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1 Introduction

The goal of this thesis is to derive a feasible numerical scheme for computing time-discretized
geodesics of a recently proposed new type of “Wasserstein” metric acting on discrete rather
than on continuous spaces. Using an actual implementation of this scheme we aim to compute
the geodesics for different problem instances and present the results to learn more about the
underlying geometry this metric induces on discrete spaces.

The Wasserstein metric is closely tied to the concept of optimal transportation, a theory that
has sparked a lot of interest from researchers around the world. A first version of the optimal
transport problem was stated by Monge [Mon81] in 1781. He imagined it as the problem of
transporting an entity (e.g. sand, dirt, etc.) from a start to an end configuration in optimal
way with respect to some cost function describing how expensive the transport of a particle is.
This problem was then generalized to a more well-posed problem in the more rigorous context
of probability measures by Kantorovich [Kan42; Kan48] in 1948. In the following decades the
topic was developed further and the Wasserstein distance was introduced as a special case of
Kantorovich’s problem [Was69] where the cost function is just an usual Lp-norm. The topic
then regained a lot of traction around the end of the 20th century after some ground breaking
papers by Otto, Jordan and Kinderlehrer [JKO98] and Benamou and Brenier [BB00] were pub-
lished. Otto et al. researched gradient flows in the space of probability measures with respect
to the Wasserstein distance and found a relation to particular partial differential equations that
suggests that the Wasserstein metric is indeed a very good choice as a metric on probability
measures. On the other hand Benamou and Brenier introduced a fluid mechanics view of the
Wasserstein space. Later this led to an interpretation of the Wasserstein space as a Riemannian
manifold and the Wasserstein distance as a Riemannian distance in this context. Today optimal
transport is studied from the theoretical geometric point of view [Erb10; ASZ07; OS08; Gig10]
as well as from the numerical side which tries to find numerical schemes for different applications
[RPDB12; RPC10; BL15].

The problem we are focusing on in this thesis is the Wasserstein distance on discrete (finite) sets.
We will see later that the original Wasserstein distance looses some of its important geometric
properties when applied to a discrete setting. As a result recently different authors [Maa11;
Mie11; CHLZ12] suggested to define a new metric for the discrete case heavily influenced by the
original Benamou-Brenier formula for the Wasserstein distance on continuous spaces but still
different in some critical aspects. In this thesis we solely focus on the version of the metric by
Maas [Maa11]. Although it has been shown theoretically that the new metric has the desired
properties little is still known about the actual shape of the induced space and especially the
behaviour of the geodesics. The idea of this thesis is now to compute geodesics numerically,
then review the results, and finally learn about the space and which properties it exhibits.

To this end we will adapt two of the numerical schemes that have been used for computing
geodesics for the continuous Wasserstein distance to our discrete setting. On the one hand
there is the Benamou-Brenier method described in [BB00] right after they suggested the flow
formulation of the Wasserstein distance. On the other hand there is the more recent proximal
splitting approach by Papadakis, Peyré and Oudet [PPO14]. Both require some differential
operations to be carried out (partial integration, etc.) which is trivial in the continuous Rd case
but has to be carried out with care in a discrete setting. However, doing so will lead us to a
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1 Introduction

feasible way of computing the geodesics for the discrete Wasserstein distance and we will be able
to compare the results for different instances.

1.1 Outline

We begin in Chapter 2 by recalling the fundamental definitions and statements from optimal
transportation theory. After that in Chapter 3 we introduce the mentioned new metric along with
its general setting on the discrete space. In the subsequent chapter we describe our numerical
approaches to the problem of computing the geodesics for the new metric. It turns out that
one part of our algorithms will pose the most problems for us in that the computation is quite
unstable. We deal with the theory behind this projection problem in Chapter 5. In the following
chapter we explain some of the discretization and implementation details that were needed to
turn the numerical schemes into working programs. In Chapter 7 we finally present the results
that were attained using our computations. Also we try to start interpreting them and give some
interesting insights into the geometry behind the new metric. Finally in Chapter 8 we summarize
what we have done and point out some possible future improvements of our algorithms.
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2 An Introduction to Optimal Transport

In this chapter we will give a brief introduction to optimal transportation theory, the Wasserstein
distance and the associated Wasserstein space with its geometric properties. We will introduce
the optimal transport models by Monge and Kantorovich as well as the alternative formulations
by Benamou and Brenier which gives a more geometric interpretation of the underlying space
and can be used to numerically compute the transportation distance. Finally we explain the
geometric connection between some differential operators and the Wasserstein distance. For a
proper introduction in the theory of optimal transport we refer to some of the excellent books
by Villani [Vil09; Vil03] or for a more analytical perspective to the works of Ambrosio, Gigli
and Savaré [AGS05]. Most of the definitions and theorems in this chapter are taken from one
of these sources.

2.1 From Monge to Kantorovich

In 1781 Monge [Mon81] introduced a basic transportation problem which should be the earliest
mention of such a problem in the context of optimal transportation. The problem can be pic-
tured as a pile of sand that should be transported to another pile of the exact same volume. This
transport should happen in an optimal way in the sense that the cost of transporting the sand
should be minimal with respect to some metric, i.e. a grain of sand should not be transported
further than necessary.

To formulate this problem more mathematically let P(Rd) denote the set of all probability
measures on the Borel σ-algebra B(Rd) on Rd. We encode the piles of sand at the beginning
and at the end as probability distributions µA, µB ∈ P(Rd) and the cost of transporting a grain
of sand as a function c : Rd × Rd → R. We get the original Monge problem by asking for a
transport map T : Rd → Rd such that the sum of all transport cost c(x, T (x)) is minimal. For
a mathematically rigorous problem formulation we first introduce the push forward measure.

Definition 2.1. Let µ ∈ P(Rd) be a Borel probability measure on Rd and T : Rd → Rd Borel
measurable. Then we define the push-forward T#µ as

T#µ(E) = µ(T (E)) ∀B(Rd).

Now we can define Monge’s problem.

Definition 2.2 (Monge’s problem). Let µA, µB ∈ P(Rd). Then a solution to Monge’s problem
is given by a Borel measurable map T : Rd → Rd that realises

inf

{∫
Rd
c(x, T (x)) dµA(x) : T#µA = µB

}
. (2.1)
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2 An Introduction to Optimal Transport

The constraint T#µA = µB enforces that mass is preserved during the transport.

Monge’s problem formulation has some disadvantages. In particular no mass can be split up. In
the example of transporting sand this might make sense because we see a grain of sand as the
smallest atomic entity that can not be split up, however in general there might not exist a solu-
tion to Monge’s problem. For example consider µA = δx0 a Dirac measure and µB = 1

2(δx1 +δx2)
(x1 6= x2). Obviously for this example the push-forward condition can never be satisfied for any
map T .

To really pose a well-defined problem Kantorovich [Kan42] [Kan48] proposed a more general
setup. In the approach by Kantorovich instead of transport maps T : Rd → Rd he described the
transport plan through couplings on the product space.

Definition 2.3 (Coupling). Let µ1 and µ2 be Borel probability measures on Rd. Then we call
a Borel probability measure π ∈ P(Rd × Rd) on the product space Rd × Rd a coupling of µ1 and
µ2 if its marginals coincide with µ1, resp. µ2, i.e.

p1#π = µ1 and p2#π = µ2,

where pi is the projection on the i-th component. We denote the set of all couplings of µ1, µ2 as
Π(µ1, µ2).

Using these couplings we can define Kantorovich’s problem.

Definition 2.4 (Kantorovich’s problem). Let µA, µB ∈ P(Rd). Then a solution to Kan-
torovich’s problem is given by a coupling π ∈ P(Rd × Rd) which realises the following infimum.

inf

{∫
Rd×Rd

c(x, y) dπ(x, y) : π ∈ Π(µA, µB)

}
.

Remark: Note that Kantorovich’s problem is a generalization of Monge’s problem. Indeed let
T : Rd → Rd be a minimizer of (2.1) then π = (id× T )#µA is a coupling in Π(µA, µB) and∫

Rd
c(x, T (x)) dµA =

∫
Rd×Rd

c(x, y) d((id× T )#µA)(x, y).

In contrast to Monge’s problem using the direct method of the calculus of variations one can
show the existence of transport plans for all marginals µA, µB.

Lemma 2.5. Let µA, µB ∈ P(Rd) and let c : Rd × Rd → R ∪ ∞ be lower semi-continuous
and bounded from below. Then the infimum of Kantorovich’s problem is always attained by a
transport plan π ∈ P(Rd × Rd).

These concepts of optimal transport can now be used to introduce a metric on the space of
Borel probability measures in the sense that the distance between two measures should just be
the transport cost for an optimal coupling. Using cost functions of the type c(x, y) = |x − y|p,
p ∈ [1,∞) the resulting metric is called the Wasserstein distance, named after Leonid Vaserstein
who introduced the concept in 1969.
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2.1 From Monge to Kantorovich

Definition 2.6 (Wasserstein distance). Denote by Pp(Rd) the space of Borel probability mea-
sures on Rd with finite p-th moments, i.e. for all µ ∈ Pp(Rd)∫

Rd
|x|p dµ <∞.

Let µA, µB ∈ Pp(Rd) then we define the Lp-Wasserstein distance as

Wp(µA, µB)p = inf

{∫
Rd×Rd

|x− y|p dπ(x, y) : π ∈ Π(µA, µB)

}
.

Lemma 2.7. The Lp-Wasserstein distance is a metric on Pp(Rd).

It is of course legitimate to ask if this metric on the space of probability measures is in any sense
meaningful. Indeed it turns out that the Wasserstein metric carries very natural properties.
One might be its close relation to the so called narrow convergence which is nothing else than
the weak*-convergence on P(Rd).

Definition 2.8 (Narrow convergence). Let µn, µ ∈ P(Rd), then we say µn converges narrowly
to µ and write µn ⇀ µ if

lim
n→∞

∫
Rd
f dµn →

∫
Rd
f dµ ∀f ∈ Cb(Rd).

One can show the following properties for the Wasserstein metric and its relation to narrow
convergence.

Theorem 2.9 (Narrow lower semi-continuity of Wp). Let µn, νn ∈ Pp(Rd) converging narrowly
to µ, ν ∈ Pp(Rd). Then

lim inf
n→∞

Wp(µn, νn) ≥Wp(µ, ν).

One can even show a more precise characterization of this relation.

Theorem 2.10. Let µn, µ ∈ Pp(Rd), then the following are equivalent

1. Wp(µn, µ)→ 0

2. µn ⇀ µ as n→∞ and

lim
R→∞

lim sup
k→∞

∫
|x|≥R

|x|p dµk = 0.

This tells us that the Wasserstein metric is closely related to the narrow topology on probability
measures. This topology however is very useful for working with probability measures. All this
gives motivation for building a theory around the so called Wasserstein spaces (Pp(Rd),Wp).
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2 An Introduction to Optimal Transport

2.2 The Wasserstein distance in a Riemannian context

In 2000 Benamou and Brenier [BB00] introduced a reformulation of the Monge problem in the
setting of fluid mechanics. The original purpose of this work was to rewrite the original Monge
problem in a way such that one can find a numerical scheme for explicitly calculating the Wasser-
stein distance. However, with this new formulation the Wasserstein distance could be interpreted
as a Riemannian distance, hence the Wasserstein space as a infinite dimensional Riemannian
manifold. This interpretation has given rise to many new ideas around optimal transport and
today this reformulation is widely accepted as a milestone in development of optimal transport
theory. In this section we will follow this path and interpret the Wasserstein space as a Rieman-
nian manifold. The rigorous statements are discussed in [AGS05] but here we assume some basic
knowledge of the theory of Riemannian manifolds and also skip some of the more technical steps.

As Benamou and Brenier point out in [BB00] their idea of seeing optimal transport as a flow
of mass in time was not completely new. Indeed already Monge had originally mentioned the
problem in this way but then proposed his formulation as a way of getting rid of the time de-
pendence. It turns out that at least for computational purposes the flow formulation is much
more viable as it results in the problem being a much more simple convex space-time minimiza-
tion with linear constraints instead of solving a highly nonlinear PDE (Monge-Ampère equation).

From now on we will solely focus one the case p = 2, i.e. the L2-Wasserstein distance. This has
several reasons, the main one being that because L2 is a Hilbert space we don’t have to deal
with special dual spaces. We now want to look at curves in the space P2(Rd), i.e. functions that
map a time t ∈ [0, 1] to P2(Rd) in a “continuous” way. However, the first thing we have to do
is define what such curves in a metric space do really look like.

Definition 2.11 (Absolutely continuous curves and the metric derivative). Let (X, d) be a
metric space. A curve γ : (0, 1) → X is said to be (locally) absolutely continuous of order
p ∈ [1,∞], if there exists m ∈ Lploc((a, b)) such that

d(γ(s), γ(t)) ≤
∫ t

s
m(r) dr ∀ 0 < s ≤ t < 1.

The set of all such curves is denoted by ACp((0, 1);X). Further we define the metric derivative
of γ for t ∈ (a, b) as |γ′| : (0, 1)→ [0,∞] with

|γ′(t)| := lim
s→t

d(γ(s), γ(t))

|s− t|

if the limit exists.

Remark: For the Wasserstein space one can show the existence of the metric derivative for
L1-a.e. t ∈ (0, 1).

So the curves we are going to deal with in P2(Rd) will be absolutely continuous curves in the
above sense. The next step towards a Riemannian setting for the Wasserstein space is a beautiful
characterization of absolutely continuous curves in P2(Rd) as curves that satisfy some form of
continuity equation.
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2.2 The Wasserstein distance in a Riemannian context

Definition 2.12 (Continuity equation). Let µ : (0, 1) → P2(Rd) and v : (0, 1) × Rd → Rd be
such that ∫ b

a

∫
Rd
|vt(x)| dµt dt <∞ ∀ 0 < a < b < 1.

Then µ is a solution to the continuity equation with respect to v, if ∂tµt + div(vtµt) = 0 holds
in (0, 1)× Rd in the sense of distributions, i.e. for all ϕ ∈ C∞c ((0, 1)× Rd)∫ 1

0

∫
Rd

(
∂tϕ(t, x) + (vt(x),∇ϕ(t, x))

)
dµt(x) dt = 0.

We denote the set of such pairs (µ, v) that satisfy the continuity equation by CE.

Before we rigorously state the relation between absolutely continuous curves in P2(Rd) and the
continuity equation we introduce the tangent velocity space

TanµP2(Rd) := {w ∈ L2
µ(Rd) : div(wµ) = 0 distributionally }⊥

At first this definition might seem a bit random because we skipped some steps of its derivation
(which can be found in [AGS05]). However, the next theorem should shed some light on this.

Theorem 2.13. Suppose we have given µ : (0, 1) → P2(Rd). Then µ is absolutely continuous
if and only if there exists a vector field v : (0, 1) × Rd → Rd with vt ∈ TanµP2(Rd) for almost
every t ∈ (0, 1) such that

1. (µ, v) ∈ CE,

2. ‖vt‖L2
µt

(Rd) = |µ′|(t) for almost every t ∈ (0, 1).

This theorem is useful for defining a Riemannian metric on P2(Rd) because now we have a
characterization of the formal derivative ∂tµt of an absolutely continuous curve (µt)t through
a vector field vt in a space which is not that abstract anymore. So using this indirect way we
define the tangent space for the Riemannian metric as

TµP2(Rd) := {s ∈ D(Rd) : ∃v ∈ TanµP2(Rd) s.t. s+ div(vµ) = 0}.

Here D(Rd) denotes the set of distributions on Rd. On this tangent space we can finally define
the metric tensor for s1, s2 ∈ TµP2(Rd) as

gµ(s1, s2) :=

∫
Rd

(v1(x), v2(x)) dµ(x)

where v1 and v2 are the corresponding tangent velocity fields to s1 and s2 and (·, ·) is the stan-
dard euclidean inner product.

The famous Benamou-Brenier formulation of the L2-Wasserstein distance is now nothing else
than the Riemannian distance in the above setting.
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2 An Introduction to Optimal Transport

Theorem 2.14 (Benamou-Brenier formula). Let µA, µB ∈ P2(Rd). Then

W2(µA, µB)2 = inf

{∫ 1

0
‖vs‖L2

µt
(Rd) ds : t 7→ µt ∈ AC2((0, 1);P2(Rd)), µ0 = µA, µ1 = µB

}
= inf

{∫ 1

0
‖vs‖L2

µt
(Rd) ds : (µ, v) ∈ CE , µ0 = µA, µ1 = µB

}
.

