
On Approximation Complexity of

Counting Matchings in

Hypergraphs

Benjamin Cabrera

July 22, 2016

- Bachelorthesis -

First examiner: Prof. Dr. Marek Karpinski

Second examiner: PD Dr. habil. Elias Dahlhaus

Department of Computer Science (Chair V)

Faculty of Mathematics and Natural Sciences

University of Bonn

Contents

1 Introduction and Motivation 1

1.1 Motivation from statistical physics . 1

1.2 Scope . 2

1.3 Outline . 3

2 Preliminaries 5

2.1 Graph Theory . 5

2.2 Probability Theory . 9

2.3 Computational Complexity Theory . 11

2.3.1 Turing machines . 12

2.3.2 Decision problems and NP-Completeness 14

2.3.3 Counting problems and the class #P . 16

2.3.4 Approximations . 17

3 Counting Matchings in Hypergraphs 19

3.1 Counting matchings and its relation to independent sets 19

3.2 Hypergraph classes of interest . 20

3.3 #P-completeness of exact counting . 21

3.4 (In-)approximability results . 23

4 Methods for constructing approximation algorithms 25

4.1 The relation of approximate counting and uniform sampling 25

4.2 Rapidly mixing Markov chains and the canonical paths method 26

4.2.1 Rapidly mixing Markov chains . 26

4.2.2 The canonical paths method in general . 28

4.3 Correlation decay . 29

4.3.1 Weitz’s approach using spatial correlation decay 30

4.3.2 Using a recursive computation tree . 30

5 A FPRAS for counting matchings in hypergraphs without 3-combs 33

5.1 Further assumptions on the hypergraphs . 33

i

Contents

5.2 Construction of the Markov chain . 35

5.3 Proof that the Markov chain is rapidly mixing using the canonical paths method 37

5.3.1 Definition of the canonical paths . 37

5.3.2 Bounding the Cuts . 39

5.3.3 The general case s > 0 . 41

5.4 Conclusion . 43

6 A FPTAS for counting matchings in (3,3)-graphs 45

6.1 Structural properties of (3, 3)-Hypergraphs . 45

6.2 Using blocks to count the number of independent sets 48

6.3 The recursive relation of probabilities . 50

6.4 Using correlation decay to prove Proposition 6.13 53

6.5 Conclusion . 55

7 Further research 57

Bibliography 59

ii

1 Introduction and Motivation

1.1 Motivation from statistical physics

In the late 19th century, mostly by the works of L. Boltzmann and J.W. Gibbs, the research field

of statistical mechanics was born. Systems of interacting molecules and atoms were no longer

studied in a deterministic way (which is almost impossible for the large systems of interest) but

in a probabilistic way. One assumes a certain probability distribution pf the particles (usually

depending also on the the temperature, pressure and similar properties of the system) and then

studies their behaviour in probability. In particular, researchers are often interested if a system

has phase transitions, that are abrupt, discontinuous changes in the properties of the system.

The Ising model as a model for ferromagnetism, for example, has a phase transition at a certain

critical temperature where the tiny ferromagnets suddenly lose their orientation and the magnet

becomes non-magnetic.

Naturally the relation of interacting particles to each other can be formalized in graphs and

hypergraphs. The problem analysed in this thesis is related to the study of monomer dimers

(or their equivalent for bigger molecules). A monomer-dimer system is specified by a weighted

graph (the weights often called Boltzmann factors) where so called dimers can be placed on

edges such that no vertex of the graph is covered by more than one dimer. The uncovered

vertices are called monomers. The graphs considered in statistical physics are mostly (infinite)

d-dimensional lattices which represent the positions of particles in space. The dimers of the

monomer-dimer system can be interpreted as diatomic molecules which occupy disjoint pairs of

adjacent vertices of the lattice, the remaining vertices are the monomers. In a graph theoretical

context the dimers form nothing else than a matching.

The question that is interesting in this context is: can a phase transition occur when varying the

monomer concentration of a monomer-dimer system? O. Heilmann and E. Lieb [HL72] proved

in 1972 that there is no phase transition in a monomer-dimer system. The authors also note (cf.

[HL72, p. 194]) that because of the above mentioned relation between graphs and its line graphs

(cf. Definition 2.15 and Lemma 3.4) their result implies that there is also no phase transition

for the hard core lattice gas model (sampling independent sets instead of matchings). The latter

1

1 Introduction and Motivation

holds not only for line graphs but also for general claw-free graphs which was proved 2007 by

M. Chudnovsky and P. Seymour in [CS07].

Monomer-dimer systems can be generalized to systems with bigger molecules (polymers) which

gives monomer-trimer (molecules consisting of three similar parts) and monomer-polymer sys-

tems. In 1972 Heilmann [Hei72] proved that certain monomer-trimer systems have a phase

transition. For monomer-polymers the underlying graph theoretical structure is not longer a

graph but a hypergraph which motivates our effort to approximate the matching polynomial

and the number of matchings in a hypergraph better.

1.2 Scope

The problem of counting matchings in hypergraphs has not gotten a lot of attention by re-

searchers in the past. It was only recently that the topic became more actively researched,

mainly because of the developments of some new techniques for constructing approximation

algorithms (see Chapter 4) and because the hardness of exact counting was proved for regular

graphs (see Theorem 3.7).

The first hardness result for the problem of exact counting matchings in graphs was proved by

L. Valiant [Val79b], shortly after he had introduced the the #P-class for counting problems in

1979. As a result counting matchings in arbitrary hypergraphs is #P-complete.

When a problem is proven to be too hard to solve in polynomial time one introduces further

restrictions on the underlying structures such that the problem becomes easier to solve but also

less general. In the case of counting matchings in (hyper-)graphs it makes sense to restrict the

problem to (hyper-)graphs of bounded degree, because then the number of edges intersecting in

a vertex is bounded which makes matchings less “concentrated” on a vertex.

A useful observation in this context is the equality of matchings in a hypergraph H and indepen-

dent sets in the intersection graph L(H) (cf. Lemma 3.4). In 2000 C.Greenhill [Gre00] proved

that counting independent sets in 3-regular graphs (graphs where each vertex has degree three)

is already #P-complete. Using the above-mentioned relation between independent sets and

matchings this implies that exact counting of matchings in hypergraphs is already #P-complete

for the small subclass of hypergraphs with degree less or equal than two. In conclusion one has

relatively small subclasses of hypergraphs for which exact counting is still #P-complete, but for

which one can tackle the problem of approximate counting by using structural properties only

existing in this subclasses.

Approximation algorithms can be divided into two classes: deterministic and randomized al-

gorithms. Randomized algorithms are often used because there is a very general method for

2

1.3 Outline

constructing them, namely the usage of a Markov chain. In contrary, deterministic algorithms

are often harder to construct but also more valuable because there is no probability of an unex-

pected error. We explain these differences in more detail in Chapter 4.

A first approximation algorithm for the number of matchings in a hypergraphs was a result of a

construction by M. Luby and E. Vigoda [LV99]. Their FPRAS for the number of independent

sets in graphs with degree bounded by four yields a FPRAS for the corresponding matching prob-

lem in hypergraphs. The last randomized approximation algorithm comes from M. Karpinski,

A. Ruciński and E. Szymańska [KRS13]. Restricting to sparse hypergraphs without structures

called 3-combs, they showed in 2013 the existence of a FPRAS for the number of matchings.

The most recent developments started in 2007 with a paper by D. Weitz [Wei07] introducing

the correlation decay technique, which results in deterministic approximation algorithms. His

method was then generalized by D. Gamarnik and D. Katz [GK07] and used to construct a

FPTAS for the number of matchings in graphs. In 2014 A. Dudek, M. Karpinski, A. Ruciński

and E. Szymańska applied this method to the hypergraph case which resulted in a FPTAS for

the subset of (3, 3)-hypergraphs.

1.3 Outline

In this thesis we analyse the problem of counting matchings in hypergraphs. We start in Chapter

2 with some preliminaries from graph theory, probability theory and computational complexity

theory. In Chapter 3 we introduce the problem of counting matchings and cite some hardness

and some first approximation results. In Chapter 4 we describe two general approaches for

constructing approximation algorithms. In Chapters 5 and 6 we follow the proofs from [KRS13]

and [DKRS14] that apply these methods to the problem of counting matchings. Finally in

Chapter 7 we summarize our results and motivate further research.

3

2 Preliminaries

In this chapter we will introduce some basic concepts of mathematics and computational sciences

that are required for understanding the rest of this thesis. Section 2.1 introduces some definitions

of graph theory which are naturally the core of this whole thesis. In Section 2.2 we give some

definitions and immediate results of probability theory which are mostly needed in Chapter 5.

In Section 2.3 we introduce definitions from Computational Complexity Theory. These include

Turing machines (Subsection 2.3.1), decision problems and the classes P and NP (Subsection

2.3.2) and also counting problems and the class #P (Subsection 2.3.3). Finally in Subsection

2.3.4 we define the types of approximation algorithms used in this thesis.

2.1 Graph Theory

This section introduces some graph theoretical definitions. Graphs are mathematical structures

that model objects and especially their relationship to each other in a rigorous way. Graph

theory belongs to the field of discrete mathematics, a relatively new part of mathematics, that

deals with structures that are fundamentally discrete (instead of continuous structures used,

for example, in Analysis). One of the first documented graph theoretical problems may be the

‘Seven Bridges of Königsberg’-problem, in which the king of Königsberg wants to walk a loop,

crossing all bridges of Königsberg exactly once. Leonard Euler(1707-1783) solved the problem

in 1735 by proving that such a walk is not possible.

Today’s interest in graph theory is often related to solving practically occurring problems ef-

ficiently with the help of modern computers. Current problems include: efficiently finding a

solution for the Travelling salesman problem (TSP), the Hamiltonian path problem and the

problem of counting matchings in graphs efficiently.

Although we are interested in counting matchings in hypergraphs, we start by introducing the

commonly used subset of graphs first.

Definition 2.1 (Undirected Graph). A undirected graph G = (V,E) consists of a finite,

nonempty set of vertices or nodes V = {v1, . . . , vn} and a set of edges E = {e1, . . . , em} ⊂

{{v, w} : v, w ∈ V and v 6= w}. Two vertices v, w ∈ V are adjacent in G if {v, w} ∈ E.

5

2 Preliminaries

Definition 2.2 (Directed Graph). A directed graph G = (V,E) consists of a finite, nonempty

set of vertices V = {v1, . . . , vn} and a set of edges E = {e1, . . . , em} ⊂ V × V . We say an

edge e goes from v to w if e = (v, w).

Definition 2.3 (Degree of a vertex). The degree deg(v) of a vertex v is the number of connected

edges to that vertex. This means for undirected graphs

deg(v) = |{e ∈ E : v ∈ e}|,

and for directed graphs

deg(v) = degin(v) + degout(v) = |{e = (v1, v2) ∈ E : v2 = v}|+ |{e = (v1, v2) ∈ E : v1 = v}|.

a

b

c

d e

e1

e 2

e
3

e 4

(a) Undirected graph G = (V,E)

where V = {a, b, c, d, e} and

E = {e1 = {a, b}, e2 = {a, c}, e3 =

{b, c}, e4 = {a, d}}

a

b

c

d e

e1

e 2

e
3

e 4

(b) Directed graph G = (V,E) where

V = {a, b, c, d, e} and

E = {(a, b), (a, c), (b, c), (a, d)}

Figure 2.1: Drawings of graphs

From now on, unless stated otherwise, n(G) will be the number of vertices of the graph G and

m(G) the number of edges. Also we always consider vertices and edges in a fixed order.

Definition 2.4 (Complete graphs). An undirected graph G = (V,E) is complete if

E = {{v, w} ⊂ E × E : v 6= w}.

We denote the complete graph with n vertices by Kn. A complete bipartite graph is a bipartite

graph (see Definition 2.11 with k = 2) with bipartition V = V1 ∪ V2, where

E = {{v, w} ⊂ E × E : v ∈ V1, w ∈ V2}.

We denote the complete bipartite graph with |V1| = r, |V2 = s| by Kr,s. For any k, K1,k is called

star, especially K1,3 is called claw.

We are now able to state Euler’s famous theorem that was already mentioned in the introduction

of this section. A proof can be found, for example, in [KV07, Theorem 2.24].

6

2.1 Graph Theory

Theorem 2.5. Let G = (V,E) be an undirected graph. An Eulerian walk is a sequence of

vertices v1, . . . , vr such that {vi, vi+1} ∈ E for all i = 1, . . . , r − 1 and each edge of G is crossed

exactly once. Then G contains an Eulerian walk if and only if the degree of each vertex is even.

Definition 2.6 (Cut, [KV07]). A cut in an undirected graph G is an edge set of type δ(X) for

some ∅ 6= X ⊂ V (G), where

δ(X) = {e = (v, w) ∈ E(G) : v ∈ X,w ∈ V (G)\X}.

A hypergraph is similar to a graph, but its edges can contain more than two nodes.

Definition 2.7 (Hypergraph). A hypergraph H = (V,E) consists of a finite, nonempty set of

vertices V and a set of edges E ⊂ 2V . Two vertices are called adjacent if there exists an edge

containing both of them. A vertex and an edge containing it are called incident.

Definition 2.8 (k-Uniform Hypergraph). A k-uniform hypergraph H = (V,E) (also called

k-graph) is a hypergraph where each edge consists of exactly k vertices (i.e. |e| = k,∀e ∈ E).

Definition 2.9 (Linear Hypergraph). A hypergraph is linear if no two edges share more than

one vertex.

Definition 2.10 (k-Regular Hypergraph). Analogue to the graph case the degree of a vertex

v of a hypergraph H, denoted by deg(v) is the number of edges incident to v. The neighbors

NH(v) of a vertex v are defined as

NH(v) = {w ∈ V (H) : v, w ∈ e for some e ∈ E(H)}.

A hypergraph is k-regular if every node has degree k. We denote by ∆(H) the maximum degree

of a vertex in H.

Definition 2.11 (k-partite Hypergraph). A hypergraph is k-partite if V can be partitioned in k

sets V1, . . . , Vk such that nodes from the same set are never adjacent.

(a) A hypergraph (b) A 3-uniform, 2-regular hypergraph

Figure 2.2: Drawings of hypergraphs

7

2 Preliminaries

Definition 2.12 (Subgraph). Let H = (V,E) be a hypergraph. A subgraph H ′ = (V ′, E′) is a

hypergraph where V ′ ⊂ V and E′ ⊂ E. It is an induced subgraph H[V ′] (induced by subset of

vertices V ′) if V ′ ⊂ V and E′ = E ∩ 2V
′
.

Remark: Let H = (V,E) be a hypergraph and let v ∈ V, e ∈ E. We often write H − v for the

graph H[V \{v}] and H− e for (V,E\{e}) or the analogue if we replace v or e by sets of vertices

or edges.

Definition 2.13 (Paths and Cycles, cf. [KRS13]). A path is a hypergraph P with edges E(P) =

{e1, . . . , em},m ≥ 1 where for every 1 ≤ i < j ≤ m, ei ∩ ej 6= ∅ if and only if j = i+ 1. If m ≥ 3

and in addition e1 ∩ em 6= ∅, then such a k-graph is called a cycle.

Remark: Note that a pair of edges sharing at least two vertices is still path and not a cycle.

