Unfolding Adhesive Grammars

Paolo Baldan', Andrea Corradini?, Tobias Heindel?,
Barbara Konig?, and Pawel Sobociriski*

! Dipartimento di Matematica Pura e Applicata, Universita di Padova, Italy
2 Dipartimento di Informatica, Universita di Pisa, Italy
3 Abteilung fiir Informatik und Angewandte Kognitionswissenschaft, Universitét
Duisburg-Essen, Germany
4 ECS, University of Southampton, United Kingdom

Abstract. We generalize the unfolding semantics, previously developed for
concrete formalisms such as Petri nets and graph grammars, to the abstract
setting of (single pushout) rewriting over adhesive categories. The unfolding
construction is characterized as a coreflection, i.e. the unfolding functor arises
as the right adjoint to the embedding of the category of occurrence grammars
into the category of grammars.

As the unfolding represents potentially infinite computations, we need to
work in adhesive categories with “well-behaved” colimits of w-chains of mono-
morphisms. Compared to previous work on the unfolding of Petri nets and
graph grammars, our results apply to a wider class of systems, which is due
to the use of a refined notion of grammar morphism.

1 Introduction

When modelling systems one often needs a truly concurrent semantics providing
explicit information concerning causality, conflict and concurrency of events in
computations. This is clearly the case if one wants to understand and investigate
the inherent concurrency of a given system, but truly concurrent models are also
a cornerstone of verification techniques based on partial order methods [17,12].
In fact, the latter avoid the enumeration of all possible interleavings of events,
and, in this way — especially in the case of highly concurrent systems — yield very
compact descriptions of the behaviour of a system.

One such partial order method is the unfolding approach: it “unravels” a
system and produces a structure which fully describes its concurrent behaviour,
including all reachable states and the mutual dependencies of all possible steps.

Unfolding techniques were first introduced for Petri nets and later extended
to several other formalisms, e.g. to graph transformation systems, which in turn
generalize (various extensions of) Petri nets. However, there are many types of
graph transformation formalisms — based on undirected and directed graphs,
hypergraphs, graphs with scopes, graphs with second-order edges, and so forth
— hence a more abstract notion of unfoldings is called for, which exhibits the
“essence” of the unfolding technique underlying all these special cases.

To this aim, we propose an abstract unfolding procedure which applies uni-
formly to all these rewriting mechanisms. Following the line of research of [9, 14,
11], we shall regard system states as objects of a category C satisfying suitable
properties. Part of the properties of C ensure a meaningful notion of C-object

rewriting, while other additional properties are required to guarantee, first,
that the unfolding procedure is feasible and, second, that the unfolding can be
characterized as a co-reflection in the style of [21].

The approach to rewriting that we will use is the single pushout approach
(sPo) [16]. This is one of the so-called algebraic approaches to rewriting, alterna-
tive to the double pushout (DPO) approach [10], where some subtle complications
due to the inhibiting effects of DPO rewriting are avoided.

As a categorical framework we consider adhesive categories [14], which turn
out to be appropriate for SPO rewriting as the needed pushouts in the partial map
category Par(C) can be shown to exist. After having provided an algorithm to
construct all finite prefixes of the unfolding, a crucial step consists in joining these
parts into a single structure. To ensure that this is possible, we need that colimits
of w-chains of monomorphisms exist and satisfy suitable properties. Adhesive
categories having sufficiently well-behaved colimits of w-chains of monomorphisms
will be called w-adhesive (see also [13, 8]).

The main result states that the full unfolding construction is a coreflection,
i.e. it can be expressed as a functor that is right adjoint to the embedding of
the category of occurrence grammars, the category where unfoldings live, into
the category of all grammars. In order to define the category of grammars we
introduce an original notion of grammar morphism which is similar to the graph
grammar morphisms proposed in [4] but more concrete; as a consequence, we
can treat uniformly the whole class of grammars, without the need of restricting
to so-called semi-weighted grammars as it was done in several approaches for
Peri nets (see, e.g. [18]) and for graph grammars [4].

Roadmap: In order to motivate at a more intuitive level the definitions and
constructions which will follow, we first sketch the general ideas of our work.
Note that we work in a setting of abstract objects (which could be sets, multisets,
graphs, etc.) which are rewritten according to a rule by removing (the image
of) its left-hand side and by gluing its right-hand side to the remaining parts
of the object. According to the SPO approach, the left- and right-hand sides of
a rule are related by a partial map, i.e. a span L «< K >= R consisting of two
monomorphism in the underlying category; for a schematic representation see
Figure 1(a).

PR] . . =
= . m .- | = L
(a) (b) (c)

Fig. 1. (a) Rule as a partial map; (b) Combined rule representation; (c) Schematic
representation of an unfolding step

A rule essentially indicates what is deleted (2), what is preserved (E) and
what is created ([l). This can either be represented by a span as in Figure 1(a)
or by a combined representation (see Figure 1(b)).

