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Abstract. Until now there have been few contributions concerning the
verification of graph grammars, specifically of infinite-state graph gram-
mars. This paper compares two existing approaches, based on abstrac-
tions of graph transformation systems. While in the unfolding approach
graph grammars are approximated by Petri nets, in the partitioning ap-
proach graphs are abstracted according to their local structure. We de-
scribe differences and similarities of the two approaches and explain the
underlying ideas.

1 Introduction

Until now there have been few contributions concerning the verification of graph
grammars, specifically of infinite-state graph grammars. For finite-state graph
grammars some solutions have already been presented, ranging from approaches
where transition systems are generated directly [15], to approaches based on
partial order techniques [6], to encodings of graph grammars into languages
accepted by existing model checkers [24, 11]. For a comparison of the first and
last approach see also [20].

Graph transformation systems are (in almost all of the approaches) Turing-
complete formalisms. Hence when dealing with infinite-state systems the model-
checking problem is undecidable. In order to develop automatic verification tech-
niques, it is therefore necessary to perform some sort of approximation in the
spirit of abstract interpretation [10]. Taking an abstract view of the system might
be equally useful in the case of finite-state systems, in order to reduce the size of
the state space, which can be so large that any tool trying to explore it directly
would take a finite, but unacceptably long time.

Abstraction may introduce into the transition systems so-called spurious
runs, which have no counterpart in the original system. Hence it is necessary
to identify a subset of properties whose validity on the abstract model implies
their validity in the original system. For instance, due to the presence of spurious
runs, it is usually not possible to verify on the abstraction the existence of a run
with certain properties.
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Abstraction techniques of this kind can play an important role in the static
analysis of systems characterised by dynamic creation and deletion of objects,
mobility and reconfiguration. Such features are very common in today’s software
systems. Since dynamically evolving systems can often be described by graph
transformation systems in a natural way, abstraction techniques as described
above seem to be good candidates to use for their verification.

Two concrete examples for abstraction techniques for graph grammars are
the analysis of dynamically changing networks of communicating processes (for
instance communication protocols where the number of communication partners
can grow during the run of protocol) and the analysis of pointer structures on the
heap which are modified during the run of a program. Solving the last problem,
which has also been addressed in [23], is crucial in order to obtain good analysis
results for programs manipulating pointers.

2 Model-checking graph grammars

Our aim is to summarise and, in an informal way, compare the two approaches to
the verification of graph grammars presented during the Dagstuhl workshop (see
[5, 16]). We will refer to these as the unfolding, resp. the partitioning approaches.

It should be remarked beforehand that the level of maturity of the two ap-
proaches is not the same. The unfolding approach has been developed to a point
where all the theory is present to perform actual verifications (see [8, 7]), and
indeed a prototype implementation has been developed. The partitioning ap-
proach, on the other hand, is at a stage where it is understood how to define,
and to some degree reason about, graph abstractions (see [17, 19]), but there are
only preliminary ideas on how to transform such abstract graphs.

Both approaches are intended to enable, eventually, the same kind of verifica-
tion: given a graph grammar and a logical property of graph transition systems
(which are transition systems where the states have additional structure, namely,
they are graphs), the aim is to determine whether or not that property holds for
the particular graph transition system “generated” by the grammar. Moreover,
it is the intention to make this work even in the face of infinite-state systems.

2.1 The model checking problem.

Let G be a graph grammar, with a fixed initial graph ιG . We will refer to an
abstract notion of rewriting, without concentrating on any specific approach to
graph rewriting. Given a graph G and a rule R in G, if R can be applied to G
producing a new graph H, we will write R : G ⇒ H.

The graph transition system generated by the grammar G is denoted by
T (G) = (S,→, ιG), where the states in S are graphs and the transition relation
→ relates two states, written G → H, if there exists a rule R in G such that
R : G ⇒ H. The initial state of the transition systems is ιG ∈ S, the initial
graph of G. Let L be a temporal logic where “state formulae” predicate over
the structure of graphs (i.e., the basic predicates are taken from a logic which
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is interpreted over graphs). The model checking problem is to decide, for any
formula φ out of the logic L, whether or not T (G) |= φ.

