standard, by definition it must be the case that

q ∈ RPos(ψk). (??)

Let T = ψ,ψ1, . . . , ψk−1 and U = ψk, . . . , ψn−1 (that is S = T ; U). Further-
more, let R′ = R / T . By (?) and Lemma 6.6.3, the first step of R′ is a proper
step ϕ′ such that RPos(ϕ′) = RPos(ϕ).

133

6. Residuals

From Prop. 6.6.1 and Theorem 5.5.1 it follows that Std(R′) ' R′. From
Lemma 6.5.5 it follows that R′ = R / T ' S / T = U . Together, this yields
that Std(R′) ' U .

We consider the following two cases:

• If p <lex qk, then the nested induction hypothesis applies to Std(R′) and
U , because the first step of Std(R′) contracts the same redex patterns
as ϕ, and U is strictly shorter than S.

• If qk <lex p, then the induction hypothesis applies to U and Std(R′).

In both cases it follows, by the induction hypothesis, that the first steps of
Std(R′) and U are equal.

Since R is standard and all steps of T occur ‘above’ the first step ϕ of
R, it is a result of Lemma 6.6.4 that ϕ′, the first step of R′, is also the first
step of Std(R′). Since ψk is the first step of U , this means that ϕ′ = ψk.
Together with (?) it follows that q ∈ RPos(ϕ), and thus that ϕ and ψ overlap,
contradicting an earlier conclusion. So, we have to retract the assumption
that ϕ 6= ψ and accept ϕ = φ.

From this it follows by a simple induction on the length of R and S that
R = S.

Now, we have dealt with the preliminary work, and the main result of this
section is easily proved:

Theorem 6.6.6. Let R,S be reductions. R ' S if and only if R ≈ S.

Proof. (⇒): Suppose R ' S. We assume, in order to derive a contradiction,
that S 6≈ R. By Theorem 5.5.1, we may assume, without loss of generality, that
R and S are different standard reductions, but this contradicts Prop. 6.6.5.

(⇐): By Prop. 6.6.1.

6.7 Related work

In the literature, residuals have been studied in various degrees of abstraction
and for various forms of reduction, such as β-reduction in the λ-calculus,
first-order term rewriting and concurrency theory. Below we review some
related work on the subject.

As noted in the introduction to this chapter, in general two approaches
to residual theory can be identified. The first relates specific redexes in the
source and target of a step to each other. This is similar to the trace relation
of Chapter 2 (in particular, Defs. 2.3.9 and 2.4.23). The second approach
considers steps (and reductions) as a whole, and focusses on what remains of
a step/reduction after some other reduction has been performed. We will call
these approaches the redex approach and step approach, respectively. The two
approaches are, of course, very much related by the observation that a step is
performed by contracting a (set of) redex(es).

134

Discussion

The redex approach. This approach is originally due to Lévy [29], who
used it to define permutation equivalence for the λ-calculus. The work of Lévy
was applied to trss by Huet & Lévy [19] and axiomatically generalized by
Melliès [32]. The works mentioned above have in common that, for each redex
v, a residual relation u [[v]] u′ is defined on redexes, denoting that redex u′ is
the residual of u after v.

Related is the work of Laneve & Montanari [28], who give an axiomatic
treatment of permutation equivalence by using residuals. They apply this to
trss, and also to CRSs, a higher-order rewriting paradigm related to hrss, by
translating CRSs to trss. In this dissertation, however, residuals are defined
for hrss directly.

The step approach. The step approach originated with the work of Stark
[51]. Stark gives all of the abstract axioms presented here, but also requires
the projection order to be antisymmetric: if ϕ . ϕ and ϕ . ϕ, then ϕ = ϕ.
This is an undesired propery for most forms of rewriting. Consider for example
the trs:

ρ : f(x)→ c

θ : a→ b

Now, it is the case that ρ(θ) . ρ(a) and ρ(a) . ρ(θ). It is undesired, however,
to pose that ρ(θ) = ρ(a) (although, of course, they are, by definition, projection
equivalent).

Van Oostrom & De Vrijer [42, 43] remove this axiom from Stark’s framework
and show that much of the theory goes through anyway. In this chapter, we
basically show that hrss satisfy their axioms. (But, as shown above, they do
not satisfy Stark’s axioms.)

Other. Without discussion, we would like to mention [18] and [23]. The
first article gives a formal treatment in the proof assistent Coq of residuals in
the λ-calculus, while the second is an axiomatic approach to residual theory
for conflict-free rewrite systems.

6.8 Discussion

In this chapter we formalized the notions of residual, projection and projection
equivalence for higher-order rewrite systems. Our approach was to build up
the theory from an abstract point of view, and then define operations on
higher-order proof terms which satisfy the laws of the abstact theory.