Very roughly, given a rule L«< K>~ R (or L 2 K C R in a more set-
based notation), an object G that contains the left-hand side L is rewritten to
G\(L\K) U R. This however is properly defined only if the complement exists.
This is quite rarely the case (it happens, e.g. for Petri nets seen as rewriting
systems over multisets), while in a general setting the so-called dangling condition
issue arises. In the case of graphs, the dangling condition can be understood as
follows: what happens if a node is to be removed, and such a node is attached to
an edge which is not explicitly deleted? Basically, there are two ways to resolve
this issue: the DPO solution which forbids the rewriting step, and the SPO solution
which removes the edge. Since the inhibiting effects of the first solution lead
to serious complications in the theory, we follow the latter path, which, as we
will discuss, amounts to defining the term G\(L\K) using the more general
construction of relative pseudo-complements, known from lattice theory.

Now the unfolding of a fixed start object provides a partial order representation
of the set of derivations in the grammar starting from such an object. Intuitively
the construction works as follows: look for an occurrence of a left-hand side of a
rule and, instead of replacing it, attach the right-hand side as in Figure 1(c) and
record the occurrence of the rule. Doing this iteratively one obtains a growing
object (also called type object), which is possibly infinite, and a set of rules that
describe the dependencies on this type object.

Now, in order to characterize the unfolding construction abstractly and to
show its universality, we will need the following concepts:

A notion of category which allows to define (SPO) rewriting properly: For this

we will use adhesive categories which can be used for defining abstractly a

notion of rewriting which enjoys suitable Church-Rosser properties. (Section 2)

— An analogue of occurrence nets: As unfolding a Petri nets produces a special
kind of Petri net, the unfolding construction in this abstract setting will pro-
duce a special kind of grammar, which will be characterized as an occurrence
grammar. In occurrence grammars suitable notions of causality, concurrency
and conflict can be defined, allowing for a “static” characterization of reach-
able states as concurrent objects. (Section 4)

— Well behaved w-colimits: In order to be able to construct potentially infinite
unfoldings, we have to be able to glue together a countable chain of finite
prefixes of the unfolding. To this aim we require that colimits of w-chains exist
and are well-behaved: adhesive categories enjoying this property are called
w-adhesive. The notion of w-adhesivity is a natural extension of adhesivity
that enjoys several closure properties. (Section 5)

— A category of grammars and the coreflection result: Finally we will present a

coreflection result, i.e. we will show that the unfolding is in a sense the “best”

approximation of the original grammar in the realm of occurrence grammars.

In order to do this we have to introduce a category of grammars, defining a

suitable notion of grammar morphism. (Section 5)

The present paper contains only some proof sketches: more detailed proofs can
be found in the appendix of the full version of this paper which can be downloaded
from http://www.ti.inf.uni-due.de/people/koenig/download/adh-unfolding.pdf.

2 Adhesive categories for SPO rewriting

We will use adhesive categories [14] as a basis for the rewriting framework. For
this we fix an (adhesive) category C to which all objects and morphisms belong.

Definition 1 (Adhesive category). A category is adhesive if

1. it has all pullbacks;

2. pushouts along monomorphisms exist, i.e. for each span B «f— A >m— C
with monic m, a pushout B —n— D «g— C exists, yielding a pushout square
plzld;

3. all pushouts along monos are Van Kampen squares, i.e. given a cube diagram
as shown below with: (i) m monic, (ii) the bottom square a pushout and
(i) the back squares pullbacks, we have that the top square is a pushout iff
the front squares are pullbacks.

A/

A/
B/// H\"CI B’ ' B///\ \"C«/
J l j = JQA\"D/«/\/J =)\D“/
A
B ///i Jmc B J
It is known that every topos is adhesive [15]. For the running examples we
will use the category of graphs and graph morphisms which is a (presheaf) topos.

The subobjects of an object in an adhesive category form a distributive lattice,
a fact which we will make more precise in the following.

C

Definition 2 (Subobject poset). Let T € C be an object. Two monomor-
phisms a: A>T, a': A’ > T are isomorphic if there exists an isomorphism
1: A — A" with a = a’ oi. Such an equivalence class is called the subobject
represented by a. Then the subobject poset (Sub(T),C) has isomorphism classes
[a: A>T] of monomorphisms over T as elements. Further, given two monomor-
phisms a: A>> T and b: B> T, the inclusion [a] T [b] holds if there exists
j: A>— B such that a =boj.

Proposition 3 (Distributive subobject lattices [14]). Any subobject poset
in an adhesive category is a distributive lattice, where the meet [a] M [b] of two
subobjects [a], [b] is obtained by taking the pullback of their representatives and the
join [a] U [b] is obtained by taking a pullback, followed by a pushout (i.e. adhesive
categories have effective unions).

N AR

ANB>———T ANB AUB>™>T

LN

Another operation on subobjects that is directly connected to the SPO rewrit-
ing mechanism is relative pseudo-complementation [7] (cf. Proposition 6).

Definition 4 (Relative pseudo-complement). Let (L,C) be a lattice. The
relative pseudo-complement (RPC) of a with respect to b, written a b, is an
element d satisfying b J aMax <= d Jdx for all x € L. It is unique if it exists.

The lattice L is relatively pseudo-complemented (RPC) if the RPC a b~ b
exists for all pairs a,b € L.

In a finite distributive lattice the RPC of a w.r.t. b always exists and can be
obtained as ak~b = | {y | aMy C b}. We consider the following two special
cases:

— In the case of a powerset lattice, given two sets B, A € p(M), the RPC of A
w.r.t. B, is theset M\ (A\B)={m e M |m ¢ Aorm e B}.

