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Abstract

The aim of this thesis is to describe the semantics of a process calculus by
means of hypergraph rewriting, creating a specification mechanism combining
modularity of process calculi and locality of graph transformation. Verification
of processes is addressed by presenting two methods: barbed congruence for
relating processes displaying the same behaviour and generic type systems,
forming a central part of this work.

Based on existing work in graph rewriting we compare various methods of
hypergraph construction—the set-based and the categorical approach (Ehrig),
graph expressions (Courcelle) and a name-based notation—and concentrate on
the decomposition of a hypergraph into factors.

The hypergraph-based process calculus features higher-order communica-
tion and mobility of port addresses while its graph syntax allows an intuitive
graphical representation. We demonstrate the expressiveness of our calculus by
encodings of the λ-calculus and the π-calculus.

Verification of processes is supported by a generic type system, forming a
framework which can be instantiated in order to check a property (e.g. ab-
sence of deadlocks, confluence, privacy). The type system satisfies the subject
reduction property, has principal types and allows automated type inference.

The rather complex type of a process is again a graph, which enables us to
use techniques of graph construction introduced earlier. The key idea is, that
there exists a graph morphism from each process into its type. Labelling a type
with lattice or monoid elements (e.g. the number of messages attached to a
port) allows us to encode properties of a process into its type and to employ
the information for verification.
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Chapter 1

Introduction

1.1 Describing Mobile Processes with Hypergraphs

The aim of this work is to introduce a specification method (called Spider)
for mobile processes, which is based on hypergraphs. It combines features of
higher-order process algebras [San92, Tho95] and of graph rewriting. Graph
rewriting is an intuitive formalism well-suited for the specification of complex
structures and their dynamic behaviour [Hab92, Laf90, KLG93, JR90]. Re-
placing a connected subgraph by another graph is a strictly local operation
without any influence on the rest of the graph. Yet graph rewriting often lacks
modularity since it is difficult to decompose a set of rewrite rules into modules.

Process algebras and other calculi on the other hand are strong in modu-
larity issues. Interacting components are found by common names, rather than
by adjacency. (The concept of identifying interacting components by adjacency
seems to be also natural and can be found in the λ-calculus [Bar84] and in
Boudol’s γ-calculus [Bou89].)

We attempt to preserve, in our calculus, both features: locality and modu-
larity.

Spider adopts basic concepts of the λ-calculus (such as abstraction and
application), while the string notation is replaced by hierarchical hypergraphs
with expressions attached to hyperedges. This reflects a natural perception of
a distributed system, where interconnected components are part of a multi-
dimensional structure. No global port or channel names are needed.

The two versions of representing interconnected structure, which we will
call graph-based and name-based, both have their merits. It is part of this work
to show that both notations can be converted into one another, so that it is
possible to exploit the advantages of both.

While name-based notation is very common, attempts to describe processes
by graphs are less widespread, so it is necessary to explain, in more detail,
the reasons for this notation. We will now summarize the main features of
hypergraph represention for processes:

Visualization: One obvious strength of graph representation is, of course, vi-
sualization. There are several approaches to simplify programming by
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6 1 Introduction

allowing the programmer to specify and view components in a graphi-
cal way. Especially in concurrent programming graphical representation
arises very naturally. Although it would be, in my opinion, a mistake to
simply equate the terms “graph-based” and “graphical”, most types of
graphs come with an intuitive and suggestive graphical depiction.

Various Representations: As already stated above, there are several meth-
ods of graph construction and graph rewriting: the set-based approach,
the categorical approach, graph expressions, and a name-based notation,
which is used in most process calculi. We will see that these approaches
have different advantages but can easily be converted into one another.

Therefore the various graph representations give us the possibility to view
a structure from different angles and to choose whatever representation
is appropriate.

Fusing of External Ports: There is one feature of graph notation which can-
not be simulated in process calculi where fusing of ports is described by
name substitution (another case is the Fusion Calculus [PV98], where fu-
sion of ports is realized by an equivalence relation). In these calculi a
process cannot connect two external ports to which it is attached, a con-
cept which is entirely natural and desirable in many cases. We will show
later how this can easily be achieved in graph notation.

Concepts from Graph Theory: We will show in this work how concepts
adopted from graph theory play an important role in the analysis of re-
active systems. Concepts like adjacency, morphism and isomorphism can
be used to analyze and verify programs.

Imposing Additional Structure: Since, in the set-theoretic representation
of graphs, each component (process, message, port) is an object of its
own (having a unique name), it is easy to impose additional structure,
i.e. to introduce labels that were not conceived at the beginning. This is
especially important for our type system where a graph is annotated with
additional information in order to check certain properties.

Since perfect solutions seem to be rare, there is also a price one has to
pay for the benefits mentioned above. Our graph notation introduces a certain
overhead since the interface of a process has to be specified explicitly on each
hierarchy level.

1.2 Generic Type Systems

It is the aim of the second part of this thesis to propose a general framework for
the generation of type systems checking invariant properties of processes. We
will propose a generic type system for our graph-based calculus. Specialized
type systems can then be generated by instantiating the original system. We
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show the subject reduction property, the absence of runtime errors for well-
typed processes and the existence of principal types and of a type inference
algorithm.

This part of our work is based on the observation that different type systems
for process calculi [PS93, NS97, Aba97, Kob97] have similarities and could be
integrated into one single system.

Types will also be represented by graphs and the main idea is that there
exists a graph morphism from each process into its type. So if a property is
preserved by inverse graph morphisms, (e.g. the absence of circles, necessary
for deadlock prevention) and if this property is valid for the type, it is also
valid for the process and—because of the subject reduction property—for all
its successors. If a property is preserved by inverse graph morphisms it is, of
course, not necessarily preserved by graph morphisms, so not every process
satisfying a certain condition is actually well-typed.

In order to make the type system more powerful, each type graph can be
labelled with lattice elements, which can be used to derive more information
about processes. It is, however, necessary to define, how these lattice elements
behave under morphisms. This is described by a type functor mapping graph
morphisms onto join-morphisms in lattices. An extension of the type system
will use monoids instead of lattices.

Since our formalism relies on graphs and morphisms, it is sensible to describe
graph rewriting respectively graph construction by means of category theory,
as opposed to more constructive descriptions. This will simplify the definition
of the type system, the treatment of lattice respectively monoid elements and
the following proofs.

We see the following advantages in describing both processes and types by
graphs:

• since both have the same structure, the inference of properties of a process
from its type is rather intuitive

• it is more convenient to add additional labels or structures (e.g. arrows
between arbitrary nodes) to a type represented by a graph than to a type
represented by a term

• recursive types, essential for typing processes, can be described by cycles
in a graph (see also [RV97, Yos96])

1.3 Summary of this Work

We give abstracts for the chapters to come:

2 Methods of Hypergraph Construction We investigate various methods
of hypergraph representation and construction, the first being the set-
based notation. This is simply the representation of graphs by means
of sets of nodes and edges. We will define the notions of morphism, of
isomorphism, of factorization and of graph context.
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For some proofs and applications, set-based notation turns out to be too
constructive in nature. We will thus introduce the categorical approach
(also called algebraic approach) which regards hypergraphs as the objects
of a category. New hypergraphs are constructed using co-limits.

Another equivalent, method is the representation of hypergraphs by graph
expressions. The algebra of hypergraphs is described by sorts, function
symbols and a set of equations. The operations on graphs used in this
algebra turn out to be useful for the compact description of graphs.

In order to bridge the gap between graph-based and name-based descrip-
tion of processes, we will describe a way of presenting graphs based on
node names. This notation is useful for the translation of process calculi
(e.g. the π-calculus) into our calculus.

While all methods of describing graphs do already exist, we add extensions
specific to our problems and give translations from one notations into the
other.

3 Process Calculi: An Overview We give an overview over existing process
calculi (such as CCS, the π-calculus, HOπ, CHOCS, CHAM) and explain
how they differ from or have inspired the graph-based calculus Spider.

4 The Spider Calculus: Syntax and Semantics We present the syntax
and operational semantics of the Spider calculus. Every Spider ex-
pression is essentially a hierarchical hypergraph. The semantic rules are
grouped into rules of structural congruence and reduction rules. The main
reduction rules are the replication of a process and message reception.

Spider was designed as an asynchronous calculus containing two forms
of mobility: mobility of port addresses and mobility of entire processes.
That is we can send port addresses as well as processes as the content of
a message, which leads to dynamic reconfigurations of the process graph.

5 Extended Example: Mail Delivery System This chapter is intended for
demonstrating the features of Spider and for familiarizing the reader with
the new notation.

In order to demonstrate the usefulness of mobility we model a mail de-
livery system with routers and client processes and show how to realize
registering of new clients and how to enrich messages with routing infor-
mation.

6 Bisimulation and Proof Techniques It is often desirable to regard pro-
cesses modulo a bisimulation equivalence. This equivalence abstracts from
the internal structure of a process and focuses on the interaction of a pro-
cess with its environment.

We demonstrate how to define bisimulation equivalence in Spider and
show how to adopt known proof techniques to Spider. Bisimulation is
known to be undecidable, but there is a collection of methods, called
bisimulations up-to, making proofs possible in some cases.
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7 Comparison with other Formalisms We show that Spider is able to
simulate well-known calculi, such as the λ-calculus or the π-calculus. In
order to do so we first define what it means for a calculus to be simulated
by another.

Furthermore we show two alternative versions of the Spider calculus,
one based on the algebraic approach and the other on the name-based
notation, the latter being an intermediate step in the encoding of the
π-calculus into Spider.

8 Generating Type Systems This chapter is concerned with the type sys-
tem for Spider, as described above. We present a new kind of type system
based on the following idea: types are graphs and if a process can be typed,
then there exists a morphism from the graph representing the process, into
its type.

First, we introduce the theory of lattice-ordered commutative monoids, of
which lattices are only a special case. Then we give a type system based
on lattices, i.e. type graphs are labelled with lattice elements.

We extend this type system by using lattice-ordered commutative monoids
as label sets, which enables us to actually count. This type system is
more powerful in some ways but introduces additional complications. So,
in order to keep everything manageable, we only give this type system for
a restricted calculus without higher-order communication.

For both kinds of type systems we can prove the subject reduction prop-
erty (types do not change during reduction), the existence of principal
types and automatic type inference. Both type systems are generic, i.e.
they can be instantiated in order to show specific properties of a process.

We end this chapter by comparing the two type systems with each other
and with standard type systems for the π-calculus and show in which
cases they coincide.

1.4 Dependency Graph of the Chapters and Sections

We now give a graph describing the dependency of the chapters and sections
of this work (see figure 1.1). If there is a path from x to y, this means that
section/chapter y relies on definitions, propositions or other important parts of
section/chapter x.

1.5 Remarks on Notation

Now we introduce some notations which will be used throughout this work:

Strings: Let A be any alphabet. A∗ denotes the set of all strings of elements
of A. If s ∈ A∗ then Set(s) ⊆ A denotes the set of all elements in s. |s|
denotes the length of s, while s1 ◦ s2 denotes the concatenation of strings
s1 and s2. ε represents the empty string.
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Figure 1.1: Dependency graph of the chapters and sections

A∗
df denotes the set of all duplicate-free strings of elements of A. That is

A∗
df := {s ∈ A∗ | |s| = |Set(s)|}.

Let s = a1 . . . am ∈ A∗ where ai ∈ A and let i1, . . . , in ∈ lN with m ≥
max{i1, . . . , in} ≥ 1. Then

bsci1...in := ai1 . . . ain

s\i1 . . . in := aj1 . . . ajk

where {j1, . . . , jk} = {1, . . . ,m}\{i1, . . . , in} and j1 < j2 < . . . < jk. That
is we remove the i1-th, i2-th, etc. element from s.

Now let B ⊆ Set(s). We define

s\B := s\i1 . . . in

where {i1, . . . , in} = {i | ai ∈ B, i ∈ {1, . . . ,m}. That is we remove all
elements contained in B from s.

Mappings: Let f : X → Y be a mapping from a set X into a set Y .

IfX ′ ⊆ X, f |X′ : X ′ → Y denotes the mapping whose domain is restricted
to X ′. And if f(X) ⊆ Y ′ ⊆ Y then f |Y

′
: X → Y ′ denotes the mapping

whose range is restricted to Y ′.

We often extend f to a mapping f : X∗ → Y ∗ without explicitly men-
tioning it. If x1, . . . , xn ∈ X we define f(x1 . . . xn) := f(x1) . . . f(xn).
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Equivalence Relations: Let R be an equivalence relation on the set X, i.e.
R is reflexive, transitive and symmetric. [x]R with x ∈ X denotes the
equivalence class of x, i.e.

[x]R := {y | y ∈ X,xR y}

The quotient X/R is the set of all equivalence classes.