(2.2)

Remark: For absolute continuous probability measures µA, µB ∈ P2(Rd), µ� Ld one can show
that the geodesic stays absolutely continuous almost everywhere. Then (2.2) can be written as

W2(µA, µB)2 = inf

{∫ 1

0

∫
Ω
|vt(s)|2ρt(s) ds dt : (µ, v) ∈ CE , µ0 = µA, µ1 = µB

}
,

where ρtLd = µt. In this case we can do a change of variable by replacing the velocity v with
the momentum m(t, x) = ρ(t, x)v(t, x). We introduce the action

α(x, y) =


|x|2
y y > 0

0 x = y = 0

∞ otherwise

and then rewrite

W2(ρA, ρB)2 = inf

{∫ 1

0

∫
Ω
α(m(t, x), ρ(t, x)) dx dt : (ρ,m) ∈ CE ′, µ0 = µA, µ1 = µB

}
.

Here CE ′ is the set where ∂tρ+ divm = 0 has to hold in the sense of distributions. In the future
we will work with this formulation and refer to it as the Benamou-Brenier formulation.

2.3 Gradient-Flows with respect to the Wasserstein distance

In this final section on the foundations of the Wasserstein distance we want to quickly explain
the relation between gradient flows of certain functions with respect to the Wasserstein metric
and certain partial differential equations. This relation will once more justify our interest in the
Wasserstein distance and especially mark a property that we want to carry over to the discrete
case we are introducing in the next chapter. The property was first observed in a seminal work
by Otto et al [JKO98]. For this section we assume some basic understandings of gradient flows,
especially in context of subdifferentials.

We start with a definition of gradient flows in our context.

Definition 2.15 (Gradient flows in the Wasserstein space). Let µ ∈ AC2((0, 1);P2(Rd)) with
(µt)t∈(0,1) ⊂ Pa2 (Rd) and corresponding tangent velocity field v. Let Φ : P2(Rd)→ (−∞,∞] be a
proper and lower semi-continuous functional. Then µ is called gradient flow for Φ, if

−vt ∈ ∂Φ(µt) for a.e. t ∈ (0, 1).

Further we call µ0 ∈ P2(Rd) the initial value of µ, if

lim
t↓0

W2(µt, µ0) = 0.
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2.3 Gradient-Flows with respect to the Wasserstein distance

Of course there are many different interesting choices for potential functionals Φ. We only look
at the relative entropy as the resulting gradient flow is very interesting. We define the relative
entropy by

H(µ) =

{∫
Rd ρ(x) log(ρ(x)) dx µ� Ld and ρLd = µ

∞ otherwise

Now we can state the surprising result that relates the gradient flow of H with the heat equation.

Theorem 2.16. Let µ : (0,∞)→ P2(Rd) be continuous with respect to the Wasserstein distance.
Then µ is the gradient flow for H, if and only if, for each t > 0, µt has a density ρt with respect
to the Lebesgue measure such that (ρt)t>0 is a weak solution to the heat equation

∂tρ−∆ρ = 0 in (0,∞)× Rd

satisfying
∫ t
s

∫
Rd
|∇ρ|2
ρ dx dt <∞ for all 0 < s < t <∞.

This theorem is very interesting because it connects different objects from different parts of
mathematics with each other in a very natural way. Gradient flows can be interpreted as flows
that are always moving “downhill” the potential functional in the direction of the steepest de-
scent. So in this setting one might have the idea that a gradient flow with respect to the entropy
leads to some kind of diffusion process, smoothing out the initial configuration. However, that
the Wasserstein metric is exactly the correct metric to get something as trivial as the heat equa-
tion speaks for its important position as a metric on probability measures.

So far we have only worked with probability measures in Rd. However, we will see in the next
chapter that many of the properties we derived do not hold if the underlying space is discrete.
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3 A ’Wasserstein-like’ Metric for Discrete
Spaces

After we have recalled some basics of optimal transport and geometric properties of the L2-
Wasserstein distance in the previous chapter we now want to focus on the particular case where
the underlying metric space is discrete. We will first see that unfortunately the geometric prop-
erties of the original L2-Wasserstein distance do not carry over if the underlying space is discrete.
Instead recently different authors have suggested alternative definitions of metrics for discrete
spaces that do have similar geometric properties than the original L2-Wasserstein distance on
continuous spaces [CHLZ12; Maa11; Mie11]. Although these definitions represent very similar
concepts we will in this thesis solely focus on the metric introduced in [Maa11] by Jan Maas.

In section 3.1 we will first look at the original Wasserstein distance on discrete spaces and why
it looses its nice geometric properties. After that in section 3.2 we introduce the new general
setting, the space involved and some basic properties of it. As a result in section 3.3 we can now
rigorously define the new metric. Finally in section 3.4 we look at some duality result that will
be the foundation of all numerical schemes discussed in the next chapter.

3.1 The original Wasserstein metric on discrete spaces

We have already learned that the L2-Wasserstein metric introduces a particular geometry on
the space it is applied to. First of all it is perfectly valid to take its definition and apply it to
a discrete setting where the underlying space X is a finite set. However, when we recall the
definition of the L2-Wasserstein distance

W2(µA, µB)2 = inf

{∫
Rd×Rd

|x− y|2 dπ(x, y) : π ∈ Π(µA, µB)

}
.

we can already spot some potential problems. It may be that a cost function like c(x, y) = |x−y|2
causes problems on a discrete space where there are no continuous “connections” to transport
mass over. Indeed - as will be shown in the following example from [Maa11] - there exist no
constant speed geodesics between two different elements of X .

Example. Assume X = {a, b}, i.e. the discrete space contains two elements. Then a probability
distribution ρ on X can be characterized by just one parameter β ∈ [−1, 1] by ρβ = 1

2((1−β)δa+
(1 + β)δb). The mass at a and b is given by

ρβ(a) =
1− β

2
, ρβ(a) =

1 + β

2
.

Note that because we are only dealing with Dirac measures we can explicitly calculate

W2(ρα, ρβ)2 =
√

2|β − α|.

Now assume that
(
ρβ(t)

)
0≤t≤1

is a constant speed geodesic. This means that for s, t ∈ [0, 1] we
have √

2|β(t)− β(s)| = W2(ρβ(t), ρβ(s)) = |t− s|W2(ρβ(0), ρβ(1)) = |t− s|
√

2|β(0)− β(1)|.

Thus we get that β is 2-Hölder and thus constant on [0, 1]. As a result all constant speed geodesics
are already constant.
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3 A ’Wasserstein-like’ Metric for Discrete Spaces

This lack of non-constant geodesic tells us that the original Wasserstein metric is not the correct
metric to study the evolution of probability measures on a discrete spaces. In the next section
we will introduce a possible solution by defining a different metric with nevertheless similar
properties to the original Wasserstein metric.

3.2 The discrete setting and basic Markov chain properties

In order to solve the problem we encountered in the last section we will define a new metric
that uses more implicit features of the underlying space to introduce a better fitting geometry.
However, in order to be able to define this new metric we have to provide more information
about the discrete space in the form of a transition kernel and a stationary distribution.

Remark: As already mentioned in the introduction of this chapter there have been other attempts
in defining such a metric on a discrete space. However, all have used some additional concepts
providing additional information for setting in which the metric is defined.

From now on X will always be a finite set which will be the state space of a Markov chain with
transition kernel Q. We recall the following properties of Markov chains.

Definition 3.1. A mapping Q : X × X → [0, 1] is a transition kernel if Q(x, y) ≥ 0 for all
x, y ∈ X and

∑
y∈X Q(x, y) = 1 for all x.

A Markov chain with transition kernel Q is called irreducible if one can get from each state to
each other state with positive probability. Equivalently if we interpret Q as a quadratic matrix
than the Markov chain is irreducible if there exists n > 0 such that Qn > 0 meaning that each
entry is greater than zero.

We call π a stationary distribution of the Markov chain if∑
x∈X

π(x) = 1 and π(y) =
∑
x∈X

π(x)Q(x, y).

We know from basic Markov chain theory that if a chain on a finite space is irreducible there
also exists a unique stationary distribution π.

Definition 3.2. A Markov chain is called reversible if the detailed balance condition

Q(x, y)π(x) = Q(y, x)π(y) (3.1)

holds for all x, y ∈ X where π is the stationary distribution.

Remark: For a more natural understanding we will often refer to elements of X as nodes of a
graph and pairs (x, y) ∈ X × X with Q(x, y) > 0 as transitions or edges of that graph.

Lets assume that we are given a irreducible, reversible Markov chain with transition kernel Q
and stationary distribution. The domain on which the new metric will then act is

P(X ) :=

{
ρ : X → R+ :

∑
x∈X

π(x)ρ(x) = 1

}
,

the set of all probability densities on X with relative to the stationary π.
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3.2 The discrete setting and basic Markov chain properties

We have introduced the Markov chains and transition matrices because on top of the finite set X
they will determine how “connected” the space is and heavily influence the underlying geometry
of the space. Because the new metric will be introduced as a flow formulation similar to the
Benamou-Brenier formula we have to provide some discrete differential operators on the space
so that we can later perform analogue computations similar to the continuous setting.

Definition 3.3. Let ϕ,ψ ∈ RX and Φ,Ψ ∈ RX×X be functions on the nodes, resp. edges. Then
we define the discrete gradient by

∇χψ(x, y) = ψ(x)− ψ(y),

and the discrete divergence by

divχ Ψ(x) =
1

2

∑
y∈X

Q(x, y)(Ψ(y, x)−Ψ(x, y)).

We define the discrete Laplace-operator by

∆χψ(x) = divχ(∇χψ) =
1

2

∑
y∈X

Q(x, y) [(ψ(y)− ψ(x))− (ψ(x)− ψ(y))]

=
∑
y∈X

Q(x, y) [ψ(y)− ψ(x)] = ((Q− I)ψ)(x).

Remark: Note that the discrete divergence imitates the continuous divergence in that both can
be interpreted as measuring for a vector field the difference of how much is flowing in and out a
certain point in space.

Definition 3.4. Define the inner products

〈ϕ,ψ〉π =
∑
x∈X

ϕ(x)ψ(x)π(x),

〈Φ,Ψ〉π =
1

2

∑
x,y∈X

Φ(x, y)Ψ(x, y)Q(x, y)π(x).

Remark: Notation-wise we do not explicitly distinguish between the inner product of nodal func-
tions and those on edges. However, which one to use should always be clear from the situation.

Definition 3.5. Define H = RX × RX×X and for all v = (ρ1,m1), w = (ρ2,m2) ∈ H set

〈v, w〉H = 〈ρ1, ρ2〉π + 〈m1,m2〉π.

Although the previous definitions were of course a matter of choice and might seem arbitrary
the following property shows that our discrete setting is intrinsically well-defined.
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3 A ’Wasserstein-like’ Metric for Discrete Spaces

Lemma 3.6 (Integration by parts). The following integration by parts formula holds

〈∇χϕ,Ψ〉π = −〈ϕ,divχ Ψ〉π.

Proof. Calculation yields

〈∇χϕ,Ψ〉π =
1

2

∑
x,y∈X

(∇χϕ)(x, y)Ψ(x, y)Q(x, y)π(x)

=
1

2

∑
x,y∈X

[ϕ(x)− ϕ(y)] Ψ(x, y)Q(x, y)π(x)

=
1

2

∑
x,y∈X

ϕ(x)Ψ(x, y)Q(x, y)π(x)− 1

2

∑
x,y∈X

ϕ(y)Ψ(x, y)Q(x, y)π(x)

=
1

2

∑
x,y∈X

ϕ(x)Ψ(x, y)Q(x, y)π(x)− 1

2

∑
x,y∈X

ϕ(x)Ψ(y, x)K(y, x)π(y)︸ ︷︷ ︸
=Q(x,y)π(x)

=
1

2

∑
x∈X

π(x)ϕ(x)
∑
y∈X

(Ψ(x, y)−Ψ(x, y))Q(x, y)

= −1

2

∑
x∈X

ϕ(x)(divχ Ψ)(x)π(x) = −〈ϕ,divχ Ψ〉π

where we used the detailed balance condition of the stationary distribution π in the fifth step. �

3.3 Equivalent definitions of the metric

In this section we can now rigorously define the metric as described in [Maa11]. The idea of
this definition is to use the Benamou-Brenier flow formulation of the original L2-Wasserstein
distance as a starting point and translate the used concepts into the discrete setting. This is
exactly the reason why we defined inner products and differential operators on discrete sets in
the previous section.

There will be however one major difference between the original Benamou-Brenier formulation
and the definition of our metric. It turns out that in order to get the nice geometric properties
we are looking for we have to make transportation costs from one node to another depend also
on how much mass is already at the target and how much is still left at the source. This kind of
behaviour will be enforced by introducing an additional mean term and we will start by defining
its properties.

Definition 3.7. We assume the mean θ : [0,∞) × [0,∞) → [0,∞) to satisfy the following
conditions

(A1) θ is continuous on [0,∞)× [0,∞),

(A2) θ is C∞ on (0,∞)× (0,∞),

(A3) θ(s, t) = θ(t, s) for s, t ≥ 0,

(A4) θ(s, t) > 0 for s, t > 0.
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3.3 Equivalent definitions of the metric

(A5) θ(0, t) = 0 for all t ≥ 0

(A6) θ(r, t) ≤ θ(s, t) for all 0 ≤ r ≤ s and t ≥ 0

(A7) θ(λs, λt) = λθ(s, t) for λ > 0 and s, t ≥ 0

(A8) θ : R+ × R+ → R+ is concave

Remark: The θ fulfilling (A1) to (A8) we are going to use in this thesis is the so called loga-
rithmic mean which we will rigorously introduce at the end of this section.

At this point we want to note that there are two equivalent definitions of the metric. The
first one was described in [Maa11] and represents the original Benamou-Brenier formula in the
discrete setting. The second one is a reformulation analogue to the one mentioned in the remark
after Theorem 2.14 which offers some advantages (e.g. linear continuity equation) and was
described in [EM12]. We will only use the second formulation in this thesis because it allows a
more natural numerical approach of the problem.

Definition 3.8 (Action). We introduce a function α : R× [0, 1]× [0, 1]→ R with

α(x, s, t) =


0 θ(s, t) = 0 and x = 0
x2

θ(s,t) θ(s, t) 6= 0

+∞ θ(s, t) = 0 and x 6= 0.

Then we define the action as

A(ρ,m) :=
1

2

∑
x,y∈X

α(mx,y, ρ(x), ρ(y))Q(x, y)π(x).

Remark: Note that the action essentially represents the integrand in the Benamou-Brenier
formulation, i.e. A(ρ,m) ≈ ‖mρ̄ ‖

2
π where ρ̄(x, y) = θ(ρ(x), ρ(y)).

Next also similar to the flow formulation of the original Wasserstein distance we have to define
what it means to satisfy the continuity equation on a graph.

Definition 3.9 (Discrete continuity equation). Let ρ ∈ [0, 1]×RX and m ∈ [0, 1]×RX×X , then
we say that (ρ,m) satisfy the continuity equation and write (ρ,m) ∈ CE(ρA, ρB) if

1. t 7→ ρ(t, ·) is continuous

2. ρ(0, ·) = ρA, ρ(1, ·) = ρB

3. ρ(t, ·) ∈ P(X ) for all t ∈ [0, 1]

4. m(·, x, y) : [0, 1]→ R is in L1(0, 1)

5. For all x ∈ X we have in the sense of distributions

∂tρt + divχm = 0

17



3 A ’Wasserstein-like’ Metric for Discrete Spaces

or respectively in the sense of distributions

∂tρt(x) +
1

2

∑
x∈X

(mt(x, y)−mt(y, x))Q(x, y) = 0. (3.2)

Beside the integrability constraints and the continuity of ρt(x) in time one can see this definition
as a constraint that satisfies that mass is preserved and no new mass is generated and as a result
all mass that leaves a node has to flow over an edge to another node.

Remark: Comparing this continuity equation with the previous one of the continuous case we
observe that we can now assume continuity of t 7→ ρ(t, ·) instead of the absolute continuity
before. This is the case because we are now working on a finite set where a converging sequence of
continuous ρ(t) would immediately result in a continuous limit (because of uniform convergence).
This was not the case for a continuous space.

We can now give the actual definition of the new metric which we will from now on call the
discrete Wasserstein metric.