— In the case of subobject lattices, if [a], [b] € Sub(T'), with [a] 3 [b], the RPC

[c] = [a] +~ [b] with ¢: (A~ B)>— T gives rise to a particular pullback square
AP
In particular, note that that the RPC of [a] > [a] is [idr] (if the top arrow of
the pullback is an iso so is the bottom arrow).
As an example we consider the category of graphs and graph morphisms
which is known to be adhesive. Given the two graph inclusions shown in (a)
below, the RPC is given in (b) and yields the pullback square shown in (c).
This construction corresponds to taking the largest pullback complement.

o — %)

0030 ¢ O < & 03030 (¢ O ® IEI

©>-0>® o e
(a) (b) —

(c)

Having relatively pseudo-complemented subobject lattices will be important
for sPO rewriting. In SPO rewriting, a rule is essentially a partial map which
specifies what is deleted, what is preserved and what is created. Given a category
C with pullbacks along monomorphisms, its category of partial maps is defined
as follows (see [19]).

Definition 5 (Partial maps). The category Par(C) of partial maps (in C) has
the same objects as C, i.e. ob(Par(C)) = ob(C). An arrow in Par(C) is a C-span
A —m=< X —f— B with monic m, taken up to isomorphisms at X (Fig. 2(d)). It
is called a partial map and is written (m(x)f): A — B or just (m, f): A — B.

If m is an isomorphism, then (m, f) is called a total map. The identity on
an object A is (ida,ida): A — A (Fig. 2(e)); composition is defined via pullbacks
(Fig. 2(f)).

Note that a partial map (m, f): A — B is monic in Par(C) if and only if it is
total and f is monic in C; hence we often write C »g— D instead of C' —(id,g)— D.

Proposition 6 (Partial map pushouts). Let C be an adhesive category. Then
in Par(C) pushouts along monomorphisms exist if and only if subobject lattices
in C are relatively pseudo-complemented.

(d) (e) ()

(m,f) idg

/\ /\ (n’q>o(m.}/\
A ex -1, p Aoy "N

n\(iu/g Z—=c

(m, f>§u S

Fig. 2. Diagrams showing partial maps.

The pushout can be obtained as depicted below. Note that the vertical partial
maps are monic and hence we omit the first legs which are isos. Starting from
the diagram on the left, one first obtains D as RPC of m w.r.t. m o« and then
constructs C as pushout of d and (3.

L<—<K*>R L<—<KL>R
mrsmoa ﬁ
A A<—<D4>C

Besides assuming that C is adhesive we also require that RPCs are stable under
pullback, a fact needed later to show that SPO rewriting is preserved by grammar
morphisms. All toposes and all adhesive categories known to the authors satisfy
this requirement.

Definition 7 (Stable RPCs). Let C be a category with pullbacks along mono-
morphisms. We say that C has stable RPCs if all RPCs are preserved by pullbacks.
That is, assume a cube as shown in Definition 1 where the bottom square is an
RPC consisting only of monos and the lateral squares are all pullbacks. Then the
top square must also be an RPC.

From now on we a assume that C is adhesive and that RPCs are stable.

3 Grammars and grammar morphisms as simulations

The basic entities of single-pushout rewriting are rules, which are partial maps,
and grammars, which are collections of rules with a start object. Further, rewriting
amounts to taking pushouts along the rules of a grammar.

Definition 8 (Rules and SPO rewriting). A linear C-rule ¢ is a C-span
q =L «a< K >p— R where a and (3 are monic. A rule is called consuming if o
18 not an isomorphism. We denote by Zc the class of consuming, linear C-rules.

Let A € C be an object. A (monic) match for a rule ¢ = L «a< K >8— R
into A is a monomorphism m: L >~ A in Par(C). Then q rewrites A (at m)
to B, written A =(¢;m)= B or simply A =¢= B, if there is a pushout square
f‘J:rL’; in Par(C), i.e. if a pushout A—b— B +n—R of A«<m=<L—(a,8)— R exists;
in this situation A =(e;m)= B is also referred to as an SPO rewriting step.

Ezxample 9. The graph S = G050 models a tiny network: vertices are network
nodes, edges are directed network links, and looping edges represent stored
messages. Further g1 = 90 < 0y0>= 059 and go = © +< & >~ & model message
dispatching and failure of network nodes, respectively. Now ¢; can rewrite S,
namely @oso0Ea= 055 0. In the latter state, the failure of the middle network
node is captured by o0 Ea2= o o, i.e. dangling edges are removed.

A grammar will be defined as a set of rules with a start object. This is in
analogy to Petri nets where we regard the latter as a set of transitions with
an initial marking. More precisely, as described in detail in [4], the token game
of a Petri net with place set P can be modelled by SPO rewriting in the slice
category S| P, where S is the category of (finite) sets and functions: multisets
can be encoded as functions with co-domain P. Abstracting away from sets, we
work in the slice category C|T for a given “place” object T, also called type
object.

Ezxample 10. Fixing the type graph T =413, we give a typed version of Example 9.
The double fins correspond to network links, i.e. the typed version of % o, is
@eoxso Where the morphisms into 7' is the unique one preserving the fins; the
typed rules are given by o < omo > 0»% and o «< @ > .