A first observation is that the complexity of the model checking problem
strongly depends on the choice of the logic L. For instance, if one restrict to
propositional temporal logic (such as LTL, CTL or the modal µ-calculus) where
the propositions are closed “state formulae”, then it is not necessary to store in
the transition relation→ full information about rewriting steps: a binary relation
over the states, recording only the source and target states, suffices. Instead, if we
switch to a predicate temporal logic, i.e., where quantification may occur outside
the temporal operators, as in [15], the ability to “trace identity though time” is
essential and thus the transition relation must give also some information about
which graph items (nodes or edges) are preserved along the rewriting step. In
the remainder of this abstract we restrict ourselves to propositional logic with
“state formulae”. As another (well-known) example of the influence of the logic
on the complexity of the model checking problem, if L does not contain a “next
state” modality then one may consider T (G) up to partial order reduction (see,
e.g., [12]).

Regardless of the precise choice of the logic, however, part of the semantics
of L will be given in the form of a modelling relation G |=C φ for graphs G and
“state formulae” φ. (The C in |=C stands for “concrete”.) The relation |=C is
an important parameter in the abstraction framework.

2.2 Criteria for abstraction.

Both the unfolding and the partitioning approach can be understood as defining
an abstraction on graphs, and lifting transitions to the abstract graphs, thus
obtaining an abstract transition system Abs(()G) — even if, as we will see, the
abstractions take different forms. Roughly, in the context of graph grammar
verification, we may distinguish the following criteria for the “quality” of an
abstraction.

– Reflection of state formulae. To make the abstraction useful in the verifi-
cation activity, a clear relationship must exist between the state formulae
satisfied by a graph G and the formulae satisfied by the corresponding ab-
straction Abs(G). We will be interested in abstractions which reflect state
formulae, namely such that whenever Abs(G) |= φ then G |=C φ, for appro-
priate state formulae φ.
On the one hand we can restrict to a suitable fragment of the given logic,
say L←, in which only state formulae φ reflected by the abstraction are
included (it is obviously desirable that this fragment is as large as possible).
Alternatively, one may define the abstraction in order to obtain reflection or
preservation of formulae in a predetermined fragment of the logic L .

– Preservation of rule applicability. The applicability of any rule in G should
be preserved, in the sense that if a rule R is applicable to a graph G then
the same rule (or some abstraction of such a rule) should be applicable to
Abs(G).
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– Preservation of rule effects. Deciding rule applicability is just the first step in
the construction of the abstract transitions system Abs(()G): the next step is
to construct the (abstract) target state and (if required for the semantics of
L) the underlying derivation. To this aim the considered abstraction should
enjoy some compatibility properties with respect to the rewriting relation:
roughly any rewriting step at the concrete level should have a counterpart
at the abstract level.

We informally outline two kinds of abstraction techniques which are relevant
for the presented approaches.

Abstraction ordering. The first one is based on an abstraction ordering, which is
a preorder . over graphs: when G . G′ we say that the graph G is abstracted
by G′. The requirements on the abstraction listed above instantiate as follows.

– Reflection of state formulae. A state formula φ is reflected by the abstraction
order if whenever G . G′ and G′ |=C φ then G |=C φ.

– Preservation of rule applicability. The preservation of rule applicability is
formalised by requiring that if a rule R is applicable to G and G . G′ then
(some abstraction of) R is applicable to G′.

– Preservation of rule effects. The abstraction order preserves rule effects if
G ⇒ H using a rule R and G . G′ then there exists H ′ such that G′ ⇒ H ′

by using (some abstraction of) R and H . H ′. This amounts to say that .
is a simulation relation.

If the abstraction reflects state formulae in L and preserves rule effects, then
the abstract transition system Abs(()G) can be used to check behavioural prop-
erties of the original system, expressed in a suitable fragment of the logic L.
Roughly, due to the presence of “spurious transitions” in the abstraction, one
can check the fragment of the logic which allows one to express “universal” prop-
erties of the kind “for all computations . . . ” or “for all path sequences . . . ”, but
not properties like “there exists a run . . . ”. For specific temporal logics (like
CTL or the modal mu-calculus) these fragments are precisely characterised (see,
e.g., [13]).