Definition 3.10 (Discrete Wasserstein metric). We define the metric by

W(ρA, ρB)2 = inf

{∫ 1

0
A(ρt,mt) dt : (ρ,m) ∈ CE(ρA, ρB)

}
. (3.3)

Remark: Notice that as pointed out in [GM12] if (ρ,m) satisfies the discrete continuity equation
(3.2) the same holds true for the pair (ρ,masym) where masym

t (x, y) = 1
2(mt(x, y) −mt(y, x)) is

the anti-symmetrization of m. Also

A(ρt,m
asym
t ) ≤ A(ρt,mt)

and thus we just have to consider anti-symmetric m (i.e. mt(x, y) = −m(y, x) for all x, y ∈ X )
in the infimum of (3.3).

The logarithmic mean and its properties

It turns out that in order to get that gradient flows of the entropy with respect to the new metric
are heat flows we have to choose θ as the logarithmic mean. As we will use this function heavily
and one might not be familiar with it we give a short summary of definition and properties of the
logarithmic mean. Also note that the logarithmic mean introduces a high level of “nonlinearity”
to the discrete Wasserstein distance. This will later be a main challenge when finding a feasible
computational scheme.

Definition 3.11. The logarithmic mean is defined as

θ(s, t) =

∫ 1

0
s1−rtr dr = lim

(ξ,η)→(s,t)

η − ξ
log(η)− log(ξ)

=


0, if s = 0 or t = 0

s, if s = t
t−s

log(t)−log(s) otherwise

.
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3.4 The dual of the action

One can easily calculate its derivatives.

Lemma 3.12. The first partial derivatives of the logarithmic mean are given by

∂1θ(s, t) =


+∞ if s = 0

0 if t = 0

0.5 if s = t 6= 0
−s log(t/s)−s+t

s log2(t/s)
otherwise

, ∂2θ(s, t) =


0 if s = 0

+∞ if t = 0

0.5 if s = t 6= 0
−t log(t/s)+s−t

t log2(t/s)
otherwise

Also we immediately get the following properties.

Corollary 3.13. The logarithmic mean satisfies assumptions (A1) to (A8) and additionally has
the following properties for all s, t > 0

(i) ∂1θ(s, t) = ∂1θ(cs, ct) and ∂2θ(s, t) = ∂2θ(cs, ct) for all c > 0

(ii) ∂1θ(s, t) = ∂2θ(t, s)

(iii) s∂1θ(s, t) + t∂2θ(s, t) = θ(s, t)

(iv) ∂1θ(u, v) + t∂2(u, v) ≥ θ(s, t) for all u, v > 0

Figures 3.1 and 3.2 should help get a better understanding of the logarithmic mean and its
derivatives. Most importantly note that, as the name is already implying, the logarithmic mean
has a logarithmic slope when approaching zero from one side. In particular this means that
there is a singularity at zero which can be problematic when our numerical schemes need to find
solutions that are close to zero.

Finally the following formal theorem is rigorously proved in [Maa11] which gives the justification
for the non-trivial construction we did on the metric.

Theorem 3.14 (Heat flow is gradient flow of the entropy). Let θ be the logarithmic mean and
let ρ ∈ P(X ). Then the heat flow t 7→ et∆ρ is a gradient flow trajectory for the entropy

H(ρ) =
∑
x∈X

πxρx log(ρx)

with respect to the discrete Wasserstein distance W.

3.4 The dual of the action

For the computational schemes we will need the dual of A calculated in the next lemma.

Lemma 3.15 ([EM, Lemma 2.3]). The Fenchel-dual of A with respect to 〈·, ·〉H is given by

A∗(ρ∗,m∗) = sup
a

{
1

8

∑
x,y∈X

|m∗x,y|2θ(ax, ay)Q(x, y)π(x) +
∑
x∈X

axρ
∗
xπ(x)

}
= IK,
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3 A ’Wasserstein-like’ Metric for Discrete Spaces

Figure 3.1: Some impressions of the logarithmic mean. Note the logarithmic slope near zero.

Figure 3.2: Some impressions of ∂1θ (derivative in the first variable of the logarithmic mean).
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3.4 The dual of the action

where the indicator function IK is given by

IK =

{
0, (ρ∗,m∗) ∈ K
+∞, else

.

Here K denotes a convex set where (ρ∗,m∗) ∈ K if one of the following characterizations holds.

(K1) For all a ∈ RX+ we have∑
x∈X

axρ
∗
xπ(x) +

1

8

∑
x,y∈X

θ(ax, ay)|m∗x,y|2Q(x, y)π(x) ≤ 0 (3.4)

(K2) For all x, y ∈ X there exists a1, a2 ∈ R+ such that

ρ∗x ≤ −
1

4
∂1θ(a1, a2)|m∗x,y|2Q(x, y)

ρ∗y ≤ −
1

4
∂2θ(a1, a2)|m∗x,y|2Q(x, y)

(K3) It is sufficient (but not necessary) for (ρ∗,m∗) ∈ K that there exists a ∈ RX+ such that
for all x ∈ X

ρ∗x +
1

4

∑
y∈X

∂1θ(ax, ay)|m∗x,y|2Q(x, y) ≤ 0.

Proof. We start by computing the Fenchel dual of A with respect to 〈·, ·〉H.

A∗(ρ∗,m∗) = sup
(a,w)

{
〈a, ρ∗〉π + 〈w,m∗〉π −A(a,w)

}
= sup

(a,w)

{∑
x∈X

axρ
∗
xπ(x) +

1

2

∑
x,y∈X

wx,ym
∗
x,yQ(x, y)π(x)− 1

2

∑
x,y∈X

|wx,y|2

θ(ax, ay)
Q(x, y)π(x)

}

= sup
(a,w)

{
− 1

2

∑
x,y∈X

[
|wx,y|2

θ(ax, ay)
−m∗x,ywx,y

]
Q(x, y)π(x) +

∑
x∈X

axρ
∗
xπ(x)

}

= sup
(a,w)

{
1

2

∑
x,y∈X

(
− 1

θ(ax, ay)

[
wx,y −

1

2
m∗x,yθ(ax, ay)

]2

+
1

4
|m∗x,y|2θ(ax, ay)

)
Q(x, y)π(x)

+
∑
x∈X

axρ
∗
xπ(x)

}
Now note that since

− 1

θ(ax, ay)

[
wx,y −

1

2
m∗x,yθ(ax, ay)

]2

≤ 0

it is optimal to choose wx,y such that it is exactly equal to zero. Then the supremum only runs
over a and in total we get

A∗(b, u) = sup
a

{
1

8

∑
x,y∈X

|m∗x,y|2θ(ax, ay)Q(x, y)π(x) +
∑
x∈X

axρ
∗
xπ(x)

}
.

Because of (A7) and |m∗x,y|2θ(ax, ay)Q(x, y)π(x) ≥ 0 the quantity is positive homogeneous in a.
Thus the value of the supremum is +∞ unless (K1) holds.

21



3 A ’Wasserstein-like’ Metric for Discrete Spaces

We will now show the equivalence of (K1) and (K2). Suppose (K1) holds, then for fixed x, y ∈ X
and a1, a2 ∈ R+ we set a ∈ RX as

az =


a1 if z = x

a2 if z = y

0 otherwise

.

Testing (K1) with this a we get

a1ρ
∗
xπ(x) + a2ρ

∗
yπ(y) +

1

4
|m∗x,y|2θ(a1, a2)Q(x, y)π(x) ≤ 0. (3.5)

Now we can use (iii) of Corollary 3.13 to split θ(a1, a2) = a1∂1θ(a1, a2) + a2∂2θ(a1, a2) and (3.5)
becomes

a1ρ
∗
xπ(x) + a2ρ

∗
yπ(y) ≤ −a1

1

4
|m∗x,y|2∂1θ(a1, a2)Q(x, y)π(x)− a2

1

4
|m∗x,y|2∂2θ(a1, a2)Q(x, y)π(x).

(3.6)
This condition obviously holds if

ρ∗x ≤ −
1

4
|m∗x,y|2∂1θ(a1, a2)Q(x, y)

ρ∗y ≤ −
1

4
|m∗x,y|2∂2θ(a1, a2)Q(x, y)

(3.7)

which is what (K2) states. More the other direction move back from (3.7) to (3.6) and then use
(iv) of Corollary 3.13 to make the step back to (3.5). Now summing over all x, y (3.5) implies
(K1).

Finally we want to show that (K3) is sufficient for (K1). Calculating the derivative of (3.4) with
respect to some az we get

∂az

∑
x∈X

axρ
∗
xπ(x) +

1

8

∑
x,y∈X

θ(ax, ay)|m∗x,y|2Q(x, y)π(x)


= ρ∗zπ(z) +

1

8

∑
y∈X

∂1θ(az, ay)|m∗z,y|2K(z, y)π(z) +
1

8

∑
x∈X

∂2θ(ax, az)|m∗x,z|2K(x, z)π(x)

= ρ∗zπ(z) +
1

8

∑
y∈X

∂1θ(az, ay)|m∗y,z|2K(z, y)π(z) +
1

8

∑
x∈X

∂2θ(ax, az)|m∗x,z|2K(z, x)π(z)

= ρ∗zπ(z) +
1

4

∑
y∈X

∂1θ(az, ay)|m∗y,z|2K(z, y)π(z)

where we used the remark after Definition 3.10, the reversibility of the Markov chain (3.1) and
the third property of Corollary 3.13. Now if there exists that an a ∈ RX such that (3.4) is
strictly greater than zero because of the homogeneity in a there has to exists an z ∈ X for which
we will get a positive derivative, i.e.

ρ∗z +
1

4

∑
y∈X

∂1θ(az, ay)|m∗y,z|2K(z, y) > 0.

This is a contradiction to (K3) and because we started with the negated (K1) we have shown
(K3). �
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3.4 The dual of the action

Remark: By using (i) of Corollary 3.13 we can weaken the condition (K3) a bit. To be precise
if there exists a ∈ RX such that

ρ∗x +
1

4

∑
y∈X

∂1θ(ax, ay)|m∗x,y|2Q(x, y) ≤ 0 ∀x ∈ X

then there exist infinitely many such a, in particular also an a ∈ RX with ‖a‖1 = 1.
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4 Numerical Approaches for Calculating the
Geodesic

The goal of this chapter, and this thesis in general, is to construct feasible numerical methods
for computing the geodesics of the new discrete Wasserstein metric introduced in the previous
chapter. We will use two different approaches as a starting point. On one hand in section
4.1 we will modify the augmented Lagrangian method proposed by Benamou and Brenier in
2000 [BB00] for the original Wasserstein distance to fit in our new setting. On the other hand
in section 4.2 we will approach the problem by using a proximal splitting method inspired by
[PPO14] where the authors applied this method to the original Wasserstein distance.

4.1 Benamou-Brenier’s Augmented-Lagrangian Method

When in 2000 Benamou and Brenier published there now famous paper [BB00] it contained the
first practical numerical scheme for computing an arbitrary L2-Wasserstein distance. Since then
the Benamou-Brenier algorithm has been the first practical method for computing the Wasser-
stein distance we will also apply it to the discrete Wasserstein distance.

Because the discrete Wasserstein distance is defined by an Benamou-Brenier type formula we
do not have to reformulate the problem but can instead directly go for the numerical scheme.
The idea of the Benamou-Brenier approach is to incorporate the continuity equation constraint
directly into the equation such that we get a saddle point problem. After that we can calculate
the optimality conditions of this saddle point problem and use an alternating descent method to
approach the saddle point. We start by deriving the saddle point problem in our new discrete
setting.

Theorem 4.1. We can reformulate the discrete Wasserstein metric as

W(ρA, ρB)2 = sup
ρ,m

inf
ξ,ρ∗,m∗

L[ρ,m, ρ∗,m∗, ξ]

where the Lagrangian L is defined by

L[ρ,m, ρ∗,m∗, ξ] = I[0,1]×K(ρ∗,m∗) + 〈ξ0, ρA〉π − 〈ξ1, ρB〉π

+

∫ 1

0

(
〈∂tξt − ρ∗t , ρt〉π + 〈∇χξt −m∗t ,mt〉π

)
dt

and the infimum and supremum run over all ρ, ρ∗ ∈ L2([0, 1],RX ), m,m∗ ∈ L2([0, 1],RX×X )
and ξ ∈ H1([0, 1],RX ).

Proof. By introducing a Lagrange multiplier ξ ∈ H1([0, 1],RX ) for the continuity equation
constraint we can rewrite

W(ρA, ρB)2 = inf
(ρ,m)∈[0,1]×H

sup
ξ

{∫ 1

0
A(ρt,mt) dt︸ ︷︷ ︸
ETrans

+

∫ 1

0
〈ξt, ∂tρt + divχmt〉π dt︸ ︷︷ ︸

ECE

}
.
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4 Numerical Approaches for Calculating the Geodesic

The continuity equation is enforced because, since ECE is homogeneous in ξ, if ∂tρt + divmt is
not equal to zero the inner supremum will be +∞. However, this is a case that is ignored by
the outer infimum.

Now we calculate

ECE =

∫ 1

0
〈ξt, ∂tρt〉π dt+

∫ 1

0
〈ξt, divχmt〉π dt

=

∫ 1

0

∑
x∈X

ξt(x)∂tρt(x)π(x) dt+

∫ 1

0
〈ξt, divχmt〉π dt

=
∑
x∈X

π(x)

∫ 1

0
ξt(x)∂tρt(x) dt+

∫ 1

0
〈ξt, divχmt〉π dt

=
∑
x∈X

[
ξ1(x)ρ1(x)− ξ0(x)ρ0(x)−

∫ 1

0
∂tξt(x)ρt(x) dt

]
π(x) +

∫ 1

0
〈ξt,divχmt〉π dt

= 〈ξ1, ρB〉π − 〈ξ0, ρA〉π −
∫ 1

0
〈∂tξt, ρt〉π dt−

∫ 1

0
〈∇χξt,mt〉π dt

where we used both, the common integration by parts in t and the integration by parts formula
in x of Lemma 3.6. Note that formally for this computation we assumed that t 7→ (ρt,mt) is
differentiable (otherwise ∂tρ would not be defined). However, because the continuity equation
of Definition 3.9 only asks for ∂tρt + divχm = 0 to hold in the sense of distributions ECE should
actually only be used in integrated form with ρ and m in L2.

Similar to the continuous L2-Wasserstein case in [BB00] we now use the convexity of the action
A by replacing A∗∗ = A to rewrite the Lagrangian. From basic convex analysis we know that
for convex, lower semi-continuous functionals in a reflexive space (H is a Hilbert space) we have

A(ρ,m) = A∗∗(ρ,m) = sup
(ρ∗,m∗)∈H

〈ρ∗, ρ〉π + 〈m∗,m〉π − IK(ρ∗,m∗).