Chapter 2

Methods of Hypergraph

Construction

Hypergraphs form the foundation of the syntax of the Spider calculus. They
are a generalization of directed graphs, where each edge is associated with an
arbitrarily long string of nodes. Another feature of our hypergraph model is the
existence of a special string of nodes, called “external nodes”. These external
nodes are useful for assembling hypergraphs.

Unlike in string rewriting where there seems to be one standard approach
to describe and modify strings, there are several equivalent concepts in graph
rewriting. We will consider in more detail the following four approaches:

The Set-Based Approach: a hypergraph consists of edge and node sets and
of mappings connecting edges with nodes.

The Categorical Approach: we will show how hypergraphs and hypergraph
morphisms can be regarded as a category.

Graph Expressions: hypergraphs can also be represented by terms in an al-
gebra. We give a signature and a set of equations.

The Name-Based Notation: we will relate hypergraphs to the name-based
notation of structures used in most process algebras.

These concepts have different strengths and weaknesses and, depending on the
problem we are working on, it is often appropriate to switch to another model
or to use several approaches together. Examples will appear later in this work.

A very important concept in graph theory is that of isomorphism, i.e. we do
not want to distinguish graphs having the same internal structure, but different
internal names.

We will furthermore focus on methods of hypergraph construction, i.e. we
will show how to concatenate hypergraphs. Having established what graph con-
struction means, the definition of graph rewriting is obvious: in a hypergraph
which is constructed of several subgraphs, one of them the left-hand side of
a rewrite rule, we just replace the left-hand side by the right-hand side and
assemble the new graph in the same way as the old one.

12



2.1 Set-Based Approach 13

We then compare the methods of decomposing or factorizing hypergraphs
in the four approaches and show that they are all equivalent. That is we can
translate one method into another and obtain results which are the same up to
isomorphism. Furthermore we will show that there are basic graphs, consisting
of one edge only, which form the prime elements of a factorization, i.e. a
factorization into basic graphs is unique up to isomorphism.

2.1 Set-Based Approach

This is the most obvious approach to describe graphs and graph construction
(for a slightly different presentation see [Hab92]). Its advantages are its direct
and constructive nature. However, proofs in this notation tend to get rather
clumsy quite soon. Furthermore we do not want to distinguish graphs of the
same structure, i.e. isomorphic graphs. In this approach we have to explicitly
construct equivalence classes of graphs, whereas in other approaches the concept
of isomorphism arises more naturally.

2.1.1 Basic Definitions

A hypergraph consists of nodes and edges just as directed graphs. The difference
to ordinary graphs consists in the method of connecting edges with nodes. Every
edge posesses a string of nodes of arbitrary length. If we only use strings of
length two, we obtain directed graphs.

Another feature of hypergraphs is a string of external nodes, which are used
to attach hypergraphs to one another. Their purpose will be clarified in the
rest of this chapter.

Definition 2.1.1 (Hypergraphs) Let Z be a fixed set of edge sorts and let
L be a fixed set of labels.

A simple hypergraph G is a tupel G = (V,E, s, z, l) whose components have
the following meaning:

• V is a set of nodes

• E is a set of edges or hyperedges which is disjoint from V

• s : E → V ∗ maps each hyperedge to a string of source nodes

• z : E → Z assigns a sort to every hyperegde

• l : E → L labels the hyperedges

A hypergraph or multi-pointed hypergraph H = G[χ] is composed of a simple
hypergraph G = (V,E, s, z, l) and a string of external nodes χ ∈ V ∗.

The class of all simple hypergraphs with labels L and sorts Z is called
G(Z,L), while the corresponding class of hypergraphs is denoted by H(Z,L).
2
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Similar definitions for hypergraphs are given in [BC87, Hab92]. In [Hab92]
the author distinguishes source and target nodes of a hyperedges. Furthermore
there are two strings of external nodes: the begin-nodes and the end-nodes. We
follow the argumentation in [BC87] which says that this notation can normally
be converted into the one in definition 2.1.1 by concatenating the source and
target strings as well as the begin and end strings.

One reason for using the notation in [Hab92] would be to demand that no
end node is used as a source node and that no begin node is used as a target
node. This restriction is useful in some cases but has the grave disadvantage
that not every subgraph of a restricted hypergraph satisfies this condition.

Edge sorts are important to distinguish edges representing processes, mes-
sages or variables. The label, on the other hand, contains the process descrip-
tion, the message content or the name variable.

Notes and Abbreviations:

Components of a Hypergraph: The components of a hypergraph H are de-
noted by VH , EH , sH , zH , lH , χH . The set of all external nodes is called
EXTH := Set(χH).

EzH := {e ∈ EH | zH(e) = z} denotes the set of all edges of sort z.

Source Nodes: Let e ∈ EH . We define SOURCE(e) := Set(sH(e))

Cardinality: The cardinality of a hyperedge e ∈ EH is defined by: card(e) :=
|sH(e)|. The cardinality of a hypergraph H is card(H) := |χH |.

Internal Nodes: All the nodes in VH\EXTH are called internal and an in-
ternal node v ∈ VH that is not in the range of sH is called isolated .

Redefining External Nodes: Let H := G[χ] be a hypergraph. We define
H[χ′] := G[χ′] if χ′ ∈ V ∗

G.

Removing Edges: Let E ′ ⊆ EG.

We define G|E′ := (VG, E
′, sG|E′ , zG|E′ , lG|E′). And if H = G[χ] we define

H|E′ := (G|E′)[χ].

As mentioned in the introduction, graphs have the great advantage of posess-
ing an appealing visual representation, which makes it easier to grasp some
concepts.

We will use the following graphical notation for hypergraph nodes and edges:
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Graphical Notation:

Node Edge
z

...

l

source nodes

l ∈ L, z ∈ Z

External nodes will be labelled (1), (2), (3), . . .

Sometimes graphs are easier to draw if
we attach nodes above and below edges.
They are ordered from left to right, nodes
above precede nodes below:

...

1 m

m+nm+1

...

In the rest of this work we will often map hypergraphs onto other hyper-
graphs, while at the same time preserving their structure. Mappings preserving
the structure of an object are a widespread concept in mathematics and are
ordinarily called morphisms or homomorphisms.

Definition 2.1.2 (Hypergraph Morphism) Let R ⊆ L × L be a reflexive
and transitive relation on the set of labels.

Let G,G′ ∈ G(Z,L) be two simple hypergraphs. A hypergraph morphism
φ:G → G′ (wrt. R) consists of two mappings φE :EG → EG′ , φV :VG → VG′

satisfying for all e ∈ EG:

φ∗V (sG(e)) = s∗G′(φE(e)) zG(e) = zG′(φE(e)) lG(e) R lG′(φE(e))

A morphism φ is called a

monomorphism ⇐⇒ φV , φE are injective
epimorphism ⇐⇒ φV , φE are surjective
isomorphism ⇐⇒ φV , φE are bijective

We write φ : G[χ] → G′[χ′] if φV (χ) = χ′. In this case φ is called a strong
morphism. We define card(φ) := |χ|. 2

From now on we omit the subscripts in φE and φV if they can be derived
from the context. If we do not indicate otherwise, the relation R of a morphism
is always the identity.

Notes: Let φ : G → G′ and ψ : G′ → G′′ be two morphisms wrt. R. Then the
morphism ψ ◦ φ consisting of ψV ◦ φV and ψE ◦ψE (where ◦ is the composition
operator on mappings) is also a morphism wrt. R. Note that this is only true
because of the transitivity of R.

Furthermore the reflexivity of R yields an identity morphism idG : G → G
for every simple hypergraph G, consisting of idVG

and idEG
.
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There are several notions of isomorphism, simple hypergraphs as well as
multi-pointed hypergraphs can be isomorphic. We also define isomorphism of
families of morphisms.

Definition 2.1.3 (Isomorphism) Let G,G′ be simple hypergraphs. G is iso-
morphic to G′ (G ∼=R G

′) if there is an isomorphism φ : G → G′ (wrt. R). We
will write G ∼= G′ if R is the identity on L.

Two hypergraphs G[χ], G′[χ′] are called isomorphic, if there exists a strong
isomorphism φ : G[χ] → G′[χ′] (wrt. R).

Let (φi)i∈{1,...,n}, (ψi)i∈{1,...,n} be two families of morphisms where φi : Gi →
G and ψ′ : G′

i → G. They are called isomorphic wrt. R

(φi)i∈{1,...,n} ∼=R (ψi)i∈{1,...,n}

if there exists an isomorphism φ : G→ G′ (wrt. R) such that ∀ i ∈ {1, . . . , n} :
φ ◦ φi = ψi. 2

It is our aim to work with isomorphism classes of graphs, i.e. with abstract
graphs rather than with concrete graphs, as far as possible.

Some Special Graphs:
We call a hypergraph discrete, if its edge set is empty.

m with m ∈ lN denotes a discrete graph of
cardinality m with m nodes where every
node is external.

(1) ... (m)

m denotes a discrete graph with m nodes
and with an empty string of external
nodes.

m nodes

...

H := zn(l) is the hypergraph with exactly
one edge e, where lH(e) = l, zH(e) = z,
sH(e) = χH , |χH | = n, VH = EXTH . it is
also called basic graph.

...

zl

(1) (n)

The following type of morphism will be needed later in this work, especially
in chapter 8.

Definition 2.1.4 (Nice Graph Morphisms)
A strong morphism φ : H → H ′ is called nice if φ(VH\EXTH) ⊆ VH′\EXTH′

and φ|EXTH
is injective. 2

We now concentrate on the main purpose of this chapter and show how to
compose and decompose hypergraphs. We start by defining an embedding (see
also [BC87, Ehr79]) which is a special kind of morphism. The main idea behind
an embedding is the following: if there is an embedding η : H � H ′ then H
can be considered as a “part” or factor of H ′. Note that only the images of



2.1 Set-Based Approach 17

external nodes of H ′ are allowed to be in contact with the rest of the graph. η
is injective on any other part of H ′ except the external nodes.

Definition 2.1.5 (Embedding) Let G[χ], G′[χ′] ∈ H(Z,L) be two hyper-
graphs. A hypergraph morphism η : G → G′ is called an embedding of G[χ]
into G′[χ′] (written η : G[χ] � G′[χ′]) if

• η is edge-injective, i.e. ηE is injective

• If v, v′ ∈ VG with v 6= v′, then η(v) = η(v′) implies v, v′ ∈ Set(χ′)

• Let v ∈ VG and let η(v) ∈ SOURCE(e) with e ∈ EG′\η(EG) or η(v) ∈
Set(χ′). This implies v ∈ Set(χ)

If there is an embedding η : H → H ′ we call H a factor of H ′. 2

It turns out that the composition η′ ◦ η of two embeddings η : H � H ′,
η′ : H ′

� H ′′ is again an embedding.

A hypergraph can consist of several factors which are expected to form a
kind of partition of the graph. These factors only overlap in the images of their
external nodes.

Definition 2.1.6 (Factorization) Let ηi : Gi → G, i ∈ {1, . . . , n} be mor-
phisms and let χ ∈ V ∗

G, χi ∈ V ∗
Gi

. Furthermore let vi ∈ VGi
, vj ∈ VGj

, ei ∈ EGi
,

ej ∈ EGj
and

ηi(ei) = ηj(ej) ⇒ i = j, ei = ej (2.1)

ηi(vi) = ηj(vj) ⇒ (i = j, vi = vj

∨ vi ∈ Set(χi), vj ∈ Set(χj)) (2.2)

ηi(vi) ∈ Set(χ) ⇒ vi ∈ Set(χi) (2.3)

EG =
n⋃

i=1

EGi
(2.4)

It is straightforward to show that ηi : Gi[χi] � G[χ] are embeddings. (ηi)i∈{1,...,n}
is called a factorization. 2

Any set of embeddings, whose ranges overlap only in the images of the
external nodes, can be extended to a factorization.

Proposition 2.1.7 (Extending Embeddings to a Factorization) Let ηi :
Hi � H, i ∈ {1, . . . , n} be embeddings such that the sets ηi(EHi

) are pairwise
disjoint and ηi(VHi

\EXTHi
) ∩

⋃n
j=1,j 6=i VHj

= ∅ for every i ∈ {1, . . . , n}.

Then there exists an embedding ηn+1 : Hn+1 � H such that ηi : Hi → H,
i ∈ {1, . . . , n+ 1} is a factorization.
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Proof: We define a hypergraph Hn+1 with:

EHn+1 := EH\
n⋃

i=1

ηi(EHi
)

VHn+1 :=
⋃

e∈EHn+1

SOURCE(e)

sHn+1 := sH |EHn+1

lHn+1 := lH |EHn+1

And choose any χHn+1 such that Set(χHn+1) = VHn+1 . Furthermore let ηn+1(e) :=
e if e ∈ EHn+1 and ηn+1(v) := v if v ∈ VHn+1 .