The formalizations, however, are currently restricted to orthogonal hrss.
There are two natural extensions to the theory to generalize some of the results
to non-orthogonal hrss:

• Drop the requirement that the projection operator be total on pairs of
coinitial steps. This makes the theory more cumbersome to formulate,

135

6. Residuals

because we have to keep track which occurrences of ϕ/ψ are defined
and which are not.

• Add an ‘error symbol’ to a residual system. This approach is followed,
for the first-order case, in [53], and is easily adaptable to higher-order
rewriting. The idea is that, for non-compatible proof terms ϕ,ψ, the
projection term ϕ/ψ simplifies to a proof term containing this error
symbol, expressing the fact that the two proof terms are not compatible.

In both cases, of course, the confluence results cannot be directly generalized.
The notion of projection equivalence (and accompanying projection order),
however, can.

Also, we restricted our attention to finite reductions. This was not without
reason: it is unclear how to extend projection to infinite reductions. For
example, what is S /R supposed to be if R is an infinite reduction? Abstract
residual theory requires that src(S /R) = tgt(R), but tgt(R) is undefined
because R is infinite. It is possible to extend the notion of projection equiva-
lence to infinite reductions by looking at their finite prefixes, just as we did
for permutation equivalence in Def. 3.3.1.

136

Seven

Results

7.1 Summary

We quickly summarize the various notions of equivalence of reductions formal-
ized in this dissertation:

Permutation equivalence. Permutation equivalence is the formalization
of the intuition that two reductions are equivalent if the one can be
obtained from the other by iteratively permuting steps. It is formalized
by the meta-rewriting system of page 41. We proved the important
property that every finite reduction (possibly containing multisteps) has
an equivalent proper reduction. Additionally, for every infinite reduction
there exists an infinite proper reduction with the same source.

Standardization equivalence. Standardization equivalence formalizes the
idea that two reductions are equivalent if they have the same standard
reduction. For this it is required that each permutation equivalence class
of reductions contains a unique standard reduction. This fact is proved
in the Standardization Theorem (Theorem 5.5.1).
The Standardization Theorem is proved by giving two procedure which
produce an equivalent standard reduction when given an arbitrary re-
duction: selection standardization and inversion standardization, which
correspond to weak and strong standardization of [25], respectively.
The fact that permutation equivalence and standardization equivalence
are the same is simple corollary of the fact that the inversion standard-
ization is defined by means of a meta-rewrite system on reductions, of
which convertibility coincides with permutation equivalence.

Projection equivalence. If R and S are reductions, then R /S represents
the reduction which contains the steps of R except the one which
were also part of S. Projection equivalence captures the idea that two
reductions are equivalent if the one projected over the other yields an
empty reduction.

137

7. Results

The projection operator, and as a result also projection equivalence, are
only defined for orthogonal reductions. It is proved that, for orthogo-
nal reductions, projection equivalence coincides with permutation and
standardization equivalence.

Two procedures were given to standardize a given reduction. Also, a procedure
was given to calculate the residual of one procedure after another. This fact
makes the notions of standardization equivalence and projection equivalence
decidable. By the main result of this thesis, the fact that all three notions
of equivalence of reductions are the same, this result can be extended to
permutation equivalence.

We briefly investigated how permutation equivalence and the notion of
standardization can be extended to infinite reductions. In both cases, we
did this by considering infinite reductions as the limit of their finite prefixes.
The conclusion is that the notion of permutation equivalence can be extended
to infinite reductions. However, since uniqueness of standard reductions is
lost by our standardization procedure for infinite reductions, standardization
cannot be used to decide equivalence in the infinite case. However, infinite
standardization may be useful in other cases. For example, it was used in [24]
to prove a preservation of strong normalization property.

The projection operator and projection equivalence are limited to orthogo-
nal reductions. Extending the projection operator to non-orthogonal reduction
can be done by including an error symbol, but this route has not been ex-
tensively investigated here. The definitions of permutation equivalence and
standardization also work for non-orthogonal reductions.

An important auxiliary result of this dissertation, proved in Chapter 4,
is the proof that hrss enjoy the Finite Family Developments property. This
property is used to define the standardization procedures of Chapter 5 and
has possible applications for proving termination of hrss.

7.2 Main result

The main result of this thesis, the equivalence of permutation equivalence
(Def. 3.2.1), standardization equivalence (Def. 5.5.2) and projection equivalence
(Def. 6.5.1) is a direct corollary of results proved in earlier chapters:

Theorem 7.2.1. For finite, orthogonal reductions, permutation equivalence,
standardization equivalence and projection equivalence coincide.

Proof. Equivalence of permutation and projection equivalence is proved in
Theorem 6.6.6 and equivalence of standardization equivalence and permutation
equivalence is proved in Corollary 5.5.3.