Definition 11 (Slice category). For an object T € C, the slice category
over T, denoted C|T, has C-morphisms A—a—T with codomain T as objects. A
C|T-morphism ¢: (A-a—=T) — (B-b=T) is a C-morphism ¢ : A — B satisfying
a = bo. Further, we denote by |.|r: C|T — C the obvious forgetful functor,
mapping A—a—T to A, and acting as the identity on morphisms.

Notation: We introduce a convention for rules ¢ € Zcir: we will always assume
q = lg —ag< kg >Bs=1q and |q|r = Lq —aq=< Kq >B,— R, € Hc, where the latter
is the obvious untyped version of q.

If C is adhesive and RPCs are stable, then C|T has the same properties (cf.
Proposition 30 and [14]). Now typed grammars are defined as follows.

Definition 12 (Typed grammar). Let T € C be an object called the type
object. A T-typed grammar G is a pair G = (Q,s: S — T) where Q C He.r is
a set of linear, consuming C|T-rules, and S—s—T € C|T, is the start object.

The rewriting relation owver C|T-objects associated with G is defined by
a =G= b if a =9= b for some q € Q; further an object a € C|T is reachable in
G if s =EG=" a, where =G=-* is the transitive-reflexive closure of =EG=.

In the rest of the paper we restrict ourselves to finite grammars.

Definition 13 (Finite grammar). Let G = (Q,s: S — T) be a grammar;
then G is finite if the start object and all left and right hand sides are finite, i.e.
Sub(S) is finite and Sub(Lg), Sub(Ry) are finite for all ¢ € Q. Moreover for each
rule there are at most finitely many other rules with isomorphic left-hand sides,
i.e. the set {¢' |l =1y & ¢’ € Q} is finite for each q € Q.

Finiteness of a grammar ensures that every reachable object is finite. As a
consequence, using Proposition 6 and existence of RPCs in finite lattices, it also

guarantees that for every rule ¢ and match m of ¢ into a reachable object, the
pushout of ¢ and m exists in Par(C): this implies that (as it is usual for the spo
approach) rewriting is possible at any match.

Retyping operations and grammar morphisms. Now we equip grammars
with a notion of morphism, turning them into a category. Following the ideas
in the literature on Petri nets and graph transformation, a morphism relating
two systems should induce a simulation among them, in the sense that every
computation in the source system is mapped to a computation of the target
system. Another desirable property is that a notion of morphism defined in our
abstract setting should “specialize” to the corresponding notions proposed for
systems such as Petri nets and graph grammars. The morphisms we introduce
below will satisfy the first requirement, i.e. a grammar morphism will describe
how the target grammar can simulate the source grammar. Concerning the
second property, the proposed notion of morphism is more concrete: for example,
when C is the category of graphs, a graph grammar morphism of [4] might
be induced by several different ones according to our definition. However, this
greater explicitness allows to characterize the unfolding as a coreflection without
restricting to the so-called semi-weighted grammars (cf. [18,4, 1]).

In analogy to Petri nets, where morphisms are monoid homomorphisms
preserving the net structure, a morphism between two grammars typed over T’
and T", respectively, will be a functor F: C|T — C|T’ that preserves the rules
and the start object, and comes equipped with some additional information.

Definition 14 (Retyping operation). A retyping operation ¥: C|T — C|T’
is a pair F = (F, @) where F: C|T — C|T' is a functor mapping each object
A-a=T to Fa) = F(A)-F(@)=T", and ¢: (|1 0F) = |_|r is a cartesian natural
transformation.®

Every morphism f: T — T in C induces a (canonical) retyping operation
8f = (f o, id") where the functor fo_: C|T — C|T' post-composes any C|T-
object with f, and id.. is the family of identities {idy: A — A} a=ryec) -

This definition is closely related to the
pullback-retyping used in [4]. In fact, as w B
illustrated to the right, the action of a re-

typing operation (F,¢): C|T — C|T’ :r(w) 5(b)
is pulling back along ¢4, followed by / m
composition with F(idr), which is retyp-

ing along the span T «— F(T) — T, - S

according to [4].
The definition of grammar morphisms now is as follows.

Definition 15 (Typed grammar morphism). Let G = (Q,s: S — T) and
=(Q,s': 8" = T') be typed grammars in C. Then a grammar morphism
F: G — G’ is a retyping operation F = (F,p): C|T — C|T" such that

® This means that ¢ = {F(A) —ea— A}scc, T is a family of arrows such that for each
arrow t: a — b in C|T, the span A «vo— F(A) —1Fw)|— F(B) is a C-pullback of

A —|$|- B «¢p— F(B), yielding a pullback square 51 rTiEﬁ;

/

(i) the start object is preserved, i.e. F(s) = s, and
(i1) for any rule ¢ € Q, the image F(q) := F(l;) «F(ag)— F(ky) —F(B)— F(ry) is
either
a rule in G, i.e. F(q) € Q', or _
an identity rule, i.e. F(q) = F(l,) A F(ly) BN F(lg)-

We will now prove the Simulation Lemma: it shows that each grammar
morphism maps rewriting steps in the domain to corresponding ones in the co-
domain, which are either applications of rules in the target grammar or identity
steps. Hence grammar morphisms preserve reachability.