Now we replace the A(ρ,m) of the ETrans functional by A∗∗(ρ,m) and get

ETrans =

∫ 1

0

[
sup

(ρ∗t ,m
∗
t )∈H
〈ρ∗t , ρt〉π + 〈m∗t ,mt〉π − IK(ρ∗t ,m

∗
t )

]
dt

= sup
(ρ∗,m∗)∈[0,1]×H

[
−I[0,1]×K(ρ∗,m∗) +

∫ 1

0

(
〈ρ∗t , ρt〉π + 〈m∗t ,mt〉π

)
dt

]
= sup

(ρ∗,m∗)∈[0,1]×K

[∫ 1

0

(
〈ρ∗t , ρt〉π + 〈m∗t ,mt〉π

)
dt

]

Note that we did not yet justify why we can pull the supremum out of the integral. This is
due to the continuity of A(ρ,m) and continuity of t 7→ ρt that is assumed for the continuity
equation in Definition 3.9. These continuities do not allow cases where IK(ρ∗t ,m

∗
t ) =∞ for just

a null set of t’s. Thus we can pull IK(ρ∗t ,m
∗
t ) out of the integral as I[0,1]×K(ρ∗,m∗) and because

of the linearity of 〈·, ·〉π we can pull out the supremum. Also because later in practice we are
working with time-discretized versions of the functions the integral will decouple in time and we
can optimize for the supremum in each timestep separately.
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4.1 Benamou-Brenier’s Augmented-Lagrangian Method

Now plugging all this in, we can rewrite the saddle point problem as

− inf
ρ,m

sup
ξ

{
ETrans + ECE

}
= sup

ρ,m
inf
ξ

{
− ETrans − ECE

}
= sup

ρ,m
inf
ξ

{
− sup
ρ∗,m∗

[
−I[0,1]×K(ρ∗,m∗) +

∫ 1

0

(
〈ρ∗t , ρt〉π + 〈m∗t ,mt〉π

)
dt

]
−
[
〈ξ1, ρB〉π − 〈ξ0, ρA〉π −

∫ 1

0
〈∂tξt, ρt〉π dt−

∫ 1

0
〈∇χξt,mt〉π dt

]}
= sup

ρ,m
inf

ξ,ρ∗,m∗

{
I[0,1]×K(ρ∗,m∗)−

∫ 1

0

(
〈ρ∗t , ρt〉π + 〈m∗t ,mt〉π

)
dt

−
[
〈ξ1, ρB〉π − 〈ξ0, ρA〉π −

∫ 1

0
〈∂tξt, ρt〉π dt−

∫ 1

0
〈∇χξt,mt〉π dt

]}
= sup

ρ,m
inf

ξ,ρ∗,m∗

{
I[0,1]×K(ρ∗,m∗) + 〈ξ0, ρA〉π − 〈ξ1, ρB〉π

−
∫ 1

0

(
〈ρ∗t − ∂tξt, ρt〉π + 〈m∗t −∇χξt,mt〉π

)
dt

}
= sup

ρ,m
inf

ξ,ρ∗,m∗

{
I[0,1]×K(ρ∗,m∗) + 〈ξ0, ρA〉π − 〈ξ1, ρB〉π

+

∫ 1

0

(
〈∂tξt − ρ∗t , ρt〉π + 〈∇χξt −m∗t ,mt〉π

)
dt

}
�

So far we have not looked into how to solve the saddle point problem we derived in the previous
theorem. As already mentioned we want to calculate the optimality conditions for the problem
and then do an alternating gradient descent to find the saddle point. However, to this end we
need to compute derivatives of the Lagrangian L. In analogy to the Benamou-Brenier paper
[BB00] we will look at the augmented Lagrangian which gives us a regularized version of L for
which the optimality conditions can be computed numerically. The augmented Lagrangian is
derived by observing that part of the Lagrangian L, namely∫ 1

0

(
〈∂tξt − ρ∗t , ρt〉π + 〈∇χξt −m∗t ,mt〉π

)
dt,

can be interpreted in a way where ρ,m are actually the Lagrange multipliers of the constraints

∂tξt − ρ∗t = 0, ∇χξt −m∗t = 0.

Since these constraints force ∂tξt − ρ∗t resp. ∇χξt −m∗t to be zero we can add

r

2
‖∂tξt − ρ∗t ‖2π +

r

2
‖∇χξt −m∗t ‖2π

without changing the possible solutions of the original saddle point problem. The factor r in
front of the norms is just an additional parameter which will turn out to be step length of the
gradient descent and which we could tune to get better convergence properties. However, it will
most of the time just be set to 1. In this way we define the augmented Lagrangian as

Lr[ρ,m, ρ
∗,m∗, ξ] := L[ρ,m, ρ∗,m∗, ξ] +

r

2

∫ 1

0

(
‖∂tξt − ρ∗t ‖2π + ‖∇χξt −m∗t ‖2π

)
dt

= I[0,1]×K(ρ∗,m∗) + 〈ξ0, ρA〉π − 〈ξ1, ρB〉π +

∫ 1

0

(
〈∂tξt − ρ∗t , ρt〉π + 〈∇χξt −m∗t ,mt〉π

)
dt

+
r

2

∫ 1

0

(
〈∂tξt − ρ∗t , ∂tξt − ρ∗t 〉π + 〈∇χξt −m∗t ,∇χξt −m∗t 〉π

)
dt.
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We can simplify(
〈∂tξt − ρ∗t , ρt〉π + 〈∇χξt −m∗t ,mt〉π

)
+
r

2

(
〈∂tξt − ρ∗t , ∂tξt − ρ∗t 〉π + 〈∇χξt −m∗t ,∇χξt −m∗t 〉π

)
=
r

2

(
〈∂tξt − ρ∗t +

ρt
r
, ∂tξt − ρ∗t +

ρt
r
〉π + 〈∇χξt −m∗t +

mt

r
,∇χξt −m∗t +

mt

r
〉π
)

− 1

2
〈ρt
r
,
ρt
r
〉π −

1

2
〈mt

r
,
mt

r
〉π

=
r

2

(
‖∂tξt − ρ∗t +

ρt
r
‖2π + ‖∇χξt −m∗t +

mt

r
‖2π
)
− 1

2
〈ρt
r
,
ρt
r
〉π −

1

2
〈mt

r
,
mt

r
〉π.

In total we get

Lr[ρ,m, ρ
∗,m∗, ξ] = I[0,1]×K(ρ∗,m∗) + 〈ξ0, ρA〉π − 〈ξ1, ρB〉π

+
r

2

∫ 1

0

(
‖∂tξt +

ρt
r
− ρ∗t ‖2π + ‖∇χξt +

mt

r
−m∗t ‖2π

)
dt

− 1

2r2

∫ 1

0

(
‖ρt‖2π + ‖mt‖2π

)
dt.

(4.1)

We have now converted the original minimization problem with the continuity equation con-
straint into a saddle point problem. For solving this problem we will now alternatingly solve
the optimality conditions in ξ, ρ∗, m∗ and ρ, m which can be seen as an alternating gradient
descent. In total we get the following algorithm which we will abbreviate by (BB).

Algorithm 1 (Alternating gradient descent of Augmented-Lagrangian (BB)). Lets assume we
already have the values (ρn,mn) for iteration n of the algorithm (if n = 0 pick an initialization
for (ρ0,m0)). Then the next iteration consists of the following three steps:

(A) Find ξ ∈ H1([0, 1],RX ) such that

Lr[ρ
n,mn, ρ∗,m∗, ξ] ≤ Lr[ρn,mn, ρ∗,m∗, ξ̃] ∀ξ̃ ∈ H1([0, 1],RX )

(B) Find ρ∗ ∈ L2([0, 1],RX ),m∗ ∈ L2([0, 1],RX×X ) such that for all ρ̃∗ ∈ L2([0, 1],RX ), m̃∗ ∈
L2([0, 1],RX×X )

Lr[ρ
n,mn, ρ∗,m∗, ξ] ≤ Lr[ρn,mn, ρ̃∗, m̃∗, ξ̃]

(C) Update
ρn+1 = ρn + r(∂tξ − ρ∗),
mn+1 = mn + r(∇χξ −m∗).

In the next subsections we will explain how steps A and B can be computed.

4.1.1 Step A: Solving an elliptic problem

Step A is the optimization of Lr in ξ. Fortunately Lr is differentiable in ξ and we can just
compute the derivative.

Lemma 4.2. Let ρ,m, ρ∗,m∗ be fixed. Let ξ ∈ H1([0, 1],RX ) be a minimizer in the sense that

Lr[ρ,m, ρ
∗,m∗, ξ] ≤ Lr[ρ,m, ρ∗,m∗, ξ̃] ∀ξ̃ ∈ H1([0, 1],RX ). (4.2)
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4.1 Benamou-Brenier’s Augmented-Lagrangian Method

Then the following optimality condition holds for all ϕ ∈ H1([0, 1],RX )

r

∫ 1

0

(
〈∂tξt, ∂tϕt〉π + 〈∇χξt,∇χϕt〉π

)
dt = 〈ϕ1, ρB〉π − 〈ϕ0, ρA〉π

−
∫ 1

0

(
〈∂tϕt, ρt − rρ∗t 〉π + 〈∇χϕt,mt − rm∗t 〉π

)
dt.

(4.3)

Proof. We calculate the Euler-Lagrange equation

∂ξLr[ρ,m, ρ
∗,m∗, ξ](ϕ)

=
d

dε
Lr[ρ,m, ρ

∗,m∗, ξ + εϕ]

∣∣∣∣
ε=0

=
d

dε

[
〈ξ0 + εϕ0, ρA〉π − 〈ξ1 + εϕ1, ρB〉π

]
ε=0

+
d

dε

[
r

2

∫ 1

0

(
‖∂t(ξt + εϕt) +

ρt
r
− ρ∗t ‖2π + ‖∇χ(ξt + εϕt) +

mt

r
−m∗t ‖2π

)
dt

]
ε=0

.

For the boundary term we get

d

dε

[
〈ξ0 + εϕ0, ρA〉π − 〈ξ1 + εϕ1, ρB〉π

]
ε=0

=
d

dε

[
〈ξ0, ρA〉π + ε〈ϕ0, ρA〉π − 〈ξ1, ρB〉π − ε〈ϕ1, ρB〉π

]
ε=0

= 〈ϕ0, ρA〉π − 〈ϕ1, ρB〉π.
The remainder yields

d

dε

[
r

2

∫ 1

0

(
‖∂t(ξt + εϕt) +

ρt
r
− ρ∗t ‖2π + ‖∇χ(ξt + εϕt) +

mt

r
−m∗t ‖2π

)
dt

]
ε=0

=

∫ 1

0
〈∂tϕt, ∂tξt +

ρt
r
− ρ∗t 〉π dt+

∫ 1

0
〈∇χϕt,∇χξt +

mt

r
−m∗t 〉π dt

= r

∫ 1

0

(
〈∂tϕt, ∂tξt〉π + 〈∇χϕt,∇χξ〉π

)
dt+

∫ 1

0

(
〈∂tϕt, ρt − rρ∗t 〉π dt+ 〈∇χϕt,mt − rm∗t 〉π

)
dt

�

Careful observers will note that (4.3) looks like the weak formulation of an elliptic boundary
value problem. Indeed if we assume more regularity we can even transform this problem in a
typical strong formulation containing the discrete differential operators.

Lemma 4.3. Suppose additionally ξ ∈ C2([0, 1],RX ), ρ ∈ C1([0, 1],RX ),m ∈ C1([0, 1],RX×X ).
Then the optimality condition in Lemma 4.2 is the weak formulation of the elliptic boundary
value problem

−r
(
∂ttξ + ∆χξ

)
= ∂t

(
ρt − rρ∗t

)
+ divχ

(
mt − rm∗t

)
with Neumann boundary values in time

∂tξ0(x) = ρ∗0(x) ∀x ∈ X ,
∂tξ1(x) = ρ∗1(x) ∀x ∈ X .
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Proof. Using both integration by parts formulas we get for the left hand side of (4.3)

r

∫ 1

0

(
〈∂tξt, ∂tϕt〉π + 〈∇χξt,∇χϕt〉π

)
dt

= r
(
〈∂tξ1, ϕ1〉π − 〈∂tξ0, ϕ0〉π

)
− r

∫ 1

0

(
〈∂ttξt, ϕt〉π + 〈divχ(∇χξt), ϕt〉π

)
dt

= r
(
〈∂tξ1, ϕ1〉π − 〈∂tξ0, ϕ0〉π

)
− r

∫ 1

0
〈∂ttξt + ∆χξt, ϕt〉π dt

and for the right hand side

〈ϕ1, ρB〉π − 〈ϕ0, ρA〉π −
∫ 1

0

(
〈∂tϕt, ρt − rρ∗t 〉π + 〈∇χϕt,mt − rm∗t 〉π

)
dt

= 〈ϕ1, ρB〉π − 〈ϕ0, ρA〉π − 〈ϕ1, ρB − rρ∗1〉π + 〈ϕ0, ρA − rρ∗0〉π

+

∫ 1

0

(
〈ϕt, ∂t(ρt − rρ∗t )〉π + 〈ϕt, divχ(mt − rm∗t )〉π

)
dt

= +〈ϕ1, rρ
∗
1〉π − 〈ϕ0, rρ

∗
0〉π +

∫ 1

0

(
〈ϕt, ∂t(ρt − rρ∗t )〉π + 〈ϕt,divχ(mt − rm∗t )〉π

)
dt

= r
(
〈ϕ0, ρ

∗
0〉π − 〈ϕ1, ρ

∗
1〉π
)

+

∫ 1

0

(
〈ϕt, ∂t(ρt − rρ∗t ) + divχ(mt − rm∗t )〉π

)
dt

Thus (4.3) is equivalent to∫ 1

0
〈r∂ttξ̂t + r∆χξ̂t + ∂t(ρt − rρ∗t ) + divχ(mt − rm∗t ), ϕt〉π dt

= r
(
〈ϕ0, ρ

∗
0 − ∂tξ0〉π − 〈ϕ1, ρ

∗
1 − ∂tξ1〉π

)
.

This means that for all

ϕ ∈ {ψ : [0, 1]×X → R | ψ(·, x) ∈ C∞0 ∀x ∈ X}

we get ∫ 1

0
〈r∂ttξ̂t + r∆χξ̂t + ∂t(ρt − rρ∗t ) + divχ(mt − rm∗t ), ϕt〉π dt = 0.

Now using the fundamental lemma of the calculus of variations we get

−r
(
∂ttξ + ∆χξ

)
= ∂t

(
ρt − rρ∗t

)
+ divχ

(
mt − rm∗t

)
and as boundary conditions in time

∂tξ0(x) = ρ∗0(x) ∀x ∈ X ,
∂tξ1(x) = ρ∗1(x) ∀x ∈ X .

�

As a conclusion Step A of the Benamou-Brenier approach (which is finding ξ̂ that fulfils (4.2))
means just solving an elliptic Poisson-type problem. We will describe how this can be done
using finite elements in chapter 6.
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4.2 A proximal splitting approach

4.1.2 Step B: Projecting on a convex set

In this section we will discuss how we can perform step B of (BB). Recall that step B means
optimizing in the dual variables, i.e. finding ρ̃∗ ∈ L2([0, 1],RX ), m̃∗ ∈ L2([0, 1],RX×X ) such that

Lr[ρ
n,mn, ρ∗,m∗, ξ] ≤ Lr[ρn,mn, ρ̃∗, m̃∗, ξ].

For this step we cannot differentiate with respect to ρ∗ or m∗. However, we observe on (4.1)
that only the few summands actually contribute to the optimization in ρ∗ and m∗. To be more
precise we have

arg min
(ρ∗,m∗)∈[0,1]×H

Lr[ρ,m, ρ
∗,m∗, ξ]

= arg min
(ρ∗,m∗)∈[0,1]×H

{
I[0,1]×K(ρ∗,m∗) +

∫ 1

0

(
‖∂tξt +

ρt
r
− ρ∗t ‖2π + ‖∇χξt +

mt

r
−m∗t ‖2π

)
dt

}
= arg min

(ρ∗,m∗)∈[0,1]×K

∫ 1

0

(
‖∂tξt +

ρt
r
− ρ∗t ‖2π + ‖∇χξt +

mt

r
−m∗t ‖2π

)
dt.

We will later see in section 6.3 that using certain finite element discretizations the minimization
of the integral decouples in time and we can perform the minimization for each timestep t ∈ [0, 1]
separately. This means for now we can forget about the time coordinate and just figure out,
how to solve the problem for one timestep, i.e. for fixed t and ξ, (ρ,m) solve

arg min
(ρ∗,m∗)∈K

(
‖∂tξt +

ρt
r
− ρ∗t ‖2π + ‖∇χξt +

mt

r
−m∗t ‖2π

)
= projK

(
∂tξt +

ρt
r
,∇χξt +

mt

r

)
.

Thus we need to be able to compute the projection on K for solving step B of (BB). Because this
is also needed in the other numerical approach that will follow in the next section and because
calculating the projection turns out to be more difficult than in the original Benamou-Brenier
case we will discuss the projection algorithm separately in chapter 5.

4.2 A proximal splitting approach

In the following section we will explore another approach for calculating the geodesics based
on a so called proximal splitting method, namely the Douglas-Rachford algorithm. In the first
subsection we will introduce the general algorithm for generic convex functions. Afterwards
we apply it to our particular problem of calculating the geodesics of the discrete Wasserstein
distance.

4.2.1 The general Douglas-Rachford algorithm

Most of the basic definitions and properties in this subsection are taken from the monograph
[EB92].
We start by introducing the a central object to proximal splitting methods - the proximal
operator.

Definition 4.4. Let H be a Hilbert space and let f : H → R be convex, proper and lower
semi-continuous. We define the proximal operator by

proxf (x) = arg min
y

{
f(y) +

1

2
‖x− y‖2

}
.
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This proximal operator maps a point x ∈ H to another point y ∈ H that has the best trade-off
between function value at y and distance from x. It has several nice properties but in particular
there is the following relationship between the proximal mapping and the (sub-)differential of
f . A proof for the following Lemma can be found for example in [PB14, Section 3.2].