Note that the permutation and standardization equivalence relations are not
restricted to orthogonal reductions. That they are the same for all reductions
was proven in Corollary 5.5.3. Extending projection terms with an error

138

Main result

symbol, as suggested in Sect. 6.8, would yield an equivalent notion of projection
equivalence which is not restricted to orthogonal reductions.

It has been suggested that projection equivalence can be trivially extended
to non-orthogonal reductions, simply by defining that non-orthogonal reduc-
tions are not projection equivalent. Such a notion of projection equivalence,
however, would not be equivalent to the other two notions. Consider the
following trs:

a→ b

a→ c

e(x)→ d

and the following two reductions:

R : e(a)→ e(b)→ d

R : e(a)→ e(c)→ d

The two reductions are not orthogonal, but they are equivalent because the
non-orthogonal part is erased by the last step.

139

Bibliography

[1] Thomas Arts and Jürgen Giesl. Termination of term rewriting using
dependency pairs. Theoretical Computer Science, 236(1–2):133–178, 2000.

[2] Andrea Asperti, Paolo Coppola, and Simone Martini. (optimal) du-
plication is not elementary recursive. Information and Computation,
193(1):21–56, 2004.

[3] Andrea Asperti and Stefano Guerrini. The Optimal Implementation of
Functional Programming Languages, volume 45 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1998.

[4] H.P. Barendregt. The Lambda Calculus, Its Syntax and Semantics, Revised
Edition. North-Holland, 1984.

[5] Inge Bethke, Jan Willem Klop, and Roel de Vrijer. Descendants and
origins in term rewriting. Information and Computation, 159(1–2):59–124,
2000.

[6] Frédéric Blanqui. Higher-order dependency pairs. In Proceedings of WST,
2006.

[7] Roel Bloo. Preservation of Termination for Explicit Substitution. PhD
thesis, Technische Universiteit Eindhoven, 1997.

[8] H. J. Sander Bruggink. Residuals in higher-order rewriting. In Proceedings
of RTA 2003. Springer, 2003.

[9] H. J. Sander Bruggink. A proof of finite family developments for higher-
order rewriting using a prefix property. In Proceedings of RTA 2006,
2006.

[10] H. B. Curry and J. Feys. Combinatory Logic. North Holland, 1958.

[11] D.T. van Daalen. The language theory of Automath. PhD thesis, Technis-
che Universiteit Eindhoven, 1980.

[12] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher order unifi-
cation via explicit substitutions. Information and Computation, 157(1–
2):184–233, 2000.

141

Bibliography

[13] Alfons Geser, Dieter Hofbauer, and Johannes Waldmann. Match-bounded
string rewriting. Applicable Algebra in Engineering, Communication and
Computing, 15(3–4):149–171, 2004.

[14] Alfons Geser, Dieter Hofbauer, Johannes Waldmann, and Hans Zantema.
On tree automata that certify termination of left-linear term rewriting
systems. Information and Computation, 205, 2007.

[15] Juergen Giesl, René Thiemann, and Peter Schneider-Kamp. Proving
and disproving termination of higher-order functions. In Proceedings of
FroCoS’05. Springer, 2005.

[16] Georges Gonthier, Jean-Jacques Lévy, and Paul-André Melliès. An
abstract standardisation theorem. In Proceedings of the 8th Annual
Symposium on Logic in Computer Science, 1992.

[17] Barnaby P. Hilken. Towards a proof theory of rewriting: the simply typed
2λ-calculus. Theoretical Computer Science, 170:407–444, 1996.

[18] Gérard Huet. Residual theory in λ-calculus: a formal development. J. of
Functional Programming, 4(3):371–394, 1994.

[19] Gérard Huet and Jean-Jacques Lévy. Computations in orthogonal rewrit-
ing systems, part I + II. In J.L. Lassez and G.D. Plotkin, editors,
Computational Logic – Essays in Honor of Alan Robinson, chapter 11 +
12, pages 395–443. MIT Press, 1991.

[20] J.M.E. Hyland. A syntactic characterization of the equality in some
models of the λ-calculus. Journal of the London Mathematical Society,
12(2):361–370, 1976.

[21] Jean-Pierre Jouannaud and Albert Rubio. Higher-order recursive path
orderings “á la carte”. In Proceedings of WST, 2001.

[22] Zurab Khasidashvili and John Glauert. Discrete normalization and
standardization in deterministic residual structures. Technical Report
SYS-C96-06, UEA Norwich, 1996.

[23] Zurab Khasidashvili and John Glauert. Relating conflict-free stable
transition systems and event models via redex families. Theoretical
Computer Science, 286(1):65–95, 2002.

[24] Zurab Khasidashvili, Mizuhito Ogawa, and Vincent van Oostrom. Uniform
normalisation beyond orthogonality. In Proceedings of RTA’01. Springer,
2001.

[25] J. W. Klop. Combinatory Reduction Systems. PhD thesis, Utrecht
University, 1980.