Definition 2.14. A hypergraph H = (V,E) is connected if for each pair {v, w} ⊂ V there exists

a path between v and w. A subgraph of H that is connected is called (connected) component

of H.

Definition 2.15 (Intersection Graph). The intersection graph of a hypergraph H = (V (H), E(H))

is the graph G = L(H) with vertex set V (G) = E(H) and edge set E(G) consisting of all inter-

secting pairs of edges of H:

E(G) = {{e, f} ∈ E(H)× E(H) : e ∩ f 6= ∅}

When H is a graph, the same definition is called line graph.

e1

e2

e3

e4

e5

e1

e4

e5

e2

e3

Figure 2.3: An example of a hypergraph (left) and its corresponding intersection graph (right).

Next we define the dual graph as the hypergraph with interchanged vertices and edges.

Definition 2.16 (Dual Hypergraph). Let H = (V,E) be a hypergraph. The dual H∗ = (V ∗, E∗)

is defined by V ∗ = E and E∗ = {{e ∈ E|v ∈ e} : v ∈ V }.

8

2.2 Probability Theory

Definition 2.17 (Matching). A matching M in a graph or hypergraph is a set (possibly empty)

of disjoint edges (i.e. e ∩ f = ∅,∀e, f ∈M).

Remark: Although we defined subgraphs, components, matchings and the dual only for hyper-

graphs, it should be noted that analogous definitions for undirected graphs result from the fact

that hypergraphs can be seen as generalizations of undirected graphs.

2.2 Probability Theory

This section introduces the most important definitions from probability theory which are mainly

needed in Chapter 5. For this section basic knowledge in measure theory is required.

Definition 2.18 (Probability space). A probability space (Ω,F ,P) consist of

• a non-empty set called sample space Ω

• a σ-algebra F ⊂ P(Ω)

• a probability measure P, i.e. a positive measure P : F → [0, 1] such that

1. P(Ω) = 1

2. P is σ-additive: Let (Ai)i∈N

∀i 6= j : Ai ∩Aj = ∅ ⇒ P(∪i∈NAi) =
∑
i∈N

P(Ai)

Definition 2.19 (Conditional probability). Let (Ω,F ,P) be a probability space and A,B ∈ F

with P[B] > 0, then we define the probability of A conditioned on B P[A|B] by

P[A|B] =
P[A ∩B]

P[B]
.

Because we are only considering finite, discrete spaces in this thesis we will from now on assume

that Ω = {ω1, . . . , ωN} is finite. Also we always chose F = 2Ω. In this case the probability

distribution of a probability measure can than be described by a mass function p : Ω → [0, 1]

such that P({ωi}) = p(ωi) =: pi.

Definition 2.20 (Random variable). Let (Ω,F ,P) be a probability space and (S,S) be a mea-

surable space. A random variable X is a mapping X : Ω→ S.

Remark: Note that we will later often talk about the distribution of a random X and mean the

push-forward measure P ◦X−1.

Definition 2.21 (Uniform distribution). Let
(
Ω, 2Ω

)
be a measure space, then the uniform

distribution 1
|Ω| is defined by

P[A] =
|A|
|Ω|

, ∀A ∈ 2Ω.

9

2 Preliminaries

Because we will later need to compare different probability measures with each other we intro-

duce the following definition.

Definition 2.22 (Total variation distance of probability measures). Let (Ω,F) be a measurable

space and P and Q probability measures on it. Then we define the total variation distance

of P and Q by

dTV (P,Q) = sup
A∈F
|P(A)−Q(A)|.

Remark: Note that for finite Ω, the total variation distance is just the l1 norm of the corre-

sponding mass functions p and q. Indeed

dTV (P,Q) =
1

2

∑
x∈Ω

|p(x)− q(x)| = 1

2
‖p− q‖l1 .

Definition 2.23 (Stochastic process). Let (Ω,F ,P) be a probability space and (S,S) another

measurable space. A (discrete-time) stochastic process on a probability space is a family

(Xi)i∈N0 of random variables Xi : Ω → S. The transition of such a process from Xi to Xi+1 is

called step.

Definition 2.24 (Markov chain). Let (Ω,P,P) be a probability space. A stochastic process

(Xn)n∈N0, with values in (S,S), is called Markov chain if it can be described by a transition

kernel P with

∀A ∈ S : P[Xi+1 ∈ A|Xi, Xi−1, . . . , X1] = P (Xi, A) ∀i ∈ N0.

This means, that that the next state of the process depends only on the current state and not the

other previous ones. In the case of discrete S we use the notation pi,j := P (Xi, {j}).

Definition 2.25 (Properties of Markov chains). Let (Xt)t be a discrete Markov chain on

(Ω,F ,P). The chain is

• irreducible if it is possible to get from any state to any other state with positive probability.

• aperiodic if it holds that

∀a ∈ Ω : gcd(i, j) = 1,∀i 6= j ∈
{
h : ph(a, a) > 0

}
where gcd(i, j) is the greatest common divisor of i and j.

• symmetric if for all i, j ∈ Ω it holds pi,j = pj,i.

Definition 2.26 (Stationary distribution). Let (Xn)n be a Markov chain on (Ω,F ,P), where Ω

is discrete. Let P denote the transition kernel. A distribution with mass function π : Ω→ [0, 1]

is called stationary distribution of (Xn)n if∑
x∈Ω

π(x)P (x, y) = π(y), ∀y ∈ Ω

10

2.3 Computational Complexity Theory

Theorem 2.27 (from [LPW06, Theorem 4.9]). Let (Xn)n be a Markov chain on S. Let X be

aperiodic and irreducible, then there exists a unique stationary distribution π and there exist

constants α ∈ (0, 1) and C > 0 such that

max
x∈S
‖P t(x, ·)− π‖TV ≤ Cαt,

where P t is the distribution of the chain after t steps.

Corollary 2.28. Let (Xn)n be a symmetric, aperiodic, irreducible Markov chain, then its dis-

tribution converges exponentially fast to the uniform distribution.

2.3 Computational Complexity Theory

The theory of computational complexity is based on computational problems, i.e. questions to

be answered by intensive calculations, usually possessing several input parameters and a clear

definition of what a solution to this problem is. If we provide all input parameters of a problem

with concrete values we get an instance of the problem. A step-by-step procedure that produces

a solution for every instance of a problem is called an algorithm.

To be able to compare different algorithms for the same problem with each other we will define

some notions of complexity in this section. We start by defining the Turing machine in Section

2.3.1. It made comparing the complexity of algorithms possible in the first place. Then we

introduce the well known decision problems and complexity classes for them in Section 2.3.2.

In Subsection 2.3.3 we introduce counting problems (as in ‘counting the matchings of a hyper-

graph’). Finally in contrast to the problem specific complexity classes we define some complexity

classes for concrete approximation algorithms in Section 2.3.4.

This section is based on parts of [GJ79] and [Jer03].

Because it does not really fit in any subsection we start here with a mathematical definition

that helps us compare different functions with each other. This, so called Landau notation, gives

expressions like ‘g is an upper bound for f ’ a rigorous meaning.

Definition 2.29 (Landau notation). Let f : N→ N be a function. Then we define the following

function classes:

O(f) = {g : N→ N : ∃c > 0 ∃N0 ∈ N ∀n ≥ N0 : g(n) ≤ cf(n)}

Ω(f) = {g : N→ N : ∃c > 0 : g(n) < cf(n) for infinitely many n}

Θ(f) = O(f) ∩ Ω(f)

11

2 Preliminaries

Remark: It is common convention to write f = O(g) instead f ∈ O(g) and the analog for Ω

and Θ.

2.3.1 Turing machines

In this thesis we will often have to compare different algorithms with each other. For this matter

we have to define some criteria in which we want to rate the algorithms. Usually one wants to

have time-efficient (fast) and memory-efficient algorithms. The problem that arises is that the

efficiency of an algorithm depends heavily on the system on which it is ran. If we use modern

computers, a faster CPU or more memory it might lead to a faster running time, but also the

architecture of the CPU, the voltage or the even the temperature may play a role. This makes

results difficult to reproduce and to compare.

A solution to this problems came from Alan Turing (1912 - 1954) who introduced the (universal)

Turing machine, a theoretical construct that describes a computational machine (a computer

if you like), but stripped to its most basic minimum of functionality. It can be proved that

the set of problems that can be solved using a Turing machine is equivalent to the one modern

computers can solve (see Turing completeness, for example in [Her95]). Thus comparing the

Turing machine implementations of different algorithms is a good way to rigorously compare

their properties.

We start by introducing some notations that help to encode the problems we want to compute

a solution for.

Definition 2.30 (Alphabets / Languages, from [GJ79]). A finite set of symbols Σ is called an

alphabet. Denote by Σ∗ the set of all finite strings of symbols from Σ. A subset L ⊂ Σ∗ is

called a language over the alphabet Σ.

Remark: Note that all the problems we are later considering can be encoded in alphabets and

languages. However we will not in detail define how, for example, a graph can be encoded or

how the subset of matchings looks like.

We can now define what a Turing machine is.

Definition 2.31 (Turing machine, [GJ79, p. 22]). A (deterministic) Turing machine

(DTM) is specified by the following information:

• A finite set Γ of tape symbols, including a subset Σ ⊂ Γ of input symbols and a

distinguished blank symbol b ∈ Γ\Σ,

• a finite Q of states, including a distinguished start-state q0 and non-empty set F ⊂ Q

of final- or accepting states,

12

2.3 Computational Complexity Theory

• a transition function

δ : (Q\F)× Γ→ Q× Γ× {−1,+1}.

Remark: Note that in [GJ79] the authors introduce what we call a DTM as a program for a

DTM. For simplicity reasons we will not use this distinction in the following. We also replaced

their two state accepting-state-set by the more general set F .

−3 −2 −1 0 1 2 3

· · ·

Tape Read-write head

· · ·

Finite

state

control

Figure 2.4: Schematic representation of a deterministic one-tape Turing machine (DTM)

(Source: [GJ79])

The transition function of a DTM maps a state qt ∈ Q\F and a tape symbol γ ∈ Γ that is

currently read by the machine, to a new state qt+1 ∈ Q, a symbol to be written to the tape, and

an operation o ∈ {−1,+1} (moving the head of the Turing machine either left or right). This

way one can define the behaviour of an algorithm just by specifying the transition function. In

conclusion a DTM represents a powerful computing machine, but with it’s easy structure makes

it possible to define what the complexity of an algorithm is. For this matter we define one step

as one application of the transition function. The number of steps needed to get to an accepting

state can be used as a measure for the time-complexity of the algorithm on a particular instance

of the problem.

Definition 2.32 (Time-complexity of a Turing machine). Let M be a Turing machine, then we

define the time-complexity function TM : N0 → N0 of M as

TM (n) = max

m :
there exists input x ∈ Σ∗, with |x| = n, such that

the computation of M on input x takes n steps


Definition 2.33 (Polynomial-time Turing machine). We say a Turing machine is polynomial-

time if there exists a polynomial p such that

∀n ∈ N0 : TM (n) ≤ p(n).

By modifying the transition function to a transition relation, the deterministic Turing machine

becomes a non-deterministic Turing machine (NDTM).

13

2 Preliminaries

Definition 2.34 (Non-deterministic Turing machine). A non-deterministic Turing ma-

chine (NDTM) is specified by the following information:

• A finite set Γ of tape symbols, including a subset Σ ⊂ Γ of input symbols and a

distinguished blank symbol b ∈ Γ\Σ,

• a finite Q of states, including a distinguished start-state q0 and non-empty set F ⊂ Q

of final- or accepting states,

• a transition relation

δ : (Q\F)× Γ×Q× Γ× {−1,+1}.

The difference between a deterministic and a non-deterministic Turing machine is that a NDTM

basically decides randomly which next transition to take where in the deterministic case the

transition function defined the behaviour exactly. A NDTM is much more powerful in the

sense that it can solve problems much faster. This is because we define the time a NDTM

takes so solve an instance of a problem as the time the machine takes in the best-case scenario,

where the machine made perfect guesses on which transition to take to minimize the time

for the whole computation. This interpretation immediately reveals that a NDTM is just a

theoretical construct and nothing that can actually be build. A computer, for example, works

deterministically in that it has to be precisely specified which next calculation to do for every

situation possible.

2.3.2 Decision problems and NP-Completeness

In this section we introduce decision problems as the first fundamental class of problems. Also

the famous complexity classes P and NP categorize decision problems.

Definition 2.35 (Decision problem). A decision problem P is a pair (Σ, L) where Σ is an

alphabet and L ⊆ Σ∗ is a language over Σ. An instance of P is an element x ∈ Σ∗ and the

solution of x is ‘Yes’, if x ∈ L and ‘No’ else.

The following two definitions give an example of a decision problem.

Definition 2.36. A Hamiltonian cycle is a sequence of vertices that starts and ends at the

same vertex, where two following vertices form an edge of G and where each vertex is exactly

visited once.

Problem 2.37 (HAMILTON− CYCLE).

Input: A graph G.

Output: Does G contain a Hamiltonian cycle?

We will now make the connection between Turing machines and decision problems.

14

2.3 Computational Complexity Theory

Definition 2.38. A Turing machine M with F = { Yes , No } accepts a language L ⊂ Σ∗ if

for all x ∈ Σ∗

M(x) = Yes ⇔ x ∈ L,

where M(x) is the final state after the Turing machine calculated input x.

Now we can define polynomial algorithms and the complexity class P.

Definition 2.39 (Class P). We define the complexity class P as

P =

P = (Σ, L) :
P is a decision problem and there exists a

polynomial-time DTM which accepts L

 .

Analog to the deterministic case we define the time-complexity of a NDTM and it’s polynomial

running time. We can now define the complexity class NP.

Definition 2.40 (Class NP). The complexity class NP is defined as

NP =

P = (Σ, L) :
P is a decision problem and there exists a

polynomial-time NDTM which accepts L

 .

It’s immediately clear that P ⊂ NP. The other inclusion forms one of the most important

unsolved problems in modern mathematics, the so called P = NP - problem. So far there are

many problems, called NP-complete problems, for which there is still no polynomial algorithm.

This could be because P (NP, but a proof is still missing. What makes the P = NP -

problem even more interesting is, that because of the polynomial relation between NP-complete

problems, finding a polynomial algorithm for one NP-complete problem would imply such an

algorithm for all of them.

To formalize the notion of NP-completeness we need to first define polynomial-time reduction.

Definition 2.41 (Polynomial-time reduction). Let Σ1,Σ2 be alphabets and L1 ⊂ Σ∗1, L2 ⊂ Σ∗2

be languages. L1 is polynomial-time reducible to L2 if and only if there exists a DTM that

calculates in polynomial time a function f : Σ∗1 → Σ∗2 for every x ∈ Σ∗1 such that

x ∈ L1 ⇔ f(x) ∈ L2.

In particular, this implies that a polynomial algorithm that accepts one of these languages can

be easily transformed into one that accepts the other language.

Remark: If a problem PROBLEM−A is polynomial-time reducible to another problem PROBLEM− B

we write

PROBLEM− B ≤ PROBLEM−A.

15

2 Preliminaries

Definition 2.42 (NP-completeness). A problem P ∈ NP is called NP-complete, if every

other problem in NP is polynomial-time reducible to P.