Lemma 4.5. The following holds

x = proxλf (z) ⇔ z ∈ x+ λf(x) ⇔ (z − x) ∈ λ∂f(x).

Equivalently we have
proxλf = (1 + λ∂f)−1. (4.4)

These properties of the proximal operator are particularly interesting because they introduce a
natural way to search for minimizers of f . The most basic approach could be a fixpoint iteration
like

x(n+1) = proxλf (x(n)).

Because whenever we have x = proxλf (x) Lemma 4.5 tells us that x − x = 0 ∈ λ∂f(x) and we
found a minimizer. However, often it is quite hard to compute the proximal mapping of a some
function f . This is where proximal splitting algorithms come into play.

Suppose we are looking at energies that can be written as a sum of smaller parts. Proximal
splitting methods can now be used if it is hard to calculate the proximal operator of the whole
energy but quite possible to calculate it for the summands independently. Alternating calcu-
lation of the resolvants (see (4.4)) yields a type of fixpoint iteration which - under some mild
conditions - converges to the solution of the optimization problem.

The Douglas-Rachford algorithm is one particular (often used) proximal splitting method. We
will introduce the basic algorithm and some reasoning for the convergence, however for more
detailed analysis we refer to [EB92] and [CP09].

Algorithm 2 (Douglas-Rachford splitting (DR)). Suppose we want to solve the problem

f1(x) + f2(x)→ min

where f1, f2 are closed, lower semi-continuous and convex functions and z(0) is an arbitrary start
value in the domains of f1 and f2. Let λ > 0 and α ∈ (0, 2) be fixed. Then each iteration of the
Douglas-Rachford algorithm consists of the following three steps:

(1) x(k) = proxλf2(z(k−1))

(2) y(k) = proxλf1(2x(k) − z(k−1))

(3) z(k) = z(k−1) + α(y(k) − x(k))

Remark: Note that the general Douglas-Rachford algorithm can not only be used for minimiza-
tion problems but for generally finding the root of a maximal monotone operator. (see [EB92])
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Theorem 4.6. Let (x(k), y(k), z(k)) be a fixpoint of the Douglas-Rachford scheme then x(k) is a
minimizer of f1 + f2.

Proof. Consider a fixpoint iteration for the following function

F (z) = z + α(proxλf1(2proxλf2(z)− z)− proxλf2(z))

= z + α(proxλf1(2x− z)− x)

where we denote x = proxλf2(z). Assume we are at a fixpoint i.e. F (z) = z, then the following
equation is satisfied

proxλf1(2x− z) = x = proxλf2(z).

Using Lemma 4.5 this is equivalent to

2x− z − x = x− z ∈ λ∂f1(x) and z − x ∈ λ∂f2(x).

Adding these up we get

0 ∈ λ∂f1(x) + λ∂f2(x) = λ∂(f1 + f2)(x).

�

4.2.2 Application to the discrete Wasserstein distance

After we have introduced the general notion of proximal splitting methods in the previous
subsection we can now focus on our problem of computing the geodesics for the discrete Wasser-
stein distance. While we added the continuity equation constraint in the Benamou-Brenier case
through an Lagrange multiplier we added the constraint by using an indicator function, i.e.

inf

{∫ 1

0
A(ρt,mt) dt : (ρ,m) ∈ CE(ρA, ρB)

}
= inf

(ρ,m)∈[0,1]×H

∫ 1

0
A(ρt,mt) dt+ ICE(ρA,ρB)(ρ,m).

In the proximal splitting context we introduced above we set

f1(ρ,m) = ETrans[ρ,m] and f2(ρ,m) = ICE(ρA,ρB)(ρ,m).

What we need for (DR) to work is to be able to compute proxf1 and proxf2 . We first start with
the continuity equation, i.e. proxf2 . First note that for indicator function on a convex set C we
have

proxIC (z) = projC(z).

Thus proximal mappings of indicator functions are projections on the set characterized by the
indicator function. As a result computing proxf2 in our context means projecting on the the set
of CE(ρA, ρB). The following Lemma introduces a way to compute this projection.

Lemma 4.7. Let ρ ∈ L2([0, 1],RX ),m ∈ L2([0, 1],RX×X ) be given and let ξ ∈ H1([0, 1],RX ) be
such that for all ϕ ∈ H1([0, 1],RX )∫ 1

0

(
〈∂tξt, ∂tϕt〉π+〈∇χξt,∇χϕt〉π

)
dt = 〈ϕ1, ρB〉π−〈ϕ0, ρA〉π−

∫ 1

0

(
〈ρt, ∂tϕt〉π+〈mt,∇χϕt〉π

)
dt.

(4.5)
Then ρ̃ = ρ+ ∂tξ and m̃ = m+∇χξ satisfy

(ρ̃, m̃) = projCE(ρA,ρB)(ρ,m).
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Remark: Note that (4.5) is very similar to the elliptic problem in (4.3).

Proof. In order to compute projCE(ρA,ρB)(ρ,m) we do the following reformulation as a saddle
point problem using Lagrange multipliers

projCE(ρA, ρB)(ρ,m) = arg min
(ρ̃,m̃)∈CE(ρA,ρB)

[
1

2

∫ 1

0
(‖ρt − ρ̃t‖π + ‖mt − m̃t‖π) dt

]
= arg min

ρ̃,m̃
sup
ξ

[
1

2

∫ 1

0
(‖ρt − ρ̃t‖π + ‖mt − m̃t‖π) dt+

∫ 1

0
〈ξ, ∂tρ̃t + divχ m̃t〉π dt

]
= arg min

ρ̃,m̃
sup
ξ

[
1

2

∫ 1

0
(‖ρt − ρ̃t‖π + ‖mt − m̃t‖π) dt

+ 〈ξ1, ρB〉π − 〈ξ0, ρA〉π −
∫ 1

0
〈∂tξ, ρ̃t〉π dt−

∫ 1

0
〈∇χξt, m̃t〉π dt

]
=: arg min

ρ̃,m̃
sup
ξ
Lp[ρ̃, m̃, ξ].

Computing the optimality conditions we get

0 = ∂ξLp[ρ̃, m̃, ξ](ϕ) = 〈ϕ1, ρB〉π−〈ϕ0, ρA〉π−
∫ 1

0
〈∂tϕt, ρ̃t〉π dt−

∫ 1

0
〈∇χϕt, m̃t〉π dt ∀ϕ, (4.6)

0 = ∂ρ̃Lp[ρ̃, m̃, ξ](ρ̂) = −
∫ 1

0
〈ρt − ρ̃t, ρ̂t〉π dt−

∫ 1

0
〈∂tξt, ρ̂t〉π dt

= −
∫ 1

0
〈(ρt + ∂tξt)− ρ̃t, ρ̂t〉π dt ∀ρ̂,

(4.7)

0 = ∂m̃Lp[ρ̃, m̃, ξ](m̂) = −
∫ 1

0
〈mt − m̃t, m̂t〉π dt−

∫ 1

0
〈∇χξt, m̂t〉π dt

= −
∫ 1

0
〈(mt +∇χξt)− m̃t, m̂t〉π dt ∀m̂.

(4.8)

Now testing (4.7) with ρ̂ = ∂tϕ yields

0 = −
∫ 1

0
〈ρt − ρ̃t, ∂tϕt〉π −

∫ 1

0
〈∂tξt, ∂tϕt〉π dt, (4.9)

and testing (4.8) with m̂ = ∇χϕ yields

0 = −
∫ 1

0
〈mt − m̃t,∇χϕt〉π dt−

∫ 1

0
〈∇χξt,∇χϕt〉π dt. (4.10)

Adding (4.6), (4.9) and (4.10) yields

0 =

∫ 1

0
(〈∂tξt, ∂tϕt〉π+〈∇χξt,∇χϕt〉π) dt+〈ϕ0, ξ0〉π−〈ϕ1, ρ1〉π+

∫ 1

0
(〈ρt, ∂tϕt〉π+〈mt,∇χϕ〉π) dt

(4.11)
which is exactly what we wanted.

Note that because of (4.7) and (4.8) the projection (ρ̃, m̃) can be recovered from a solution ξ of
(4.11) by

ρ̃ = ρ+ ∂tξ, m̃ = m+∇χξ.

This finishes the proof. �
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4.2 A proximal splitting approach

Thus we have seen that we can calculate proxf2 by solving an elliptic problem very similar to
the elliptic problem in the (BB) algorithm. Next we look at computing proxf1 .

To calculate proxf1 we will use the following statement.

Proposition 4.8 (Moreau decomposition). If f : H → R ∪ {∞} is convex, lower semi-
continuous then for all λ > 0

x = proxλf (x) + λprox 1
λ
f∗

(
1

λ
x

)
where f∗ is the Fenchel dual of f .

The Moreau composition can be seen as a generalization of orthogonal decomposition induced
by a subspace. A proof can be found for example in [PB14, Section 2.5].

We introduced the Moreau decomposition because directly computing proxf1 = proxETrans
is

very difficult. However, computing the Fenchel dual of ETrans with respect to
∫ 1

0 〈·, ·〉H dt we get

E∗Trans(ρ
∗,m∗) = sup

(ρ,m)∈[0,1]×H

[ ∫ 1

0

(
〈ρ∗t , ρt〉π + 〈m∗t ,mt〉π

)
dt−

∫ 1

0
A(ρt,mt) dt

]
=

∫ 1

0
sup

(ρ,m)∈[0,1]×H

(
〈ρ∗t , ρt〉π + 〈m∗t ,mt〉π −A(ρt,mt)

)
dt

=

∫ 1

0
A∗(ρ∗t ,m∗t ) dt = I[0,1]×K(ρ∗,m∗).

where we used again the continuity of A to pull the supremum inside the integral. As a result
this means that computing proxf∗1 boils down to projecting on K which is something that we
also need to be able to do for (BB). Thus in practice we will compute proxf1 by using the Moreau
decomposition, i.e. with λ = 1

proxETrans
(ρ,m) = (ρ,m)− proxE∗Trans

(ρ,m)

= (ρ,m)− proj[0,1]×IK(ρ,m)

Again note that because of the time discretization we will use later on the projection decouples
in time and each timestep has to be projected separately on K.

In total we have in this section derived another feasible scheme for computing the geodesics. At
the heart of this method lie the same computations that were also necessary for (BB), namely
solving an elliptic problem and computing projections on K. (DR) can therefore be quickly
implemented if there is already a working implementation of (BB) - and the other way around.

In the next chapter we will look in detail on how to compute the projections on K. It turns out
that this step will be much more difficult than solving the elliptic problem or computing the
projection for the original Wasserstein distance.
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5 Computing the Projection on K

We have already seen in section 4.1.2 for the Augmented Lagrangian approach and step two
of the proximal splitting approach that for calculating the geodesic we will need to be able to
compute the projection on the convex set K for each timestep separately. Recall that this set K
was defined by the indicator function that was the dual of A calculated in Lemma 3.15.

Such a convex set already appeared in [BB00] during the Augmented Lagrangian approach for
the original L2-Wasserstein distance. However, in this case calculating the projection was fairly
easy because it decoupled also in space. As a result in practice the projection could be calculated
for each timestep and for each finite element separately. Thus the problem reduced to calculating
the projection of tuples of the form (ρ∗,m∗) ∈ R× Rd to a set

{(a, b) ∈ R× Rd s.t. a+
|b|2

2
≤ 0}.

This can be easily done using for example a simple Newton method of a one-dimensional function.

As we have already seen in Lemma 3.15 the convex set in the case of the new metric is much
more complex. We recall the following characterization of the set as one of the three provided
in Lemma 3.15 (for the ease of notation we omit the ∗ for the variables). A tuple (ρ,m) is in K
if there exists a ∈ RX+ such that

ρx +
1

4

∑
y∈X

∂1θ(ax, ay)|mx,y|2K(x, y) ≤ 0 ∀x ∈ X . (5.1)

It’s immediately obvious that this characterization of a convex set is more complex in the sense
that the conditions are very highly coupled with each other. Each equation compares the mass
at some node with a sum of the weighted flow over all outgoing edges. These weights come
from a potential a ∈ RX also defined on nodes and plugged into a highly nonlinear function ∂1θ.
Because this setting is more complex calculating the projection on K is not easy anymore. Even
checking if some (ρ,m) is in K is non-trivial because in order to show this one has to compute
a “witness”-potential a ∈ RX which satisfies all the equations of (5.1).

In the following Lemma we will rewrite the problem of calculating the projection on K to a
saddle point problem. For it we can compute the optimality conditions and get an explicit
system of equations that characterizes projections on K. These can later be used in an gradient
descent or Newton-type algorithm to numerically compute the projected values.

Lemma 5.1. Let (ρ,m) ∈ H and let (ρ̃, m̃) ∈ RX ×RX×X be its projection on the convex set K
defined in Lemma 3.15. Then the following optimality conditions hold

0 = ax − ρx + ρ̃x ∀x ∈ X (I)

0 =
(

1
4θ(ax, ay) + 1

)
m̃x,y −mx,y ∀(x, y) : Q(x, y) > 0 (II)

0 = 1
4

∑
y∈X Q(x, y)|m̃x,y|2∂1θ(ax, ay) + ρ̃x ∀x ∈ X (III)
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5 Computing the Projection on K

Proof. We turn the problem into a saddle point problem by noticing that

projK(ρ,m) = proxIK(ρ,m)

= arg min
ρ̃,m̃

[
A∗(ρ̃, m̃) +

1

2
‖ρ− ρ̃‖2π +

1

2
‖m− m̃‖2π

]
= arg min

ρ̃,m̃
sup
a
S(ρ̃, m̃, a).

where

S(ρ̃, m̃, a) =
1

8

∑
x,y∈X

|m̃x,y|2θ(ax, ay)Q(x, y)π(x) + 〈a, ρ̃〉π +
1

2
‖ρ− ρ̃‖2π +

1

2
‖m− m̃‖2π

Now we derive the optimality conditions for this saddle point problem. We start with with the
ρ̃-variable and compute the derivative in direction ρ̂

∂ρ̃S[ρ̃, m̃, a](ρ̂) = 〈ρ̂, a〉π − 〈ρ̂, ρ− ρ̃〉π = 〈ρ̂, a− ρ+ ρ̃〉π.

If we test 0 = ∂ρ̃S[ρ̃, m̃, a](ρ̂) against unit vectors of the form ρ̂ = (0, . . . , 0, 1, 0, . . . , 0)T we get
the following linear equations

0 = (ax − ρx + ρ̃x)π(x)︸︷︷︸
>0

∀x ∈ X ⇔ 0 = ax − ρx + ρ̃x ∀x ∈ X .

This gives (I). Now we do the same for the m̃-variable.

∂m̃S[ρ̃, m̃, a](m̂) =
∑
x,y∈X

1

8
m̃x,ym̂x,yθ(ax, ay)Q(x, y)π(x)− 〈m̂,m− m̃〉π

=
∑
x,y∈X

m̂x,y

(
1

8
m̃x,yθ(ax, ay)−

1

2
mx,y +

1

2
m̃x,y

)
Q(x, y)π(x)

=
1

2

∑
x,y∈X

m̂x,y

(
1

4
m̃x,yθ(ax, ay)−mx,y + m̃x,y

)
Q(x, y)π(x)

Again if we test against

m̂(x,y)
r,s =

{
1 (r, s) = (x0, y0)

0 otherwise
∀(x0, y0) ∈ X × X ,

then the optimality condition 0 = ∂m̃S[ρ̃, m̃, a](m̂) dissolves to

0 =
1

2

[
1

4
m̃x,yθ(ax, ay)−mx,y + m̃x,y

]
Q(x, y)π(x)︸︷︷︸

>0

∀(x, y) ∈ X × X

⇐⇒ 0 =
1

4
m̃x,yθ(ax, ay)−mx,y + m̃x,y ∀(x, y) ∈ X × X : Q(x, y) > 0

⇐⇒ 0 =

(
1

4
θ(ax, ay) + 1

)
m̃x,y −mx,y ∀(x, y) ∈ X × X : Q(x, y) > 0,

which gives (II). For (III) calculate

∂aS[ρ̃, m̃, a](â) =
d

dε

∑
x,y∈X

1

8
|m̃x,y|2θ(ax + εâx, ay + εây)Q(x, y)π(x)

∣∣∣∣
ε=0

+ 〈â, ρ̃〉π

=
∑
x,y∈X

1

8
|m̃x,y|2 [âx∂1θ(ax, ay) + ây∂2θ(ax, ay)]Q(x, y)π(x) + 〈â, ρ̃〉π ∀â ∈ RX
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Again we test against

â(z)
x =

{
1 x = z

0 otherwise
.

then notice that we get

âx∂1θ(ax, ay) + ây∂2θ(ax, ay) =


∂1θ(az, ay) x = z

∂2θ(ax, az) y = z

0 x 6= z and y 6= z.