142

[26] Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk.
Combinatory Reduction Systems: Introduction and survey. Theoretical
Computer Science, 121(1-2):279–308, 1993.

[27] John Lamping. An algorithm for optimal lambda calculus reduction. In
17th ACM Symposium on Principles of Programming Languages. ACM
Press, 1990.

[28] Cosimo Laneve and Ugo Montanari. Axiomatizing permutation equiv-
alence. Mathematical Structures in Computer Science, 6(3):219–215,
1996.

[29] Jean-Jacques Lévy. Réductions correctes et optimales dans le λ-calcus.
PhD thesis, Université Paris VII, 1978.

[30] Luc Maranget. Optimal derivations in weak lambda-calculi and in orthog-
onal term rewriting systems. In Principles of Programming Languages,
1991.

[31] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their
confluence. Theoretical Computer Science, 192:3–29, 1998.

[32] Paul-André Melliès. Axiomatic rewriting theory VI: Residual theory
revisited. In Sophie Tison, editor, Rewriting Techniques and Applications
2002, pages 24–50, 2002.

[33] Paul-André Melliès. Axiomatic rewriting theory I: A diagrammatic
standardization theorem. In Aart Middeldorp, Vincent van Oostrom,
Femke van Raamsdonk, and Roel de Vrijer, editors, Processes, Terms
and Cycles: Steps on the road to infinity, pages 554–638. Springer, 2005.

[34] José Meseguer. Conditional rewriting logic as a unified model of concur-
rency. Theoretical Computer Science, 96:73–155, 1992.

[35] Dale Miller. A logic programming language with lambda abstraction, func-
tion variables and simple unification. Journal of Logic and Computation,
1(4), 1991.

[36] Tobias Nipkow. Higher-order critical pairs. In Proceedings on the 6th
IEEE Symposium on Logic in Computer Science. Springer, 1991.

[37] Tobias Nipkow. Orthogonal higher-order rewrite systems are confluent. In
Proceedings on the 1st International Conference of Typed Lambda Calculi
and Applications. Springer, 1993.

[38] Tobias Nipkow and Christian Prehofer. Higher-order rewriting and equa-
tional reasoning. In W. Bibel and P. Schmitt, editors, Automated Deduc-
tion — A basis for Applications, Volume Foundations. Kluwer, 1998.

[39] Vincent van Oostrom. Confluence for Abstract and Higher-Order Rewrit-
ing. PhD thesis, VU Amsterdam, 1994.

143

Bibliography

[40] Vincent van Oostrom. Higher-order families. In Proceedings of RTA 1996.
Springer, 1996.

[41] Vincent van Oostrom. Finite family developments. In Proceedings of RTA
1997. Springer, 1997.

[42] Vincent van Oostrom and Roel de Vrijer. Four equivalent equivalences of
reductions. ENTCS, 70(6), 2002.

[43] Vincent van Oostrom and Roel de Vrijer. Equivalence of Reductions,
chapter 8 of [53]. 2003.

[44] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical
Computer Science, 1, 1975.

[45] Femke van Raamsdonk. On termination of higher-order rewriting. In
Proceedings of RTA 2001. Springer, 2001.

[46] Masahiko Sakai and Keiichirou Kusakari. On dependency pair method for
proving termination of higher-order rewrite systems. IEICE Transactions
on Information and Systems, E88-D(3), 2005.

[47] Masahiko Sakai, Yoshitsugu Watanabe, and Toshiki Sakabe. An extension
of the dependency pair method for proving termination of higher-order
rewrite systems. IEICE Transactions on Information and Systems, E84-
D(8), 2001.

[48] John Staples. Computation on graph-like expressions. Theoretical Com-
puter Science, 10(2), 1985.

[49] John Staples. Optimal evaluations of graph-like expressions. Theoretical
Computer Science, 10(3), 1985.

[50] John Staples. Speeding up subtree replacement systems. Theoretical
Computer Science, 11(1), 1985.

[51] Eugene W. Stark. Concurrent transition systems. Theoretical Computer
Science, 64(3):221–269, 1989.

[52] W. W. Tait. Intensional interpretation of functionals of finite type I.
Journal of Symbolic Logic, 32:198–212, 1967.

[53] TeReSe. Term Rewriting Systems. Number 55 in CTTCS. Cambridge
University Press, 2003.

[54] C. P. Wadsworth. The relation between computational and denotational
properties for Scott’s D∞-models of the λ-calculus. SIAM Journal on
Computing, 5:488–521, 1976.

[55] J.B. Wells and Robert Muller. Standardization and evaluation in com-
binatory reduction systems. See: http://www.macs.hw.ac.uk/~jbw/ or
http://www.cs.bc.edu/~muller, 2000.

144

[56] D.A. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
1993.

[57] Hans Zantema. Termination of term rewriting by semantic labelling.
Fundamenta Informaticae, 24:89–105, 1995.