Remark: If a problem is not necessarily in NP but all problems in NP can be polynomial-time

reduced to it, then we call this problem NP-hard. There are indeed problems that are even

‘more complex’ than NP-complete, for example the Halting problem. (for more information

see [GJ79, Chapter 5])

There is another class in between P and NP called RP which stands for randomized polynomial

and which adds a probabilistic component to the Turing machine. Basically RP consists of

decision problems for which there exists an algorithm of polynomial running time with the

following property: It always returns ‘NO’ if the correct solution is ‘NO’, but it returns ‘YES’

only with probability 1
2 if the correct solution is ‘YES’ otherwise it also returns ‘NO’. As the

rigorous definition with probabilistic Turing machine is quite long we refer the reader to [AB09]

for a detailed introduction.

2.3.3 Counting problems and the class #P

In 1979 L. Valiant [Val79a] introduced the equivalent class to NP for counting problems which

cannot be computed in polynomial time. The following definitions come mostly from [Val79a].

Definition 2.43 (Counting problem). A counting problem P is a pair (Σ, f) of an alphabet

Σ and a function f : Σ → N. An algorithm solves the problem if it can compute f(x) for all

x ∈ Σ∗.

Note that a counting problem is a function problem (i.e. for each input, the output has to be

computed) and not a decision problem (only ‘Yes’ or ‘No’ possible). Thus counting problems

are fundamentally different from decision problems. However, as the following example shows,

many decision problem can be easily transformed into counting problems and vice versa.

Problem 2.44 (#HAMILTON− CYCLES).

Input: A graph G.

Output: How many Hamiltonian cycles does G contain?

Remark: In the following definitions we speak of Turing machines that can compute a value

f(x). Of course this is not possible with the Turing machine introduced in the previous section.

That is because it has no output tape. Instead with a slight abuse of notation we are now talking

about Turing machines which additionally have a (write-only) output tape to display the result

of a calculation. All other operations of TMs stay the same.

The class for counting problems analogue to P is denoted by FP.

Definition 2.45 (Class FP). A counting problem P is in FP, if it is computable by a deter-

16

2.3 Computational Complexity Theory

ministic, polynomial-time Turing machine.

Of course if there is an analogue class to P one would also expect an analog class to NP.

Definition 2.46 (Class #P, cf. [Val79a]). The class #P consists of the counting problems (Σ, f)

for which there exists a non-deterministic Turing machine which computes f(x) in polynomial

time for all x ∈ Σ∗.

Definition 2.47 (#P-completeness). A problem P is #P-complete if it is in #P and every

other problem of #P can be polynomial-time reduced to P.

Remark: Although counting problems in #P are naturally related to decision problems in NP,

there are problems in P for which counting is #P-hard. For example, counting perfect matchings

in bipartite graphs is in #P while determining if the exists a perfect matching is in P. [Val79a]

2.3.4 Approximations

Similar to the decision problems, many counting problems of interest are #P-complete. Because

their complexity grows exponentially with the size of the instance, exact counting is in practice

often not possible, simply because it would take too long. The next best thing we can do is

try to construct an algorithm that approximates the solution. To characterize the quality of an

approximation, there also exist complexity classes for algorithms that distinguish good approx-

imation algorithms from bad ones.

We start with the deterministic approximations.

Definition 2.48 (FPTAS, cf. [DKRS14]). A fully polynomial time approximation scheme

(FPTAS) for a function f on Σ∗ is a deterministic algorithm which for every pair (ε, x) with

ε > 0 and x ∈ Σ∗, return a number y(x) such that

|y(x)− f(x)| ≤ εf(x),

and runs in time polynomial in 1/ε, and |x|.

Now we weaken this definition by only requiring a good approximation with a certain probability

and we get the following definition.

Definition 2.49 ((ε, δ)-approximation, [KRS13]). Given any fixed ε, δ > 0, a random variable

Y is a (ε, δ)-approximation of a constant C, if

P [|Y − C| ≥ εC] ≤ δ

Definition 2.50 (FPRAS, [KRS13]). An randomized algorithm is a fully polynomial ran-

domized approximation scheme (FPRAS) for a function f on Σ∗, if for every triple (ε, δ, x)

17

2 Preliminaries

with ε > 0, δ > 0 and x ∈ Σ∗, the algorithm returns an (ε, δ)-approximation Y of f and runs in

time polynomial in 1/ε, log (1/δ) and |x|.

The are also weaker definitions, where for example the approximation has to be only up to a

certain constant precision (APX) or where its running time does not have to be polynomial

in 1/ε (PTAS). Because we will not use them in this thesis we wont rigorously define these

classes here. Also, in Chapter 4 we will go a bit more into the differences of randomized and

deterministic approximations.

18

3 Counting Matchings in Hypergraphs

In this chapter we will introduce the counting problem we are analysing in this thesis: count-

ing the number of matchings in hypergraphs. The definition of this problem and its relation

to counting independent sets are described in section 3.1. In Section 3.2 we introduce some

interesting subclasses of hypergraphs so that we break down the counting problem in smaller

pieces which can be analysed separately. The next two Sections 3.3, 3.4 are the foundation for

our further analysis. In Section 3.3 we will prove the hardness of exact counting of matchings.

In Section 3.4 we introduce some preliminary results on the approximation hardness and clarify

which approximation results we can hope for.

3.1 Counting matchings and its relation to independent sets

With Definition 2.17 we already introduced the notion of matchings in a hypergraphs. Naturally

the problem of counting matchings in a hypergraph is then defined in the following way.

Problem 3.1 (#MATCHINGS).

Input: A hypergraph H.

Output: The number of matchings H does contain. We set

#MATCHINGS
(
H
)

= |M(H)| =
∣∣∣∣{M ⊂ E(H) : M is a matching

}∣∣∣∣ .
It turns out that counting matchings is closely related to another counting problem, namely the

counting of independent sets.

Definition 3.2. Let G be a graph or hypergraph. We call a set I ⊂ V (G) an independent set

(or stable set) if

∀v, w ∈ I @e ∈ E(G) : v, w ∈ e.

This means that no two vertices in an independent set are allowed to be connected by an

edge. Analog to the #MATCHINGS - problem we introduce the #INDEPENDENT− SETS -

problem.

Problem 3.3 (#INDEPENDENT− SETS).

Input: A graph or hypergraph G.

Output: The number of sets I ⊂ V (G) such that I is an independent set.

19

3 Counting Matchings in Hypergraphs

The relation between the two problems is shown in the following Lemma.

Lemma 3.4. Let H be a hypergraph and L(H) its corresponding intersection graph, then the

number of matchings in H is equivalent to the number of independent sets in L(H).

Proof. Recalling that the nodes of L(H) (representing edges of H) are only connected if the

corresponding hyperedges intersect, we get that independent sets of L(H) represent matchings

in H.

Indeed many following results in this chapter come from this relation between counting inde-

pendent sets and counting matchings.

3.2 Hypergraph classes of interest

Because we are going to show in Sections 3.3 and 3.4, the #P-completeness and inapproxima-

bility of counting matchings in arbitrary hypergraphs, it makes sense to restrict ourselves to

smaller subsets of hypergraphs. This way we can split the big problem into minor small ones.

To be able to easily compare different results, in this section we introduce some general notations

for graphs and hypergraphs.

First set H to be the set of all hypergraphs. The first thing we can do to narrow down the

hypergraphs - in which we are counting the matchings in - is to only consider k-uniform hy-

pergraphs. We denote this class by H(k). The restriction on this class gives more information

about the structure of its intersection graph, namely that it has no induced copy of K1,k+1.

Lemma 3.5. Let H ∈ H(k) and denote by G = L(H) its corresponding intersection graph.

Then G does not contain an induced copy of K1,k+1. We call G k+1-claw-free.

Proof. Suppose G contains an induced copy of K1,k+1, then there exists an edge in H intersecting

k+ 1 other edges which are pairwise disjoint (do not intersect). This is a contradiction because,

as H is k-uniform, each edge contains exactly k vertices and thus at least two of the k+ 1 other

edges have to intersect each other.

Restricting ourselves further gives the set H(k, r) of hypergraphs H ∈ H(k) with ∆(H) ≤ r

(maximum degree at most r). Hypergraphs in H(k, r) are called (k, r)-graphs. Furthermore in

Chapter 5 we are going to define the set of hypergraphs without structures called 3-combs by

H0, and analogue H0(k) for k-graphs without 3-combs and so on. As this restriction is of less

general importance we give the precise definition only in Chapter 5 (see Definition 5.1).

20

3.3 #P-completeness of exact counting

For the special case of graphs we denote the set of all 2-uniform hypergraphs (graphs) by G and

the set of graphs with degree at most r by G(r). For the sets of r-regular graphs or k-graphs we

write G(= r), respectively H(k,= r).

For the restriction of problems to a certain class of hypergraphs we write, for example,

#MATCHINGS
(
H(k, r)

)
for the problem of counting the number of matchings in (k, r)-graphs.

The above classes of hypergraphs set the scene for our analysis. We will try to step by step

show #P-completeness, inapproximability or existence of an efficient approximation algorithm.

Figure 3.1 is a visualization of the relations that we will later use to map our results.

H(2, 1) ⊂ H(2, 2) ⊂ H(2, 3) ⊂ H(2, 4) ⊂ H(2, 5) ⊂ H(2, 6) ⊂ H(2, 7) ⊂
H(3, 1) ⊂ H(3, 2) ⊂ H(3, 3) ⊂ H(3, 4) ⊂ H(3, 5) ⊂ H(3, 6) ⊂ H(3, 7) ⊂
H(4, 1) ⊂ H(4, 2) ⊂ H(4, 3) ⊂ H(4, 4) ⊂ H(4, 5) ⊂ H(4, 6) ⊂ H(4, 7) ⊂
H(5, 1) ⊂ H(5, 2) ⊂ H(5, 3) ⊂ H(5, 4) ⊂ H(5, 5) ⊂ H(5, 6) ⊂ H(5, 7) ⊂
H(6, 1) ⊂ H(6, 2) ⊂ H(6, 3) ⊂ H(6, 4) ⊂ H(6, 5) ⊂ H(6, 6) ⊂ H(6, 7) ⊂
H(7, 1) ⊂ H(7, 2) ⊂ H(7, 3) ⊂ H(7, 4) ⊂ H(7, 5) ⊂ H(7, 6) ⊂ H(7, 7) ⊂

. . .

. . .

. . .

. . .

. . .

. . .

...
...

...
...

...
...

...
. . .

U
n

iform
ity

(k
)

Max. degree (r)

Figure 3.1: A map of hypergraph subclasses we will consider in this thesis

3.3 #P-completeness of exact counting

In this section we prove the #P-completeness for the #MATCHINGS - problem on almost all

subclasses of hypergraphs we introduced in the previous section. This then satisfies why we are

only considering approximation algorithms in the ongoing of this thesis. The main result of this

section is from [Gre00] while a preliminary result comes from [Val79b].

The earliest hardness result related to our problem comes from [Val79b] by L. Valiant in 1979.

It can be seen as a follow-up of his famous article ‘The complexity of computing the permanent’

(cf. [Val79a]), where he introduced the complexity class #P. He proved the #P-completeness

for a bunch of problems, including the following.

Problem 3.6 (IMPERFECT MATCHINGS).

Input: A bipartite graph with 2n nodes.

Output: The number of matchings of any size.

21

3 Counting Matchings in Hypergraphs

However, this implies that counting matchings in arbitrary graphs is #P-complete. Now since

graphs are k-uniform hypergraphs (with k = 2), we have that #MATCHINGS is also #P-

complete for arbitrary hypergraphs. As a result we restrict ourselves to the above mentioned

subclasses of hypergraphs and to approximate counting instead of exact counting.

The #P-completeness for most of the these subclasses comes from a result of C. Greenhill in

2000. In [Gre00] she proved the following theorem.

Theorem 3.7 (cf. [Gre00, Theorem 3.1]). #INDEPENDENT− SETS
(
G(= 3)

)
is #P-complete.

We can now do a reduction to our problem.

Proposition 3.8.

#INDEPENDENT− SETS
(
G(= k)

)
≤ #MATCHINGS

(
H(k, 2)

)
Proof. Let G ∈ G(= k) and let H := G∗ be the dual hypergraph (cf. Definition 2.16). Then

because each vertex of G has degree equal to k, each edge in H contains exactly k vertices

and thus H ∈ H(k). Also because edges in G contain two vertices, the vertices in H have

degree at most two, thus H ∈ H(k, 2). By construction we now have V (H) = E(G) and each

edge of the hypergraph ev ∈ E(H) corresponds to the edges incident to v ∈ V (G) in G. In

conclusion the number of independent sets in G is equal to the number of matchings in H. Thus

#MATCHINGS
(
H(k, 2)

)
has to be at least as hard as #INDEPENDENT− SETS

(
G(= k)

)
.

Now combining Theorem 3.7 and Proposition 3.8 we get the #P-completeness for

#MATCHINGS
(
H(3, 2)

)
.

In order to expand the result to (k, 2)-graphs with k ≥ 3 we prove the following Lemma.

Lemma 3.9.

#MATCHINGS
(
H(k, r)

)
≤ #MATCHINGS

(
H(k + 1, r)

)
Proof. Let H = (V,E) ∈ H(k, 2). Now to each edge ei ∈ E add a new vertex vnewi such that

enewi = e∪{ve}, set Enew =
⋃m
i=1{enewi }. Then Hnew = (V ∪

⋃m
i=1{vnewi }, Enew) is in H(k+1, r)

and matchings in H are matchings in Hnew. Thus #MATCHINGS
(
H(k + 1, r)

)
is at least as

hard as #MATCHINGS
(
H(k, r)

)
.

Remark: Because H(k, r) ⊂ H(k, r + 1) we also have

#MATCHINGS
(
H(k, r)

)
≤ #MATCHINGS

(
H(k, r + 1)

)
.

Combining Theorem 3.7, Proposition 3.8 and Lemma 3.9 we get the final result.

Corollary 3.10. #MATCHINGS
(
H(k, r)

)
is #P-complete for k ≥ 3 and r ≥ 2.

22

3.4 (In-)approximability results

Note that H(k, 1), k ≥ 1 are graphs without intersecting edges. Thus each such hypergraph is by

itself a matching which makes counting them naturally easy, i.e. in polynomial time. A visual

comprehension of the hardness results so far is displayed in Figure 3.2.

#P-complete (Corollary 3.10)∈ P

H(2, 1) ⊂ H(2, 2) ⊂ H(2, 3) ⊂ H(2, 4) ⊂ H(2, 5) ⊂ H(2, 6) ⊂ H(2, 7) ⊂

H(3, 1) ⊂ H(3, 2) ⊂ H(3, 3) ⊂ H(3, 4) ⊂ H(3, 5) ⊂ H(3, 6) ⊂ H(3, 7) ⊂

H(4, 1) ⊂ H(4, 2) ⊂ H(4, 3) ⊂ H(4, 4) ⊂ H(4, 5) ⊂ H(4, 6) ⊂ H(4, 7) ⊂

H(5, 1) ⊂ H(5, 2) ⊂ H(5, 3) ⊂ H(5, 4) ⊂ H(5, 5) ⊂ H(5, 6) ⊂ H(5, 7) ⊂

H(6, 1) ⊂ H(6, 2) ⊂ H(6, 3) ⊂ H(6, 4) ⊂ H(6, 5) ⊂ H(6, 6) ⊂ H(6, 7) ⊂

H(7, 1) ⊂ H(7, 2) ⊂ H(7, 3) ⊂ H(7, 4) ⊂ H(7, 5) ⊂ H(7, 6) ⊂ H(7, 7) ⊂

. . .