.

Therefore 0 = ∂aS[ρ̃, m̃, a](â(z)) becomes

0 =
∑
y∈X

1

8
|m̃z,y|2∂1θ(az, ay)Q(z, y)π(z)

+
∑
x∈X

1

8
|m̃x,z|2∂2θ(ax, az)Q(x, z)π(x)︸ ︷︷ ︸

Q(z,x)π(z)

+ρ̃zπ(z)

=
1

8
π(z)

∑
y∈X

Q(z, y)
[
|m̃z,y|2∂1θ(az, ay) + |m̃y,z|2∂2θ(ay, z)

]
+ ρ̃zπ(z)

Since π(z) > 0 for all z ∈ X this is equivalent to

0 =
1

8

∑
y∈X

Q(z, y)
[
|m̃z,y|2∂1θ(az, ay) + |m̃y,z|2∂2θ(ay, az)

]
+ ρ̃z. (5.2)

Without loss of generality we can assume that mx,y = −my,x for all x 6= y at all times. This is
true because in our setting mx,y represents the instantaneous flow over the edge (x, y) and will
therefore always be anti-symmetric. As a result (5.2) simply becomes

0 =
1

8

∑
y∈X

Q(z, y)|m̃z,y|2 [∂1θ(az, ay) + ∂2θ(ay, az)] + ρ̃z.

Now we apply 3.13 (iii) and get

0 =
1

4

∑
y∈X

Q(z, y)|m̃z,y|2∂1θ(az, ay) + ρ̃z.

Doing so for all z ∈ X gives (III). �

We have now arrived at a state where where we broke the problem of projecting on K down to
solving a set of equations. However, we will see that that complexity of the convex set carries
over to the set of equations in the sense that the resulting root-finding problem is not very
stable. Again this is mostly due to the dependence on the nonlinear logarithmic mean θ resp.
∂1θ.

Because the problem is very unstable we want to have an additional way of checking whether
we computed a projection correctly. Thus next we will derive some condition that can easily be
checked in order to see that the result of a computation is indeed the projection and not some
other solution of the system of equations. First of all to check if the result is in K is trivial
because we can just check the inequalities of the characterizations of K given in Lemma 3.15.
However, being in K (or on boundary to be more precise) is of course not enough for being a
projection, it is also necessary that the connection ρ − ρ̃ between projection ρ̃ and the point
outside K that was projected ρ is “perpendicular” on the boundary of K. A generalization of this
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5 Computing the Projection on K

idea is behind the following Lemma. Note that checking this condition is fairly simple because
one only has to do one evaluation of A and compute some inner products 〈·, ·〉π.

We will need a special case of Lemma 4.5 which we state in the following corollary.

Corollary 5.2. Let H be a Hilbert space, K ⊂ H a convex set, p ∈ K and z 6∈ K then if
p = projK(z) we have (p− z) ∈ ∂IK(p).

We will also need the following fact from convex analysis (see for example [ABM06, Section 17]).

Lemma 5.3. For every proper, closed, convex Φ,

u∗ ∈ ∂Φ(u)⇔ Φ(u) + Φ∗(u∗)− 〈u∗, u〉 = 0.

Lemma 5.4. Let K be the convex set of Lemma 3.15 and let (ρ̃, m̃) = projK(ρ,m) the projection
of any (ρ,m) 6∈ K on K. Then

A(ρ̃− ρ, m̃−m)− 〈ρ̃− ρ, ρ〉π − 〈m̃−m, m̃〉π = 0.

Proof. From Corollary 5.2 we know because proxIK(z) = projK(z)

(ρ̃, m̃) = projK(ρ,m)⇔ (ρ̃, m̃) ∈ K ∧ (ρ− ρ̃,m− m̃) ∈ ∂IK(ρ̃, m̃)

Now applying Lemma 5.4 where in this case Φ = A∗ = IK and Φ∗ = A∗∗ = A yields the stated
result. �

In order to compute a projection of some pair (ρ,m) on K we can solve the saddle point problem
of Lemma 5.1 for (ρ̃, m̃). For doing so we will could use different methods. One possibility is
an alternating gradient descent where we alternatingly update a, ρ̃ and m̃ according to (I),
(II) and (III) until we get close to a solution. The advantage of this method is that it can be
implemented fairly quickly, however this comes at the price of slow convergence. More advanced
methods use also second derivatives of the saddle point problem. For example Newton’s method
has quadratic convergence for an area around the solution which is fast enough even for big in-
stances. During the creation of this thesis different approaches were tried with varying success.
We will go more into details of which methods work and are feasible to compute in chapter 6
about the implementation details.

All problems solving the optimality conditions of Lemma 5.1 are a result of the presence of the
highly nonlinear logarithmic mean and its derivatives in the equations. In order to give an more
explicit understanding of the arising problems we will now look at typical projection problem
that we have to solve during our algorithms for calculating the geodesic.

Example. Let X = {a, b} and

Q =

(
0 1
1 0

)
,

thus in order to satisfy the conditions we get π = (1
2 ,

1
2).
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Recall that the convex set K is characterized by (5.1). Now because ∂1θ(s, t) > 0 for all s, t ≥ 0
we know that for a pair (ρ̃, m̃) ∈ K the ρ̃ needs to only have negative entries. After the algo-
rithms for calculating the geodesics described in chapter 4 have already come close to its final
state we would expect that inputs to our projection are already close to the resulting projected
values, i.e. we do not have to project that far anymore. This also implies that after some it-
erations all projection inputs ρ should already be negative. Nevertheless it is common that for
early iterations we get values like ρ = (0.1,−1), m = (0,−1, 1, 0) that should be projected on K
(the representation of m as one-dimensional vector is explained in chapter 6 but also not really
of importance right now).

In this case the approximate projection of (ρ,m) on K is given by (ρ̃, m̃) where

ρ̃ = (−0.0421303,−1.0016) and m̃ = (0,−0.984572, 0.984572, 0).

Notice how close the second component of ρ̃ is to the second component of ρ. This is not
surprising because it is a projection, which should be the point in K closest to (ρ,m). However,
in the sense of the optimality conditions of Lemma 5.1 this means that

a = ρ− ρ̃ = (0.1421303, 0.0016)

can get very close to zero.

This a is used in the optimality conditions (II) and (III) which means that we plug in values into
θ or ∂1θ that are sometimes very close to zero. These functions however have singularities in
zero. Also the logarithmic mean is only defined on [0,∞)2. This poses another problem for the
numerical projection because whenever in an early iteration (of alternating gradient descent or
Newton) we land in R2\[0,∞)2 our algorithm stops and has failed because since the logarithmic
mean is not defined in this area there is no way to get back to the correct quadrant. The numeri-
cal instabilities of computing the projection can all be traced back to those and similar problems.

A possible solution for the numerical instabilities of the projection can be to extend the loga-
rithmic mean to the whole R× R. In the following we will describe two methods of doing so.

The easiest way to extend the logarithmic mean is to simply do a quadratic extension of the
logarithm that is used so that the extended logarithmic mean is defined on (−∞,∞) instead of
just on (0,∞). For this we introduce a parameter ε > 0 and define

logε(x) :=

{
log(x) x ≥ ε
aεx

2 + bεx+ cε x < ε
.

Here the parameters aε, bε and cε are implicitly given because the quadratic extension should
be C2 in order to be viable for applying Newton’s method. This means we get the system of
equations

log(x) = aεx
2 + bεx+ cε

log′(x) = 2aεx+ bε

log′′(x) = cε

.

The resulting logε and θε are displayed in Figures 5.2 and 5.3.
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Figure 5.1: Point cloud of projections on K for the 2-point instance described in the example
above. The x and y-axis represent ρ1 and ρ2, the z-axis represents the m-dimension.
In the 2-point case the m dimension is effectively one-dimensional because since
Q(a, a) = Q(b, b) = 0 we have ma,a = mb,b = 0 and also ma,b = −ma,b. Points were
uniformly drawn from [−10, 10]3 and then projected on K to generate the point cloud.
The plot only shows points with m ≥ 0. However, the set is actually symmetric with
respect to the ρ1-ρ2-axis.
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Figure 5.2: Quadratic extension of the logarithm (ε = 0.5). For this ε the parameters are given
by aε = −2, bε = 4, cε = −2.19315.

Figure 5.3: Extension of the logarithmic mean using the quadratic extension of the logarithm
(ε = 0.5). Compare this with the original logarithmic mean in Figure 3.1.
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6 Discretization and Implementation Details

After we introduced the theoretical concepts for our algorithms in chapter 4 and 5 we will now
talk about some particular implementation details. We will not provide any code snippets or
even pseudo-code, however we will explain all numerical choices that were made to reach a fully
functional C++ - implementation so that it should be possible to reproduce the results that we
will present in chapter 7.

We start by introducing some basic notions and the finite element spaces we will use for the
discretization. Recall that a geodesic with respect to the discrete Wasserstein metric is encoded
in a map t 7→ (ρt,mt). Thus we have three dimensions to worry about: time, nodes and
edges. Naturally nodes and edges are already discrete in our setting. As a result we only have to
introduce a time-discretization and “tensorize” it with nodes and edges in order to fully describe
a geodesic discretized in time and space. From now on

• NT denotes the number of timesteps {t0, . . . , tNT−1} used for the discretization of the time
dimension including t = 0 and t = 1,

• NX := |X | denotes the number of nodes and MX := |X × X | = |X |2 the number of all
possible edges,

• h denotes the mesh size used in the time discretization, i.e. h = 1
NT−1 .

Definition 6.1. We introduce the following piece-wise affine and piece-wise constant finite ele-
ment spaces

V 1
h,N :=

{
f : [0, 1]×X → R

∣∣ ∀x ∈ X : f(·, x) ∈ S1,0([0, 1])

}
,

V 0
h,N :=

{
f : [0, 1]×X → R

∣∣ ∀x ∈ X : f(·, x)|[ti,ti+1] ∈ Π1
0

}
,

V 1
h,E :=

{
f : [0, 1]× (X × X )→ R

∣∣ ∀x, y ∈ X : f(·, x, y) ∈ S1,0([0, 1])

}
,

V 0
h,E :=

{
f : [0, 1]× (X × X )→ R

∣∣ ∀x, y ∈ X : f(·, x, y)|[ti,ti+1] ∈ Π1
0

}
,

where
Sk,m(Ω) :=

{
u ∈ Cm(Ω̄)

∣∣ u|[ti,ti+1] ∈ Π1
k

}
and Πd

k denotes d-variate polynomials of order lower or equal to k. We denote the number of
elements in those spaces by

N1
h = NTNX for V 1

h,N , N0
h = (NT − 1)NX for V 0

h,N ,

M1
h = NTMX for V 1

h,E , M0
h = (NT − 1)MX for V 0

h,E .

The following fti form a basis of S1,0 and gti form a basis of piece-wise constant functions in
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6 Discretization and Implementation Details

one variable,

fti(t) =

{
1− 1

h |t− ti|, |t− ti| ≤ h
0, otherwise

, gti(t) =

{
1 t ∈ [ti, ti+1]

0, otherwise
.

In order to give an enumeration of the basis functions we define the bijective mappings

σ1 : {0, . . . , N1
h − 1} → {0, . . . NT − 1} × X

τ1 : {0, . . . ,M1
h − 1} → {0, . . . NT − 1} × (X × X )

and analogue σ0 and τ0 for V 0
h,N and V 0

h,E . With this enumeration we can easily construct the
basis functions of all finite element spaces defined in Definition 6.1. For example we could denote

a set of basis functions for V 1
h,N by

{
Ψ1,h,N
i

}N1
h

i=0
where

(t, x) 7→ Ψ1,h,N
i (t, x) =

{
fσ1

t (i)(t) if σ1
x(i) = x

0 otherwise .

This can be done in a similar fashion for V 0
h,N , V 1

h,E and V 0
h,E .

6.1 Solving the elliptic problem

Now that we have the finite element definitions in place we can start thinking about how to
implement the actual algorithms. Recall that in step A of the Augmented Lagrangian method
(BB) we need to compute a ξ ∈ H1([0, 1],RX ) for which we found out in Lemma 4.7 that
(ρ + ∂tξ,m + ∇χξ) is just the projection of (ρ,m) on the set of such pairs that satisfy the
continuity equation. This projection on the set of continuity equation also has to be done in the
first step of the Douglas-Rachford splitting algorithm. So in both cases we need to be able to
solve the weak formulation of an elliptic partial differential equation∫ 1

0

(
〈∂tξt, ∂tϕt〉π+〈∇χξt,∇χϕt〉π

)
dt = 〈ϕ1, ρB〉π−〈ϕ0, ρA〉π−

∫ 1

0

(
〈ρt, ∂tϕt〉π+〈mt,∇χϕt〉π

)
dt.

(6.1)
for ξ ∈ H1([0, 1],RX ) with given ρ ∈ L2([0, 1],RX ) and m ∈ L2([0, 1],RX×X ). We define

a(ξ, ϕ) :=

∫ 1

0

(
〈∂tξt, ∂tϕt〉π + 〈∇xξt,∇xϕt〉π

)
dt

l(ϕ) := 〈ϕ1, ρB〉π − 〈ϕ0, ρA〉π −
∫ 1

0

(
〈ρt, ∂tϕt〉π + 〈mt,∇χϕt〉π

)
dt.

Now (6.1) reads: find ξ ∈ H1([0, 1],RX ) such that

a(ξ, ϕ) = l(ϕ) ∀ϕ ∈ H1([0, 1],RX ).

For a conform discretization of H1([0, 1],RX ) we choose the space of piece-wise affine functions
V 1
h,N . Because we need no regularity on ρ and m we discretize them using the piece-wise constant

spaces V 0
h,N and V 0

h,E . This will later help us with the projection on K. As a result solving the

discrete elliptic problem means finding ξh ∈ V 1
h,N such that

a(ξh, ϕh) = l(ϕh) ∀ϕh ∈ V 1
h,N .

Since a(·, ·) is bilinear, this is equivalent to solving the following system of equations

a(ξh,Ψi) = l(Ψi), i = 0, . . . , N − 1 (6.2)

46



6.2 Step B of (BB)

where {Ψi}N−1
i=0 are basis functions of V 1

h,N . By definition ξh can be written as ξh =
∑N

j=0 ξ̄jΨj

and again by bilinearity of a we get that (6.2) is equivalent to

Aξ̄ = b where aij := a(Ψi,Ψj), bi := l(Ψi). (6.3)

So solving the elliptic problem comes down to solving a linear system of equations with the
so-called stiffness matrix A and the right-hand side b.

Remark: Because it contains only derivatives the stiffness matrix is not invertible. So analogous
to [BB00] we do not invert A but A+ εM where M = (mij)i,j is the so-called mass matrix given
by

mij =

∫ 1

0
〈Ψi,Ψj〉π dt.

For small epsilon this does not change the solution ξ that much but makes the matrix invertible
so that the problem is actually well posed.

Concerning the actual implementation of the elliptic problem solver in C++ there are very few
things to consider. First of all we are using the EIGEN-library 1 for all linear algebra related
computations. The number of basis functions grows quadratically in the number of nodes of
the instance so the linear equation systems (6.3) can grow quickly. Because the stiffness matrix
contains a lot of zeros we are using a special implementation of sparse matrices to store the
stiffness matrix. Also, as is often the case with finite element methods, we are using a conjugate
gradient method for solving the system of linear equations. With these considerations solving
the elliptic problem for instances used in this thesis is very fast and should even be feasible for
larger instances with node counts in the hundreds. The real bottleneck is the projection on K
that is discussed in the next section.

6.2 Step B of (BB)

Recall that for step B of (BB) we have to be able to calculate

arg min
(ρ∗,m∗)∈[0,1]×K

∫ 1

0

(
‖∂tξt +

ρt
r
− ρ∗t ‖2π + ‖∇χξt +

mt

r
−m∗t ‖2π

)
dt.