145

Nederlandse samenvatting

Van rekenen tot hogere-orde herschrijven

Het spannende scenario van dit proefschrift speelt zich af op het gebied van
hogere-orde termherschrijven. Laat ik, voordat ik dieper inga op de eigenlijke
inhoud van het proefschrift, de lezer eerst kort, op een informele manier, laten
kennismaken met wat, in het algemeen, herschrijven eigenlijk inhoudt.

Herschrijven is een wiskundig model (een versimpelde weergave van de
werkelijkheid) van hoe berekeningen uitgevoerd worden. Berekeningen worden
tegenwoordig meestal uitgevoerd met behulp van een computerprogramma en
herschrijftheorie kan gebruikt worden om die computerprogramma’s beter te
maken, bijvoorbeeld door te bewijzen dat ze altijd het goede antwoord op een
berekening geven, of door te bewijzen dat ze altijd een antwoord geven (en
dus niet vastlopen).

Hoe gaat herschrijven in zijn werk? Op de basisschool hebben we geleerd
rekenkundige sommen uit te rekenen, en wel in stapjes. Als we bijvoorbeeld
de som (1 + 3)× (4 + 1) moesten uitrekenen, konden we dat als volgt doen (ik
schrijf → in plaats van =, omdat de opgave de hele tijd vereenvoudigd wordt):

(1 + 3)× (4 + 1)→ 4× (4 + 1)
→ 4× 5
→ 20

Je ziet hoe we in een ingewikkelde opgave op zoek gaan naar simpele deel-
problemen die we direct op kunnen lossen. Door deze deelproblemen uit te
rekenen en te vervangen (te herschrijven) door hun antwoord, ontstaan weer
nieuwe deelproblemen, die we ook weer uit kunnen rekenen. Zo komen we
stap-voor-stap op het uiteindelijk antwoord. Dit is herschrijven – of preciezer
termherschrijven. Een berekening zoals hierboven wordt een reductie genoemd,
omdat we de term bij elke stap versimpelen (reduceren).

Drie belangrijke algemene eigenschappen van herschrijven kunnen we al in
het bovenstaande voorbeeld ontdekken:

• Herschrijfstappen zijn plaatselijk. In de eerste stap van het bovenstaande
voorbeeld herschreven we (1 + 3) naar 4, maar de rest van de som
veranderde niet.

147

Nederlandse samenvatting

• Herschrijven is niet deterministisch. In het voorbeeld hierboven hebben
we ervoor gekozen om eerst 1 + 3 uit te rekenen, en daarna pas 4 + 1,
maar we hadden er net zo goed voor kunnen kiezen om eerst 4 + 1 en
daarna 1 + 3 uit te rekenen.

• Het is echter niet altijd zo dat we stappen zomaar kunnen omdraaien.
Soms moeten we, voordat we een bepaalde stap kunnen doen, eerst
een aantal andere stappen doen. In de bovenstaande berekening kon
bijvoorbeeld de stap van (4× 5) naar 20 niet eerder worden gedaan om
de eenvoudige reden dat we toen 4 en 5 nog niet hadden uitgerekend.

Eerste-orde termherschrijven. Tot nu toe zijn we nog weinig in details
getreden. Laten we nu iets preciezer definiëren wat termherschrijven precies is.
We beginnen met de meest eenvoudige vorm van termherschrijven, namelijk
eerste-orde termherschrijven.

In eerste-orde termherschrijven herschrijven we zogenaamde termen. In
het voorbeeld op de vorige bladzijde herschreven we ook termen. We zagen
daar dat een term ofwel een getal was, ofwel een optelling van de vorm s+ t,
ofwel een vermenigvuldiging van de vorm s× t, waarbij s en t ook weer termen
waren. We maken nu de notie “term” algemeen, zodat we er ook andere dingen
mee kunnen beschrijven dan getallen, optellingen en vermenigvuldigingen.

Een term zoals die in eerste-orde herschrijven wordt gebruikt, is ofwel een
constante (bijvoorbeeld een getal, of een letter a, b of c), ofwel een variabele
(die we als x, y of z schrijven), ofwel een samengestelde term van de vorm
f(t1, . . . , tn), waarbij f een functiesymbool is en t1, . . . , tn ook weer termen.
Zo zijn f(g(a, x)) en g(x, y) bijvoorbeeld termen.1

Een eerste-orde termherschrijfsysteem bestaat nu uit een aantal herschrijfre-
gels van de vorm l → r, waarbij er in r geen variabelen mogen voorkomen die
niet ook in l voorkomen. De regel l→ r betekent dat de term l door de term
r vervangen mag worden.

We kunnen een herschrijfregel op een term toepassen als de linkerkant van
de regel ergens in de term voorkomt (waarbij variabelen door een willekeurige
term mogen worden vervangen). Het toepassen van een herschrijfregel op een
term werkt nu als volgt: we vervangen simpelweg de linkerkant van de regel
door de rechterkant, waarbij de variabelen in de rechterkant door dezelfde
termen vervangen moeten worden als in de linkerkant.