It is straightforward to check that (ηi)i∈{1,...,n+1} is a factorization.

Note that ηn+1 is, by no means, unique. 2

Example of a Factorization: Consider the following hypergraphs
H,H1, H2, H3. Because of the edge-labels there is only one choice for em-
beddings ηi : Hi � H, i ∈ {1, . . . , n} (Images of external nodes are marked
black.). (ηi)i∈{1,...,3} is one of many possible factorizations of H.

(1)

(2)

(3) (4)

3

(2)

(2)

(1)

(1)

(1)

(2)

C

D E

A B A

D

B C

E
H

H1

H2

H

If we remove the second external node of H2 from the string χH2 and make
it internal, the corresponding embeddings η1, η2, η3 still form a factorization,
since the image of this is not connected to anything except the image of H2.
If we make any other node internal, however, the result is not a factorization
any more, since condition 2.2 is violated.

Figure 2.1: Example of a Factorization

Note: For the sake of simplicity, we will assume in all the examples in this
sections, that all edges have one single, common edge sort. From now on,
the edge sort is represented by the form of the line surrounding the edge (e.g.
dashed or dotted). We see in the next section that edges with edge sort var
(edges representing variables) are surrounded by a line with long dashes.

It is quite obvious that the factorization of a hypergraph is by no means
unique. We will show later in proposition 2.2.20 that there are basic hyper-
graphs corresponding to primes, and that a factorization into basic hypergraphs
is actually unique.
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2.1.2 Quotient Graphs

One way to construct a new graph (a quotient graph) out of other graphs is to
define an equivalence relation on the nodes and hyperedges of the graphs and
to collapse them according to the equivalence. That is, we join the graphs and
merge all edges and nodes related by the equivalence.

Our definitions are slightly complicated by the fact that the node and edge
sets of the hypergraphs need not be disjoint. Therefore we have to keep track
of the origin of each node or hyperedge and pair them with a natural number,
indicating the original graph.

We could omit this if we would demand that all node and hyperedge sets
are disjoint, an assumption we do not want to rely on.

As it turns out, arbitrary equivalences do not always yield well-defined re-
sults. Therefore we will restrict our equivalences:

Definition 2.1.8 (Consistent Equivalence Relations) Let G0, . . . , Gn be
simple hypergraphs, let ≈V be an equivalence on

⋃
i∈{1,...,n}(VGi

, i) and let ≈E

be an equivalence on
⋃
i∈{1,...,n}(EGi

, i).

≈V ,≈E are called consistent iff ∀ ei ∈ EGi
, ej ∈ EGj

, i, j ∈ {0, . . . , n}

(ei, i) ≈E (ej , j) ⇒ card(ei) = card(ej), zGi
(ei) = zGj

(ej),

lGi
(ei) = lGj

(ej) and (sGi
(ei), i) ≈V (sGj

(ej), j)

where (s, i) ≈ (s′, j) ⇐⇒ |s| = |s′| ∧ ∀k ∈ {1, . . . , |s|} : (bsck, i) ≈ (bs′ck, j) 2

Note: We will often write ≈ for either ≈E or ≈V .

Definition 2.1.9 (Quotient Graph) Let G0, . . . , Gn be simple hypergraphs
and let ≈V ,≈E be consistent equivalences as defined above. We will now define
the quotient graph G := G0 . . . Gn/≈.

G := ((
n⋃

i=0

(VGi
, i))/≈, (

n⋃

i=0

(EGi
, i))/≈, sG, zG, lG)

with

sG([(ei, i)]≈E
) := [(bsGi

(ei)c1, i)]≈V
. . . [(bsGi

(ei)cm, i)]≈V
if card(ei) = m

zG([(ei, i)]≈E
) := zGi

(ei)

lG([(ei, i)]≈E
) := lGi

(ei)

2

Since ≈V ,≈E are consistent, it is ensured that G is well-defined.

We can define canonical projection morphisms pi : Gi → G with (pi)V (v) :=
[(v, i)]≈V

, (pi)E(e) := [(e, i)]≈E
.
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Example of a Quotient Graph: In the following example we will, for
once, not only label the hyperedges, but also give names to the nodes
and hyperedges of the graph G.

v2v1

e1

e3

v3 v4

v5

e4

e2
v2 v4 ]

e4[ ]

[e ]2

e1 e3],
C

A

B

C

BA

A

G

G’

Quotient:

[[ , , ]v3v1 v5
,

[

For G the equivalence e1 ≈ e3, v1 ≈ v3 ≈ v5, v2 ≈ v4 is consistent. Its
quotient is formed by merging the equivalent components.

Note: Any surjective morphism φ : G → G′ can be characterized—up to
isomorphism—by an equivalence ≈ on G such that G′ ∼= G/ ≈ and φ is the
projection of G into G′.

2.1.3 Hypergraph Construction with Context Graphs

The process of replacing a hyperedge with a hypergraph of the same cardinality
is quite intuitive, but somewhat tedious to define.

There are several possible definition, we use the concept of the quotient
graph to define substitution of variables.

Definition 2.1.10 (Substitution and Contexts)
We assume that the set L of edge labels contains an element var. Let

X = {x1, . . . , xn} be a set of variables where each variable x ∈ X has sort
sort(x) ∈ lN.

A context graph C〈x1, . . . , xn〉 = G[χ] is a hypergraph where, for every
i ∈ {1, . . . , n} there is exactly one edge ei labelled xi and of edge sort var and
where card(ei) = sort(xi).

Let
H1 = G1[χ1], . . . , Hn = Gn[χn] ∈ H(L ∪X)

be hypergraphs with sort(xi) = |χi|.
Let ≈ be the smallest equivalence such that for all i ∈ {1, . . . , n}

(sG(ei), 0) ≈ (χi, i)

We define

C〈H1, . . . , Hn〉 := ((G\{e1, . . . , en})G1 . . . Gn/≈)[χ′]

where χ′ := p0(χ) if p0 is the projection of G\{e1, . . . , en} into the quotient
graph.
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C〈x1, . . . , xn〉 (or C for short) is called an n-ary context. It is called discrete
if it only contains edge labels x1, . . . , xn. 2

What we are, in fact, doing in the definition above is the following: we
remove all edges in G labelled xi and add an isomorphic copy of Gi for every
edge. Afterwards we connect the nodes in χi with the source nodes of the
deleted edge.

Example Context: For the following context C it holds that H ∼=
C〈H1, H2, H3〉 (see figure 2.1).

(2)

x1 x 3

x2

3 >

(1)

C<x  ,x ,x1 2

Lines with long dashes indicate that these edges have edge sort var.

When we draw a graph of the form C〈H1, . . . , Hn〉 it might be desirable
to indicate the structure of the original context C. In order to do so we draw
the context C with all its edges and put the graphs H1, . . . , Hn into the edges
originally labelled x1, . . . , xn.

A

D

(1)

(2)

(3) (4)

(2)

(1)

E

(2)(1)

B C

(2)

(1)

(2)

C

D E

A B

1 2 3 >C<H  ,H ,H  = H

(1)

Note that this is purely a notational convention and is not identical with
hierarchical hypergraphs introduced in chapter 4.
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Note: Let C〈x1, . . . , xn〉 be a context graph with mi := sort(xi). Then

C〈x1, . . . , xn〉 ∼= C〈varm1(x1), . . . , varmn(xn)〉

2.2 Categorical Approach

The main idea behind category theory is to define objects with respect to their
relations with other objects, and not by their internal structure, as we have
done in the previous section.

Since this can be done not only in graph theory but also in many other fields
of mathematics (e.g. algebra, lattice theory), category theory is a meta-theory
capturing the properties these different fields have in common.

Compared to the set-theoretic approach the categorical approach to graph
representation leads to non-constructive definitions. Its application lies mainly
in proofs since it makes assertions about the existence of morphisms with cer-
tain properties. In this way it relieves us from the burden to construct every
morphism by hand and to show its properties “manually”.

The treatment of graphs as objects of a category and the double-pushout
approach for graph rewriting are introduced in [Ehr79].

We will only use a few concepts from category theory which we review in
the following section (see also [Cro93]).

2.2.1 Introduction to Category Theory

The first step is to define what a category actually is. It turns out that it is a
very general mathematical structure.

Definition 2.2.1 (Category) A category C consists of the following compo-
nents:

• A class obj(C) of entities called objects.

• A class mor(C) of entities called morphisms.

• Two operations src and tar assigning a source object src(φ) and a target
object tar(φ) to every morphism φ ∈ mor(C).

(Notation: φ : src(φ) → tar(φ))

• For every object A there is a morphism idA : A → A, the identity mor-
phism.

• Two morphisms φ,ψ are composable if src(φ) = tar(ψ). The composition
is denoted by φ ◦ ψ : src(ψ) → tar(φ).

The morphisms satisfy the following properties:

idtar(φ) ◦ φ = φ (2.5)

φ ◦ idsrc(φ) = φ (2.6)
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Furthermore composition is associative, i.e. given morphisms φ, ψ, ζ with
tar(φ) = src(ψ), tar(ψ) = src(ζ)

(ζ ◦ ψ) ◦ φ = ζ ◦ (ψ ◦ φ) (2.7)

2

Note that while often morphisms are expected to be mappings preserving
some kind of structure, in this definition we do not demand any such thing.
We do not even require them to be functions at all. In practice, however,
and especially in our case, the morphisms of a category very often satisfy this
property.

Examples: Typical examples for categories are the category Set, which contains
sets as objects and functions mapping sets onto sets as morphisms, and the
category Rel, which contains relations instead of functions. In both cases we
use the usual composition operator.

It is not difficult to check that also the class G(Z,L) of simple hypergraphs
forms a category with the hypergraph morphisms. H(Z,L) is a category with
the strong morphisms, the embeddings or the nice morphisms.

Definition 2.2.2 (Isomorphism) Let C be a category and let φ ∈ mor(C)
with φ : A→ B. φ is called isomorphism if there exists a morphism ψ : B → A
such that ψ ◦ φ = idA, φ ◦ ψ = idB.

In this case A and B are called isomorphic. 2

If we regard the category of strong hypergraph morphisms ,this concept of
isomorphism in category theory coincides with the isomorphism of graphs from
definition 2.1.2.

If we step up one level we may decide to regard categories as the objects
of a very large category. In this case we need some kind of mapping between
categories, taking the place of morphisms. This mapping is called functor :

Definition 2.2.3 (Functor) A functor F : C → D between categories C and
D is specified by:

• An operation mapping objects A ∈ obj(C) onto objects F (A) ∈ obj(D).

• An operation mapping morphisms φ : A→ B in C onto morphisms F (φ) :
F (A) → F (B) in D. (We will also denote F (φ) by Fφ).

F satisfies the following properties:

F (idA) = idF (A)

F (φ ◦ ψ) = F (φ) ◦ F (ψ) if φ and ψ are composable

2



24 2 Methods of Hypergraph Construction

We will now start to define the notion of a co-limit, which is a method of
defining new objects out of known objects and morphisms. The new object is
determined only by its relation with other objects.

Every co-limit construction starts with its input: a diagram.

Definition 2.2.4 (Diagram) Let C be a category. A diagram D in C consists
of objects A1, . . . , An ∈ obj(C) and of sets of morphisms Mij ⊆ mor(C), i, j ∈
{1, . . . , n} where Mij contains morphisms of the form Ai → Aj in C.

Let D, D′ be two diagrams with objects A1, . . . , An respectively A′
1, . . . , A

′
n

and morphism sets Mij respectively M ′
ij , where each morphism φij ∈ Mij is

bijectively mapped onto a corresponding morphism φ′ij . D, D′ are called iso-
morphic if there are isomorphisms ψi : A′

i → Ai such that ψj ◦φ′ij = φij ◦ψi for
every pair φij , φ

′
ij . 2

Given a diagram consisting of objects A1, . . . , An and morphism sets Mij

we attempt to construct a new object A and new morphisms φi : Ai → A in
the following way:

Definition 2.2.5 (Co-Limit) Let A1, . . . , An ∈ obj(C), together with mor-
phism sets Mij ⊆ mor(C) (where Mij contains morphisms of the form Ai → Aj)
be a diagram D in the category C. The co-limit of the diagram consists of an
object A and of morphisms φi : Ai → A, i ∈ {1, . . . , n} satisfying the following
conditions:

• For every φij ∈Mij : φj ◦ φij = φi

• For any object A′ and morphisms φ′i :
Ai → A′ satisfying φ′j ◦ φij = φ′i for ev-
ery φij ∈ Mij there is a unique morphism
ψ : A→ A′ such that ψ ◦φi = φ′i for every
i ∈ {1, . . . , n}.