. . .

. . .

. . .

. . .

. . .

...
...

...
...

...
...

...
. . .

Figure 3.2: The complexity of counting matchings in certain subclasses of hypergraphs

3.4 (In-)approximability results

After in the previous section we showed the hardness of exact counting matchings for almost

all hypergraphs, in this section we will state some results concerning the approximability of the

exact number of matchings. Interestingly, contrary to the exact counting there are really some

differences between the different subclasses, in the sense that, for example, for some hypergraphs

there do not even exist FPRASs while for other there are even FPTASs. This also confirms that

our splitting in subclasses of hypergraphs was a good choice. The results in this chapter come

from [LV99], [Wei07], [Sly10], [SS12] and [KRS13].

A first result came from M. Luby and E. Vigoda [LV99] in 1999 when they constructed an

FPRAS for #INDEPENDENT− SETS
(
G(4)

)
. In 2007 D. Weitz proved the existence of an

FPTAS even for the more general set G(5). In his proof he used a new method called correlation

decay which we will further explain in Chapter 4 and apply in Chapter 6.

Proposition 3.11 (cf. [Wei07]). There exists an FPTAS for #INDEPENDENT− SETS
(
G(5)

)
.

Again using this FPTAS on the intersection graph of a hypergraph and using Lemma 3.4 we get

the following corollary.

Corollary 3.12. There exists an FPTAS for #MATCHINGS
(
H(k, 2)

)
for k ∈ {3, 4, 5}.

Now recently this result was complemented by results in [Sly10], [SS12] by A. Sly resp. A. Sly

and N. Sun. They proved that the number of independent sets in graphs with higher degree

23

3 Counting Matchings in Hypergraphs

than five are not efficiently approximable.

Proposition 3.13 (cf. [Sly10], [SS12]). Unless NP = RP there exists no FPRAS for

#INDEPENDENT− SETS
(
G(= 6)

)
.

Using the reduction from Proposition 3.8 this leads again to a corresponding result for the

number of matchings.

Proposition 3.14. For every k ≥ 6 unless NP = RP, there is no FPRAS for the number of

matchings in a 2-regular, linear k-graph.

Remark: Note that in Proposition 3.8 the dual hypergraph of a graph is linear.

Remark: Note that from the fact that no FPRAS can exists for a problem follows that no

FPTAS can exists, but not the other way around.

#P-complete (Corollary 3.10)∈ P

@
F

P
R

A
S

(P
rop

.
3.14)

∃ FPTAS (Corollary 3.12)

H(2, 1) H(2, 2) H(2, 3) H(2, 4) H(2, 5) H(2, 6) H(2, 7)

H(3, 1) H(3, 2) H(3, 3) H(3, 4) H(3, 5) H(3, 6) H(3, 7)

H(4, 1) H(4, 2) H(4, 3) H(4, 4) H(4, 5) H(4, 6) H(4, 7)

H(5, 1) H(5, 2) H(5, 3) H(5, 4) H(5, 5) H(5, 6) H(5, 7)

H(6, 1) H(6, 2) H(6, 3) H(6, 4) H(6, 5) H(6, 6) H(6, 7)

H(7, 1) H(7, 2) H(7, 3) H(7, 4) H(7, 5) H(7, 6) H(7, 7)

. . .

. . .

. . .

. . .

. . .

. . .

...
...

...
...

...
...

...
. . .

Figure 3.3: The extended complexity map with added (in-)approximability results from section

3.4

24

4 Methods for constructing approximation

algorithms

In the two chapters after this one we are going to construct approximation algorithms for the

problem of counting matchings in hypergraphs. The methods we are going to use are not

limited to this special case but can also be used to construct approximation algorithms for other

problems. In this chapter we will therefore describe two general methods on how deterministic

and probabilistic approximation algorithms can be constructed or - to put it another way - how

it can be proved that these algorithms are efficient (i.e. a FPTAS or FPRAS). First in Section

4.1 we explain the relation between counting and uniform sampling. In Section 4.2 we describe

a method for constructing a FPRAS using Markov chains which will be applied in Chapter 5.

In Section 4.3 we explain the recently developed [Wei07] deterministic correlation decay method

used in Chapter 6.

4.1 The relation of approximate counting and uniform sampling

The underlying principle of many approximate counting algorithms is the fact that uniform

sampling is almost as good as counting. This is meant in the sense that if we are able to

efficiently sample according to the uniform distribution on the state space of the problem, this

gives also an efficient approximate counting algorithm. Indeed this is not really surprising

because uniform sampling means that each realization (possible value) of a random variable

appears with the same probability. If now the space in which the random variable takes values

is the space for which we want to count the elements, then naturally from the probability we can

derive the number of items by taking the inverse. To formalize this idea consider the following

definitions.

Definition 4.1 (ε-uniform distribution, cf. [KRS13]). Let (Ω, 2Ω,P) be a probability space where

Ω is the finite sample space. Let ε > 0 be fixed. We call the distribution of P, ε-uniform if

∀S ⊆ Ω,

∣∣∣∣P(S)− |S|
|Ω|

∣∣∣∣ < ε,

or equivalently dTV

(
P, 1
|Ω|

)
< ε.

25

4 Methods for constructing approximation algorithms

Definition 4.2 (FPAUS, cf. [KRS13, Definition 2]). A randomized algorithm is called a fully

polynomial almost uniform sampler (FPAUS) for a counting problem P = (Σ, f) with

f(x) = |Ω(x)|, if for every pair (ε, x) with ε > 0 and x ∈ Σ∗, the algorithm samples ω ∈ Ω(x)

according to an ε-uniform distribution P and runs in polynomial time in 1
ε and |x|.

A rigorous proof - at least for the problem of counting matchings - that indeed a almost uniform

sampler can be used to count the items in Ω was done by M. Jerrum in [Jer03].

Proposition 4.3 (cf. [Jer03, Proposition 3.4]). Let G be a graph with n vertices and m edges,

where m ≥ 1 to avoid trivialities. If there is an almost uniform sampler on the set of match-

ings M(G) with running time bounded by T (n,m, ε), then there is a randomized approximation

scheme for |M(G)| with running time bounded by cm2ε−2T (n,m, ε
6m), for some constant c. In

particular, if there is an FPAUS for M(G) then there is an FPRAS for |M(G)|.

Although the proof is done only for the graph case, the hypergraph case follows immediately

because the structure of the edges is nowhere used in the proof. An even more general proof

for so called self-reducible counting problems can be found in [Jer85]. As a result we can now

concentrate on uniform sampling instead of the counting problem itself.

4.2 Rapidly mixing Markov chains and the canonical paths method

Using randomized algorithms often makes sense if a problem can not be efficiently solved and

not even efficiently approximated deterministically. Then the best approach can be to use a

randomized algorithm which gives a good approximation only with a certain probability. In the

many possible steps of relaxing the conditions required for a solution of a problem, allowing

randomized approximations is often the last hope for getting any efficient algorithm at all.

Nevertheless good randomized algorithms (FPRAS) are in practice often good enough. If, for

example, the approximation quality (low probability of big errors) depends polynomially on the

number of steps, it may be efficient to run the algorithm until we can be sure we get a good

enough approximation.

4.2.1 Rapidly mixing Markov chains

In this section we motivate the use of Markov chain for the construction of a FPRAS. The

definitions are again taken from [KRS13].

A common way to construct a randomized approximation algorithm is done with the help of an

ergodic Markov chain (cf. Definition 2.24). The state space of the chain is usually the underlying

configuration space of the problem. Also the chain is defined such that the stationary distribution

is of interest for the problem (usually the uniform distribution). This can be done relatively

26

4.2 Rapidly mixing Markov chains and the canonical paths method

easy and the beauty of an ergodic Markov chain is that it converges towards this stationary

distribution, giving an approximation for the problem. This principle is the base for many NP

and #P-complete problems that are otherwise not efficiently solvable. However, to make this

procedure an effective algorithm requires that the chain is approaching its stationary distribution

fast (enough). In the following we define ‘how fast a Markov chain is approaching its stationary

distribution’ as mixing time. Markov chains that converge fast to their stationary distribution

are called rapidly mixing.

Definition 4.4 (Mixing time of a Markov chain). The mixing time of an ergodic Markov

chain M on (Ω,F) is defined as

tmix(ε) = min {t : dTV (Pt, P∞) ≤ ε}

where dTV is the total variation distance, Pt the distribution of the Markov chain after t steps

and P∞ the stationary distribution of the Markov chain.

This definition does indeed make sense, because measures with little total variation distance can

be considered ‘close’, in the sense that a certain configuration has similar probabilities in Pt and

P∞ (see Definition 2.22). The difficulty in using Markov chains to construct a FPRAS is usually

not in the definition of the chain but in the fact that one has to prove a polynomial upper bound

for the mixing time in order to really get a FPRAS. One way to prove this polynomial bound

is the canonical paths method described in Subsection 4.2.2. It utilizes the transition graph of

the Markov chain.

Definition 4.5 (Transition graph of a Markov chain). Let MC be a Markov chain on a prob-

ability space (Ω,F ,P) with finite Ω. The transition graph GMC = (V,E) is defined by

V (GMC) = Ω and

E(GMC) = {i, j ∈ Ω : pi,j > 0}.

Remark: At this point we want to especially emphasize that the transition graph should not be

mixed up with the underlying graph or hypergraph in which we are counting the matchings. The

transition graph exists for all kind of Markov chains. It is just a visualization of how the Markov

chain behaves on its state space and which transitions might happen.

Naturally one might feel that the speed by what a Markov chain converges to its stationary

distribution is closely related to ‘how well the transition graph is connected’. This is meant the

sense of how likely it is to get from an arbitrary start-vertex to another arbitrary end-vertex.

This is the core idea of the following definition.

Definition 4.6 (Conductance of symmetric Markov chain). Let MC be a symmetric Markov

27

4 Methods for constructing approximation algorithms

chain. The conductance is defined by

Φ(MC) = min
S⊂Ω,0<|S|< 1

2
|Ω|

∑
{i,j}∈cut(S) pi,j

|S|
.

Proposition 4.7 (cf. [JS89b, Theorem 2.2]). It holds

dTV

(
Pt,

1

|Ω|

)
≤ |Ω|2

(
1− Φ2

2

)t
, (4.1)

and thus

tmix(ε) ≤ 2

Φ2
(2 log |Ω|+ log ε−1). (4.2)

Idea of the proof. For the proof one can identify the transition probabilities with a stochastic

matrix. The mixing time is closely related to the eigenvalues of this matrix. Now this eigenvalues

can be bounded in terms of the conductance of the transition graph which then lets us conclude

(4.1). A detailed proof can be found in [JS89a, Section 3].

In particular, this proposition implies that now we can focus on bounding the conductance from

below in order to bound the mixing time from above. Define

pmin = min{pi,j : {i, j} ∈ GMC , i 6= j},

then because pmin is the smallest possible transition probability we have∑
{i,j}∈cut(S)

pi,j ≥ |cut(S)|pmin,

and thus

Φ(MC) ≥ min
S⊂Ω,0<|S|< 1

2
|Ω|

pmin|cut(S)|
|S|

. (4.3)

If we assume that pmin can be bounded from below then, in order to get a bound for the

conductance Φ(MC), we will only have to bound |cut(S)| from below. This is where the canonical

paths method of Subsection 4.2.2 comes into play.

4.2.2 The canonical paths method in general

Recall that we are examining the transition graph GMC and we want to polynomially bound

|cut(S)| from below for every S ⊂ V (GMC). For this matter we want to use the canonical paths

method. It was first introduced by M. Jerrum and A. Sinclair (cf. [JS89b]) and it consists of

two steps:

1. Define a canonical path in GMC for every pair (ωI , ωF) of elements in the state space

Ω. That is a path deterministically defined only by (ωI , ωF) and which can always be

reconstructed by just knowing ωI and ωF .

28

4.3 Correlation decay

2. Bound from above the number of canonical paths containing a fixed edge of GMC by

poly(n)|Ω|.

To understand why this helps bounding |cut(S)|, note that a path in GMC from an element

of S to an element of its complement V (GMC)\S, has to go through an edge of cut(S). For

ω10

ω9

ω8

ω7

ω5

ω6

ω4

ω3

ω2

ω1

t1

t2

S

Figure 4.1: Example of a transition graph with canonical paths, where ω1, . . . , ω10 are some

states of the Markov chain. Here S = {ω5, ω6, ω7, ω8} and cut(S) = {t1, t2}. In

general we bound |cut(S)| = |{t1, t2}| by bounding the number of paths that cross

an arbitrary edge and using that |S||Ω\S| paths have to cross an edge of cut(S).

|S| ≤ 1
2 |Ω| we then have

|cut(S)| ≥ |S|(|Ω| − |S|)
poly(n)|Ω|

≥ |S|
2poly(n)

. (4.4)

Indeed the first inequality follows because there are |S|(|Ω|−|S|) paths from S to V (GMC) = Ω\S

and no edge is allowed to have more than poly(n)|Ω| paths crossing it.

Using these two steps of the canonical paths method we will in Chapter 5 prove that the Markov

chain defined in Section 5.2 is a FPAUS.

4.3 Correlation decay

A more recent method that can be used to construct an efficient approximation algorithm is

(spatial) correlation decay. It was introduced by D. Weitz [Wei07] in 2007 for the problem of

counting independent sets in a graph (see Proposition 3.11). Shortly after this, D. Gamarnik

and D. Katz [GK07] slightly modified the method to be applicable to more general problems. In

this section we summarize the important ideas of [Wei07] and [GK07] and use them to give an

idea how correlation decay works in general. A rigorous application to the problem of counting

matchings in hypergraphs follows in Chapter 6.

29

4 Methods for constructing approximation algorithms

4.3.1 Weitz’s approach using spatial correlation decay

For some activity 0 < λ < λc Weitz considers weighted independent sets I in a graph G = (V,E)

with weights proportional to λ|I|. The partition function is the sum over all these weights of

independent sets: Z ≡ ZλG =
∑

I λ
|I|. Thus for λ = 1, Z is just the number of independent sets.

The interest lies in calculating Z or sampling independent sets according to λ|I|

Z .

The core idea of correlation decay is to look at the marginal distribution of a single vertex v

(i.e. the probability that a vertex is part of a uniformly drawn independent set)

pv ≡ pλG,v =

∑
v∈I λ

|I|

ZλG
.

We then want to show that it is more or less independent of the condition that another set Λ ⊂ V

is in the independent set, unless Λ is close to v. Weitz formalizes this idea in his definitions of

(weak/strong) spatial mixing.

Definition 4.8 (Weak spatial mixing, [Wei07, Definition 2.1]). Let δ : N → R+. We say that

the distribution over independent sets of G = (V,E) with activity parameter λ exhibits weak

spatial mixing with rate δ(·) if and only if for every v ∈ V,Λ ⊂ V , and any two configurations

σΛ, τΛ specifying independent sets of Λ,

|pσΛ
v − pτΛv | ≤ δ(dist(v,Λ)),

where dist(v,Λ) stands for the graph distance (the length of the shortest path) between the vertex

v and the subset Λ.

Naturally this property seems useful for the construction of a fast approximation algorithm

because, as Weitz [Wei07] points out:

“In statistical physics the graph G is usually an infinite graph [...] and weak [spatial] mixing

with rate δ that goes to zero is equivalent to the uniqueness of the Gibbs measure, i.e. to the

existence of a unique macroscopic equilibrium.”