Beschouw als voorbeeld het termherschrijfsysteem dat bestaat uit de vol-
gende vier herschrijfregels:

regel 1 : f(x)→ g(x, x)
regel 2 : g(b, x)→ x

regel 3 : a→ b

1Merk op dat we, volgens deze regels, dus eigenlijk niet, zoals eerder, x + y mogen
schrijven, maar +(x, y). Voor de duidelijkheid zal ik echter gewoon 2 + 3 en 4× 5 blijven
schrijven.

148

We kunnen dan de volgende reductie uitvoeren:

f(a)→ g(a, a) (pas regel 1 toe, met x vervangen door a)
→ g(b, a) (pas regel 3 toe)
→ a (pas regel 2 toe, met x vervangen door a)
→ b (pas regel 3 toe)

Als we bij de term b zijn aanbeland, kunnen we geen herschrijfstap meer
verrichten. Deze term wordt een normaalvorm van het herschrijfsysteem
genoemd. In de meeste gevallen komt de normaalvorm overeen met het
antwoord van de berekening.

Door in het voorbeeld termen te gebruiken die voor de gemiddelde persoon
geen betekenis hebben, wil ik aangeven dat de herschrijver in principe niet
gëınteresseerd is in de betekenis van een term: herschrijven is een volkomen
syntactische bezigheid. We voeren slechts een trucje uit met letters en cijfers,
ofwel met symbolen – net als een computer, eigenlijk. Doordat we ons niet
met de betekenis van termen bezighouden, is de theorie breed toepasbaar.
Sterker nog, door af en toe expres de ‘verkeerde’ betekenis aan termen toe te
kennen, kunnen we bepaalde eigenschappen van herschrijfsystemen bewijzen,
bijvoorbeeld dat met een gegeven termherschrijfsysteem elke berekening op
een gegeven moment stopt, of juist niet.

Hogere-orde termherschrijven. Met eerste-orde termherschrijven is het
mogelijk om alles te berekenen wat je ook met een computer kunt berekenen.
We kunnen er rekenkundige sommen mee uitrekenen, een lijst mee sorteren, de
snelste route van Duisburg naar Utrecht mee berekenen, enzovoort. Dit lijkt
misschien een reden om te denken dat we geen uitbreidingen van eerste-orde
termherschrijven nodig hebben – we kunnen er immers alles al mee! Echter,
het feit dat we elke berekenbare functie uit kunnen rekenen, betekent nog niet
dat die berekening ook op een duidelijke en elegante manier gebeurt.

De termen in eerste-orde termherschrijen verwijzen altijd naar objecten,
bijvoorbeeld getallen. De termen 3×2 en (1+2)×(1+1) refereren bijvoorbeeld
beide naar het getal 6. In veel ‘echte’ programmeertalen kunnen variabelen
echter ook naar functies verwijzen, bijvoorbeeld de functie die twee getallen
neemt en deze bij elkaar optelt. Omdat dat in eerste-orde herschrijven niet
mogelijk is, is het interessant om een uitbreiding ervan te onderzoeken waarin
dat wel kan. Deze uitbreiding heet hogere-orde termherschrijven, en deze vorm
van termherschrijven is het onderwerp van dit proefschrift.

Termen in hogere-orde termherschrijven zijn van een veel ingewikkeldere
vorm dan termen in eerste-orde termherschrijven. Om termen op te kunnen
schrijven die naar functies verwijzen gebruiken we de λ-notatie die door Church
in de jaren van de e eeuw werd verzonnen: termen van de vorm λx.t,
waarbij x een variabele is en t een term, moeten naar functies verwijzen. Hoe
hogere-orde termherschrijven precies werkt, zal ik hier niet uitleggen; je kunt
het lezen in Sect. 2.4. Ik geef hier alleen voorbeeld.

149

Nederlandse samenvatting

Laten we aannemen dat we al over herschrijfregels beschikken waarmee we
kunnen rekenen.2 Nu willen we een functiesymbool toevoegen, dat een functie
en een object als argument neemt, en de functie twee keer op dat argument
uitvoert. We voegen hiervoor de volgende herschrijfregel toe:

twee-keer(λy.z(y), x)→ z(z(y))

We kunnen nu de volgende reductie uitvoeren:

twee-keer(λy.(2 + y), 4)→ 2 + (2 + 4)
→ 2 + 6
→ 8

In de eerste stap wordt x door a vervangen, en λy.z(y) door de functie die
een argument y, neemt en de term 2 + y oplevert. Je ziet dat het resultaat
is dat er twee keer 2 bij 4 wordt opgeteld. Je ziet ook dat, na de eerste stap,
één voorkomen van de +’en als argument van de andere voorkomt. Dit wordt
nesten genoemd, en is er de voornaamste reden van dat het veel lastiger is
om dingen over hogere-orde herschrijven te bewijzen, dan over eerste-orde
herschrijven.