Abstraction equivalence. The abstraction can be based on an equivalence relation
over graphs called abstraction equivalence and denoted by '. An equivalence
class of graphs [G]' = {G′ : G′ ' G}, is referred to as an abstract graph.
Using this concept, we can lift |=C , the modelling relation for state formulae, to
abstract graphs in two different ways:

[G]' |=∃A φ iff ∃G′ ' G : G′ |=C φ

[G]' |=∀A φ iff ∀G′ ' G : G′ |=C φ .

Thus, |=∃A “overapproximates” the modelling relation whereas |=∀A “underap-
proximates” it. The requirements on the abstraction listed above instantiate as
follows.
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– Reflection of state formulae. In this case, since ' is symmetric, we have that
a state formula φ is preserved by the abstraction equivalence if whenever
G ' G′, then G |=C φ iff G′ |=C φ.
Observe that when a formula φ is reflected by the abstraction equivalence
then [G]' |=∀A φ if and only if [G]' |=∃A φ; in other words, we can decide the
validity of φ on the abstract level with perfect precision.

– Preservation of rule applicability. The preservation of rule applicability is
formalised by requiring that if a rule R is applicable to G and G ' G′ then
(some abstraction of) R is applicable to G′.

– Preservation of rule effects. Rule effects are preserved by the abstraction
equivalence if G ' G′ and R : G ⇒ H for some R in G implies R : G′ ⇒ H ′

for some H ′ ' G′ — in other words, ' is a bisimulation for the derivation
relation. Note that this implies the preservation of rule applicability.

If the abstraction equivalence preserves state formula and rule effects, then
the model checking problem can be solved completely on the abstract level. An
example of an abstraction which has this desirable feature is graph isomorphism.
In general, though, it is to be expected that any significant gain in time or space
efficiency through abstraction will be accompanied by a loss of precision, which
in this framework takes the form of approximation in one respect or another.

Combining the two approaches above, the abstraction can be based on an
abstraction preorder .. The preorder, in turn, induces an abstraction equivalence
denoted by ' (defined by G ' G′ if G . G′ and G′ . G) and a partial order
over abstract graphs.

3 Abstraction in the two approaches

So far, we have not been concerned with the actual construction of the abstract
states and transitions. Obviously, although equivalence classes serve very well as
mathematical objects they are not a good basis for actual decision algorithms.
In fact, the existence of a tractable representation of the abstraction function
or the equivalence classes [G]' might prove to be at least as important for the
success of a particular approach as the preservation properties listed above.

3.1 The unfolding approach.

The unfolding approach is based on the the unfolding semantics of the given
graph grammar [21, 2], a truly concurrent semantics originally introduced in the
setting of Petri nets [14].

The logic used to specify behavioural properties of GTSs is a temporal logic
µL2, which can be seen as a variation of the propositional µ-calculus. The formu-
lae of µL2 are generated by closing state predicates under temporal modalities
(2 and 3), fixed-point operators (µ and ν), and standard logical connectives. In
turn, state predicates, which are used to express the graph properties of interest,
are formed according to the monadic second-order logic L2 on graphs, where
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quantification is allowed over (sets of) edges (see, e.g., [9].) Interesting graph
properties can be expressed in L2, like the non-existence or non-adjacency of
edges with specific labels, and the absence of certain paths or of certain cycles.
Such properties may be used to represent in the graph transformation model
relevant properties of the system at hand, like security properties or deadlock-
freedom.

The basis for the verification of µL2 is the approximation technique, pro-
posed in [1, 3, 4], which approximates the behaviour of GTSs by means of finite
Petri net-like structures. More precisely, an approximated unfolding construction
maps any given GTS G to finite structures, called coverings of G, which provide
“effective” (over-)approximations of the behaviour of G.