A Aji

A

A’

φ

ψ

φ φ

φ

i,j

i j

’ ’
i

φ
j

We define limD := (φ1, . . . , φn). 2

The idea behind the second condition is to take the object A that is, some-
how, the “smallest” or initial object satisfying the first condition.

If the diagram consists of two morphisms φ1 : B → B1, φ2 : B → B2 then
its co-limit is called a pushout .

It is not always obvious if a co-limit actually exists. But if it exists it is
unique up to isomorphism. We can even state that isomorphic diagrams have
isomorphic co-limits.
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Proposition 2.2.6 (Isomorphism of Co-Limits) Let D, D′ be isomorphic
diagrams with objects A1, . . . , An respectively A′

1, . . . , A
′
n and isomorphisms ψi :

A′
i → Ai. Let φi : Ai → A respectively φ′i : A′

i → A′ be their co-limits.
Then there exists an isomorphism ψ : A′ → A such that φi ◦ ψi = ψ ◦ φ′i.

Proof: Since A′ is the co-limit of D and there are morphism φi ◦ ψi : A′
i → A

with (φj ◦ ψj) ◦ φ
′
ij = φj ◦ φij ◦ ψi = φi ◦ ψi.

The properties of a co-limit imply that there exists a morphism ψ : A′ → A
with ψ ◦ φ′i = φi ◦ ψi.

In the same way we conclude that there exists a morphism ψ : A→ A′ with
ψ′ ◦ φi = φ′i ◦ (ψi)

−1 which is equivalent to ψ′ ◦ φi ◦ ψi = φ′i.
By substituting φ′i in the equation ψ ◦ φ′i = φi ◦ ψi by ψ′ ◦ φi ◦ ψi we obtain

ψ ◦ ψ′ ◦ φi ◦ ψi = φi ◦ ψi

Since ψi is an isomorphism this is equivalent to ψ ◦ψ′ ◦ φi = φi. But according
to the properties of a co-limit there is only one morphism with such a property,
i.e. ψ ◦ ψ′ = idA.

Similarly we can show that ψ′ ◦ ψ = idA′ . Therefore ψ is an isomorphism.
2

We will now give an alternate definition of the quotient graph from sec-
tion 2.1.2 in terms of category theory.

Proposition 2.2.7 (Quotient Graph) Let G0, . . . , Gn be hypergraphs and let
≈V ,≈E be equivalence relations as defined in definition 2.1.9.

Then G := G0 . . . Gn/ ≈ is defined up to isomorphism by the following
property:

• There are morphisms pi : Gi → G such that (ei, i) ≈E (ej , j) implies
pi(ei) = pj(ej) and (vi, i) ≈V (vj , j) implies pi(vi) = pj(vj)

• For any hypergraph G′ with morphisms p′i : Gi → G′ satisfying

(ei, i) ≈E (ej , j) ⇒ p′i(ei) = p′j(ej)

(vi, i) ≈V (vj , j) ⇒ p′i(vi) = p′j(vj)

it follows that G is defined and that there is a unique morphism φ : G→ G′

such that φ ◦ pi = p′i.

Proof: The existence of projection morphisms pi is clear (see note after defi-
nition 2.1.9).

Let G′ be a hypergraph with morphisms p′i : Gi → G′ satisfying the con-
ditions above. For e ∈ EG, v ∈ VG we define φ(e) := p′i(ei) if e = pi(ei) and
φ(v) := p′i(vi) if v = pi(vi).

We will now show that φ is well-defined: by definition of the quotient graph
and the projections pi(ei) = pj(ej) is equivalent to (ei, i) ≈E (ej , j). This
implies p′i(ei) = p′j(ej). In the case of nodes the proof is analogous.

With the definition of φ is follows immediately that φ ◦ pi = p′i.
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It is left to show that φ is unique. Let φ : G → G′ be another morphism
with these properties. Let e ∈ EG. e is an entire equivalence class, i.e. e =
[(ei, i)]≈E

= pi(ei) for some i. Therefore φ′(e) = φ′(pi(ei)) = p′i(ei) = φ(e). For
any v ∈ VG φ′(v) = φ(v) follows in an analogous way. 2

We can now immediately state the following corollary:

Corollary 2.2.8 Let G0, . . . , Gn be a hypergraph and let ≈, ≈′ be two consis-
tent equivalences on G0, . . . , Gn such that ≈′⊆≈. Let pi : Gi → G/ ≈ and
p′i : Gi → G/≈′ be the projection morphisms.

Then there exists a morphism φ : G/≈′→ G/≈ such that φ ◦ p′i = pi for
i ∈ {1, . . . , n}.

2.2.2 Graph Construction

We now show how category theory can help to construct new graphs and how
factorization can be expressed in this setting.

Our idea is to give a construction plan (similar to the context defined in
section 2.1), only we want the construction plan to be a diagram in the category
of hypergraph morphisms. We now introduce a construction mechanism even
more general than the context from definition 2.1.10. Later, we will demonstrate
the connection between these two methods.

Definition 2.2.9 (Graph Construction) Let C be the category of hyper-
graph morphisms. Let ηi : Gi[χi] � G[χ], i ∈ {1, . . . , n} be embeddings and
let φi : Gi[χi] → G′

i[χ
′
i], i ∈ {1, . . . , n} be strong morphisms.

Let D be a diagram consisting of the morphisms ηi : Gi → G and φi : Gi →
G′
i.

Now let φ : G → G′, η′i : G′
i → G′ (and φ ◦ ηi = η′i ◦ φi : Gi → G′) with

i ∈ {1, . . . , n} be the co-limit of D, if it exists. We define

n⊗

i=1

(φi, ηi) := G′[φ(χ)]

(φ1, η1) ⊗ . . .⊗ (φn, ηn) := G′[φ(χ)]

limn
i=1(φi, ηi) := (φ, η′1, . . . , η

′
n) η

η

G’

G[G

G’[

i

[
’
i

i

φ

χ)]

i

[

φ]

φ

i (

]χi

iχ’

χ]

If the Gi[χi] have the form mi there is only one (canonical) choice for the
strong morphisms φi and we define:

n⊗

i=1

(G′
i[χ

′
i], ηi) :=

n⊗

i=1

(φi, ηi)

(G′
1[χ

′
1], η1) ⊗ . . .⊗ (G′

n[χ
′
n], ηn) := (φ1, η1) ⊗ . . .⊗ (φn, ηn)

limn
i=1(G

′
i[χ

′
i], ηi) := (φ, η′1, . . . , η

′
n)

2
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Since co-limits do not always exist, it is not, at first sight, clear if the graph
construction mechanism defined above, will always yield a result. Thus we will
now show, how the co-limit can be constructed “manually” and that it always
exists. Furthermore since we are interested in factorizations, decomposing an
existing graph, we will show that factorization are preserved by the co-limit.

Proposition 2.2.10 (Graph Construction and Quotient Graphs)

Let φi : Gi[χi] → G′
i[χ

′
i] be strong morphisms and let ηi : Gi[χi] � G[χ] be

embeddings where i ∈ {1, . . . , n}.

Let ≈ be the smallest equivalence on G,G′
1, . . . , G

′
n satisfying:

∀ vi ∈ VGi
: (φi(vi), i) ≈ (ηi(vi), 0)

∀ei ∈ EGi
: (φi(ei), i) ≈ (ηi(ei), 0)

Let G′ := GG′
1 . . . G

′
n/≈ and let φ : G→ G′, η′i : G′

i → G′ be the corresponding
projections. Then

(φ, η′1, . . . , η
′
n)

∼= limn
i=1(φi, ηi)

That is, the co-limit is always defined.

Proof: Since ≈ is the identity on hyperedges it is obviously consistent and
therefore G′ is defined.

With proposition 2.2.7 it follows that G′ satisfies the conditions of a co-limit
of the ηi and φi and therefore

(φ, η′1, . . . , η
′
n)

∼= limn
i=1(φi, ηi)

2

Now we show that factorizations are preserved by co-limits, i.e. if the ηi are
a factorziation, the η′i are a factorization as well.

Proposition 2.2.11 (Graph Construction and Factorizations)

Let (φ, η′1, . . . , η
′
n) := limn

i=1(φi, ηi) with ηi : Gi[χi] � G[χ], φi : Gi[χi] →
G′
i[χ

′
i].

If the ηi are a factorization of G[χ] then the η′i : G′
i[χ

′
i] → G′[φ(χ)], i ∈

{1, . . . , n} are a factorization.

Proof: See appendix A.1. 2

Notation: If there is only one embedding η1 we will write ⊗(H1, η1) instead of⊗1
i=1(H1, η1).
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Example: We give embeddings ζ1, ζ2, ζ3 for the factorization example
(figure 2.1) in the previous section.
ζ1 : 4 → D, ζ2 : 2 → D, ζ3 : 2 → D and H ∼= (H1, ζ1) ⊗ (H2, ζ2) ⊗
(H3, ζ3).

1

2

m1 =

3

ζ

ζ

3

2m

4

2

2=m

=

ζ(1)

(2)
(2)

(1)

(2)(1)

(3)

(4)

D

(2)

(1)

The ζi can be regarded as some kind of construction plan showing how
to connect the graphs H1, H2, H3. If two nodes are mapped onto the
same node in D by the ζi, this indicates that the corresponding nodes
of the Hi are to be glued together.

We will now define a kind of graph construction we will use very often: Let
H, J ∈ H(Z,L) with card(H) = card(J) = m. Furthermore let ζ : m → m be
a strong morphism. We define H2J := (H, ζ) ⊗ (J, ζ). That is we attach H, J
at their external nodes.

Now we are going to show that the co-limit used for graph construction
can be regarded as some kind of building block which can be used to construct
new co-limits. It turns out that merging two matching co-limits yields a new
co-limit. Co-limits can be merged in various ways:

Proposition 2.2.12 (Combination of Co-Limits) Let ηi : Hi � H, φi :
Hi → H ′

i, η
′
i : H ′

i � H ′ and φ : H → H ′ with

(φ, η′1, . . . , η
′
n) = limn

i=1(φi, ηi)

(A) 1 , 2 co-limits ⇒ 1 + 2 co-limit:

Let φ′i : H ′
i → H ′′

i and let

(φ′, η′′1 . . . , η
′′
n) := limn

i=1(φ
′
i, η

′
i)

Then

(φ′ ◦ φ, η′′1 , . . . , η
′′
n)

∼= limn
i=1(φ

′
i ◦ φi, ηi)

H’

η
H

η

H

H’

H’’ H’’
η

φ

i

i

’2

1

i

i

φ

i

φ

i

i

i

’

’

’’

φ
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(B) 1 , 1 + 2 co-limits ⇒ 2 co-
limit:

Let φ′i : H ′
i → H ′′

i and let

(φ′′, η′′1 , . . . , η
′′
n) := limn

i=1(φ
′
i ◦ φi, ηi)

with φ′′ : H → H ′′, η′′i : H ′′
i � H ′′.

Then there exists a strong morphism
φ′ : H ′ → H ′′ such that φ′′ = φ′ ◦ φ
and

(φ′, η′′1 , . . . , η
′′
n)

∼= limn
i=1(φ

′
i, η

′
i)

H’

H
η

H

η
H’

H’’ H’’
η

φ

i

i

’’

2

1

φ

i

i
φ

φ

i

’

i

i

i

’

’

’’

φ

Now let ηij : Hij � Hi, φij : Hij → H ′
ij, η

′
ij : H ′

ij � H ′
i and φi : Hi → H ′

i

with (φi, η
′
i1, . . . , η

′
ini

) = limni

j=1(φij , ηij) (i ∈ {1, . . . ,m}, j ∈ {1, . . . , ni}). (Note

that in this case 1 consists of m co-limits.)

(C) 1 , 2 co-limits ⇒ 1 + 2 co-limit:

Let ηi : Hi � H, i ∈ {1, . . . ,m} and let

(φ, η′1, . . . , η
′
m) := limm

i=1(φi, ηi)

Then

(φ, η′i ◦ η
′
11, . . . , η

′
i ◦ η

′
mnm

) ∼= limi∈{1,...,m},j∈{1,...,ni}(φij , ηi ◦ ηij)

H’

HH

H’ H’

η η

η η

H

21φ φφ

’ ’
ij

i

i

i

ij

ij
ij

ij i

i

(D) 1 , 1 + 2 co-limits ⇒ 2 co-limit:

Let ηi : Hi � H and let

(φ, η11, . . . , ηmnm) := limi∈{1,...,m},1≤j≤ni
(φij , ηi ◦ ηij)

with ηij : H ′
ij → H ′ and φ : H → H ′. Then there exist embeddings

η′i : H ′
i � H ′ such that ηij = η′i ◦ η

′
ij and

(φ, η′1, . . . , η
′
n) := limm

i=1(φi, ηi)
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H’

HH

H’ H’

η η

η η

H

21φ φ φ

ζ

’ ’
ij

i

i

i

ij

ij

ij

ij

ij i

i

Proof: See appendix A.1 2

Assume that we have several graphs H1, . . . , Hm, each constructed by the
help of a co-limit. These graphs are then combined to form a new graph H.
The following question arises: Can we describe H with only one co-limit instead
of a hierarchy of co-limits? The following proposition details how this can be
done.