Lemma 16 (Simulation Lemma). Let ¥ = (F,¢): G — G’ be a morphism
between grammars G = {(Q,s: S —T) and G' = (Q',s": S" — T"). Then for any
rewriting step a =(am)= b in G we have that F(a) =(F(a),F(m)= F(b).

Proof (Sketch). Suppose that (A—a—T) E(g,m)= (B-b—T'), with match m: [> a for
arule ¢ =1 «a—k -8-r € Q. Using Proposition 6, there is a diagram of the form
LI:EI_?)IQ. As pushouts and pullbacks in C|T are constructed in C, it is enough to
consider the underlying C-diagram 57 5 _FY%. Now the morphism (¥,) provides not
only arrows @q: F(A) — A and ¢p: F(B) — B into the “tips” of the two squares, but
actually a pair of “fitting” pullback cubes over 51T Y £. The top face of the resulting
double cube is ;Eﬁ))T:EI_?)I ;Eg, which by Proposition 6 is a Par(C) pushout square
because RPCs and pushouts of pairs of monomorphisms are stable under pullback.

4 Unfolding grammars into occurrence grammars

Every typed grammar can be unfolded by recording all possible sequences of
rewriting steps originating from the start object. In analogy to the constructions
proposed for Petri Nets and graph grammars, the structure that we will obtain is
a (non-deterministic) occurrence grammar, which is a partial order representation
of all possible computations. Finite initial parts of the (full) unfolding of the
grammar — so-called prefizes — give a compact representation of the behaviour of
the grammar up to a certain causal depth.

In this section we introduce the class of occurrence grammars and show that
in such grammars reachable objects can be characterized statically, by means of
suitably defined dependency relations (causality and asymmetric conflict) between
rules. This allows to avoid “solving” reachability problems while constructing
the truncations of the full unfolding, i.e. the algorithm presented at the end of
this section builds the unfolding in a static manner.

4.1 Occurrence grammars

To properly define occurrence grammars, we need to recall from [2] the corre-
sponding relations between rules of typed grammars, which can be described
in words as follows. Given two rules ¢ and ¢, then g causes ¢’ if g produces
something needed by ¢’ to be activated, and ¢ can be disabled by ¢’ if ¢’ destroys
something on which ¢ depends.

Definition 17 (Causality, conflict). Let G = (Q,s: S — T) be a typed gram-
mar; then G is mono-typed if s is monic and, for each rule ¢ € Q all three of
lg, kg and rq are monic, yielding subobjects [lq], [kq] and [rq] € Sub(T). If G is
mono-typed, a pair of rules q,q" € Q may be related in any of the following ways.
< : q directly causes ¢’, written g < ¢, if rg Ny € kqy

< : ¢ can be disabled by ¢’, written g < ¢, if I,y € ky

Further, the asymmetric conflict relation is /' := <T U (< \ idg) where <* is
the transitive closure of < and < \ idg the irreflexive version of <; moreover

— the direct causes of g, are given by g, ={¢ € Q| ¢ < q}, and
— the (complete) causes of ¢, are given by |q] ={¢' € Q| ¢ <* ¢}.

Any subobject [a] € Sub(T) may be related to a rule ¢ € Q in a similar way:
< : g directly causes [a], written ¢ < a, if rqNa £ kg, and

<co : [a] is (partly) consumed by ¢', written a <co ¢, if aMly Z ky,

and we also have the following sets:

— the consumers of [a], are "a' ={¢ €Q|a < ¢'} and

— the (complete) causes of [a], are |a] ={¢ €Q|3geQ.¢ <* g<a}.

Now we are ready to define occurrence grammars, which are a generalisation of
occurrence nets. We will see later that in an occurrence grammar with type object
T, rule applications can be interpreted as consuming and producing subobjects
of T' (Proposition 20).

Definition 18 (Occurrence Grammar). An occurrence grammar s a mono-
typed grammar O = (Q, s: S>> T) with a countable set of rules Q such that

the type object is the union of all right hand sides, i.e. idr = s L |_]qu Tqs

the transitive-reflexive closure <* of causality < is a partial order,

. for each rule q € Q, |q] is finite, and /|4 :== /N (lq] x |q]) is acyclic,

the start object has no causes, i.e. |s| =&

there are no backward conflicts, i.e. rqMry T ke Uky for all g # ¢’ € Q,

. left-hand sides are properly produced, i.e. lg T s L Up/ELqJ ry for all g € Q.

S s o te

Ezample 19. Consider the following occurrence grammar which exactly captures
the two rewriting steps of Examples 9 and 10. The type graph is &% where
the dot and the plus discern the different nodes; the start object is % -0, and
we have the two rules %o < os0> 05% and o «< & >+ & corresponding to the
dispatching of the message and the breakdown of the middle node. As it will
become clear later, this grammar is part of the unfolding of the grammar in
Examples 9 and 10.

Properties of occurrence grammars. In the theory of Petri nets, a charac-
teristic property of occurrence nets is that they are safe, i.e. that every reachable
marking is a set of places, rather than a proper multiset. The analogous result
for occurrence grammars reads as follows.

Proposition 20 (Safety). Let O = (Q,S »s— T) be an occurrence grammar
and let s =E0=* a € C | T be a reachable object. Then a is monic.