However, before we talk about the implementation of the projection itself we have to deal with
another small problem. Because ξ ∈ V 1

h,N we can naturally interpret ∂tξ as an element of V 0
h,N .

However, we have ∇xξt ∈ V 1
h,E whereas mt and m∗t are elements of V 0

h,E . Thus in practice we
can not calculate for example ∇χξt + mt

r because the summands live in different spaces.

We will solve this problem by considering a piece-wise constant interpretation of ∇xξt which
does not change the minimizer of the problem. To this end define an operator R : V 1

h,E → V 0
h,E

by

f 7→ Rf(·, x, y)|[ti,ti+1] =
f(ti, x, y) + f(ti+1, x, y)

2
∀x, y ∈ X , i = 0, . . . , NT − 1.

This means we map each linear slope to the mean of its two endpoints. Also R can be inter-
preted as the L2-projection of the piece-wise affine function to its piece-wise constant pendant.

In the following lemma we prove that using R does indeed not change the minimizer in (6.4).

1http://eigen.tuxfamily.org
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Lemma 6.2. For ξ ∈ V 1
h,N and m,m∗ ∈ V 0

h,E it holds

arg min
m∗

∫ 1

0
‖R(∇xξ)t +

mt

r
−m∗t ‖2π dt = arg min

m∗

∫ 1

0
‖∇xξt +

mt

r
−m∗t ‖2π dt

Proof. We start by calculating

∫ 1

0
‖R(∇xξ)t +

mt

r
−m∗t ‖2π dt =

∫ 1

0
〈R(∇xξ)t +

mt

r
−m∗t ,R(∇xξ)t +

mt

r
−m∗t 〉π dt

=

∫ 1

0
〈R(∇xξ)t,R(∇xξ)t〉π dt− 2

∫ 1

0
〈R(∇xξ)t,

mt

r
−m∗t 〉π dt

+

∫ 1

0
〈mt

r
−m∗t ,

mt

r
−m∗t 〉π dt

Now because of what we will prove in the next lemma we have

∫ 1

0
〈R(∇xξ)t,

mt

r
−m∗t 〉π dt =

∫ 1

0
〈∇xξt,

mt

r
−m∗t 〉π dt.

Continuing the calculation above we get

... =

∫ 1

0
〈R(∇xξ)t,R(∇xξ)t〉π dt− 2

∫ 1

0
〈∇xξt,

mt

r
−m∗t 〉π dt+

∫ 1

0
〈mt

r
−m∗t ,

mt

r
−m∗t 〉π dt

=

∫ 1

0
‖R(∇xξ)t‖2π dt−

∫ 1

0
‖∇xξt‖2π dt+

∫ 1

0
‖∇xξt +

mt

r
−m∗t ‖2π dt.

Note that the first two integrals do not contain m∗. Thus they don’t contribute to the arg min
and the statement follows. �

Lemma 6.3. Let f ∈ S1,0([0, 1]), g ∈ {ϕ : [0, 1]→ R : ϕ|[ti,ti+1] ∈ Π1
0}, then∫ 1

0
fg dt =

∫ 1

0
(Rf)g dt.
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Proof. ∫ 1

0
fg dt =

NT−1∑
i=0

∫ ti+1

ti

fg dt =

NT−1∑
i=0

gi

∫ ti+1

ti

mit+ bi dt

=

NT−1∑
i=0

gi

∫ ti+1

ti

(mi

2
t2i+1 + biti+1 −

mi

2
t2i biti

)
dt

=

NT−1∑
i=0

gi

∫ ti+1

ti

(
mi

2
(t2i+1 − t2i )︸ ︷︷ ︸

=(ti+1−ti)(ti+1+ti)

+bi(ti+1 − ti)
)

dt

=

NT−1∑
i=0

gih

∫ ti+1

ti

(mi

2
(ti+1 + ti) + bi

)
dt

=

NT−1∑
i=0

gih

∫ ti+1

ti

(
f(ti) + f(ti+1)

2

)
dt =

NT−1∑
i=0

gih(Rf)|[ti,ti+1]

=

∫ 1

0
g(Rf) dt

�

6.3 Computing the projection on K
After the small fix in the previous section we have now arrived at a point where step B of (BB)
and step 2 of (DR) break down to the same computational problem, namely

arg min
(ρ∗,m∗)∈[0,1]×K

∫ 1

0

(
‖ρ̄t − ρ∗t ‖2π + ‖m̄t −m∗t ‖2π

)
dt (6.4)

where in the (BB) case we have ρ̄ = ∂tξt+
ρt
r and m̄t = R(∇χξt)+ m

r . This problem is effectively
a projection of some (ρ̄, m̄) ∈ [0, 1] × H to the set [0, 1] × K, i.e. for each timestep t ∈ [0, 1]
we need (ρ∗t ,m

∗
t ) ∈ K. Because ρ̄ and m̄ are given through a piece-wise constant discretization

(ρ̄ ∈ V 0
h,N and m̄ ∈ V 0

h,E) the integral in (6.4) becomes a sum and the minimization problem
becomes

arg min
(ρ∗,m∗)∈{t0,t1,...,tN}×K

h
∑
ti

(
‖ρ̄ti − ρ∗ti‖

2
π + ‖m̄ti −m∗ti‖

2
π

)
= h

∑
ti

arg min
(ρ∗ti

,m∗ti
)∈K

(
‖ρ̄ti − ρ∗ti‖

2
π + ‖m̄ti −m∗ti‖

2
π

)
As a result the projection problem decouples in time and we can simply project on K for each
timestep separately.

For computing a projection on K we use the optimality conditions derived in Lemma 5.1. In
our implementation we initially started with an alternating gradient descent (i.e. alternatingly
updating each equation until convergence). However, this method turned out to be rather slow
and very unstable. As a result we moved to Newton’s method with optimal step size control
as described in [SW05]. To use it we also needed to compute the second derivative of the log-
arithmic mean which is the reason we need the extension of logarithmic mean to be C2. With
Newton’s method we were able to compute many of the results that we will present in the fol-
lowing chapter. However, there seem to be still some improvements possible. For example we
also tried a nonlinear solver directly implemented in the EIGEN-library. This implementation
uses Powell’s hybrid method described in [Pow70]. Using this method showed to be even more
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6 Discretization and Implementation Details

stable and faster than just using Newton’s method by itself.

Even with this advanced solvers however stability is still a huge issue when computing the pro-
jection on K. By that we mean that the start values with which we initialize our algorithms
determine whether we find a correct the projection or get trapped in some wrong solutions to
the optimality conditions. To kind of skip this problem we use many different initial values
for the algorithms until we find the correct projection. We tried different methods for guessing
these start values. For example trying values close to the (ρ,m) that should be projected or
trying start values that were successful for previous iterations of the grand numerical scheme.
However, for later iterations of (BB) or (DR) it takes longer and longer to find working start
values that converge to the correct projection. This behaviour is related to the issue mentioned
in the example in Chapter 5. When the correct projected values are close to the values that
should be projected then a becomes very close to zero which lets us run into the singularities of
the logarithmic mean.

In this cases we used the extended logarithmic mean in the optimality conditions to guess some
start values that can afterwards used as initializations of the real projection. Nevertheless there
are still many cases where it just takes to long to find working start values. Some possible
solutions that were not yet tried are described in Chapter 8.
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7 Results

In this chapter we will present results from applying the both algorithms described in chapter 4
for different problem instances. We will go from the most basic instances for which there exist
explicit formulas for calculating the Wasserstein distance to more complex examples. Instances
are always introduced in a standardized way and labelled with a unique name for reference.
After introducing an instance we will first discuss the expected behaviour for a particular in-
stance and afterwards present plots and visualizations of the calculated geodesics. We can then
compare expected and actual behaviour and try to answer questions about the geometry of that
instance.

In the first section we will start with the most basic instance consisting only of two nodes. For
this instance there exist explicit formulas that characterize the geodesic and we will first recall
those and then compare our results with them. In the next section we will look at instances with
three or four nodes and try to answer some general questions about how the mass is transported
in discrete Wasserstein distance. Finally we will look at slightly bigger instances with interesting
geometry, mainly circle, lines or grids.

Note that all results in the first four sections of this chapter were computed using the Douglas-
Rachford algorithm. This is done because in practice we observe better convergence properties
for it than for the Benamou-Brenier approach.

7.1 Comparison of analytical and approximate geodesic in the
two-point Case

Right in the article [Maa11] where the discrete Wasserstein distance was introduced the author
calculated a relatively easy closed form for the distance on finite sets with only two points. First
lets characterize these instances.

Instance 1 (2 Circle).

a b

p

q

1− p 1− q

This most basic non-trivial instance consists of two nodes X =
{a, b} connected by two edges. There are two degrees of free-
dom for the transition properties which we characterize by the
variables 0 ≤ p, q ≤ 1. Then Q is given by

Q =

(
1− p p
q 1− q

)
and the corresponding stationary distribution is π =

(
q
p+q ,

p
p+q

)
.

In this instance we look at a full transport where all mass starts
at a and is moved to b, i.e. ρA = (1, 0), ρB = (0, 1).

We will now quickly recap the results from [Maa11] which deal with this type of instance and
give an explicit way of calculating the geodesic. First note that each probability density ρ with
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respect to π is characterized by just one parameter β. To be more precise we denote

ρβ(a) :=
p+ q

q

1− β
2

, ρβ(b) :=
p+ q

p

1 + β

2
.

As a result we can describe the logarithmic mean between a and b through β

ρ̂(β) := θ(ρβ(a), ρβ(b)).

Using a characterization of the geodesic through Euler-Lagrange equations and the implicit
function theorem the author of [Maa11] derives the following formula for the discrete Wasserstein
distance.

Theorem 7.1 ([Maa11, Theorem 2.4]). For −1 ≤ α ≤ β ≤ 1 we have

W(ρα, ρβ) =
1

2

√
1

p
+

1

q

∫ β

α

1√
ρ̂(r)

dr ∈ [0,∞].

Also doing some more computations one can get the following result.

Corollary 7.2. If we also assume p = q we can simplify ρ̂(β) = β
arctanh(β) and get

W(ρα, ρβ) =
1√
2p

∫ β

α

√
arctanh(r)

r
dr.

Additionally by using that the Wasserstein distance is given by an integral one can derive
the following ordinary differential equation which characterizes not only the distance but also
geodesics with respect to the metric in the two-point case.

Proposition 7.3. [[Maa11, Proposition 2.7]] Let ρA, ρB ∈ P(X ). There exists a unique constant
speed geodesic {ργ(t)}0≤t≤1 in P(X ) with ργ(0) = ρA and ργ(1) = ρB. Moreover, the function γ
belongs to C1([0, 1],R) and satisfies the ordinary differential equation

γ′(t) = 2w

√
pq

p+ q
ρ̂(γ(t)) (7.1)

for t ∈ [0, 1], where w := sgn(β − α)W(ρα, ρβ).

Using Proposition 7.3 we have a way of computing the correct geodesic for the two-point instance.
If we can solve (7.1) for γ we get the progression of mass in a and b. Fortunately at least for the
case p = q the ODE can be solved fairly easily by using an explicit Euler scheme. This means
we choose a discretization level NT and then recursively update

γ(n+ 1) = γ(n) + h ∗ f(nh, γ(n)), n = 1, . . . , NT

where h = 1
NT

and f(t, x) = 2w
√

pq
p+q ρ̂(x).
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Finally we can compare the geodesic from the ODE with our results. In this chapter we will
always display the geodesics t 7→ (ρt,mt) by plotting the progression t 7→ ρt(x) for all (only
relevant) nodes x ∈ X . The flow part m of a geodesic is only looked at if it is especially rel-
evant in a particular instance. In Figure 7.1 we can see the progression of mass in node a for
the (2 Circle) instance computed from the ODE and calculated from our Douglas-Rachford
algorithm. We only see very small differences between the two slopes which do get even smaller
if one goes for a finer time discretization and more iterations of the algorithm. A more detailed
comparison between the number of timesteps in our algorithms and the resulting error compared
to the correct ODE solution can be found in Figure 7.2.

These matching results from two completely different approaches make us confident that our
algorithms are indeed working correctly and computing the correct geodesic. Thus we can now
go on computing geodesics for cases where there is yet no explicit theory for.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
 0

 0.001

 0.002

 0.003

 0.004

 0.005

M
as

s

Time

Geodesic from DR-Algorithm
Geodesic from ODE

Linear slope
Distance

Figure 7.1: Comparison between the geodesic calculated using the ODE in [Maa11] and the re-
sult from the Douglas-Rachford algorithm. We plot the mass at node a over the time
interval [0, 1]. Apparently the two slopes look identical, the distance is plotted with
respect to the second y-axis on the right side.
— Instance: (2 Circle) with p = q = 1, Algorithm: (DR), Timesteps: 100,
W(ρA, ρB) ≈ 1.13394 —

7.2 Triangles and Squares

In this next section we are going to look at small instances with three or four nodes. The results
are interesting even for this small instances because at the time writing there is yet no descriptive
theory about the geodesics of the new discrete Wasserstein distance. Also these instance already
cover some important questions. Some examples are:

• How strong is a longer path penalized compared to a shorter one?
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Figure 7.2: Approximation quality of the (DR)-algorithm where we set the number of timesteps
NT of our time-discretization in relation with the distance of the final result compared
to the geodesic calculated using an explicit Euler’s method on the ODE (n = 1000).
The remaining distance even for a larger number of timesteps may be due to imper-
fections of the several numerical methods involved.
— Instance: (2 Circle), Algorithm: (DR) —

• How much is the flow going to be stronger in the beginning when there is a bigger mass
difference?

We start with very much the only interesting instance with three nodes.

Instance 2 (3 Circle).

a

b

c

1
2

1
2

1
2

1
2

1
2

1
2

This instance represent a fully uniformly connected triangle.
Thus the transition matrix is given by

Q =
1

2

 0 1 1
1 0 1
1 1 0


with stationary distribution π =

(
1
3 ,

1
3 ,

1
3

)
. Again we want to

transport all mass from a to c, i.e. ρA = (1, 0, 0), ρB = (0, 0, 1).

The (3 Circle)-instance is interesting because on one hand there is a direct connection between
node a and node c but on the other hand there is a longer (in the sense of the weights on the
edges) connection that runs over b. Now the interesting questions are: Is there any mass taking
the long way over b? and if so: How much mass does flow over b?

Numerical answers to this questions can be found in Figure 7.3. There we plot the geodesic in
the same way we did for the (2 Circle)-instance. Using this plot it is immediately clear that
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there is indeed flow over node b although the majority of the mass at a is directly transported
to c. Another expected behaviour is the symmetry of the mass in node a compared to node c.
This may not surprising as we are always looking at reversible Markov chains.

What is more interesting is the fact that the progression of mass in node a is not symmetric
with respect to t = 1

2 . We can observe that in the beginning the flow of mass is very much like a
linear slope. However, as more and more mass has already been transported the flow increases
until at some point way beyond t = 1

2 it slows down again. This behaviour can probably be
explained by the use the logarithmic mean in the metric. It introduces a nonlinear dependence
on how much mass is already at some point which is exactly what we are observing.

One might also note that the calculated discrete Wasserstein distanceW(ρA, ρB) of (2 Circle)

is lower than the one for (3 Circle). This may seem strange because the (3 Circle)-instance
only adds a new path compared to (2 Circle) but still offers a direct connection between nodes a
and c. However, the difference lies in transition probabilities. While above for the (2 Circle)-
instance we used p = q = 1 (3 Circle) has 1

2 everywhere. This makes the transport more
expensive.
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Figure 7.3: — Instance: (3 Circle), Algorithm: (DR), W(ρA, ρB) ≈ 1.18999 —
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As there are not that many fundamentally different geometries we can build on three nodes we
move to instances with four nodes.

Instance 3 (4 Circle).

a

b

c

d

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

This instance is a circle with 4 nodes that are each connected to
their two neighbours. The transition matrix is given by

Q =
1

2


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


with stationary distribution π =

(
1
4 ,

1
4 ,

1
4 ,

1
4

)
. To transport all

mass from a to c (the node not directly connected to a) we set

ρA = (1, 0, 0, 0), ρB = (0, 0, 1, 0).