Proposition 2.2.13 Let ζij : mij � Di and ζi : mi � D, i ∈ {1, . . . ,m},
j ∈ {1, . . . , ni} be embeddings with mi = card(Di) and let Hij be hypergraphs
with mij = card(Hij).

We define

(φ, ξ1, . . . , ξm) := limm
i=1(Di, ζi) ηij := ξi ◦ ζij

It follows that

m⊗

i=1

(

ni⊗

j=1

(Hij , ζij), ζi) ∼=
⊗

i∈{1,...,m},j∈{1,...,ni}

(Hij , ηij)

Proof: Let Hi :=
⊗ni

j=1(Hij , ζij).
Since card(Di) = card(Hi) = mi, it follows that there are canonical strong

morphisms φi : mi → Di and

(φ, ξ1, . . . , ξm) ∼= limm
i=1(φi, ζi)

Let
(ψi, ζ

′
i1, . . . , ζ

′
ini

) := limni

j=1(ψij , ζij)

where the ψij : mij → Hij are the canonical strong morphisms. Since the ψi
are strong, the ψi ◦ φi : mi → Hi are also strong morphisms, in fact they are
the canonical strong morphisms.

Let
(φ′, ξ′1, . . . , ξ

′
m) := limm

i=1(ψi ◦ φi, ζi)

This is exactly the co-limit defining H, i.e. ξ′i : Hi � H and φ′ : D → H.
Proposition 2.2.12 (B) implies that there exists a strong morphism ψ : D′ →

H such that ψ ◦ φ = φ′ and

(ψi, ξ
′
1, . . . , ξ

′
m) = limm

i=1(ξi, ψi)
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It now follows with proposition 2.2.12 (C) that

(ψ, ξ′1 ◦ ζ
′
11, . . . , ξ

′
m ◦ ζ ′mnm

) ∼= limi∈{1,...,m},j∈{1,...,ni}(ψij , ξi ◦ ζij)

which is equivalent to H ∼=
⊗

i∈{1,...,m},1≤j≤ni
(Hij , ηij) since ηij = ξi ◦ ζij .

m D D’

HH

ξ

H

m D
ζ

ζ

ζ ξ’
ij

i

iij

ij

ij
’

i

i

i

ψ

φ

i
i

φ

ψ ψ
i

φ ’ij

2

If Di
∼= mi in the propsition above, matters are easier:

Corollary 2.2.14 Let ζij : mij � mi and ζi : mi � D, i ∈ {1, . . . ,m},
j ∈ {1, . . . , ni} be embeddings and let Hij be hypergraphs with mij = card(Hij).

It follows that

m⊗

i=1

(

ni⊗

j=1

(Hij , ζij), ζi) ∼=
⊗

i∈{1,...,m},j∈{1,...,ni}

(Hij , ζi ◦ ζij)

Proof: It is easy to check that, in this case, that (ξ)i∈{1,...,m}
∼= (ζ)i∈{1,...,m}. 2

We will now describe the decomposition of a context into smaller contexts,
which is the inverse of proposition 2.2.13.

Proposition 2.2.15 Let ζi : mi � D, i ∈ {1, . . . , n} and let

α : {1, . . . , n} → {1, . . . , k}, l1, . . . , lk ∈ lN

Furthermore let ξi : mi � lα(i), i ∈ {1, . . . , n} such that ξi is surjective and
for all j ∈ {1, . . . , k}, i1, i2 ∈ α−1(j) it follows that

v1 ∈ Vmi1
, v2 ∈ Vmi2

, ξi1(v1) = ξi2(v2) ⇒ ζi1(v1) = ζi2(v2) (2.8)

Then there are embeddings ηj : lj � D, j ∈ {1, . . . , k} such that

k⊗

j=1

(
⊗

i∈α−1(j)

(Hi, ξi), ηj) ∼=

n⊗

i=1

(Hi, ζi)
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Proof: We define ηj(v
′) := ζi(v) if v′ = ξi(v). The ηj are well-defined, since

the ξi are surjective and because of (2.8).
Since ηj(ξi(v)) = ζi(v) it follows that ηj ◦ ξi = ζi. With corallary 2.2.14 the

proposition follows immediately. 2

Note that there are other possibilities for decomposing a co-limit.

We will give one more lemma, simplifying co-limits, which will prove to be
useful later in this work.

Lemma 2.2.16 Let Hj
∼= mj where mj ∈ lN. It follows that

n⊗

i=1

(Hi, ζi) ∼=

n⊗

i=1,i6=j

(Hi, ζi)

where ζj : mj � D and D is a discrete graph.

Proof: We will show that

H :=
n⊗

i=1,i6=j

(Hi, ζi)

is the co-limit of φ1, . . . , φn, ζ1, . . . , ζn.
Let

(φ, η1, . . . , ηj−1, ηj+1, . . . , ηn) := limn
i=1,i6=j(φi, ζi)

We define ηj : Hj � H with ηj(χHj
) := φ(ζj(χmj

)). Obviously ηj ◦φj = φ ◦ ζj .

Furthermore let φ̂ : D → Ĥ, η̂i : Hi � Ĥ such that η̂j ◦ φj = φ̂ ◦ ζj . Since
H is the co-limit of φi, ηi, i ∈ {1, . . . , j − 1, j + 1, . . . , n} it follows that there
exists a unique morphism ψ : H → Ĥ with ψ ◦ φ = φ̂ and ψ ◦ ηi = η̂i for
i ∈ {1, . . . , j − 1, j + 1, . . . , n}.

ψ(ηj(χHj
)) = ψ(φ(ζj(χmj

))) = φ̂(ζj(χmj
)) = η̂j(φj(χmj

)) = η̂j(χHj
)

And therefore ψ ◦ ηj = η̂j .
Now H satisfies all conditions of a co-limit of φ1, . . . , φn, ζ1, . . . , ζn (see def-

inition 2.2.5). 2

2.2.3 Connection with the Double-Pushout Approach

We will now give the categorical view to graph-rewriting. We will introduce
the well-known double-pushout approach, which is also often called algebraic
approach, and characterize it with the notation defined above. For more details
see [Ehr79].

Definition 2.2.17 (Double-Pushout) Let r = (L,R) be a rewrite rule with
card(L) = card(R) = n. There exist strong canonical morphisms φL : n → L
and φR : n → R.
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Furthermore let H,H ′ be two hypergraphs. We write H
r
→ H ′ if there exists

an embedding η : n � K such that

H ∼= ⊗(L, η) and H ′ ∼= ⊗(R, η)

L
φ

R

η
H

ψ
H’

ψ
H

η
H’

φ

η

L

K

Rn

H H’

2

Note that the graph K, representing the part of H that is not affected by
the rewriting step, is, in most cases, not discrete.

Since in our case, we prefer to work with discrete graphs, this having a
closer resemblance to factorization in groups or monoids, we will assume in
the following sections that for any expression

⊗n
i=1(Hi, ζi) the embeddings ζi :

mi → D map into a discrete graph D.
Therefore we will define graph rewriting in a slightly different way: H

r
→ H ′

if and only if there exist embeddings ζ, ζ ′ into a discrete graph and a hypergraph
K such that

H ∼= (L, ζ) ⊗ (K, ζ ′) and H ′ ∼= (R, ζ) ⊗ (K, ζ ′)

Any set of embeddings into a discrete graph is a factorization which will be
called a discrete factorization.

Both definitions are equivalent.

2.2.4 Co-Limits, Factorizations and Contexts

We have now introduced three methods for constructing respectively decom-
posing graphs: factorizations, contexts and co-limits. Now we show how they
are related and how they can be converted into one another.

We first compare factorizations with co-limits:

Proposition 2.2.18 (Co-Limit ↔ Factorization)
Let ζi : mi � D, i ∈ {1, . . . , n} be a discrete factorization and let H1, . . . , Hn

be hypergraphs with mi := card(Hi). We define:

(φ, η1, . . . , ηn) := limn
i=1(Hi, ζi)

Then (ηi)i∈{1,...,n} with ηi : Hi � H is a factorization of H.

If ηi : Hi � H, i ∈ {1, . . . , n} is a factorization of H it follows that there
exists a discrete factorization ζi : mi � D and a strong morphism φ : D → H
such that

(φ, η1, . . . , ηn) ∼= limn
i=1(Hi, ζi)
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If the χHi
are duplicate-free, the discrete factorization (ζi)i∈{1,...,n} is unique up

to isomorphism.

Proof: See appendix A.1. 2

We now demonstrate, as promised above, how a hypergraph can be uniquely
decomposed into basic graphs, corresponding to the prime elements of a factor-
ization. Let us first define the notion of basic graphs:

Definition 2.2.19 (Basic Graphs) The class B of basic graphs contains all
graphs of the form zn(S). 2

It is now our task to show that every hypergraph allows a factorization into
basic graph and that this factorization is unique up to isomorphism.

Proposition 2.2.20 (Factorization into Basic Graphs) For every hyper-
graph H there is a discrete factorization ζi : mi � D, i ∈ {1, . . . , n} and basic
graphs H1, . . . , Hn such that H ∼=

⊗n
i=1(Hi, ζi).

Let
n⊗

i=1

(Hi, ζi) ∼=R

n⊗

i=1

(H ′
i, ζ

′
i)

where (ζi)i∈{1,...,n}, (ζ
′
i)i∈{1,...,k} are discrete factorizations and the H1, . . . , Hn,

H ′
1, . . . , H

′
k are basic graphs.

Then n = k and there exists a permutation α : {1, . . . , n} → {1, . . . , n} such
that

Hi
∼=R H

′
α(i)

for every i and

(ζi)i∈{1,...,n} ∼= (ζ ′α(i))i∈{1,...,n}

Proof: Since every hypergraph H has a factorization ηi : Hi � H, i ∈
{1, . . . , n}, where all Hi are basic graphs, it follows with proposition 2.2.18
that there exist embeddings ζi : mi � D such that H ∼=

⊗n
i=1(Hi, ζi).

Now we assume that there are two factorizations

(ζi)i∈{1,...,n} and (ζ ′α(i))i∈{1,...,n}

Let (φ, η1, . . . , ηn) := limn
i=1(Hi, ζi), (φ′, η′1, . . . , η

′
k) := limk

i=1(H
′
i, ζ

′
i).

Then (ηi)i∈{1,...,n} and (η′i)i∈{1,...,k} are both factorizations of H into basic
graphs. Since EH is the disjoint union of the ηi(EHi

) respectively η′i(EH′
i
) and

both Hi and H ′
i consist of only one edge it follows that n = k.

Let ei be the only edge of Hi and let e′i be the only edge of H ′
i.

Furthermore let EH = {e1, . . . , en} such that the only edge ei of Hi is
mapped onto ei, i.e. ηi(ei) = ei. If ni := card(ei), zi := zH(ei) and li := lH(ei)
it follows that Hi

∼= (zi)ni
(li).
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We define a permutation α : {1, . . . , n} → {1, . . . , n} with

j = α(i) ⇐⇒ η′j(e
′
j) = ei

It follows that

card(e′α(i)) = card(η′α(i)(e
′
α(i))) = card(ei) = card(ηi(ei)) = card(ei)

In the same way we can show that

lH′
α(i)

(e′α(i)) R lHi
(ei) = li

zH′
α(i)

(e′α(i)) = zHi
(ei) = zi

This implies Hi
∼=R Hα(i) and that there are isomorphisms φi : Hi → H ′

α(i)

with φi(ei) = e′α(i) and ηi = η′α(i) ◦ φi.
Therefore

(ηi)i∈{1,...,n} ∼=R (η′α(i))i∈{1,...,n}

and since the χHi
are duplicate-free it follows with proposition 2.2.18 that

(ζi)i∈{1,...,n} ∼= (ζ ′α(i))i∈{1,...,n}

2

This proposition strongly resembles the factorization of a number into primes
or the representation of a vector in terms of base vectors.