Weitz’s approach to show this spatial correlation decay for independent sets uses a clever trans-

formation of the graph problem to the tree of self-avoiding walks. This transformation implies

that the probability of a vertex to be in an independent set in G is the same as the probability

for the root of the tree to be in an independent set. However for the tree it can be easily show

that the correlation between two vertices decays exponentially.

4.3.2 Using a recursive computation tree

A disadvantage of Weitz’s approach is the fact that his transformation of the graph to a tree

works only on two-valued models (f.e. a vertex can only be in an independent set or not). Also

the approximations of the marginal probabilities are not efficient enough, for example, for a

30

4.3 Correlation decay

approximate counting algorithm for the number of matchings (cf. [BGK+07, Chapter 5]). As a

result, D. Gamarnik and D. Katz [GK07] use a slightly different approach where the ‘tree-like-

structure’ does not come as a result of a transformation of the graph. Instead it comes from a

recursive relation of the probabilities similar to recursions that appear in dynamic programming.

We take an example application of this method from [BGK+07] where M. Bayati et al. con-

structed a simple deterministic approximation algorithm for counting matchings in graphs and

which was the motivation for the proof in the hypergraph case explained in Chapter 6. Bayati et

al. first derive the recursive relation for the probability that a vertex v is in a random matching

M, sampled uniformly from the set of all matchings.

Proposition 4.9 (cf. [BGK+07, Proposition 3.1]). The following holds for every vertex v:

PG(v 6∈M) =
1

1 + λ
∑

u∈NG(v) PG\{v}(u 6∈M)
.

[...]

Then one can define a similar looking, approximating function ΦG depending on an additional

(time) parameter t.

Definition 4.10 ([BGK+07]). For every subgraph Ĝ of the graph G, every vertex v ∈ Ĝ and

every t ∈ Z+ we introduce a quantity ΦĜ(v, t) computed inductively as follows.

1. ΦĜ(v, 0) = 1 for all Ĝ, v ∈ V .

2. For every t ≥ 1,

ΦĜ(v, t+ 1) =
1

1 + λ
∑

u∈NĜ(v) ΦĜ\{v}(u, t)
.

At first this approximation seems bad in the sense that, because of the sum over recursive

function calls, we still have to evaluate the expression for exponentially many subgraphs of G.

The solution to this problem comes from correlation decay. After we have iterated the recursion

a few steps, the correlation between the initial vertex v and the neighbours of its neighbours of

its neighbors (and so on) is so low that we can stop and still get a good enough approximation

of the probability P(v 6∈M). Bayati et al. prove the following statement.

Theorem 4.11 (cf. [BGK+07, Theorem 3.2]). The following holds for every vertex v and every

possible even value t:∣∣∣∣ logPG(v 6∈M)− log ΦG(v, t)

∣∣∣∣ ≤ (1− 2√
1 + λ∆ + 1

) t
2

log(1 + λ∆)

where ∆ = ∆(G) the max. degree of a vertex in G.

We will carry out the details in Chapter 6 where we will do the proof for the hypergraph case.

31

5 A FPRAS for counting matchings in

hypergraphs without 3-combs

After in the previous chapter we described the idea of how a Markov chain can be used for an

approximation algorithm, in this chapter we will give a detailed application for the problem of

counting matchings in hypergraphs.

First in Section 5.1 we will describe the further assumption on the set of hypergraphs that

is needed for us to prove that the algorithm is indeed fast (enough) approximating the exact

number of matchings. In Section 5.2 we will define the Markov chain that is the heart of our

algorithm. Next in Section 5.3 we apply the canonical paths method described in Subsection

4.2.2 to show that the define Markov chain is rapidly mixing. Finally in section 5.4 we draw

conclusions and again summarize where we stand at this point.

This chapter is mostly based on [KRS13] by M. Karpinski, A. Ruciński and E. Szymańska where

the proof is taken from.

5.1 Further assumptions on the hypergraphs

In this section we introduce some additional assumptions on the hypergraphs. These assumptions

are needed to show that the Markov chain we are going to use is rapidly mixing.

Definition 5.1 (3-comb, cf. [KRS13]). We call a hypergraph a 3-comb if consists of a matching

{e1, e2, e3} and one extra edge e4 such that |e4 ∩ ei| ≥ 1 for i = 1, 2, 3.

Definition 5.2 (Wide edge, cf. [KRS13]). Call an edge wide if it intersects a matching in H

of size at least three.

Remark: Note that every 3-comb contains a wide edge. That is how the two definitions are

related.

We denote hypergraphs without 3-combs by H0 and hypergraphs with at most s wide edges by

Hs. Analog, in combination with our previous notation, we define H0(k),Hs(k, r) and so on.

The reason why such a restriction is needed in the first place can probably be best explained

33

5 A FPRAS for counting matchings in hypergraphs without 3-combs

by looking at the transition graph of the Markov chain. As we mentioned in the last chapter,

it is important that the transition graph is ‘well connected’, i.e. that it is easy to get from one

end to the other. The Markov chain we are going to define in the next section will only allow

transitions (from one matching to another) that add, remove or exchange exactly one edge.

Now if a hypergraph contains many 3-combs the transition graph of the Markov chain is not

well connected in the sense that there are areas that are connected with each other only by

very few transitions. For example, let M be the matching consisting of the edges e1, e2, e3 of

a 3-comb (cf. Definition 5.1) and let M ′ be the matching consisting only of e4. Then in order

to get from M to M ′ using transitions of our Markov chain, first all edge e1, e2, e3 have to be

removed before e4 can be added to the matching. The probability for this to happen is very low

and thus naturally it feels like the chain might take a while to reach the stationary distribution

(in this case visit each matching equally often).

However because these restricted hypergraphs are rather sparse (of size O(nk−1) [KRS13]), we

have to check that this counting problem is still #P-complete. To show this, we use a result

from [Vad02] where S. Vadhan proved several #P-completeness results for sparse graphs (graphs

with bounded degree).

Lemma 5.3 (cf. [Vad02, Theorem 4.1]). Let G ∈ G(4) be bipartite. Then #MATCHINGS
(
G
)

is #P-complete.

We use this to prove the following proposition.

Proposition 5.4 (cf. [KRS13, Proposition 1]). Let H ∈ H0(k, 4) be linear and k-partite. Then

#MATCHINGS
(
H
)

is #P-complete for every k ≥ 3.

Remark: Note that the proof is very similar to the proof of Lemma 3.9.

Proof. We use the result of Lemma 5.3 by doing a polynomial reduction of the old problem to

the current problem, which then implies #P-completeness and finishes the proof.

Let G = (V,E) ∈ G(4) be bipartite and denote the bipartition by V1, V2 (i.e. V = V1 ∪ V2).

Let k ≥ 3 be fixed. We now transform G to a k-graph Hnew = (Vnew, Enew) ∈ H(k, 4) by the

following steps (see Fig. 5.1):

1. For every edge e ∈ E add k − 2 vertices, i.e. Vnew = V ∪
⋃
e∈E{ve1, . . . , vek−2}

2. Transform each e ∈ E to a new edge enew = (v, ve1, . . . , v
e
k−2) in Enew

As a result we have

|Vnew| = |V |+ (k − 2)|E| and |Enew| = |E|.

Also note that Hnew is linear, k-partite and has maximum degree at most 4 and contains no

3-combs. It is also clear that each matching in G has a corresponding matching in Hnew and thus

34

5.2 Construction of the Markov chain

e1

e2

e 3

e4

V1 V2

Figure 5.1: Example transformation of a bipartite graph to its 3-graph counterpart

a polynomial algorithm for counting matchings in H yields a polynomial algorithm for counting

matchings in G. Now using the result from Lemma 5.3 finishes the proof.

We are now in the position to state our main theorem.

Theorem 5.5 (cf. [KRS13, Theorem 1]). For every k ≥ 3 and s ≥ 0 there exists an FPRAS

for the problem of counting matchings in a hypergraph H ∈ Hs(k).

Remark: Note that we will first prove the Theorem for the case H ∈ H0(k). In the end we will

explain how the result can be generalized.

5.2 Construction of the Markov chain

In this subsection we will first define the Markov chain taking values in the set of matchings. A

way to define a Markov chain that has a certain stationary distribution is using a Metropolis(-

Hastings) chain, named after N. Metropolis and W. Hastings. The idea behind their method is

to sample the next state of the Markov chain in 2 steps: First proposing a next state according to

an arbitrary but fixed proposal kernel Q and then in a second step accepting the state transition

with a certain acceptance probability. By choosing the acceptance probability correctly one can

always attain a certain stationary distribution. We will do something similar to construct the

Markov chain on the set of matchings of a hypergraph.

Definition 5.6. Let H = (V,E) be a k-graph and Ω(H) the set of all matchings of H. Define

a Markov chain MC(H) = (Xt)
∞
t=0 on Ω(H) by the following procedure.

1. Sample an edge with respect to the uniform distribution, i.e. h ∈ E ∼ 1
|Ω(H)| .

2. Let Xt = M = {h1, . . . hs} and Ih := {i : h ∩ hi 6= ∅, i = 1, . . . , s} the set of edges inter-

sected by h. Define a new matching M ′ considering the following cases:

35

5 A FPRAS for counting matchings in hypergraphs without 3-combs

(-) if h ∈M , then M ′ := M − h

(+) if h 6∈M and |Ih| = 0, then M ′ := M + h

(+/-) if h 6∈M and Ih = {j}, then M ′ := M + h− hj

(0) if h 6∈M and |Ih| ≥ 2, then M ′ := M

3. With probability 1
2 set Xt+1 = M ′, else set Xt+1 = Xt.

In the remainder of this section we show some properties of this Markov chain.

Lemma 5.7. The Markov chain MC(H) is ergodic and symmetric.

Proof. For the symmetry consider two different matchings M,M ′ ∈ Ω(H), then by the definition

of our Markov chain the transition probability is given by

PM,M ′ =


1

2|H| if |M ⊕M ′| = 1

1
2|H| if M ⊕M ′ = {e, f}, e ∩ f 6= ∅

0 otherwise

Thus PM,M ′ = PM ′,M , which proves the symmetry. For the ergodicity note that MC(H) is

aperiodic (because the chain can stay in a matching) and irreducible (because we can get from

any initial matching to any matching target matching). Then by Theorem 2.27 the chain is

ergodic.

As a direct result of Corollary 2.28 we get the following statement.

Corollary 5.8. The stationary distribution of MC(H) is the uniform distribution.

Moreover we have that pmin is bounded from below (this was needed for the canonical paths

method to work). Indeed

pmin = min
{
PM,M ′ : {M,M ′} ∈ GMC ,M 6= M ′

}
=

1

2|H|
≥ n−k,

where the last inequality holds because there are nk possibilities to take a k-tuple from a set of

n distinct objects. This corresponds to the maximal number of of hyperedges in a k-graph.

We have now everything ready to go into the proof that this Markov chain is indeed rapidly

mixing.

36

5.3 Proof that the Markov chain is rapidly mixing using the canonical paths method

5.3 Proof that the Markov chain is rapidly mixing using the

canonical paths method

5.3.1 Definition of the canonical paths

In the following subsection we will carry out step one of the above described canonical paths

method: the definition of the canonical paths. For this matter we will use a structural property

of hypergraphs without 3-combs.

Let H = (V,E) ∈ H0(k) be the hypergraph for which we want to count the number of matchings.

Let the set of nodes be enumerated, V (H) = {1, 2, . . . , n} and let minS = min{i : i ∈ S} for

any S ⊂ V (H). Also a fix an initial matching I ∈ V (GMC) and a final matching F ∈ V (GMC).

We will in the following define a canonical path γ(I, F) in GMC from I to F .

Note that for the symmetric difference

I ⊕ F =

{
e ∈ E(GMC) : (e ∈ I ∧ e 6∈ F) ∨ (e 6∈ I ∧ e ∈ F)

}
we have ∆(I⊕F) ≤ 2. Indeed because I and F are matchings, vertices in I⊕F can not have more

than two incident edges. Due to the assumption that H ∈ H0(k) we also have ∆(L(I⊕F)) ≤ 2.

This means that no edge of I ⊕ F intersects more than two edges. Hence each component of

I ⊕ F is either a path or a cycle (cf. Definition 2.13) and each cycle has an even number of

edges. We can use this fact to define the canonical path from I to F by traversing these paths

or cycles while adding or removing edges and in this way transforming I to F .

Let Q1, . . . , Qq be the ordered components of I ⊕ F so that

minV (Q1) < · · · < minV (Qq). (5.1)

Let M0, . . . ,Mt be the steps of the canonical path (i.e. γ(I, F) = (M0, . . . ,Mt)). Because the

path starts from I, we set M0 = I. Recall that consecutive matchings Mi, Mi+1 can only differ

by a transition (+), (-), (+/-) (see Definition 5.6). We will now traverse the components Q1

up to Qq in a well-defined way, so that we transform the initial matching I ‘step-by-step’ into

the final matching F .

Lets assume that so far we already traversed the components Q1, . . . , Qr−1 and constructed

corresponding matchings M0, . . . ,Mj . Let Q = Qr be the next component to be traversed. Q is

either an even path (a path where the number of transitions is even), an odd path or an even

cycle and we will give a construction for each of this cases.

Case 1 (Q is an even path):

Because Q is a path, there are two possible start points. Chose e1 (a vertex of Q ⊂ GMC and

37

5 A FPRAS for counting matchings in hypergraphs without 3-combs

thus an edge of H) as the edge to start with, such that e1 ∈ F . Follow the path, enumerating

Q = {e1, . . . , es}, then because Q is even, es ∈ I. Now recursively iterate the sequence of already

defined matchings M0, . . . ,Mj by

Mj+1 = Mj + e1 − e2,

Mj+2 = Mj+1 + e3 − e4,

...

Mj+ s
2

= Mj+ s
2
−1 + es−1 − es.

Case 2 (Q is an odd path):

As in case 1, because Q is a path, there are two possible start points. Chose e1 such that

min(e1 ∩ e2) < min(es−1 ∩ es). Because the path is odd, we have either e1, es ∈ I or e1, es ∈ F .

If e1, es ∈ I define

Mj+1 = Mj − e1,

Mj+2 = Mj+1 + e2 − e3,

Mj+3 = Mj+1 + e4 − e5,

...

Mj+ s+1
2

= Mj+ s−1
2

+ es−1 − es,

if e1, es ∈ F set

Mj+1 = Mj + e1 − e2,

Mj+2 = Mj+1 + e3 − e4,

...

Mj+ s−1
2

= Mj+ s−3
2

+ es−2 − es−1,

Mj+ s+1
2

= Mj+ s−1
2

+ es.

Case 3 (Q is a cycle):

If Q is a cycle component we could start in any point and in two directions. To make the

selection of a starting point unique, we chose e1, e2, . . . , es such that

e1 = min(V (Q) ∩ V (I)) and min(e2 ∩ e3) > min(es−1 ∩ es).

The sequence of transitions is then constructed as

Mj+1 = Mj − e1,

Mj+2 = Mj+1 + e2 − e3,

Mj+3 = Mj+2 + e4 − e5,

...

Mj+ s
2

= Mj+ s
2
−1 + es−2 − es−1,

Mj+ s
2

+1 = Mj+ s
2

+ es.