10

Hence reachable objects of occurrence grammars can be seen as subobjects
of the type object. In the unfolding algorithm below, instead of considering
reachable objects, we can concentrate on the statically characterized concurrent
subobjects, as they are exactly the ones contained in reachable subobjects.

Definition 21 (Concurrent subobject). Let O = (Q, S »s— T be an occur-
rence grammar. A subobject [a] € Sub(T) is called a concurrent subobject of O if
(i) |a] is finite, (i) [a] N"a' = @, and (iii) /| |q) is acyclic.

Intuitively, [a] is concurrent when its set of causes is finite and conflict free
(condition (i) and (iii), respectively) and there are no causal dependencies between
subobjects of [a] (condition (ii)).

Proposition 22 (Static coverability). Let O = (Q, S>s—T) be an occurrence
grammar, and [a] € Sub(T) be a subobject. Then [a] is concurrent if and only if
there is some reachable object b such that a C b.

4.2 The unfolding construction

The idea of the unfolding procedure for a given grammar G, is to construct a
chain of growing occurrence grammars U,,. Each U, represents all computations
up to causal depth n where the depth of a concurrent computation is the length
of a maximally parallel execution of the computation. Finally the full unfolding
Ug will arise as the “union” of the chain {U,, “C” U,,4+1}nen as described in the
next section.

Definition 23 (Unfolding algorithm). Let G = (Q,S —s— T) be a finite
grammar. We will construct a chain Uy“C” U;“C” ... “C” U, ... of occurrence
grammars U, = (Qn, S —sn— T,) that come equipped with folding morphisms
¥, : U, — G mapping rule occurrences in each n-th unfolding U, to the original
grammar G; further each ¥, will be induced by a folding arrow T, —x.— T, i.e.
Fn = A, (see Definition 14).

Base case. The 0-th unfolding Uy contains the start object of G and no rules,
ie. Uy = (@, S »id— S). The folding arrow is Ag: Tp = S — T, which induces
Fo = tho-

Induction step. Going from U, to U, consists in adding the next level of causal
depth. The central operation of this step can be described as the non-consuming
application of all rules with all possible (new) matches to T;, “in parallel” — here
the non-consuming rule application of a rule ¢ = L «a< K >8— R at a match
m: L > T is the application of ¢7 := K «id< K »8— R at mo a: K > T (see
Figure 1(c)).

A new match or a new occurrence of a rule ¢ € @ in the n-th unfolding
(Qn, S —sn—T,) via the folding ¥F,, is a monomorphism v: L, > T,, such that the
corresponding subobject of Sub(7},) is concurrent, and that satisfies A, o v = ;
additionally, ¥ must be new, which means that v is not an occurrence of g that
is already present in @), i.e. there is no rule ¢’ € @,, such that v =y and ¢ is
the image of ¢’ w.r.t. F,,.

11

Let {v;: Ly, >~ T, | i € I,} be the set of all new matches where the index
set I, = {1,...,m} is finite as G is finite. Now consider the diagram below,
consisting of the matches v; and the rule morphisms ay,, 3y, for i € I,,.

ﬁq m R
qm

Take the colimit of the diagram above in C, obtaining the morphisms ¢, k;, ;
into T,,41 for i € I,,. Furthermore since every object in the diagram above is
typed over T we obtain the folding arrow A, 41: Tp,+1 — T as a mediating arrow.

Qg K Bam Rq

Now the new rules form the set Q| = {(tn 0 v;) «ag,— kg, —Ba;=7q, | i € I}
and are at depth level n + 1; further the complete set @41 of rules of U, 41 is
@ny1 = Q;H-l U titn (Qn)-

To complete the object part of the (n+1)-th unfolding, we just need to define
Unt1 := {Qnt1, S>tnosn—T,11). Further the folding morphism F,,41: Up41 — G
is given by F,,41 := A, 41, which is induced by the folding arrow 15,11 —An+1— T

Summarizing, we have inductively defined an w-chain of n-th unfoldings
Up“C” U “C” -+ - “C” Uy, . . .o, where each U, has components (Qn, $,: S>> T,),
folding morphisms g\, : U,, — G, and “inclusion” morphisms fit,,: U, > Up41.

Ezample 24. We sketch the unfolding of the grammar ({q}, g5}, s: Pome —£3)
where the rules ¢} and g} are o << om0 > o»% and © < & > &, respectively.

We start with the type graph Ty = % o0wo. In the first unfolding step we find
the single rule occurrence %o of gj and the three occurrences o, o, and o of ¢4 and
add the corresponding right-hand sides, yielding the type graph T} = %o .

In the second unfolding there is only one occurrence of g;, namely %o, and
adding the right-hand side yields the type graph Th = %% . Now as there are
no further new matches, the latter unfolding is actually the full unfolding.

5 w-adhesive categories
In this section we propose w-adhesive categories as a framework in which the

unfolding construction is feasible and can be characterized as the right adjoint
to the inclusion functor from the full sub-category of occurrence grammars into

12

the category of all finite grammars. Note however that once we have the extra
structure of w-adhesive categories, we could also relax the condition on grammars
from finite to countable.

5.1 Colimits of w-chains and w-adhesive categories

As we mentioned at the beginning of Section 4.2, the unfolding Ug of a grammar G
will be a single occurrence grammar that represents the complete chain of
truncations generated by the algorithm of Definition 23. The colimits that we
will use to construct Ug and to prove the coreflection result are Van Kampen
(VK) fans: they are the w-chain counterpart of Van Kampen squares, the latter
being the central concept in the definition of adhesive categories in [14].