Graph construction with co-limits and with contexts is essentially the same.
Both methods can be converted into one another:

Proposition 2.2.21 (Co-Limit ↔ Context) Let ζi : mi � D, i ∈ {1, . . . , n}
be a discrete factorization and let

C〈x1, . . . , xn〉 :=
n⊗

i=1

(varmi
(xi), ζi)

For all hypergraphs H1, . . . , Hn with mi = card(Hi) it follows that

C〈H1, . . . , Hn〉 ∼=

n⊗

i=1

(Hi, ζi) (2.9)

Let C〈x1, . . . , xn〉, C
′〈x1, . . . , xn〉 be contexts with holes of cardinality m1,

. . ., mn. If both satisfy (2.9) for all H1, . . . , Hn with mi = card(Hi) it follows
that

C〈x1, . . . , xn〉 ∼= C ′〈x1, . . . , xn〉

And for all contexts C〈x1, . . . , xn〉 with holes of cardinality m1, . . . ,mn there
is a discrete factorization ζi : mi � D, i ∈ {1, . . . ,m} such that

C〈x1, . . . , xn〉 ∼=

n⊗

i=1

(varmi
(xi), ζi)
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Proof: See appendix A.1. 2

Since graph construction by context or by co-limit is basically the same we
can define construction of hypergraph morphisms (as an extension of hyper-
graph construction) as follows:

Definition 2.2.22 Let φi : Hi → Ji, i ∈ {1, . . . , n} be strong morphisms and
let C be a context with holes of cardinality card(H1), . . . , card(Hn). Then
there exists, according to proposition 2.2.12, (B) a strong morphism from
C〈H1, . . . , Hn〉 into C〈J1, . . . , Jn〉. This morphism is denoted by C〈φ1, . . . , φn〉.
2

2.3 Graph Expressions

This section is based on material from [BC87] where graph expressions are
introduced.

The idea is to represent hypergraphs by terms and to define isomorphism by
means of algebraic laws. This approach leads us into the well-known field of sig-
natures, algebras, terms and algebraic equations. Graph rewriting corresponds
to the substitution of subterms.

But there is a price we have to pay: the loss of locality. Given a graph
expression we cannot, at first sight, decide which edges and nodes are adjacent.
As a consequence, deciding wether there is a morphism from one expression
into another, based only on the graph expression, seems to be very difficult.
Furthermore changing the labelling function of a graph involves taking apart
the entire expression.

First of all we describe the following signature:

Definition 2.3.1 (Graph Expression) Let Z be a fixed set of edge sorts and
let L be a fixed set of labels.

A graph expression is a term composed of elements of the following signa-
ture: for every n ∈ lN there is a sort n. We define the following constant and
function symbols:

Constants: 0 of sort 0
1 of sort 1
(z, l)n of sort n for all n ∈ lN, l ∈ L

Function Sum: ⊕n,m of sort m,n→ m+ n
Symbols: Node Fusion: θδ,n of sort n→ n for all n ∈ lN and

all equivalence relations δ on {1, . . . , n}
Redefinition of External Nodes: σα,n,p of sort n→ p

for all n, p ∈ lN and all mappings
α : {1, . . . , p} → {1, . . . , n}

Furthermore expressions may contain variables with sorts in lN. 2

In a well-formed graph expression the sort of the function symbols can be
computed if the sorts of all variables and constants are known. Therefore we
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will omit sort indices in the future and write ⊕, θδ and σα instead of ⊕n,m, θδ,n
and σα,n,p.

We will now define the operations corresponding to the function symbols:

Definition 2.3.2 (Graph Operations)

Sum: Let G1, G2 be two simple hypergraphs. (We will assume that their node
and edge sets are disjoint. Otherwise we take isomorphic copies of G1 and
G2). We define:

G1 ⊕G2 := (VG1 ∪ VG2 , EG1 ∪ EG2 , sG1 ∪ sG2 , zG1 ∪ zG2 , lG1 ∪ lG2)

If Hi = Gi[χi], i ∈ {1, 2} we define:

H1 ⊕H2 := (G1 ⊕G2)[χ1 ◦ χ2]

(Note that the operation ⊕ is commutative on simple hypergraphs but
not on multi-pointed hypergraphs.)

Node Fusion: Let H = G[χ] be a hypergraph with n = card(H) and let δ be
an equivalence on {1, . . . , n}. We define:

θδ(H) := (G/≈)[p(χ)]

where ≈V is the equivalence on VH generated by

{(bχci, bχcj) | (i, j) ∈ δ}

and ≈E is the identity on EH . Furthermore p is the canonical projection
of G into G/≈.

Redefinition of External Nodes: Let H = G[χ].

Furthermore let α : {1, . . . , p} → {1, . . . , n}. We define:

σα(H) := G[bχcα(1) . . . bχcα(p)]

2

It is now not difficult to convert a graph expression into a hypergraph:

Definition 2.3.3 (Graph Expressions → Hypergraphs) We will define a
mapping vale that assigns a hypergraph in H(L∪X) to every graph expression.
It is defined inductively as follows:

vale(0) := 0, vale(1) := 1, vale((z, l)n) := zn(l), vale(x) := varsort(x)(x)

Let u1, u2 be graph expressions. We define:

vale(u1 ⊕ u2) := vale(u1) ⊕ vale(u2)

vale(θδ(u1)) := θδ(vale(u1))

vale(σα(u1)) := σα(vale(u1))

2
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Example: We regard the hypergraphs H1, H2, H3 in figure 2.1. They
can be described by graph expressions in the following way:

H1
∼= vale(σα1(θδ1(A3 ⊕D4)))

H2
∼= vale(σα2(θδ2(B2 ⊕ C1)))

H3
∼= vale(E2)

where δ1 is generated by {(2, 5), (3, 4)} and α1 : {1, . . . , 4} → {1, . . . , 7}
with α1(1) = 1, α1(2) = 3, α1(3) = 6, α1(4) = 7 (α1(2) = 4 is also a valid
choice).

δ2 is generated by {(2, 3)} and α2 : {1, 2} → {1, 2, 3} with α2(1) =
1, α2(2) = 2 (or α2(2) = 3).

We will now give a set of equations (which first appeared in [BC87]) and will
find out that hypergraphs are in fact its initial model. That is, the algebraic
equations are correct and complete.

Proposition 2.3.4 (Algebraic Properties of Graph Operations) The fol-
lowing equation schemes generate the equivalence on graph expressions. They
are correct and complete: u 'R v if and only if vale(u) ∼=R vale(v).

Let u, v, w be graph expressions.

(z, l)n 'R (z, l′)n (2.10)

where z ∈ Z, l, l′ ∈ L with l R l′.

u⊕ (v ⊕ w) 'R (u⊕ v) ⊕ w (2.11)

σβ(σα(u)) 'R σα◦β(u) (2.12)

σid(u) 'R u (2.13)

where id is the identity function on {1, . . . , n}.

θδ(θδ′(u)) 'R θγ(u) (2.14)

where γ is the equivalence generated by δ ∪ δ′.

θ∆(u) 'R u (2.15)

where ∆ = {(i, i) | i ∈ {1, . . . , n}} is the trivial equivalence.

σα(u) ⊕ σα′(v) 'R σβ(v ⊕ u) (2.16)

where

α : {1, . . . , p} → {1, . . . n}

α′ : {1, . . . , p′} → {1, . . . n′}

β : {1, . . . , p+ p′} → {1, . . . n+ n′}

with β(i) =

{
n′ + α(i) if i ∈ {1, . . . , p}
α′(i− p) if i ∈ {p+ 1, . . . , p+ p′}
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θδ(u) ⊕ θδ′(v) 'R θγ(u⊕ v) (2.17)

where δ is an equivalence on {1, . . . , n}, δ′ is an equivalence on {1, . . . , n′} and
γ is the equivalence on {1, . . . , n+n′} generated by δ∪{(n+i, n+j) | (i, j) ∈ δ′}.

θδ(u⊕ 1) 'R σα(θγ(u)) (2.18)

where δ is an equivalence on {1, . . . , n + 1} such that (i, n + 1) ∈ δ for some
i ∈ {1, . . . , n}. Furthermore

γ = δ ∩ ({1, . . . , n} × {1, . . . , n})

α : {1, . . . , n+ 1} → {1, . . . , n}

where α(j) =

{
j if j ≤ n
i if j = n+ 1

θδ(σα(u)) 'R σα(θα(δ)(u)) (2.19)

where δ is an equivalence on {1, . . . , n}, α : {1, . . . , n} → {1, . . . , n} and α(δ)
denotes the equivalence generated by {(α(i), α(j)) | (i, j) ∈ δ}

σα(θδ(u)) 'R σβ(θδ(u)) (2.20)

where α, β : {1, . . . , p} → {1, . . . , n} and (α(i), β(i)) ∈ δ for all i ∈ {1, . . . , p}.

u⊕ 0 'R u (2.21)

Proof: See [BC87], theorem (3.10). 2

As in proposition 2.2.21 in the previous section we will now show how to
convert a co-limit construction into a graph expression and vice versa.

Proposition 2.3.5 (Graph Expression ↔ Context) Let g(x1, . . . , xn) be a
graph expression without hyperedges of the form (z, l)n and let

C〈x1, . . . , xn〉 := vale(g(x1, . . . , xn))

For all graph expressions g1, . . . , gn with card(vale(gi)) = sort(xi) it follows
that

C〈vale(g1), . . . , vale(gn)〉 ∼= vale(g(g1, . . . , gn)) (2.22)

Let C〈x1, . . . , xn〉, C
′〈x1, . . . , xn〉 be contexts. If both satisfy (2.22) for all g1,

. . ., gn with card(vale(gi)) = sort(xi) it follows that

C〈x1, . . . , xn〉 ∼= C ′〈x1, . . . , xn〉

And for all contexts C〈x1, . . . , xn〉 there is a graph expression g(x1, . . . , xn)
such that

C〈x1, . . . , xn〉 ∼= vale(g(x1, . . . , xn))

Proof:
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• vale(g(x1, . . . , xn))〈vale(g1), . . . , vale(gn)〉 ∼= vale(g(g1, . . . , gn)) can be
shown by a straightforward structural induction on g(x1, . . . , xn).

• We assume that C〈x1, . . . , xn〉, C
′〈x1, . . . , xn〉 are contexts and both sat-

isfy (2.22) for all g1, . . . , gn with card(vale(gi)) = sort(xi) =: mi. It
follows that

C〈x1, . . . , xn〉 ∼= C〈vale(x1), . . . , vale(xn)〉 ∼= vale(g(x1, . . . , xn))
∼= C ′〈vale(x1), . . . , vale(xn)〉 ∼= C ′〈x1, . . . , xn〉

• Let C〈x1, . . . , xn〉 be a context. We will now construct a graph expression
g(x1, . . . , xn) such that C〈x1, . . . , xn〉 ∼= vale(g(x1, . . . , xn)).

This is described in [BC87], proposition (3.6).

2

Example: In the previous section we have shown how to describe the
hypergraph H from figure 2.1 in the form C〈H1, H2, H3〉.
The graph expression corresponding to the context C〈x1, x2, x3〉 is
σα(θδ(x1 ⊕ x2 ⊕ x3)) where

sort(x1) = 4, sort(x2) = 2, sort(x3) = 2

θ is generated by {(3, 4), (3, 8), (1, 5), (2, 7)} and α : {1, 2} → {1, . . . , 7}
with α(1) = 1 (or α(1) = 5) and α(2) = 3 (or α(2) = 4 or α(2) = 8).

x2 x1 x3

x2

x1

>C<x  ,x ,x1 2 3

x3

x3+ x2 +e

(1) (2) (5) (6) (7)

(3) (4) (8)

(1)

(1)

(2)
(2)

x1 )(val

The dashed lines indicate the equivalence classes of δ.

Notation: We define the following abbreviations:

• Let i1, . . . , in be natural numbers and let H be a hypergraph with
card(H) = m ≥ max{i1, . . . , in}.

σi1...in(H) := σα(H)

where α : {1, . . . , n} → {1, . . . ,m} with α(j) := ij .
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That is the former ij-th external node becomes the j-th external node
and all other external nodes are hidden.

• Let i, j be natural numbers and let H be a hypergraph with card(H) =
m ≥ max{i, j}.

θi,j(H) := θδ(H)

where δ is the smallest equivalence on {1, . . . , n} satisfying i δ j.

That is the i-th and the j-th external node are merged and the rest of the
hypergraph stays unchanged.

2.4 Name-based Notation

From our point of view an expression in a process calculus is just a graph of in-
teracting processes and messages. Many papers (see e.g. [MPW89a, MPW89b,
Mil80]) contain graphical representations of processes suggesting such a view.
In their syntax, however, the connections between processes, i.e. the chan-
nels, are not represented by a graph but by common names. We will show the
correspondence between structures created by names and graphs.

Describing hypergraphs with the help of names seems to be very intuitive,
especially if there is a meaning associated with the names.

Since we use terms and algebraic equations most of the disadvantages of
graph expression mentioned in the previous section (especially the loss of local-
ity) apply here as well. Furthermore we are burdened with the additional task
of keeping track of free names.

Our name-based graph terms describe only hypergraphs whose external
strings do not contain duplicates, since this is the approach used in all papers
about process calculi. If we try to describe aribitrary hypergraphs, problems in
graph rewriting pop up (see example at the end of this section).