38

5.3 Proof that the Markov chain is rapidly mixing using the canonical paths method

Remark: Note that for each component Qi ⊂ GMC we chose a starting point e1 (which corre-

sponds to an edge of H) and sometimes a direction. These choices are quite arbitrary, but for

the uniqueness of the canonical path they are important.

To make it easier to spot the differences resulting from a transition (Mj ,Mj+1), we call a

component Qr ⊂ H the venue of the transition (Mj ,Mj+1) if Mj ⊕Mj+1 ⊆ E(Qr).

Lemma 5.9. By construction the obtained path γ(I, F) = (M0, . . . ,Mt) is unique and has the

following properties:

1. M0 = I and Mt = F ,

2. {Mj ,Mj+1} is always an edge of GMC for 0 ≤ j < t,

3. I ∩ F ⊆Mj ⊆ I ∪ F for every 0 ≤ j ≤ t,

4. for every 0 ≤ j ≤ t, we have F ∩
⋃r−1
i=1 Qi ⊆Mj and I ∩

⋃q
i=r+1Qi ⊆Mj, where Qr is the

venue of (Mj ,Mj+1)

Proof. The uniqueness follows from the fact that we precisely specified: the order in which we

traverse the components (in (5.1)), the starting point and the direction for each component

(see cases 1 to 3). Together with the fact that the components can only be paths or cycles,

this results in an unique way of traversing I ⊕ F and thus the path γ(I, F) is unique for each

I, F ∈ Ω(H).

The properties 1 and 2 directly follow from the construction of the canonical paths. Property 3

holds because during the construction we only add and remove edges in I ⊕ F . Edges in I ∩ F

are in M0 = I and are not touched afterwards.

Finally property 4 perfectly summarizes the construction process. After the traversing of Qi, i =

1, . . . , r − 1 all edges of F ∩
⋃r−1
i=1 Qi are already in the matching Mj and are never modified

again. Also edges I ∩
⋃q
i=r+1Qi have not yet been looked at and they are still in Mj .

5.3.2 Bounding the Cuts

In this subsection we carry out step two of the canonical paths method. We want to bound

|cut(S)| using the canonical paths defined in the previous subsection. We will do so by bounding

the number of canonical paths going through an arbitrary fixed transition and then using (4.4).

Call this fixed transition (M,M ′) and let

ΠM,M ′ = {(I, F) : (M,M ′) ∈ γ(I, F)}

be the starting and ending matchings for which the connecting canonical path goes through

(M,M ′). Also define

Ω0(H) = {H ′ ⊆ H : ∃e ∈ H ′ such that H ′ − e ∈ Ω(H)}

39

5 A FPRAS for counting matchings in hypergraphs without 3-combs

as the hypergraphs which can be transformed into an matching of H by removing one edge.

Note that

|Ω0(H)| ≤ |{(M, e) : M ∈ Ω(H), e ∈ H}| ≤ nk|Ω(H)| (5.2)

and log |Ω(H)| = O(n log n). We now want to show, that |ΠM,M ′ | ≤ |Ω0(H)|. We will do so by

defining a function ηM,M ′ : ΠM,M ′ → Ω0(H) and showing that it is injective. Then Ω0(H) has

to have at least as many elements as ΠM,M ′ . For fixed (I, F) ∈ ΠM,M ′ define

ηM,M ′(I, F) = (I ⊕ F)⊕ (M ∪M ′), (5.3)

then the following Lemma holds.

Lemma 5.10. For all (I, F) ∈ ΠM,M ′ we have ηM,M ′(I, F) ∈ Ω0(H).

Proof. Because (I, F) ∈ ΠM,M ′ , the canonical path γ(I, F) = (M0, . . . ,Mt) contains a consecu-

tive pair Mj = M , Mj+1 = M ′ for some j ∈ {0, . . . , t}. Let Qr be the component which is the

venue of (M,M ′) on γ(I, F). Now note that by the construction of the canonical paths (similar

to property 4 of Lemma 5.9) we have that

ηM,M ′(I, F) ∩
r−1⋃
i=1

Qi = I ∩
r−1⋃
i=1

Qi and ηM,M ′(I, F) ∩
q⋃

i=r+1

Qi = F ∩
q⋃

i=r+1

Qi.

Thus ηM,M ′(I, F) ∩
⋃r−1
i=1 Qi and ηM,M ′(I, F) ∩

⋃q
i=r+1Qi are matchings and the only part of

ηM,M ′(I, F) that may not be a matching is ηM,M ′(I, F)∩Qr. The only way that ηM,M ′(I, F)∩Qr
is not a matching is if Qr is a cycle and M ′ = M+el−el+1 for some l ∈ {2, 4, . . . , s−2}, because

then e1, es 6∈ Mj ∪Mj+1 and thus two incident edges are in ηM,M ′(I, F) ∩Qr. But in this case

we can just delete edge e1 and get ηM,M ′(I, F)− e1 ∈ Ω(H), hence ηM,M ′(I, F) ∈ Ω0(H).

Lemma 5.11. The mapping ηM,M ′(I, F) : ΠM,M ′ → Ω0(H) is injective.

Proof. This lemma can be proved by showing that from a given η in the image of ηM,M ′ :

ΠM,M ′ → Ω0(H)¡ we can recover the pair (I, F) such that η = ηM,M ′(I, F). This is only possi-

ble if ηM,M ′ : ΠM,M ′ → Ω0(H) is injective.

Reversing the definition of ηM,M ′ in (5.3) yields

I ⊕ F = η ⊕ (M ∪M ′).

From property 3 of Lemma 5.9 we have that I ∩F = M\(I ⊕F) and thus so far we can restore

I ∪ F = (I ⊕ F) ∪ (I ∩ F). It remains to distinguish between the edges of I ⊕ F which belong

to I and to F . Recall that we ordered the Qi such that

minV (Q1) < · · · < minV (Qq).

40

5.3 Proof that the Markov chain is rapidly mixing using the canonical paths method

This ordering can be restored by performing the same calculation again. Also note that the

venue component Qr can be found by locating M ⊕M ′. Now since we know by property 4 of

Lemma 5.9 that Qi ∩M ⊆ F for every i < r and Qi ∩M ⊆ I, we just have to reconstruct I and

F on Qr. Note that because of the alternating pattern of I and F on Qr identifying one edge

with I or F is enough to traverse the whole component. To this end notice that

|M\M ′| ≤ 1 and |M ′\M | ≤ 1.

Now the construction of the canonical paths implies that if M\M ′ = {e} then e ∈ I and if

M\M ′ = ∅ then the unique edge in M ′\M is in F .

Now to put everything together recall that we had to polynomially bound the mixing time of the

Markov chain defined in Section 5.2. For this matter in (4.2) we showed that it is bounded by

the conductance of the transition graph which itself was bounded in (4.3) by |cut(S)|. Finally

in this section we defined canonical paths between each pair of matchings I and F and bounded

the number of this paths crossing an arbitrary edge by a polynomial term (5.2). Now using

the inequality 4.4 we have a polynomial lower bound for |cut(S)| and thus a polynomial upper

bound for the mixing time. This finishes the proof for the case where there are no 3-combs in

H. In the following subsection we will explain how this proof can be generalized to the case

where there are at most s wide edges.

5.3.3 The general case s > 0

The presence of wide edges in H makes the proof more complicated, because the proof for the

special case relied on the fact that the intersection graph L(I⊕F) has an easy structure. Indeed

we heavily used that components of I ⊕ F are either paths or cycles. Now with wide edges,

L(I ⊕ F) can have vertices with degrees up to k. Nevertheless with a fixed threshold for the

number of wide edges we can modify the proof to still result in a FPRAS.

For this matter consider the same Markov chain MC(H) as before and again order the com-

ponents Qi of I ⊕ F in the same way. Recall that in the special case without 3-combs the

components were either paths or cycles which made it easy to think of an exact way to define

the canonical paths. Now in the general case again focus on a certain component Qr of I ⊕ F .

We artificially construct a similar situation as before by replacing each edge ek of Qr with a

(graph) cycle Ck. The resulting component Sr is called the skeleton graph of component Qr.

Again, to be clear, Sr is a graph (not only a hypergraph) and we will only use it to define the

order in which to construct the canonical path of edges of the hypergraph H. Now note that

because I and F are matchings and because we are looking at I⊕F , each vertex of Sr has either

degree two (if only one of the matchings I, F contains this vertex) or four (if the two matchings

41

5 A FPRAS for counting matchings in hypergraphs without 3-combs

are intersecting in this vertex). This means we can apply Euler’s theorem (Theorem 2.5) and

obtain an Eulerian tour Er = (eSr
1 , . . . , eSr

s) consisting of edges of Sr.

To construct the canonical path γ(I, F) in the transition graph GMC we will trace the tours Er,

r = 1, . . . , q and add and / or remove the hyperedges we are passing through to the matching

until we reach the final matching. To this end, for a fixed component Qr define the start vertex

v0 of Sr as the vertex with the smallest indicator. Next we chose a direction in the following

way.

1. If degSr
(v0) = 4 then there exist intersecting edges g ∈ I and f ∈ F such that v0 ∈ f ∩ g.

Then as the first edge of the Eulerian tour Er take (v0, w), where w is the smaller of the

two neighbors on Sr which are in g.

2. If degSr
(v0) = 2 and v0 ∈ g ∈ I, then chose (v0, w) as in case 1.

3. If degSr
(v0) = 2 and v0 ∈ g ∈ F , then chose the first edge of Er as (v0, w), where w is the

smaller of the two neighbors of v0 on Sr (which are in f).

Now that the start vertex and the direction of each Eulerian tour E1, . . . , Es is specified, we

can define the canonical path γ(I, F). Again fix Er and assume we already traversed the first

l− 1 edges of Er and the current matching of the transition path γ(I, F) is Mj−1. We go on by

considering one of two cases.

1. When el ⊆ g ∈ I, then if g ∈Mj−1 set Mj = Mj−1 − g, otherwise if g 6∈Mj−1 do nothing.

2. For the case el ⊆ f ∈ F denote by If = {h1, . . . , hm} the edges in Mj−1 intersecting with

f . Now if already f ∈Mj−1 do nothing, but if f 6∈Mj−1, then set

Mj = Mj−1 − h1,

Mj+1 = Mj − e2,

...

Mj+m−2 = Mj+m−3 − hm−1,

Mj+m−1 = Mj+m−2 + f − hm.

We will go on with bounding |ΠM,M ′ | ≤ poly(n)|Ω(H)| by using again the function ηM,M ′(I, F)

defined in (5.3). The difference to the case where we had no wide edges is, that ηM,M ′(I, F)

might now be further away from being a matching, in the sense that we can only show

ηM,M ′(I, F) : ΠM,M ′ → Ωs(H), (5.4)

where

Ωs(H) = {H ′ ⊂ H : ∃e0, . . . , es ∈ H ′ such that H ′ − {e0, . . . , es} ∈ Ω(H)}.

42

5.4 Conclusion

But for a fixed number of wide edges s we are then still be able to conclude that

|Ωs(H)| ≤ |{(M, e0, e1, . . . , es) : M ∈ Ω(H), e0, . . . , es ∈ H}| ≤ n(s+1)k|Ω(H).

Thus we still get a polynomial bound on |cut(S)|.

To show (5.4) we have to deal with the problem that because there are wide edges in H there

may be cases where e1, e2, e3 ∈ I, e4 ∈ F and e4 ∩ ei 6= ∅, i = 1, 2, 3. Then, in order to add e4 to

the current matching Mj , we have to remove e1 and e2 and at least one of them, say e2 by using

the transition (-). Removing e2 might lead to a path of length three in ηM,M ′(I, F), because e2

can intersect at most two other edges of F . Since there are s wide edges, this problem might

at most occur s times. Thus there are always s edges such that removing them will result in a

matching. This proves (5.4).

5.4 Conclusion

In this chapter we saw a first example of an approximation algorithm which turned out to be

efficient enough to be a FPRAS. Figure 5.2 visualizes this result in the known way.

#P-complete (Proposition 5.4)∈ P

∃ FPRAS (Theorem 5.5)

H0(2, 1) H0(2, 2) H0(2, 3) H0(2, 4) H0(2, 5) H0(2, 6) H0(2, 7)

H0(3, 1) H0(3, 2) H0(3, 3) H0(3, 4) H0(3, 5) H0(3, 6) H0(3, 7)

H0(4, 1) H0(4, 2) H0(4, 3) H0(4, 4) H0(4, 5) H0(4, 6) H0(4, 7)

H0(5, 1) H0(5, 2) H0(5, 3) H0(5, 4) H0(5, 5) H0(5, 6) H0(5, 7)

H0(6, 1) H0(6, 2) H0(6, 3) H0(6, 4) H0(6, 5) H0(6, 6) H0(6, 7)

H0(7, 1) H0(7, 2) H0(7, 3) H0(7, 4) H0(7, 5) H0(7, 6) H0(7, 7)

. . .

. . .

. . .

. . .

. . .

. . .

...
...

...
...

...
...

...
. . .

Figure 5.2: (In-)approximability and complexity map for hypergraphs without 3-combs

However in order to show that the used Markov chain is rapidly mixing we had to restrict on

a subset of rather sparse hypergraphs. Although we proved that counting the matchings is still

#P-complete for this class of hypergraphs, there is still the question, what kind of hypergraphs

satisfy the ‘no 3-comb condition’? We refer the reader to the original source [KRS13] where the

authors give some examples of non-trivial hypergraphs without 3-combs.

43

6 A FPTAS for counting matchings in

(3,3)-graphs

After we derived a randomized approximation algorithm in the last chapter, in this chapter we

will construct a deterministic FPTAS for the number of matchings in one of the subclasses we

introduced in chapter 3, namely the class of (3, 3)-graphs denoted by H(3, 3).

The proof in this chapter is structured as follows. Section 6.1 contains structural properties for

the class of (3, 3)-graphs. This properties are strongly used in the proof, which is why it can not

trivially generalized to other subclasses of hypergraphs. To be more precise, we again reduce

the problem of counting matchings to the one of counting independent sets in the corresponding

intersection graph. These intersection graphs of (3, 3)-graph have special properties that let

us split the graph into disjoint parts which can be used to formulate a recursive relation on

the number of independent sets. This relation is explained in section 6.2. Finally in section

6.4 we state the main algorithm using an approximation for this recursive relation. By using

the correlation decay method we prove that the approximation error becomes small even for a

polynomial number of steps which implies that the algorithm is a FPTAS.

This chapter is based on the paper [DKRS14] by A. Dudek, M. Karpinski, A. Ruciński and E.

Szymańska who refined some ideas from [BGK+07].

The main theorem we will prove is the following.

Theorem 6.1. Let ε > 0 be an arbitrary approximation precision. Then the algorithm Count-

Matchings (see Algorithm 1) provides an FPTAS for the number of matchings in (3, 3)-hypergraphs

and runs in time

O

(
n2
(n
ε

)log50/49 144
)
.

6.1 Structural properties of (3, 3)-Hypergraphs

First recall that in Lemma 3.5 we already proved that the intersection graph L(H) of a hyper-

graph H ∈ H(k) can not contain an induced K1,k+1. More properties of the intersection graphs

45

6 A FPTAS for counting matchings in (3,3)-graphs

of (3, 3)-graphs are gathered in the following Lemma.