Equivalentie van reducties

Zoal ik hierboven al zei, kun je vaak kiezen in welke volgorde je de deelproble-
men van een som oplost, of, in herschrijf-terminologie, in welke volgorde je
de redexen van een term contraheert. Meestal is die precieze volgorde echter
helemaal niet van belang. In het voorbeeld op de eerste pagina van deze
samenvatting, konden we bijvoorbeeld kiezen om eerst 1 + 3 uit te rekenen, of
om eerst 4 + 1 uit te rekenen. Beide keuzes hebben verschillende reducties tot
gevolg, maar die reducties komen eigenlijk op het zelfde neer, dat wil zeggen,
ze zijn equivalent.

Equivalente reducties lijken soms niet op elkaar. Vaak zijn ze zelfs niet
eens even lang. Laten we aannemen dat we een herschrijfsysteem hebben dat
kan optellen en vermenigvuldigen en dat ook de regel bevat:

kwadraat(x)→ x× x

De volgende twee reducties zijn intüıtief equivalent, omdat ze ‘hetzelfde werk
doen’, maar hun lengte verschilt:

kwadraat(2 + 2)→ (2 + 2)× (2 + 2) kwadraat(2 + 2)→ kwadraat(4)
→ 4× (2 + 2) → 4× 4
→ 4× 4 → 16
→ 16

2Er bestaat een herschrijfsysteem waarmee kan worden opgeteld en vermenigvuldigd.
In deze samenvatting ga ik er verder niet op in hoe dit herschrijfsysteem er uit ziet. In
werkelijkheid zijn de rekenstappen geen enkelvoudige stappen, maar rijtjes van stappen.

150

In verschillende situaties is het handig om een goede notie van equivalentie
van reducties te hebben. Vaak willen we bijvoorbeeld een berekening zo snel
mogelijk uitvoeren, maar dan willen we er wel zeker van zijn dat die snelle
berekening die we uiteindelijk vinden, equivalent is aan andere berekeningen,
die weliswaar minder efficiënt zijn, maar in ieder geval correct. Ook is een notie
van equivalentie handig als we willen bewijzen dat alle mogelijke reducties een
bepaalde eigenschap hebben: voor veel eigenschappen geldt dat als je hem
bewezen hebt voor één reductie, hij dan automatisch ook voor alle equivalente
reducties geldt.

Voordat we het begrip equivalentie echter in formele bewijzen kunnen ge-
bruiken, moeten we hem eerst op een formele manier beschrijven. We kunnen
vanuit verschillende gezichtspunten naar de notie equivalentie van reducties
kijken, en verschillende gezichtspunten leiden tot heel verschillende formele
definities die nuttig zijn in verschillende situaties. In dit proefschrift heb ik
vanuit drie gezichtspunten naar equivalentie van reducties gekeken, en drie
verschillende formele definities van deze notie gegeven. Het hoofdresultaat
(Stelling 7.2.1) is uiteindelijk dat al deze drie definities voor een belangrijke
klasse van hogere-orde herschrijven op het zelfde neerkomen, dat wil zeg-
gen dat twee reducties permutatie-equivalent zijn dan en slechts dan als ze
standaardisatie-equivalent zijn, en dan en slechts dan als ze projectie-equivalent
zijn.

Samenvatting van de hoofdstukken

Hoofdstuk 2: Herschrijven en bewijstermen

In dit hoofdstuk worden de verschillende noties van herschrijven die in dit
proefschrift worden gebruikt gëıntroduceerd, in het bijzonder hogere-orde
termherschrijven. Bovendien definieer ik zogenaamde bewijstermen. Een
bewijsterm is een term waarvan de betekenis een herschrijfstap is. Door
herschrijfstappen als termen op te vatten, kan ik in de rest van het proefschrift
technieken en bewijsmethodes uit de herschrijftheorie gebruiken, om reducties
te beschrijven en er dingen over te bewijzen.

Hoofdstuk 3: Permutatie-equivalentie

In dit hoofdstuk definieer ik de eerste vorm van equivalentie van reducties,
permutatie-equivalentie: twee reducties zijn equivalent, als we de ene reductie
in de andere kunnen omvormen door stappen om te wisselen. Eerst definieer
ik permutatie-equivalentie van eindige reducties met behulp van een stelsel
van vergelijkingen op bewijstermen. In de tweede helft van het hoofdstuk
kijk ik hoe deze notie van equivalentie kan worden uitgebreid naar oneindige
reducties.