Definition 2.4.1 (Name-based Graph Terms) Let N be a set of names.
A name-based graph term h has one of the following forms:

Empty Graph: 0

Node: dae, a ∈ N

Edge of sort z, labelled l: (z, l)[a1 . . . an], z ∈ Z, l ∈ L, a1, . . . , an ∈ N

Parallel Composition: h1|h2

Node Hiding: (νa)h1

where h1, h2 are again name-based graph-terms.
We define the set of free names of a term h inductively as follows:

fn(0) := ∅

fn(dae) := {a}

fn((S)[a1 . . . an]) := {a1, . . . , an}

fn(h1|h2) := fn(h1) ∪ fn(h2)

fn((νa)h1) := fn(h1)\{a}
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A closed name-based graph term is of the form h[t] where h is a name-based
graph term and t ∈ fn(h)∗df is a duplicate-free string which contains exactly
the names in fn(h). The cardinality of h[t] is defined by card(h[t]) := |t|. 2

Our notation may trigger the suggestion that graph terms of the form h
correspond to simple hypergraphs. In simple hypergraphs every node can still
be made external, while in graph terms the set of external (i.e. free names) is
already fixed and the string t only indicates their order.

Notation: Let s, t be duplicate-free strings of names where Set(s) ⊆ Set(t),
n := |s|, m := |t|. ζs�t : n � m is an embedding with

ζs�t(bχnci) = bχmcj ⇐⇒ bsci = btcj

It is quite obvious that ζt�u ◦ ζs�t = ζs�u.

Definition 2.4.2 (Interpretation of Name-based Graph Terms)
Let h[s] be a closed name-based graph term where n := |s|. We define:

• valn(0[ε]) := 0

• valn(dae[a]) := 1

• valn((h1| . . . |hn)[t]) :=
⊗n

i=1(valn(hi[ti]), ζti�t)

where ti := t\(fn(h1| . . . |hn)\fn(hi))

• valn(((νa)h)[t]) :=

{
⊗(valn(h[ta]), ζ) if a ∈ fn(h)
valn(h[t]) otherwise

where ζ is the projection of m + 1 into σ1...m(m + 1) with m := |s|.

• valn(((z, l)[t
′])[t]) := ⊗(z|t′|(l), ζt′�t)

2

Example: We give a name-based graph term which corresponds to the
hypergraph H in figure 2.1. The first step is to assign names to the
nodes of H:

a

d

b

c

e

(1)

(2)

A B

D E

C

H

h = (νb)(νc)(νd)(

(A)[acd] | (B)[ab] |

(C)[b] | (D)[dcee] |

(E)[de])

H ∼= valn(h[ae])
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As we have indicated above, name-based graph terms can only describe hy-
pergraphs where the string of external nodes contains no duplicates. Everyone
of these hypergraphs, however, has a representation in terms of name-based
graph terms.

Proposition 2.4.3 (Construction of Name-based Graph Terms) Let H
be a hypergraph, where χH contains no duplicates, i.e. χH ∈ (VH)∗df . Then there
exists a closed name-based graph term h[t] such that H ∼= valn(h[t]).

Proof: See appendix A.1. 2

There are two kinds of components we would like to substitute in name-
based graph-terms: free names and entire terms. Terms are always substituted
for an edge labelled with a variable. We will now define these two kinds of
substitution

Definition 2.4.4 (Substitution in Name-based Graph Terms)

Substitution of free names: Let h be a name-based graph term and let s, t ∈
N∗ be duplicate-free strings of names with |s| = |t|. We define h[s/t]
inductively as follows: Let subst[s/t] : N → N such that subst[s/t](btci) =
bsci and subst[s/t](a) = a if a 6∈ Set(s).

0[s/t] := 0

dae[s/t] := dsubst[s/t](a)e

((S)[a1 . . . am])[s/t] := (S)[subst[s/t](a1 . . . am)]

(h1|h2)[s/t] := h1[s/t]|h2[s/t]

((νa)h)[s/t] :=





(νa)(h[s/t]) if a 6∈ Set(s) ∪ Set(t)
(νa)(h[s\i, t\i]) if btci = a
(νb)((h[b/a])[s/t]) if ∃ i : bsci = a, btci 6= a and

b 6∈ Set(s) ∪ Set(t) ∪ fn(h)

Substitution of terms: Let h[t], h′[t′] be two closed name-based terms. We
define h[t]〈h′[t′]/x〉 with:

h[t]〈h′[t′]/x〉 := (h〈h′[t′]/x〉)[t]

0〈h′[t′]/x〉 := 0

dae〈h′[t′]/x〉 := a

((z, l)[a1 . . . am])〈h′[t′]/x〉 :=

{
h′[a1 . . . am/t

′] if l = x, z = var
(z, l)[a1 . . . am] otherwise

(h1|h2)〈h
′[t′]/x〉 := h1〈h

′[t′]/x〉|h2〈h
′[t′]/x〉

((νa)h)〈h′[t′]/x〉 := (νa)(h〈h′[t′]/x〉)

2
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We now present equations relating equivalent terms. Later we will show
that these equations are correct and complete for the algebra of hypergraphs.

Proposition 2.4.5 (Equations for Name-based Graph Terms) The fol-
lowing equation schemes generate the equivalence on name-based graph terms.
Two closed terms h[t], h′[t′] are equivalent wrt. the following equations if and
only if valn(h[t]) ∼=R valn(h

′[t′]).
Let h, h1, h2, h3 be name-based graph terms.

(z, l)[t] 'R (z, l′)[t] if l R l′ (2.23)

h1|h2 'R h2|h1 (2.24)

h1|(h2|h3) 'R (h1|h2)|h3 (2.25)

h|0 'R h (2.26)

(νa)0 'R 0 (2.27)

(νa)(νb)h 'R (νb)(νa)h (2.28)

((νa)h1)|h2 'R (νa)(h1|h2) if a 6∈ fn(h2) (2.29)

(νa)h 'R (νb)(h[b/x]) if b 6∈ fn(h) (2.30)

dae|dae 'R dae (2.31)

(z, l)[a1 . . . an]|daie 'R (z, l)[a1 . . . an] (2.32)

and for closed terms:

h[s] 'R (h[s′/s])[s′] if |s| = |s′|, s′ is duplicate-free (2.33)

Proof: See appendix A.1. The proof makes use of proposition 2.4.6. 2

In order to show the proposition above we introduce a normal form for
name-based terms. Since every term has a normal form it is sufficient to prove
the completeness result above for terms in normal form, which will considerably
simplify the proof.

Proposition 2.4.6 (Normal Form of Name-based Notation)
A name-based graph term is in normal form if it has the form

((νb1) . . . (νbn)((z1, l1)[a11 . . . a1n1 ] | . . . | (zm, lm)[am1 . . . amnm ] |

dc1e | . . . | dcke))[d1 . . . dl] (2.34)

and
A ∩ C = ∅, B ∩D = ∅, A ∪ C = B ∪D, |B| = n, |C| = k

where

A := {aij | i ∈ {1, . . . ,m}, j ∈ {1, . . . , ni}}

B := {bi | i ∈ {1, . . . , n}}

C := {ci | i ∈ {1, . . . , k}}

D := {di | i ∈ {1, . . . , l}}

For every graph term h[t] there is a graph term h′[t′] in normal form such that
h[t] '= h′[t′].
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Proof: See appendix A.1. 2

Let A = {a1, . . . , an} be a finite subset of N . In the following we will use
(νA)h as an abbreviation for (νa1) . . . (νan)h.

Analogous to hypergraphs we can now define n-ary name-based contexts
h[t]〈x1, . . . , xn〉 which contain exactly one edge (var, xi)[ti] for every xi, i ∈
{1, . . . , n} and no other edges.

That is, an n-ary name-based contexts has the form

h[t] ' (νA)((var, x1)[t1] | . . . (var, xn)[tn])

Substitution in contexts is defined as follows:

h[t]〈h1[t1], . . . , hn[tn]〉 := h[t]〈h1[t1]/x1, . . . , hn[tn]/xn〉

(see the definition of substitution in definition 2.4.4).
And now we will give, as in the previous sections, the transformation of

name-based terms with variables into contexts. That is, at least for graphs
whose strings of external nodes do not contain duplicates, graph construction
by co-limits and graph-construction with name-based contents is equivalent.

Proposition 2.4.7 (Context ↔ Name-based Notation)
Let h[t]〈x1, . . . , xn〉 be a name-based context and let

C〈x1, . . . , xn〉 := valn(h[t]〈x1, . . . , xn〉)

For all closed name-based terms h1[t1], . . . , hn[tn] with |ti| = sort(xi) it follows
that

C〈valn(h1[t1]), . . . , valn(hn[tn])〉 ∼= valn(h[t]〈h1[t1], . . . , hn[tn]〉) (2.35)

Let C〈x1, . . . , xn〉, C
′〈x1, . . . , xn〉 be contexts. If both satisfy (2.35) for all h1[t1],

. . . , hn[tn] with |ti| = sort(xi) it follows that

C〈x1, . . . , xn〉 ∼= C ′〈x1, . . . , xn〉

And furthermore, for all contexts C〈x1, . . . , xn〉 there is a name-based con-
text h[t]〈x1, . . . , xn〉 such that

C〈x1, . . . , xn〉 ∼= valn(h[t]〈x1, . . . , xn〉)

Proof:

• The following equation

valn(h[t]〈x1, . . . , xn〉)〈valn(h1[t1]), . . . , valn(hn[tn])〉
∼= valn(h[t]〈h1[t1], . . . , hn[tn]〉)

can be shown by structural induction on h[t] in a straightforward way.
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• We assume that C〈x1, . . . , xn〉, C ′〈x1, . . . , xn〉 are contexts and both sat-
isfy (2.35) for all h1[t1], . . . , hn[tn] with |ti| = sort(xi) =: mi.

Let s1, . . . , sn ∈ N∗
df with |si| = mi. It follows that

C〈x1, . . . , xn〉 ∼= C〈valn((var, x1)[s1]), . . . , valn((var, xn)[sn])〉
∼= valn(h[t]〈(var, x1)[si], . . . , (var, xn)[sn]〉
∼= C ′〈valn((var, x1)[s1]), . . . , valn((var, xn)[sn])〉 ∼= C ′〈x1, . . . , xn〉

• Let C〈x1, . . . , xn〉 be a context. According to proposition 2.4.3 there exists
a closed name-based graph term h[t] such that C〈x1, . . . , xn〉 ∼= valn(h[t])
and h[t] contains exactly one occurrence of the edge labelled xi, i.t. h[t]
is a context.

2

Corollary 2.4.8 Let h[t], h1[t1], . . . , hn[tn] be name-based graph terms where
h[t] is a context with holes of cardinality |t1|, . . . , |tn|. It follows that

valn(h[t]〈h1[t1], . . . , hn[tn]〉) ∼= valn(h[t])〈h1[t1], . . . , hn[tn]〉

We now discuss our choice of representing only graphs with duplicate-free
strings of external nodes: it is clear that representation of graphs which have
duplicates in their external nodes is no problem, we just have to extend the syn-
tax of a name-based term h[t] and to allow duplicates in t. It will be necessary
to change definition 2.4.2, but that is not the real problem.

Problems, however, will arise in graph rewriting. Let us examine the fol-
lowing rewriting rule, consisting of a left hand side L and a right hand side
R.

R

(1) (2)

A B

(1,2)

::=
L

We assume that both edges have sort 3. Converting the rule into name-based
notation yields

((3, A)[ab])[ab] ::= ((3, B)[aa])[aa]

Applying the rule above to the graph H yields the follwing reduction, fusing
the two external nodes:

B

(1,2)

C C

H(1) (2)

A

H’
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In name based-notation

H ∼= valn(((3, A)[ab] | (3, C)[ab])[ab])

H ′ ∼= valn(((3, B)[aa] | (3, C)[aa])[aa])

and we can observe that this reduction is not local, i.e. it also affects the edge
labelled C. Therefore construction of graphs or graph rewriting cannot simply
be modelled with contexts and the equivalent of proposition 2.4.7 would not
work.

Thus we will refrain from duplicates in the external nodes. Since this no-
tation is mainly useful for the comparison of our calculus with other process
calculi (e.g. the π-calculus) and there are no duplicates in these calculi, no
problems will arise.

2.5 Comparison of Hypergraph Construction Meth-

ods

In the previous sections we have introduced four methods of hypergraph con-
struction: contexts (definition 2.1.10), co-limits (definition 2.2.9), graph ex-
pressions (definition 2.3.1) and name-based graph terms (definition 2.4.1). And
then there is the concept of factorization of hypergraphs (definition 2.1.6).