Lemma 6.2. Let H be a (3, 3)-graph and denote by G = L(H) its corresponding intersection

graph. Then

1. G has maximum degree at most 6 (i.e. ∆(G) ≤ 6),

2. and the neighborhood NG(v) of any vertex v with deg(v) ≥ 5 induces a subgraph with at

most 6− d isolated vertices.

Proof. Property 1 follows from the fact that because in a (3, 3)-graph an edge can at most

intersect with 6 other edge (because the vertex degree is bounded by 3 and each edge consists

of 3 vertices). Concerning property 2 notice that if a vertex v in G has degree greater or equal

to 5 the edges corresponding to NG(v) span a matching of size bd2c.

Now combining the results from Lemmas 3.5 and 6.2 and using Lemma 3.4, which stated that

counting matchings in H equals counting independent sets in L(H), yields that the following

technical lemma implies Theorem 6.1.

Lemma 6.3. Let G be a graph with the following properties:

• It is 4-claw-free,

• has maximum degree at most 6 (i.e. ∆(G) ≤ 6),

• the neighbourhood of every vertex of degree d ≥ 5 induces a subgraph with at most 6 − d

isolated vertices.

Then there exists an FPTAS for the problem of counting independent sets in G.

This means that we can now concentrate on constructing a FPTAS for the number of inde-

pendent sets in graphs with the above properties. From now on in this chapter, unless it is

stated otherwise, let G always denote the intersection graph of a (3, 3)-graph (which then has

the properties of Lemma 6.2).

In graph theory a set of vertices that induces a complete subgraph is called a Clique. In this

proof we will need a more general definition of a set of vertices which is ‘almost’ a clique.

Definition 6.4 (Simplicial 2-clique). A set K ⊂ V (G) is a 2-clique if the size of the largest

independent set of G[K] is at most 2. A 2-clique is simplicial if for every v ∈ K, NG(v)\K is

a 2-clique in G−K.

We define a special kind of 2-clique.

46

6.1 Structural properties of (3, 3)-Hypergraphs

Definition 6.5 (Simplicial block). A 2-clique K in a graph G is called a block if |K| ≤ 4 and,

if |K| = 4, the minimal degree of a vertex in G is at least 1 (i.e. there are no isolated vertices

in K). A block is simplicial if for every v ∈ K the set NG(v)\K is a block in G−K.

Remark: Note that the empty set is also considered a block.

Figure 6.1: Examples of blocks

From this definition we immediately get the following property.

Corollary 6.6. If K is a (simplicial) block in G, then for every V ′ ⊂ V (G) the set K ∩ V ′ is a

(simplicial) block in the induced subgraph G[V ′] of G.

The following Lemma will give us a ‘self-reproducing’ property of simplicial blocks. This is

meant in the sense, that if we start with one simplicial block, we can always remove this from

the graph and still get a new simplicial block in the remainder of the graph.

Lemma 6.7. If K is a simplicial block in G, then for every v ∈ K the set NG(v)\K is a

simplicial block in G−K.

Proof. Let v ∈ K be an arbitrary vertex, set Kv = NG(v)\K. We first show that Ku is indeed

again simplicial. Let u ∈ Kv and Ku = NG(u)\(K ∪ NG(v)). Now suppose that Ku is not a

2-clique, then there is an independent set I of size |I| = 3. This implies that u, v and I form an

induced K1,4 in G with u in the center which is a contradiction to Lemma 3.5 and thus Ku is a

2-clique and Kv is simplicial.

In order to show that Ku is a block, we have to use a property coming from the fact that H is

a (3, 3)-graph. Recall that from Lemma 6.2 we have that ∆(G) ≤ 6 and thus |Ku| ≤ 5. But if

|K| = 5 then v has to be an isolated vertex in G[NG(u)]. This is a contradiction to the second

property of Lemma 6.2. Also if |Ku| = 4 by the same reasoning there can be no isolated vertex

in G[Ku].

Now we can state the result - we mentioned in the introduction of this chapter - that a graph,

containing at least one simplicial block, can be completely split into disjoint simplicial blocks.

47

6 A FPTAS for counting matchings in (3,3)-graphs

Lemma 6.8. Let K be a non-empty simplicial block in G. If, in addition, G is connected, then

there exists a partition V (G) = K1 ∪ · · · ∪Km such that K1 = K and for every i = 2, . . . ,m, Ki

is a non-empty, simplicial block in Gi = G−
⋃i−1
j=1Kj.

Proof. The proof is straight forward. Suppose we already constructed disjoint K1 ∪ · · · ∪ Ks

such that K = K1 and Ki is a simplicial block in Gi = G −
⋃i−1
j=1Kj for all i = 2, . . . , s. Call

the remainder Rs = V (G)\
⋃i−1
j=1Kj and assume R 6= ∅ (otherwise we are already finished).

Because G is connected, there exists an edge between Rs and a vertex v ∈ Ki for some i. Set

V ′ = Ki ∪ Rs. Now we can use Corollary 6.6 and get that Ki is not only a simplicial block

in Gi but also in the subgraph Gi[V
′]. This means that we can apply Lemma 6.7, where in

the notation of the Lemma we set G = Gi[V
′], K = Ki. Thus we get that for each v ∈ Ki,

NG(v) ∩ Rs is a simplicial block in Gs+1 = G −
⋃s
i=1Ki. Thus we have a new simplicial block

in Gs+1 and we can repeat this procedure until there are no vertices left.

We introduced the notion of blocks because we want to split the intersection graph of a hyper-

graph in disjoint parts. These parts then help defining a recursive relation on the probabilities

that a a block is part of a uniformly sampled independent set. So far, we have only proven

that this splitting is possible for connected graphs, and we assumed that there we already have

a simplicial block to start with. The restriction to connected graphs is not a problem as the

counting of matchings in not connected graphs breaks down to counting of matchings in its

connected components. However so far there is no reason to believe that we can always find a

simplicial block to start with. We will address this problem in the next section.

6.2 Using blocks to count the number of independent sets

Denote the number of matchings in a (hyper-)graphH by ZM (H) and the number of independent

sets in a graph G by ZI(G). In Lemma 3.4, we already proved their relation to each other to be

ZM (H) = ZI(L(H)).

Denote by K1, . . . ,Km the blocks as in Lemma 6.8. Then because Gm+1 = ∅ and thus

ZI(Gm+1) = 1, we have

ZI(G) =
ZI(G1)

ZI(G2)

ZI(G2)

ZI(G3)
· · · ZI(Gi)

ZI(Gi+1)
· · · ZI(Gm)

ZI(Gm+1)
.

Observe that these quotients can actually be interpreted as probabilities. In rigorous terms this

means

P [Ki ∩ I = ∅] =
ZI(Gi −Ki)

ZI(Gi)
, (6.1)

where I is a random variable, uniformly distributed on the set of independent sets of Gi (see

Definition 2.21). Our goal now has to be to approximate this probability within a given precision

48

6.2 Using blocks to count the number of independent sets

1± ε
n in polynomial time. After reading chapter 5, one would of course instantly guess that this

should be done by using a Markov chain. Instead we will choose a different approach using the

correlation decay method.

First we have to deal with the problems mentioned at the end of the previous section. Concerning

the problem of not connected graphs, note that

ZI(G) =
c∏
i=1

ZI(Gi),

where Gi are the connected components of G.

On the other hand, S. Fadnavis [Fad12] proposed a solution for the problem that there might

not be a simplicial block to start with. First fix v ∈ V (G) such that G − v is connected (such

a vertex exists because of the assumptions we made on G, cf. Lemmas 3.5 and 6.2), then the

following holds:

ZI(G) = ZI(G− v) + ZI(G
v),

where Gv = G − NG[v] and NG[v] = NG(v) ∪ {v}. Indeed this is true because the missing

independent sets not counted in ZI(G− v) are the ones containing v and thus can not contain

NG(v). Now Gv dissolves into connected components Gvi . In the following Lemma we finally

state the crucial property that each Gi contains a simplicial block.

Lemma 6.9. Each of the Gvi contains a simplicial block Ki.

Proof. Because G−v is connected we can for each i find vertices ui ∈ NG(v) such that NG(ui)∩

V (Gvi) 6= ∅. Now set Ki = NG(ui) ∩ V (Gvi). The proof that Ki is indeed a simplicial block (i.e.

for all w ∈ Ki, NGi(w)\Ki is a block in Gvi −Ki) is the same as the proof of Lemma 6.7. To

prove that Ki is a block, suppose there is an independent set I in G[Ki] of size |I| = 3. Then

because ui is a neighbour of v, v, ui and the vertices of I form a K1,4. This is a contradiction

and thus Ki is a 2-clique. Notice that there is no edge between v and Ki thus if |Ki| = 5, v

would be an isolated vertex in G[N(ui)] which is a contradiction to the assumptions on G. If

|Ki| = 4 is the only isolated vertex in G[N(ui)] and thus minimal degree of a vertex in G[Ki] is

greater or equal to 1. In conclusion Ki is also a block.

To shorten notation set Nv = NG(v). Also, when we are writing uv 6∈ G[K] we mean the ordered

pairs {u, v} which are not an edge in G[K].

Now we can derive the recursive relation between the number of independent sets in the complete

graph, and the number of independent sets in graphs where we have taken out a simplicial block.

Let K be a simplicial block, then the following equation describes the useful recurrence relation.

ZI(G) = ZI(G−K) +
∑
v∈K

ZI(G− (Nv ∪K)) +
1

2

∑
uv 6∈G[K]

ZI(G− (Nu ∪Nv ∪K))

49

6 A FPTAS for counting matchings in (3,3)-graphs

Since the first term on the right-hand side stands for the number of independent sets inG−K, the

others have to somehow add the number of independent sets in G that got lost in G−K. Indeed

the second term sums over all independent sets that contained a vertex v ∈ K. The neighbors

of v can then not be in the independent set and thus we are summing over ZI(G− (Nv ∪K)).

The last term on the right-hand side represents all independent sets that contain two vertices

u, v ∈ K. Of course then u and v can not be connected in K. That is why we sum over

uv 6∈ G[K].

Dividing by ZI(G−K) yields

ZI(G)

ZI(G−K)
= 1 +

∑
v∈K

ZI(G− (Nv ∪K))

ZI(G−K)
+

1

2

∑
uv 6∈G[K]

ZI(G− (Nu ∪Nv ∪K))

ZI(G−K)
(6.2)

and another representation of the last term on the right-hand side is given by

ZI(G− (Nu ∪Nv ∪K))

ZI(G−K)
=
ZI(G− (Nu ∪Nv ∪K))

ZI(G− (Nv ∪K))

ZI(G− (Nv ∪K))

ZI(G−K)
. (6.3)

Now by Lemma 6.7, Nv\K is a simplicial block in G−K. Because we want to apply this equation

recursively on itself, it is left to show that Nu\(Nv ∪K) is a simplicial block in G− (Nv ∪K).

Lemma 6.10. Let K be a simplicial block in G and let u, v ∈ K be such that u 6= v and

uv ∈ G[K]. Further let G′ = G− (NG(v) ∪K). Then NG′(u) is a simplicial block in G′.

Proof. We know from Lemma 6.7 that NG(u)\K is a simplicial block in G − K. Now use

Corollary 6.6 on NG(u)\K and G−K with V ′ = V (G′).

6.3 The recursive relation of probabilities

After we derived the structural properties in the previous sections we can now start bounding

the probability in (6.1). For this matter set

ΠG(K) = P(K ∩ I = ∅) =
ZI(G−K)

ZI(G)
, (6.4)

where I is a uniformly distributed random variable on the independent sets of G.

The recurrence relation in (6.2) together with (6.3) can be written in terms of the new defined

probabilities (6.4). First set Kv = Nv\K and Kuv = Nu\(Nv∪K). Then we get G− (Nv∪K) =

G−K −Kv. Finally we can rewrite (6.2) to

Π−1
G (K) = 1 +

∑
v∈K

ΠG−K(Kv)

1 +
1

2

∑
uv∈G[K]

ΠG−K−Kv(Kuv)

 . (6.5)

Remark: Note that we used the inverse of (6.3) to take the factor
∑

v∈K ΠG−K(Kv) out of the

last two summands.

50

6.3 The recursive relation of probabilities

So far we have rewritten our problem of counting the independent sets into a problem of cal-

culating a probability. We also derived a recursive relation similar to the one in Section 4.3.

Following the method of Section 4.3 we define an approximating function ΦG similar to the one

in Definition 4.10.

Definition 6.11. For every graph G, every simplicial block K in G and an integer t ∈ Z+, the

function ΦG(K, t) is defined recursively as follows: For t = 1 of K = ∅ set

ΦG(K, 0) = ΦG(K, 1) = 1 and ΦG(∅, t) = 1,

for t ≥ 2 and K 6= ∅

Φ−1
G (K, t) = 1 +

∑
v∈K

ΦG−K(Kv, t− 1)

1 +
1

2

∑
uv∈G[K]

ΦG−K−Kv(Kuv, t− 2)

 .

As a result of this definition we get the following technical observation.

Lemma 6.12. Both quantities ΠG(K) and ΦG(K, t) always fall into the interval [1
9 , 1].

Proof. The upper bound holds trivially because ΠG(K) and ΦG(K, t) are probabilities and in

their definition they are the inverse of a number always greater or equal than one. The lower

bound on ΠG(K, t) holds because in the worst case
∑

v∈K ΠG−K(Kv) ≤ 4, because we already

bounded ΠG−K(Kv) by one from above and a block does at most contain four vertices. Also

because vertices in G[K]c have degree at most 2 (because of the definition of a block), the total

number of summands in the last sum of (6.2) does not exceed 8 and each of them is lower or

equal to 1
2 .

Now that we have all definitions and preliminary results together we can define the actual

algorithm ‘CountMatchings’ (see Algorithm 1) with its subroutine ‘CountIS’ (see Algorithm 2).

The running time of the algorithm now depends heavily on the speed at which Φ approximates

Π. We will prove in the next section that the following proposition (the analogue statement to

Theorem 4.11) holds.

Proposition 6.13. For

t = 2

⌈
log
(

18n
ε

)
log
(

50
49

) ⌉ , (6.6)

which is of order Θ(log n), ΦG(K, t) approximates ΠG(K) within a multiplicative factor of 1± ε
n .

As a conclusion we can now prove Lemma 6.3 which implies Theorem 6.1 and thus the existence

of an FPTAS for the number of matchings in a (3, 3)-graph.

Proof of Lemma 6.3. In the recursion of Step 4 of ‘CountIS’ (see Algorithm 2) at most 12 re-

cursive expressions have to be evaluated (cf. Definition 6.11). Thus calculating Φ(K, t) in Step

4 takes a running time of 12t. As a result the for-loop in ‘CountIS’ takes at most n12t steps.