Our interest with this graph lies in the fact that so far it is the first instance for which start-
and end-node are not directly connected. For the intermediate node b and d we expect a similar
behaviour as for node b of (3 Circle). However, this time we know that all mass has to be
transported over either b or d. The plots of the geodesic can be found in Figure 7.4.
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Figure 7.4: — Instance: (4 Circle), Algorithm: (DR), W(ρA, ρB) ≈ 1.56855 —

In a few pages we will introduce the (3 Line) instance which consists of three nodes where
the last one is not connected with the first one. An interesting comparison can be done by
using the geodesic calculated for (3 Line) in (4 Circle). Since (4 Circle) basically contains
two (3 Line) instances we can plug the solution of (3 Line) into one path connecting a and
c of (4 Circle) and set the other path zero. We would expect that although this transport
is feasible in that it fulfils the continuity equation it should result in an higher transportation
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costs than the actual discrete Wasserstein distance for (4 Circle). Doing the described con-
firms our expectations. The continuity equation is fulfilled for this artificial setup. However, the
transportation cost using the geodesic of (3 Line) as one path is approximately 1.91279 where
W(ρA, ρB) ≈ 1.56855 is the actual discrete Wasserstein distance.

Next we slightly modify (4 Circle) to check another theoretical condition with an actual nu-
merical result.

Instance 4 (4 Circle Diag).

a

b

c

d

1
3

1
3

1
3

1
3

1
3

1
3

1
3

This instance is similar to (4 Circle) but additionally we add
a diagonal which connects b with d. Now because we still want
to have the uniform distribution as π we also add loops at the
nodes a and c. The transition matrix is given by

Q =
1

3


1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 0


with stationary distribution π =

(
1
4 ,

1
4 ,

1
4 ,

1
4

)
. Again we want to

transport all mass from a to c.

The thing that interests us the most about this instance is the question if there is any flow over
the edge connecting b and d. We are expecting that there is no flow over this particular edge
because the mass would be taking a very indirect road and it should lead to an higher overall
distance in the Wasserstein metric. Now because we are looking for geodesics (the shortest con-
nections with respect to the Wasserstein metric) we would expect no flow over the b→ d edge.
Looking at the calculated geodesic from our algorithm this assumption seems correct. For all
timesteps t ∈ {0, . . . , NT } we have mb,d(t) ≈ 10−9 which is essentially zero taking the machine
precision into account.

Another thing we can do is use the results for (4 Circle Diag) to learn about the influence
the transition probabilities have on the shape of the geodesics. In Figure 7.5 we compare the
geodesic of (4 Circle) to the one of (4 Circle Diag). We can observe quite a large difference,
especially in the nodes b and d. Now of course (4 Circle) and (4 Circle Diag) are fundamen-
tally different in that there is an additional diagonal in (4 Circle Diag). But we have already
seen that the additional edge is not used for any transportation so it should make no difference
if the edge is there or not. The remaining difference between (4 Circle) and (4 Circle Diag)

however are the different transition probabilities for example from a to b where in (4 Circle)

it is 1
2 and in (4 Circle Diag) is is 1

3 .

57



7 Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

M
as

s

Time

Node a (4_Circle_Diag)
Node a (4_Circle)

Node b (4_Circle_Diag)
Node b (4_Circle)

Linear slope

Figure 7.5: Comparison between the geodesics of (4 Circle) and (4 Circle Diag).
— Instance: (4 Circle) and (4 Circle Diag), Algorithm: (DR) —

In order to test the hypothesis that the different transition probabilities cause the differences
we introduce a new instance.

Instance 5 (4 Circle Loops).

a

b

c

d

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

This instance is similar to (4 Circle) but each edge has a tran-
sition probability of 1

3 . The transition matrix is given by

Q =
1

3


1 1 0 1
1 1 0 1
0 1 1 1
0 1 1 1


with stationary distribution π =

(
1
4 ,

1
4 ,

1
4 ,

1
4

)
and all mass trans-

ported from a to c.

Now comparing the geodesics of (4 Circle Diag) and (4 Circle Loops) we do indeed observe
that they are identical. Finally to get a really intuitive understanding of these geodesics we pro-
vide alternative visualization of them in Figure 7.6. In this visualization bigger points represent
nodes with more mass, smaller points nodes with less mass. The same holds true for the edge
and the current flow over them. However, note that there is a lower limit of how small a point
or line can be so that nodes or edges with 0 mass / flow are still displayed.
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7.2 Triangles and Squares

t = 0 t = 9 t = 18

t = 27 t = 36 t = 45

t = 54 t = 63 t = 72

t = 81 t = 90 t = 98

1

Figure 7.6: Visualization of the geodesic of (4 Circle Diag). The bigger a node the more mass
it has. The same holds true for the flow on the edges.
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7 Results

7.3 Bigger circles, lines and grids

In this next section we are going to look into bigger instances with more than four nodes. They
might already give us an understanding of some limiting behaviour for really large uniform
instances. We start with the circles.

Instance 6 (6 Circle).

a

b c

d

ef

1
2

1
2

1
2

1
2

1
21

2

1
2

1
2

1
2

1
2

1
21

2

This instance resembles a circle of 6 nodes where all mass is
transported from a to d. The transition matrix is given by

Q =
1

2



0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0


with stationary distribution π =

(
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6

)
and

ρA = (1, 0, 0, 0, 0, 0), ρB = (0, 0, 0, 1, 0, 0).

In general such uniform circles with n nodes are labelled
(n Circle).

The geodesic plot for (6 Circle) can be found in Figure 7.7, Figure 7.8 shows our graph visu-
alization.

An observation we can make using the bigger circle instance is that it seems the more nodes
there are between source and target node the faster the initial transport does go. One can see
this by comparing the mass developments at node a in instances (3 Circle), (4 Circle) and
(6 Circle) with t close to zero. The more nodes the steeper the slope in the beginning. This
also makes sense because when there are more nodes the mass can be distributed more evenly
between them. In the discrete Wasserstein distance the transport cost depends also on how
much there is already at the target node. So for more nodes the mass spreads more over the
nodes thus the difference compared to the source stays higher and the transport happens faster.
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7.3 Bigger circles, lines and grids
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Figure 7.7: — Instance: (6 Circle), Algorithm: (DR), W(ρA, ρB) ≈ 1.96517 —

Next we introduce bigger line instances.

Instance 7 (n Line).

a
b

...

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

n times

The (n Line)-instances represent a line of n nodes where each
node except the start and the end node are connected with their
two neighbours. The transition matrix is given by

Q =
1

2



1 1 0 · · · 0 1
1 0 1 0 0 0

0 1 0 1 0
...

...
. . .

. . .
. . . 0

0 0 0 1 0 1
0 0 · · · 0 1 1


with stationary distribution π =

(
1
n , . . . ,

1
n

)
and the transport

from the start node to the end node is encoded in the boundary
values

ρA = (1, 0, . . . , 0), ρB = (0, . . . , 0, 1).

These line instances can be used to observe the behaviour of the discrete Wasserstein distance
in the limit, i.e. for very large uniform graphs. It has been shown in [GM12] that the discrete
Wasserstein distance for particular graphs converges to the continuous Wasserstein distance in a
Gromov-Hausdorff sense. For our line instances this means that would expect behaviour similar
to a Dirac measure that is transported with respect to the continuous Wasserstein distance along
the real line or respectively the interval [0, 1]. However, the instances we were able to calculate
efficiently for this thesis are rather small (around 7 to 9 nodes) so that the limiting behaviour
can not really be observed yet. Nevertheless Figures 7.9, 7.10 and especially 7.11 show already
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7 Results

t = 0 t = 9 t = 18

t = 27 t = 36 t = 45

t = 54 t = 63 t = 72

t = 81 t = 90 t = 98

1

Figure 7.8: Visualization of the geodesic of (6 Circle).
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7.3 Bigger circles, lines and grids

expected behaviour. As usual Figures 7.9 and 7.10 show the development of mass over time. We
focus on the nodes a and b and observe that the more nodes there are in the line the faster the
mass gets transported in the beginning. Also the more nodes become part of the line the earlier
the mass in node b reaches its maximum. Figure 7.11 now shows a different type of visualization.
Instead of displaying the mass over time for one node we show the whole mass distribution at
all nodes for different timesteps. The behaviour we are observing seems correct as in the first
timesteps most mass is concentrated around the start node and the later it gets the more mass
at the end nodes. For the central timesteps the mass distributions have a bell shape that is
moving along the line.

Instance 8 (9 Grid).

a b c

d
e

f

g h i

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

Where the (n Line)-instance can be seen as a discretization
of a real interval [0, 1] the following instance is a very sparse
approximation of [0, 1]2. The transition matrix is given by

Q =
1

4



2 1 0 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0
0 1 2 0 0 1 0 0 0
1 0 0 1 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 1 0 0 1
0 0 0 1 0 0 2 1 0
0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 0 1 2


and π =

(
1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9

)
. We send all mass from a to i

by setting

ρA = (1, 0, 0, 0, 0, 0, 0, 0, 0), ρB = (0, 0, 0, 0, 0, 0, 0, 0, 1).

For simplicity we omitted the loops connecting a node with itself
on the drawing.

For the geodesic plots of (9 Grid) we focus on the four nodes a, b, c and e because the other
nodes have either the same or a symmetric slope to those nodes. We would expect node b to
have its maximum of mass before t = 1

2 because it is a node closer to node a. Nodes c, e and
g should be symmetric with respect to t = 1

2 because the instance is symmetric with respect
to this diagonal axis of nodes. All this properties can be observed in Figure 7.12. What is a
bit more surprising is the fact that the slopes in nodes c, e and g are identical. Because on the
one hand all these nodes can be reached over two edges with weight 1

4 but on the other hand
the node e in the middle has two such ways connecting it with a while c and g only have one.
Thus one might expect more flow over node e than over the two others. However, one has to
keep in mind that e is also connected by two paths to i while the others have only one such
connection. So there might flow more mass into node e but also by the same amount it might
leave e. Because we are always plotting the mass on some node at some time we do not consider
how much has already flown over this node. Node e certainly has more flow over it than c and
g. Also the big picture of whats happening on (9 Grid) is probably best visualized in the graph
visualization in Figure 7.13.
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7 Results
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Figure 7.9: Comparison between the geodesics of different (n Line) instances. We compare the
mass in node a.
— Instance: (n Line) with n ∈ {3, 5, 7}, Algorithm: (DR) —
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Figure 7.10: Comparison between the geodesics of different (n Line) instances. We compare
the mass in node b.
— Instance: (n Line) with n ∈ {3, 5, 7}, Algorithm: (DR) —
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7.3 Bigger circles, lines and grids
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Figure 7.11: Visualization of the geodesic of (7 Line). We display the whole mass configuration
over time.
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Figure 7.12: The geodesic of (9 Grid). Note that node c and e have an identical slope because
their distance from a is the same.
— Instance: (9 Grid), Algorithm: (DR), W(ρA, ρB) ≈ 2.00994 —

As a final instance we look at a cube in 3d.

Instance 9 (8 3DCube).

a

b

c

d

e

f

g

h

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

This instance represents a cube in 3d. So each node is uniformly
connected with three neighbours and we get as transition matrix

Q =
1

3



0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0


and as stationary distribution π =

(
1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8

)
. Again

we send all mass from a to h.

Because of the symmetry of (8 3dCube) we focus on the nodes a, b and d. However, for the
other nodes one can observe that for example c behaves the same as b and d the same as e
and so on. The mass development for the geodesic can be found in Figure 7.14 and a graph
visualization in Figure 7.15.
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7.3 Bigger circles, lines and grids

t = 0 t = 9 t = 18

t = 27 t = 36 t = 45

t = 54 t = 63 t = 72

t = 81 t = 90 t = 98

1

Figure 7.13: Visualization of the geodesic of (9 Grid).
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Figure 7.14: The geodesic of (8 3dCube).
— Instance: (8 3dCube), Algorithm: (DR), W(ρA, ρB) ≈ 1.67347 —
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7.3 Bigger circles, lines and grids

t = 0 t = 9 t = 18

t = 27 t = 36 t = 45

t = 54 t = 63 t = 72

t = 81 t = 90 t = 98

1

Figure 7.15: Visualization of the geodesic of (8 3DCube).
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8 Conclusions and Further Research

In summary we were able to derive two closely related numerical schemes for computing the
geodesics of the discrete Wasserstein metric. Additionally we introduced a discretization of
space and time that made the needed numerical approximations of the steps of our schemes pos-
sible. We have also implemented the algorithms in C++ and are now left with working versions
of (BB) and (DR). As a result we were able to present results for smaller problem instances that
give nevertheless ideas about the geometry of the metric.

Beside these advances there is still room for improvement. Our algorithms work fine for fairly
small instances with under 10 nodes. However, the current implementations are not practical for
example for the study of very large graphs. This is something that should probably be improved
in further work on the topic. Because there don’t seem to be any theoretical limitations apart
from the pure size of instances the author is optimistic that there might in the future be further
advances in the ability to compute the geodesic for larger instances.

However, to reach this goal one has to solve the stability problems with the projection on K. To
this end one might consider two different strategies in the future. On the one hand one might
look at better ways to extend the logarithmic mean than the one we proposed in Chapter 5.
For example the following approach might be more natural with respect to inherent properties
of the logarithmic mean.

First note that the logarithmic mean is just a linear slope along lines {(s, t) ∈ R2
+ : st = const }

that run through the origin (0, 0). This motivates us to transform the logarithmic mean into
polar coordinates. We get

θp(r, ϕ) = rh(ϕ) where h(ϕ) =
cosϕ− sinϕ

log

(
cosϕ
sinϕ

) .

To get a better understanding of the angle dependence Figure 8.1 displays a plot of h.

We can clearly see how h is only defined on (0, π2 ) and (π, 3π
2 ) which represent quadrants one

and three of the Cartesian coordinate system. In order to extend the logarithmic mean we have
to extend h to the whole [0, 2π]. To this end we could cut the original h at ε distance around
the singularities 0, π2 , π and 3π

2 and then connect the parts with each other (for example with
a linear slope or just zeroes). Finally in order to get C2 regularity we convolute with a regular
enough kernel. The result is a C2 function that resembles the properties of h but is defined on
[0, 2π]. Using this function we can define the extended logarithmic mean.

Our hope is that such an extension might be closer to the natural properties of the logarithmic
mean and as a result we might get better convergence for the projection.

The other idea one might consider is to think of the projection problem more in graph theo-
retical than in a pure numerical context. There are for example some similarities between the
projection problem and some flow problems on graphs. To this end recall that the most useful
characterization of the convex set K was given as follows. A pair (ρ,m) is in K if there exists
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8 Conclusions and Further Research
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Figure 8.1: The function h(ϕ) on the interval [0, 2π]. One can clearly see the singularities at
0, π2 , π and 3π

2 .

a ∈ RX+ such that for all x ∈ X

ρx +
1

4

∑
y∈X

∂1θ(ax, ay)|mx,y|2Q(x, y) ≤ 0.

Now we use the fact from Corollary 3.13 that ∂1θ(ax, ay) depends only on the ratio ax
ay

. We

denote f(axay ) := ∂1θ(ax, ay) and also wx,y = 1
4 |mx,y|2Q(x, y). Note that f is actually a strictly

monotone function. In total the conditions now looks like

ρx +
∑
y∈X

f

(
ax
ay

)
wx,y ≤ 0.

The next thing we can do is a change of variable where we replace ax
ay

by a variable vx,y defined
on the edges instead of nodes. As a result we get

ρx +
∑
y∈X

f(vx,y)wx,y ≤ 0.

However, we will have to add an additional constraint. To this end suppose that vx,y, vy,z, vz,x
form an undirected circle in the graph. Then

vx,yvy,zvz,x =
ax
ay

ay
az

az
ax

= 1

Thus for all circles C in the graph the edges (vx,y)(x,y)∈C have to satisfy the condition that
Π(x,y)∈Cvx,y = 1 or at least Π(x,y)∈Cvx,y ≥ 1 (because then we can choose smaller ax that
satisfy = 1). As a conclusion we have derived a different characterization of the convex set
that is more from a graph theoretical point of view. This characterization might be beneficial to
use in the projection algorithm. Maybe only for some instances that have for example no circles.

Beside the focus on improving the projection on K one might look into other computations that
can be done on Riemannian manifold including
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• Computing exponential or logarithmic maps using geodesics,

• Computing Riemannian barycenters,

• Computing geodesic splines.

One might also look more into the numerical properties of the algorithms presented in this thesis
and prove convergence or results related to the approximation quality of the algorithms.
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