Bl U1 B2 V2 B3 U3

|
- \J@A _J
T To B T3
Ayt A, Mg us A A oz Ay
= ﬂ2\ /a3 o az\lz/as

A w-fan A w-fan prism

Definition 25 (w-adhesive categories). An w-fan is an w-chain diagram
A ={A, —un— Api1tnen with a cocone o = {A,, —an— A}pen (see the left one
of the displayed diagrams); it is a colimit w-fan if a is a colimit of A, and it is
a Van Kampen fan if in each w-fan prism over it, as illustrated in the right one
of the displayed diagrams, having pullback squares 3'17 ftﬂ as back faces, the
top face is a colimit w-fan if and only if all lateral trapezia BB~ are pullbacks.
Now a category is w-adhesive if it is adhesive, and moreover
— 4t has colimits of monic w-chains { Ay, »un— Apti tnen, and
— colimits of monic w-chains give rise to Van Kampen fans.

From now on, we assume C to be w-adhesive. Examples and properties of
w-adhesive categories are discussed in Section 5.2. To ensure soundness of the
full unfolding construction in Definition 27, we need the following lemma, which
can be shown in analogy to Lemma 2.3 of [14].

Lemma 26 (Monic VK-fans). Let C be any category, let { Ap >»un— Ap i1 }nen
be a monic w-chain paired with a cocone { A, —an— A}nen such that they together
form a Van Kampen fan. Then each a;: A, >~ A is monic.

Definition 27 (Full unfolding). Let G = (Q,s: S — T) be a finite grammar,
and let {Uy, >ttn— Uyt tnen be the chain constructed as in Definition 23, where
U, = (QnySn: S>—T,) and t,,: T, > Ty11 for each n € N. To define the full
unfolding Ug, let ¢ = {in: Ty, = TV }nen be the colimit of the w-chain diagram
T ={T »tn—= Try1fnen, and put Ug := (U, e Bin(Qn),0: S>—=TY).

Finally, to define the folding morphism ¥F: Ug — G, let the \,,: T,, — T be
as in Definition 23. By the universal property of the colimit v, there is a unique
folding arrow \: TY — T satisfying X o i, = A\, for all n € N; now put F := §A.

13

Proposition 28 (Completeness of the unfolding). Let G be a grammar and
tA: Ug — G be the folding morphism from the full unfolding Ug.

Then each derivation in G has a unique counterpart in Ug, i.e. for each
rewriting sequence s ={ai,mi)= aj - -+ =(a,,m,)= a, in G, there is a unique se-
quence sV =(q1.m1)=> ay « - =(an.mn)= ay, in the unfolding Ug such that m}, g, al
are the images of m;, q;,a; under the retyping with \.

This proposition is sufficient for many applications, but it does not rule out
that Ug might contain superfluous information. The coreflection result ensures
that the unfolding with the folding morphism J: Us — G is the “minimal” or —
more precisely — universal choice of an occurrence grammar O and a morphism
H: O — G that is complete in the sense of Proposition 28.

Theorem 29 (Coreflection). Let F: Ug — G be the folding mor- F
phism from the unfolding Ug of a finite grammar G. Then for each U‘AG -G
occurrence grammar O and morphism H: O — G there is o unique V! A
morphism V: O — Ug such that H =JF o'V. O

Proof (idea). Existence and uniqueness of some morphism V = (V, ¢) follow from two
facts: first, the morphism H = (K,) determines ¢ and |_|rv oV, and in fact the only
information missing is the value V(idz/) — here O = (Q’,s": S’ — T'); second, the type
object T" is the “tip” of a VK fan, the diagram of which is determined by the start
object and all the right hand sides. Pulling back this fan along ¥,, yields again a
colimit fan, and V(idr/) arises as a uniquely determined mediating morphism. a

This theorem directly implies that the unfolding construction extends to
a functor from the category of finite (or even countable) grammars to that of
occurrence grammars, which in turn means that the category of occurrence
grammars is a coreflective subcategory of the category of finite grammars.

5.2 Examples of w-adhesive categories

As for examples and counter examples of w-adhesive categories: first, the category
S of finite sets — the “primordial” elementary topos — is not w-adhesive; as a fact,
any elementary topos is w-adhesive if and only if it has countable sums. Second,
the category of sets is w-adhesive, and more generally any Grothendieck topos is.
Further examples arise via the following constructions.

Proposition 30 (Closure of w-adhesivity). Let C and D be w-adhesive cat-
egories. Then the following categories are again w-adhesive:

— the product category C x D;

the slice category C|T for any T € C;

— the co-slice category I|C for any I € C;

the functor category [X,C] for any category X;

— the Artin-Wraith glueing C|F, i.e. the comma category C|F for any functor
F: D — C that preserves pullbacks (along monos).

Proof (Sketch). In each case pullbacks along monos and the relevant colimits are
constructed componentwise.