51

6 A FPTAS for counting matchings in (3,3)-graphs

Algorithm 1 CountMatchings(H, t)

Input: A (3, 3)-graph H, a time t ∈ Z+

Output: The number of matchings in H

1: G := L(H)

2: ZM := 1, F := G

3: while F 6= ∅ do

4: Pick v ∈ V (F) such that F − v is connected

5: F v := F −NF [v]

6: If F v = ∅ then ZM = ZM + 1 and goto Line 3

7: F v =
⋃c
i=1 F

v
i , where F vi are the connected components of F v

8: for i := 1 to c do

9: Find Ki as in Lemma 6.9

10: end for

11: ZM := ZM +
∏c
i=1 CountIS(F vi ,Ki, t)

12: F := F − v

13: end while

14: return ZM

Algorithm 2 CountIS(G,K, t)

Input: A graph G, a simplicial block K, a time t ∈ Z+ that determines how well Φ approximates

Π

Output: The number of independent sets in G

1: Let V (G) =
⋃m
i=1Ki be a partition of V (G) as in Lemma 6.8 with K1 = K

2: ZI := 1, F := G

3: for i = 1 to m do

4: ZI := ZI
ΦF (Ki,t)

5: F := F −Ki

6: end for

7: return ZI

52

6.4 Using correlation decay to prove Proposition 6.13

The subroutine ‘CountIS’ is invoked at most n times in Step 11 by ‘CountMatchings’ (see Al-

gorithm 1). Now using that Proposition 6.13 states that we get a good enough approximation

of Π(K) by Φ(K, t) already for t as in (6.6). In total we get a running time of the algorithm

‘CountMatchings’ of

O

(
n2
(n
ε

)log50/49 144
)
.

What is still missing is a proof for Proposition 6.13 which we give in the next section.

6.4 Using correlation decay to prove Proposition 6.13

As a result of Lemma 6.12 the condition that the approximation is within a multiplicative factor

1± ε
n breaks down to

|ΠG(K)− ΦG(K, t)| ≤ ε

9n
.

To show this bound we will use the correlation decay in the computation tree of (6.5). The idea

is to express the difference |ΠG(K)− ΦG(K, t)| in terms of a function f such that

|ΠG(K)− ΦG(K, t)| = |f(x)− f(y)|,

and then use the mean value theorem to bound this recursively. The construction of such a

function f is done by defining differentiable functions g : [0, 1]→ R and h : R→ [0, 1] such that

they are inverse to each other (i.e. g◦h ≡ 1). The function f is then a function of |K|+2e(Gc[K])

variables mapping to R. Here e(Gc[K]) stands for the number of ordered pairs of vertices in K

which are not an edge in G[K]. We denote those variables by

z = (z1, . . . , z|K|, zuv : uv 6∈ G[K]),

and the index set by

J = K ∪ {(u, v) : {u, v} 6∈ G[K]}.

The function f itself is then defined by

fK(z) = f(z) = g

([
1 +

∑
v∈K

h(zv)

(
1 +

1

2

∑
uv 6∈G[K]

h(zuv)

)]−1)
This function already looks very similar to the recursion for Π and Φ. If we apply this function

to the following input values it becomes even clearer why the definition in this form was a good

idea. Set

x = g(ΠG(K)), xv = g(ΠG−K(Kv)), xuv = g(ΠG−K−Kv(Kuv)),

and

y = g(ΦG(K, t)), yv = g(ΦG−K(Kv, t− 1)), yuv = g(ΦG−K−Kv(Kuv, t− 2)).

53

6 A FPTAS for counting matchings in (3,3)-graphs

Now we have f(x) = x and f(y) = y which means that the difference can be expressed as

|x− y| = |f(x)− f(y)|.

The great advantage of this rewriting is the fact, that because f is differentiable, we can apply

the mean value theorem and thus bound the difference of Π to Φ in terms of the difference of x

to y. Indeed we have for some α ∈ [0, 1], a zα = αx + (1− α)y such that,

|f(x)− f(y)| = |∇f(zα)(x− y)| ≤ |∇f(zα)|max
k∈J
|xk − yk|.

Because of the ‘self-reproducing’ property of simplicial blocks in Lemma 6.7 we can iterate this

argument, until we have the following final situation: we have G′, an induced subgraph of G

such that we have a block K ′ in G′ and t = t′ ∈ {0, 1}. Now set µg = |g(1)| + |maxs∈[0,1] g(s)|

and we get

|x− y| ≤ γ
t
2 |g(ΠG′(K

′))− g(1)| ≤ γ
t
2µg ≤

ε

9n
,

for

t ≥ 2
log
(

9µgn
ε

)
log
(

1
γ

) , where max
z
|∇f(z)| < γ < 1. (6.7)

We used for this that we have to iterate at most 1
2 t times.

Now the thing left to do is bound maxz |∇f(z)| by a γ < 1. For this matter we chose g(s) = s
1
4

and h(s) = s4. Then µg = 2 and

|∇f(z)| ≤
∑
k∈J

∣∣∣∣∂f(z)

∂zk

∣∣∣∣ =

∑
v∈K

[
z3
v + 1

2

∑
uv 6∈G[K](z

3
vz

4
uv + z4

vz
3
uv)
]

[
1 +

∑
v∈K z

4
v

(
1 + 1

2

∑
uv 6∈G[K] z

4
uv

)] 5
4

Note that this bound depends only on the (isomorphism) type of G[K].

z4 z3

z1 z2

z24

z13

z14 z23

Figure 6.2: The essential block graph, Source: [DKRS14]

By definition there are only finitely many block graphs K (up to isomorphic changes). Thus

‖∇f(z)‖ is definitely bounded, the question remains if it is bounded by a constant smaller

than one. But indeed using a kind of ‘worst case block graph’ (see Figure 6.2), the authors of

[DKRS14] calculated that ‖∇f(z)‖ < 0.971 for 0 ≤ zi ≤ 1 and 0 ≤ zij ≤ 1. Thus we can chose

γ = 0.98 = 49
50 and if we plug this in (6.7) with µg = 2 we get the bound in the statement of

Proposition 6.13.

54

6.5 Conclusion

6.5 Conclusion

As a result of this chapter we can cross one more class of hypergraphs of the map because we

now know that a FPTAS exists for (3, 3)-graphs. Than the complexity map looks as in Figure

6.3.

#P-complete (Corollary 3.10)∈ P

@
F

P
R

A
S

(P
rop

.
3.14)

∃ FPTAS (Corollary 3.12) ∃ FPTAS (Theorem 6.1)

H(2, 1) H(2, 2) H(2, 3) H(2, 4) H(2, 5) H(2, 6) H(2, 7)

H(3, 1) H(3, 2) H(3, 3) H(3, 4) H(3, 5) H(3, 6) H(3, 7)

H(4, 1) H(4, 2) H(4, 3) H(4, 4) H(4, 5) H(4, 6) H(4, 7)

H(5, 1) H(5, 2) H(5, 3) H(5, 4) H(5, 5) H(5, 6) H(5, 7)

H(6, 1) H(6, 2) H(6, 3) H(6, 4) H(6, 5) H(6, 6) H(6, 7)

H(7, 1) H(7, 2) H(7, 3) H(7, 4) H(7, 5) H(7, 6) H(7, 7)

. . .

. . .

. . .

. . .

. . .

. . .

...
...

...
...

...
...

...
. . .

Figure 6.3

55

7 Further research

First let us note that, in the end, our result from Chapter 5 was complemented by an even

stronger result. As the authors of [DKRS14] also point out, the intersection graphs of the hy-

pergraphs without 3-combs we considered in chapter 5 are claw-free. Thus one can apply the

result on counting independent sets from [BGK+07; Fad12] on these intersection graphs and get

a FPTAS for the number of matchings in (k, r)-graph without 3-combs. This kind of improves

the result from Chapter 5.

At the end of this thesis there are still open problems. By looking at the maps in Figures

5.2 and 6.3 it is easy to see that the next open hypergraph subclasses - for which there is

to show either inapproximability or the existence of an approximation algorithm - are H(3, 4)

or H(4, 3). As an intermediate step the authors of [DKRS14] suggest looking at (k, r)-graphs

without 4-combs. Then the first open instance is that of (4, 3)-graphs without 4-combs. Also

there is hope that the correlation method used in Chapter 6 can be applied to H(3, 4) or H(4, 3).

Additionally because of its fast spread in recent publications, the correlation decay method

seems to be a very useful tool for constructing fast approximation algorithms, not only for the

problem of counting matchings but also for other approximation problems.

57

Bibliography

[AB09] Arora, S. and Barak, B. Computational Complexity: A Modern Approach. 1st. New

York, NY, USA: Cambridge University Press, 2009 (cit. on p. 16).

[BGK+07] Bayati, M., Gamarnik, D., Katz, D., Nair, C., and Tetali, P. “Simple Deterministic

Approximation Algorithms for Counting Matchings”. In: STOC ’07. ACM, 2007,

pp. 122–127 (cit. on pp. 31, 45, 57).

[CS07] Chudnovsky, M. and Seymour, P. “The Roots of the Independence Polynomial of a

Clawfree Graph”. In: J. Comb. Theory Ser. B 97.3 (May 2007), pp. 350–357 (cit. on

p. 2).

[DKRS14] Dudek, A., Karpinski, M., Ruciński, A., and Szymańska, E. “Approximate Counting

of Matchings in (3, 3)-Hypergraphs”. In: Proceedings of 14th Scandinavian Sympo-

sium and Workshops on Algorithm Theory (SWAT) (2014) (cit. on pp. 3, 17, 45,

54, 57).

[Fad12] Fadnavis, S. Approximating independence polynomials of claw-free graphs. 2012.

url: http://www.math.harvard.edu/~sukhada/IndependencePolynomial.pdf

(cit. on pp. 49, 57).

[GJ79] Garey, M. and Johnson, D. Computers and Intractability: A Guide to the Theory

of NP-Completeness. B&T, 1979 (cit. on pp. 11–13, 16).

[GK07] Gamarnik, D. and Katz, D. “Correlation Decay and Deterministic FPTAS for

Counting List-colorings of a Graph”. In: Proceedings of the Eighteenth Annual

ACM-SIAM Symposium on Discrete Algorithms. SODA ’07. Society for Industrial

and Applied Mathematics, 2007, pp. 1245–1254 (cit. on pp. 3, 29, 31).

[Gre00] Greenhill, C. “The complexity of counting colourings and independent sets in sparse

graphs and hypergraphs”. In: Computational complexity 9.1 (2000), pp. 52–72 (cit.

on pp. 2, 21, 22).

[Hei72] Heilmann, O.J. “Existence of phase transitions in certain lattice gases with repulsive

potential”. In: Lettere Al Nuovo Cimento Series 2 3.3 (1972), pp. 95–98 (cit. on

p. 2).

[Her95] Herken, R. The universal Turing machine : a half-century survey. Springer-Verlag,

1995 (cit. on p. 12).

59

http://www.math.harvard.edu/~sukhada/IndependencePolynomial.pdf

Bibliography

[HL72] Heilmann, O.J. and Lieb, E. “Theory of monomer-dimer systems”. In: Communi-

cations in Mathematical Physics 25.3 (1972), pp. 190–232 (cit. on p. 1).

[Jer03] Jerrum, M. Counting, Sampling and Integrating: Algorithms and Complexity. Springer,

2003 (cit. on pp. 11, 26).

[Jer85] Jerrum, M. “Random Generation of Combinatorial Structures from a Uniform Dis-

tribution (Extended Abstract)”. In: Proceedings of the 12th Colloquium on Au-

tomata, Languages and Programming. London, UK, UK: Springer-Verlag, 1985,

pp. 290–299 (cit. on p. 26).

[JS89a] Jerrum, M. and Sinclair, A. “Approximate Counting, Uniform Generation and

Rapidly Mixing Markov Chains”. In: Information and Computation 82.1 (July

1989), pp. 93–133 (cit. on p. 28).

[JS89b] Jerrum, M. and Sinclair, A. “Approximating the Permanent”. In: SIAM Journal

on Computing 18.6 (Dec. 1989), pp. 1149–1178 (cit. on p. 28).

[KRS13] Karpinski, M., Ruciński, A., and Szymańska, E. “Approximate Counting of Match-

ings in Sparse Uniform Hypergraphs”. In: Proceedings of the 13th SIAM Meeting

on Analytic Algorithmics and Combinatorics (2013), pp. 71–78 (cit. on pp. 3, 8, 17,

23, 25, 26, 33–35, 43).

[KV07] Korte, B. and Vygen, J. Combinatorial Optimization: Theory and Algorithms. 4th.

Springer Publishing Company, Incorporated, 2007 (cit. on pp. 6, 7).

[LPW06] Levin, D., Peres, Y., and Wilmer, E. Markov chains and mixing times. AMS, 2006

(cit. on p. 11).

[LV99] Luby, M. and Vigoda, E. “Fast Convergence of the Glauber Dynamics for Sam-

pling Independent Sets”. In: Random Structures & Algorithms 15.3-4 (Oct. 1999),

pp. 229–241 (cit. on pp. 3, 23).

[Sly10] Sly, A. “Computational Transition at the Uniqueness Threshold”. In: Proceedings

of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

FOCS ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 287–296 (cit.

on pp. 23, 24).

[SS12] Sly, A. and Sun, N. “The Computational Hardness of Counting in Two-Spin Models

on d-Regular Graphs”. In: Proceedings of the 2012 IEEE 53rd Annual Symposium

on Foundations of Computer Science. FOCS ’12. IEEE Computer Society, 2012,

pp. 361–369 (cit. on pp. 23, 24).

[Vad02] Vadhan, S. “The Complexity of Counting in Sparse, Regular, and Planar Graphs”.

In: SIAM Journal on Computing 31.2 (Feb. 2002), pp. 398–427 (cit. on p. 34).

60

Bibliography

[Val79a] Valiant, L. “The complexity of computing the permanent”. In: Theoretical Com-

puter Science 8 (1979), pp. 189–201 (cit. on pp. 16, 17, 21).

[Val79b] Valiant, L. “The Complexity of Enumeration and Reliability Problems.” In: SIAM

Journal on Computing 8.3 (1979), pp. 410–421 (cit. on pp. 2, 21).

[Wei07] Weitz, D. “Counting Independent Sets Up to the Tree Threshold”. In: Proceedings

of the Thirty-eighth Annual ACM Symposium on Theory of Computing. STOC ’06.

ACM, 2007, pp. 140–149 (cit. on pp. 3, 23, 25, 29, 30).

61

Bibliography

Ehrenwörtliche Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und keine anderen als die angegebenen

Quellen benutzt zu haben. Wörtliche und sinngemäße Zitate sind kenntlich gemacht.

Bonn, July 22, 2016 Benjamin Cabrera

62

	Introduction and Motivation
	Motivation from statistical physics
	Scope
	Outline

	Preliminaries
	Graph Theory
	Probability Theory
	Computational Complexity Theory
	Turing machines
	Decision problems and NP-Completeness
	Counting problems and the class #P
	Approximations

	Counting Matchings in Hypergraphs
	Counting matchings and its relation to independent sets
	Hypergraph classes of interest
	#P-completeness of exact counting
	(In-)approximability results

	Methods for constructing approximation algorithms
	The relation of approximate counting and uniform sampling
	Rapidly mixing Markov chains and the canonical paths method
	Rapidly mixing Markov chains
	The canonical paths method in general

	Correlation decay
	Weitz's approach using spatial correlation decay
	Using a recursive computation tree

	A FPRAS for counting matchings in hypergraphs without 3-combs
	Further assumptions on the hypergraphs
	Construction of the Markov chain
	Proof that the Markov chain is rapidly mixing using the canonical paths method
	Definition of the canonical paths
	Bounding the Cuts
	The general case s > 0

	Conclusion

	A FPTAS for counting matchings in (3,3)-graphs
	Structural properties of (3,3)-Hypergraphs
	Using blocks to count the number of independent sets
	The recursive relation of probabilities
	Using correlation decay to prove Proposition 6.13
	Conclusion

	Further research
	Bibliography