The accuracy of the approximation can be chosen by the user and arbitrarily
increased. Essentially one can require the approximation to be exact up to a
certain causal depth k, thus obtaining the so-called k-covering Ck(G) of G (see
[3]). The coverings are Petri graphs, i.e., structures consisting of a Petri net with
a graphical structure over places. Each Ck(G) over-approximates the behaviour
of G in the sense that every computation of G is mapped to a valid computation
of Ck(G) and every graph reachable from the start graph can be mapped homo-
morphically to (the graphical component of) Ck(G) and its image is reachable
in the Petri graph. Therefore, given a property over graphs reflected by graph
morphisms, if it holds for all states reachable in the abstraction Ck(G) then it
also holds for all reachable graphs in G.

Finally in [4] a technique is proposed for reducing the verification of a µL2
formula over a GTS G to the verification of a corresponding multiset formula
over (the Petri net component of) a covering of G. This is done for a fragment
2µL2 of µL2 not containing in the temporal part the modality 3 nor negation,
and where the state predicates in are reflected by graph morphisms.

Compared to the general description in the previous section, the approach is
based on an abstraction preorder over graphs, defined by G . G′ if there exists
a graph morphism α : G → G′, bijective on edges and surjective on non-isolated
nodes.

The induced abstraction equivalence ' is isomorphism up to isolated nodes,
which is the logical equivalence with respect to logic L2, implying that abstrac-
tion equivalence reflects state formulae. Due to the shape of the graph rewriting
rules (no isolated nodes in the left-hand side and no node is isolated when gen-
erated), abstraction equivalence also preserves rule effects. Hence we can work
directly over abstract graphs [G]' with perfect precision.

Furthermore, it can be seen that the abstraction order over abstract graphs
reflects state properties for the fragment 2µL2 of the logic and it preserves rule
effects, so that the general theory about abstraction orderings applies.

3.2 The partitioning approach.

In contrast to unfolding, the partitioning approach is based upon a particular
construction for abstraction that seems intuitively reasonable, and for which the



Graph Grammar Verification through Abstraction 7

ensuing logical properties are then studied. The fundamental idea is to define
a notion of local structure on the elements of a given graph; for instance, the
local structure of a node may be defined by the number of incident edges, or a
function from edge types to the number of incident edges of that type; for edges,
the local structure may be the tuple of local structures of the endpoints. Clearly,
any function s associating to each graph element its local structure gives rise to
a similarity ∼s over the graph elements of a graph, which in turn can be used
to partition the graph.

In general one may expect ∼ to be a congruence on the algebraic structure
of a graph (meaning that two (hyper)edges are similar only if they have similar
endpoints and/or labels and/or types, depending on the choice of graph for-
malism); partitioning gives rise to graph epimorpisms from concrete to abstract
graphs. To each element of the abstract graph we may subsequently associate
the (uniquely defined) concrete local structure, as well as an indication of the
number of concrete elements collected into it.

We have proved in [17] that a notion of local structure s consisting of a pair
of functions from edge labels to the number of incoming resp. outgoing edges
with that label, combined with a function returning the number of instances col-
lected into an abstract node, gives rise to an abstraction function that preserves
a fragment of two-variable first-order logic with counting quantifiers. Rule appli-
cability or rule effects are generally not preserved; we are currently studying the
construction, over abstract graphs, of the abstract derivation relation ⇒A. One
reason to think why this approach may give rise to useful results is the analogy
with the quite successful theory of shape graphs as proposed by Sagiv et al. in
[22, 23].

A future direction of study is to define local structure relative to a set of
first-order logic properties, possibly given as nested graph constraints as in [18].
In this setup s should return, for every graph element, the set of properties that
can be satisfied by letting that element play the role of one of the variables
in the corresponding formula. This more sophisticated notion is likely to give
better, more controllable preservation properties, probably at the price making
the abstract derivation relation ⇒A even harder to construct.

4 Conclusion

It is not yet entirely clear what the strong and weak points of the two approaches,
when compared to each other, are. It will be interesting to further compare
the two approaches and their development in the future. One possible area of
cooperation that seems to be especially fruitful is to compare the different logics
and to determine to what extent these logics can be checked in both approaches.
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