14

6 Related work and conclusion

Our work is strongly related to earlier work on true concurrency in the setting of
adhesive categories. For instance [14] shows parallel and sequential independence
results for adhesive rewriting systems. As a next step, in [2] it has been shown
how one can represent computations of a system as processes, i.e. as deterministic
occurrence grammars. In the present paper we generalize this work to non-
deterministic occurrence grammars (or branching processes) that record all
events of a set of possible computations.

The central contribution is the generalisation of the unfolding technique to
the abstract setting of w-adhesive categories and the theorem that the unfolding
construction, “unravelling” a grammar into an occurrence grammar, can be
characterized as a coreflection. As this result holds in any w-adhesive category
with some mild restrictions it applies to numerous application-relevant instances
of graph-like structures, and hence it is unnecessary to prove it over and over
again.

Furthermore we have introduced a new notion of grammar morphisms where
the retyping is given by a functor. This allows us to treat also non-semi-weighted
grammars, i.e. grammars where the start graph or the right-hand sides might
not be injectively typed. Otherwise technical complications arise because of
“too much symmetry” in the structure which is being unfolded and hence the
uniqueness of arrow V in Theorem 28 cannot be guaranteed. Another solution to
the symmetry problem has been proposed in [20], but only in the case of Petri
nets and with a more restricted notion of morphisms.

The unfolding represents all computations as well as all reachable objects of
the original grammar in a single acyclic branching structure. Hence, as observed
in [17,12, 3], it can serve as the basis for partial order verification techniques. For
instance, we plan to generalize the notion of finite complete prefix to the abstract
framework of the present paper. Another direction is to adapt the model-based
diagnosis techniques of [6, 5]; the latter depend on the preservation of products of
grammars by the unfolding functor, which is ensured by the coreflection result.

References

1. P. Baldan. Modelling Concurrent Computations: from Contextual Petri Nets to
Graph Grammars. PhD thesis, Dipartimento di Informatica, Universita di Pisa,
2000.

2. P. Baldan, A. Corradini, T. Heindel, B. Konig, and P. Sobocirniski. Processes for
adhesive rewriting systems. In L. Aceto and A. Ingdlfsdottir, editors, FoSSaCS,
volume 3921 of LNCS, pages 202-216. Springer, 2006.

3. P. Baldan, A. Corradini, and B. Konig. A framework for the verification of infinite-
state graph transformation systems. Information and Computation, 206:869-907,
2008.

4. P. Baldan, A. Corradini, U. Montanari, and L. Ribeiro. Unfolding Semantics of
Graph Transformation. Information and Computation, 205:733-782, 2007.

5. Paolo Baldan, Thomas Chatain, Stefan Haar, and Barbara Konig. Unfolding-based
diagnosis of systems with an evolving topology. In Proc. of CONCUR ’08, volume
5201 of LNCS, pages 203-217. Springer, 2008.

15

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

A. Benveniste, E. Fabre, S.Haar, and C. Jard. Diagnosis of asynchronous discrete
event systems, a net unfolding approach. IEEE Transactions on Automatic Control,
48(5):714-727, 2003.

G. Birkhoff. Lattice Theory. American Mathematical Society, 1967.

R. Cockett and X. Guo. Join restriction categories and the importance of being
adhesive. Unpublished manuscript, slides from CT‘o7 presentation available at
http://pages.cpsc.ucalgary.ca/“robin/talks/jrCat.pdf.

H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and Concur-
rency in High-Level Replacement Systems. Mathematical Structures in Computer
Science, 1:361-404, 1991.

H. Ehrig, M. Pfender, and H.J. Schneider. Graph-grammars: an algebraic approach.
In Proc. of IEEE Conf. on Automata and Switching Theory, pages 167-180, 1973.
H. Ehrig and U. Prange. Weak adhesive High-Level Replacement categories and
systems: A unifying framework for graph and Petri net transformations. In K. Fu-
tatsugi, J.-P. Jouannaud, and J. Meseguer, editors, FEssays Dedicated to Joseph A.
Goguen, volume 4060 of LNCS, pages 235—251. Springer, 2006.

J. Esparza, S. Romer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design, 20:285-310, 2002.

T. Heindel and P. Sobocinski. Van Kampen colimits as bicolimits in Span. In Proc.
of CALCO 09, LNCS. Springer, 2009. to appear.

S. Lack and P. Sobocinski. Adhesive and quasiadhesive categories. Theoretical
Informatics and Applications, 39(2):511-546, 2005.

S. Lack and P. Sobocinski. Toposes are adhesive. In A. Corradini, H. Ehrig,
U. Montanari, L. Ribeiro, and G. Rozenberg, editors, ICGT, volume 4178 of LNCS,
pages 184-198. Springer, 2006.

M. Lowe. Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science, 109:181-224, 1993.

K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.

J. Meseguer, U. Montanari, and V. Sassone. On the semantics of Place/Transition
Petri nets. Mathematical Structures in Computer Science, 7(4):359-397, 1997.

E. Robinson and G. Rosolini. Categories of partial maps. Inf. Comput., 79(2):95-130,
1988.

G. Winskel. Event structures with symmetry. In Computation, Meaning, and Logic:
Articles dedicated to Gordon Plotkin, volume 172 of ENTCS, pages 611-652, April
2007.

Glynn Winskel. Event structures. In Petri Nets: Applications and Relationships to
Other Models of Concurrency, volume 255 of LNCS, pages 325-392. Springer, 1987.

16