151

Nederlandse samenvatting

Hoofdstuk 4: Eindige familieontwikkelingen

In dit hoofdstuk bewijs ik een belangrijke eigenschap van hogere-orde her-
schrijfsystemen, namelijk de eigenschap dat alle zogenaamde familie-ontwik-
kelingen eindig zijn. Deze eigenschap heeft niet direct iets met equivalentie
van reducties te maken, maar ik heb haar in het volgende hoofdstuk nodig om
te bewijzen dat de definitie van standaardisatie-equivalentie die ik daar geef
correct is.

In elke herschrijfstap worden de symbolen die in de linkerkant van de
toegepaste regel voorkomen weggehaald, en vervangen door de symbolen van
de rechterkant van de regel. Die nieuwe symbolen behoren als het ware tot
de volgende generatie. Een vorm van herschrijven bezit de eindige-familie-
ontwikkelingeneigenschap, als het zo is dat er in geen enkele oneindige reductie
een bovengrens op de generatie van de erin voorkomende functiesymbolen is.
Dat eerste-orde herschrijven deze eigenschap bezit is al langer bekend. Het
bewijs dat hogere-orde herschrijfsystemen de eigenschap ook hebben, is echter
niet triviaal.

De eindige-familieontwikkelingeneigenschap komt goed van pas als we willen
bewijzen dat een bepaald herschrijfsysteem geen oneindige reducties toelaat:
soms is het namelijk makkelijker te bewijzen dat er wel een bovengrens op de
generaties van de functiesymbolen bestaat, dan direct te laten zien dat alle
reducties eindig zijn.

In het laatste deel van het hoofdstuk pas ik de ontwikkelde theorie toe om
te bewijzen dat de eindige-ontwikkelingeneigenschap geldt voor hogere-orde
herschrijven, en dat elke reductie in de simpel getypeerde λ-calculus eindig is.

Hoofdstuk 5: Standaardisatie

In dit hoofdstuk definieer ik de tweede vorm van equivalentie van reducties,
standaardisatie-equivalentie.

Eerst definieer ik wat een standaard-reductie is. Dit is een reductie waarin
de stappen in een vantevoren vastgestelde volgorde worden gedaan. Je kunt
dit vergelijken met een gesorteerde lijst: dat is een lijst waarin de elementen
zich in een vantevoren vastgestelde volgorde, namelijk van klein naar groot,
bevinden. Op dezelfde manier worden de stappen in een standaard-reductie
uitgevoerd ‘van buiten naar binnen’, ofwel tekstueel van links naar rechts.

Ik beschrijf twee manieren om een eindige reductie in een standaard-
reductie om te zetten. Bij selectiestandaardisatie, wordt een reductie naar
standaardvorm omgezet, door in de reductie de hele tijd die stap te kiezen die
de buitenste redex contraheert. De reductie die precies uit de gekozen stappen
bestaat, is de standaardreductie. Bij inversiestandaardisatie, worden steeds
twee stappen die in de verkeerde volgorde staan omgewisseld. Als er geen
stappen meer in de verkeerde volgorde staan, hebben we de standaardreductie
bereikt. Ik bewijs dat de twee manieren van standaardisatie hetzelfde resultaat
opleveren.

Tenslotte definieer ik dat twee reducties equivalent zijn, wanneer ze dezelfde

152

standaardvorm hebben, en beschrijf een aantal problemen die de kop opsteken
bij zogenaamde niet-lokale herschrijfsystemen.

Aan het einde van het hoofdstuk probeer ik ook een vorm van standaardi-
satie voor oneindige reducties te ontwikkelen. Hoewel dit ten dele lukt, blijkt
deze methode niet geschikt om standaardisatie-equivalentie voor oneindige
reducties te definiëren.

Hoofdstuk 6: Residuen

In dit hoofdstuk wordt de laatste vorm van equivalentie van reducties gedefi-
nieerd, projectie-equivalentie.

Eerst definieer ik een vorm van “aftrekken” voor reducties, wat in dit
hoofdstuk projectie wordt genoemd. Gegeven een reductie R en een reductie
S, wordt het zogenaamde residu van R na S gevormd door uit R precies die
stappen te verwijderen die ook in S voorkomen.

Met deze notie, definieer ik eerst een orde op reducties: een reductie R
is kleiner dan of gelijk aan een reductie S, als het zo is dat het residu van
R na S de lege reductie is (dat wil zeggen, de reductie waarin geen enkele
reductiestap wordt gedaan). We definiëren vervolgens projectie-equivalentie
van reducties met behulp van deze orde: twee reducties zijn equivalent als de
ene kleiner dan of gelijk aan de andere is en omgekeerd.

Hoofdresultaat

Het hoofdresultaat van dit proefschrift is het volgende:

Voor eindige, orthogonale reducties (in lokale hogere-orde her-
schrijfsystemen) komen permutatie-equivalentie, standaardisatie-
equivalentie en projectie-equivalentie overeen.

153