In propositions 2.2.18, 2.2.21, 2.3.5 and 2.4.7 we have shown that these
construction methods are basically the same. We have given the following
transformations:

)
1 n

, ... , x

1 n
, ... , xx >C<

η
i i
: H H

i
ζg(x : 

Co-Limit

m i D
1 n

, ... , xx >h[t]<

Graph Expression

Context

Name-based Terms

Factorization

For arbitrary graphs there is a one-to-one correspondence between contexts, co-
limits and graph expression, i.e. the transformations are bijective. The same
holds for contexts, co-limits, graph expression and name-based terms in the
case of graphs with duplicate-free sequences of external nodes. In all four cases
the construction methods yield—together with graphs H1, . . . , Hn of the correct
cardinality—a canonical factorization ηi : Hi � H, i ∈ {1, . . . , n}.

The main contribution im this chapter is the development of a new categor-
ical graph construction mechanism (definition 2.2.9) and the transformation of



48 2 Methods of Hypergraph Construction

the different methods of graph construction into one another. To our knowledge,
there is also no consistent treatment of a name-based representation of hyper-
graphs, although the issue is implicitly contained in many papers on process
calculi (e.g. [Mil90]).



Chapter 3

Process Calculi: An Overview

Research in programming language has seen the development of several dif-
ferent programming paradigms: functional, imperative, logic, object-oriented
and distributed or concurrent programming. (Note that the concepts of object-
oriented and distributed or concurrent programming are orthogonal to the other
paradigms, i.e. there is e.g. object-oriented, imperative or functionial, concur-
rent programming).

These paradigms possess underlying calculi or machine models, clarifying
their key ideas, forming the basis of their semantics and serving as a starting
point for research.

Process calculi, describing processes communicating by message passing,
claim to be the adequate model for concurrent and distributed programming.
But let us first review the underlying models of other programming paradigms:

Functional Programming: the λ-calculus [Bar84, Bar90, HS86] is considered
as the standard calculus for functional programming, representing the
essence of the functional programming paradigm, by term rewriting and
substitution.

Its defines, in a nutshell, the meaning of function abstraction and applica-
tion, as well as of free and bound variables. There are several approaches
of giving a denotational semantics to the λ-calculus (see [Sto77] as well
as the references cited above).

Another important area of research is the development of type systems for
the λ-calculus, guaranteeing the normalization property, i.e. termination
of reductions for every well-typed expression [Bar90].

Imperative Programming: the Turing machine, representing a von-Neumann-
computer with linear memory, executing a program dependent on the
content of the tape.

The theory of Turing machines has introduced important concepts, such
as effective computability and complexity theory [Rog67, BDG88, Pap94].

Logic Programming: logic programming is, like functional programming, a
declarative style of programming. It is based on first-order logic, namely

49
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on Horn clauses, which give it a firm basis in a very well-known area of
logic [Apt90].

In concurrent and distributed programming there is a diversity of calculi
trying to model the essence of this programming paradigm. Common concepts
and ideas, however, are visible. The rest of this chapter will deal with process
calculi, introduce key ideas and describe what benefits for programming can be
gained by research in this area. Concerning this matter, we will concentrate on
bisimulation equivalence and type systems. Both concepts will appear in this
work in connection with the Spider calculus.

It is left to mention, that some process calculi claim to be adequate models
for object-oriented programming [MPW89a]. There is a large amount of work
dealing with calculi for object-oriented programming [AC96]. In many cases
these calculi are very similar to process calculi with an added construct for
records (see also [AC96]).

3.1 Introduction to CCS

Among the first and one of the most sucessful process calculi to be proposed was
CCS (Calculus of Communicating Systems) by Robin Milner [Mil80, Mil90]. It
describes processes signalling on common channels. In contrast to other process
calculi which will be described later in this chapter, communication in CCS does
not involve the sending of values, processes or addresses, but only the exchange
of signals. (There is, however, an extension, called value-passing CCS [Mil80].)
Despite these limitations, CCS has full computational power.

We will now introduce the syntax and semantics of CCS: we assume that
we have a set of labels L = {a, b, c, . . .}, representing actions. Elements of L are
used as input prefixes, while elements of L̄ = {ā, b̄, c̄, . . .} are output prefixes.
We define ¯̄a = a. τ represents the silent (internal) action.

Furthermore let X be a set of variables. A CCS process p is either a

Variable: x ∈ X

Prefix: α.p where α ∈ L ∪ L̄ ∪ {τ}

Summation: p1 + p2

Parallel Composition: p1 | p2

Restriction: (νa)p where a ∈ L

Relabelling: p[f ] where f : L→ L is a bijection (with f(ā) := f(a))

Recursion: rec x.p, x ∈ X

Dead Process: 0

where p, p1, p2 are again CCS processes. α.p is a process that can perform the
action α and behave like p afterwards. p1 + p2 can either behave as p1 or p2.
p1 | p2 represents p1 and p2 acting in parallel, while (νa)p acts like p where
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actions a and ā are prohibited. In p[f ] the actions of p are relabelled by f . And
rec x.p is the fixed-point of the equation x = p. The dead process 0 denotes
inaction.

In order to describe operational semantics we give a labelled transition se-
mantics (see [Plo81]).

(CCS-ACT) α.p
α
→ p

(CCS-SUM1)
p1

α
→ p′1

p1 + p2
α
→ p′1

(CCS-SUM2)
p2

α
→ p′2

p1 + p2
α
→ p′2

(CCS-COM0)
p1

a
→ p′1, p2

ā
→ p′2

p1 | p2
τ
→ p′1 | p′2

a ∈ L ∪ L̄

(CCS-COM1)
p1

α
→ p′1

p1 | p2
α
→ p′1 | p2

(CCS-COM2)
p1

α
→ p′2

p1 | p2
α
→ p1 | p′2

(CCS-RES)
p

α
→ p′

(νa)p
α
→ (νa)p′

if α 6∈ {a, ā}

(CCS-REL)
p

α
→ p′

p[f ]
f(α)
→ p′[f ]

(CCS-REC)
p[rec x.p/x]

α
→ p′

rec x.p
α
→ p′

p[p′/x] denotes the substitution of x by p′ in p. It may involve renaming of
bound names in order to avoid capture of the free names in p′.

3.2 Reduction Semantics and the Chemical Abstract

Machine

As an alternative to the labelled transition semantics presented above, Gérard
Berry and Gérard Boudol proposed a different style of semantics with their
chemical abstract machine (CHAM) [BB92]. This has initiated a new trend in
defining the operational semantics of process calculi.

The key idea is to define structural congruence of processes a priori. E.g.
p1 | p2 is expected to “behave” just like p2 | p1. In labelled transition semantics
this fact can be expressed only after the introduction of bisimulation equivalence
or similar equivalence relations. Berry and Boudol introduced the metaphor of
a suspension of molecules which can be transformed by heating and cooling
rules. In this case p1 and p2 are allowed to float around and change places.

In a more conventional way, we can say that there is a rule of equivalence
p1 | p2 ≡ p2 | p1. Since this allows communicating processes to reach each other
and communicate locally, labelled transitions are not necessary anymore.

We will introduce a new, unlabelled reduction relation →. This new form
of semantics is often called reduction semantics and is equivalent to labelled
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transition semantics, i.e. in the case of CCS p1
τ
→ p2 if and only if p1 → p2. We

will, however, leave out the relabelling operator, since it does not really fit into
reduction semantics. Furthermore we will drop the summation operator, in or-
der to facilitate the semantics. (It is, however, possible to integrate summation
into reduction semantics, see e.g. [San92]).

CCS now looks as follows:

Rules of Structural Congruence:

p1|p2 ≡ p2|p1 p1|(p2|p3) ≡ (p1|p2)|p3 p|0 ≡ p (νa)0 ≡ 0

(νa)(νb)p ≡ (νb)(νa)p ((νa)p1)|p2 ≡ (νa)(p1|p2) if a 6∈ fn(p2)

(νa)p ≡ (νb)(p[b/a]) if b 6∈ fn(p) rec x.p ≡ p[rex x.p/x]

p ≡ p′

α.p ≡ α.p′
p1 ≡ p′1, p2 ≡ p′2
p1 | p2 ≡ p′1 | p′2

p ≡ p′

(νa)p ≡ (νa)p′
p ≡ p′

rec x.p ≡ rec x.p′

Reduction Rules:

a.p | ā.p′ → p | p′
p1 → p′1

p1 | p2 → p′1 | p2

p→ p′

(νa)p→ (νa)p′
q ≡ p, p→ p′, p′ ≡ q′

q → q′

where fn(p) ⊆ L is the set of all free labels in p, i.e. all labels that are not
hidden by the operator ν. Furthermore p[b/a] denotes syntactic substitution of
names (with renaming of bound names in order to avoid capture of b).

By many reduction semantics is considered to be more natural and has
the advantage that reduction can take place locally. In more recent works on
process calculi [Mil92, San92] this form of semantics is actually dominant.

3.3 Mobility in the π-Calculus

We will now introduce the polyadic π-calculus [MPW89a, Mil92, Mil91] by
extending the reduction semantics of CCS. The main additional feature of the
π-calculus is mobility of port addresses, i.e. communicating processes will not
only exchange signals but tuples of labels or names. The receiver process is
then able to use these names for future communications. This means dynamic
changes in the process and communication structure.



3 Process Calculi: An Overview 53

The syntax of CCS is changed as follows: input prefixes will now have
the form a(x1, . . . , xn) where a, x1, . . . , xn ∈ L and xi 6= xj if i 6= j. Output
prefixes have the form āa1 . . . , an, where a, a1, . . . , an ∈ L. In the π-calculus no
difference is made between names and variables representing names. (n = 1 for
every prefix yields the monadic π-calculus as described in [MPW89a]).

The only change in the reduction semantics is that

a.p | ā.p′ → p | p′

is replaced by

a(x1, . . . , xn).p | āa1 . . . an.p
′ → p[a1/x1, . . . , an/xn] | p

′

Let us further mention that in the π-calculus recursion is usually replaced by
replication, i.e. there is a syntactic construct !p where p is a π-calculus process.
And the former rule of recursion respectively fixed-point expansion is replaced
by

!p→!p|p

Replication is as powerful as recursion and in this case has the added benefit
that variables representing processes are unnecessary.

Furthermore the sum operator seems to be less essential than other operators
and is left out in some versions of the π-calculus (see e.g. [Mil92]). This paper
deals with the encoding of the λ-calculus into the π-calculus and thus ensures
that the π-calculus without sum still has full computational power.

There are two phenomena that can occur in the π-calculus but not in CCS:
the sending of a name out of its scope or into another scope where scope denotes
the part of a term where the name is bound. The handling of scope extrusion
und intrusion will also be of interest in higher-order calculi.

Scope Extrusion: a name is sent out of its scope, e.g.

a(x).p | (νb)(āb.p′) ≡ (νb)(a(x).p | āb.p′) → (νb)(p[b/x] | p′)

if b 6∈ fn(p)

Scope Intrusion: a name is sent into the scope of the same name. This is
dealt with as follows:

āb.p | (νb)(a(x).p′) ≡ (νc)(āb.p | a(x).(p′[c/b])) → p | (νc)(p′[c/b][b/x])

if c 6∈ fn(p)

In both cases the rules of structural equivalence take care of the correct han-
dling of the expression. In the case of labelled transition semantics, these two
phenomena demand a careful choice of rules.
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3.4 Higher-Order Communication—Static and Dy-

namic Binding

In the previous section we have described the mobility of port addresses. An-
other form of mobility is higher-order communication, i.e. the ability of pro-
cesses to send other processes.

One way to realize this would be to change the communication rule to

āp.p′ | a(x).p′′ → p′ | p′′[p/x]

Let us now observe what happens if a process is sent out of the scope of one of
its free names: let b ∈ fn(p), b 6∈ fn(p′′) then:

(νb)(āp.p′) | a(x).p′′ ≡ (νb)(āp.p′ | a(x).p′′) → (νb)(p′ | p′′[p/x])

That is, just as in the case of scope extrusion above, the scope of b is extended
and the names in p stay bound as before. Therefore this concept is also called
static binding and it is the binding mechanism of the higher-order π-calculus
(HOπ) by Davide Sangiorgi [San92].

This is, however, not the only way to define a higher-order calculus. The
labelled transition semantics of CHOCS by Bent Thomsen [Tho89b, Tho95] is
defined in such a way that the expression above would reduce in the following
way:

(νb)(āp.p′) | a(x).p′′
τ
→ (νb)p′ | p′′[p/x]

which means that the names of p are taken out of their scope and rebound in
their new context (dynamic binding).

Let us mention that our presentation of the higher-order π-calculus was
somewhat superficial. In addition to the feature described above, it is also
possible to parametrise and instantiate processes and to communicate port ad-
dresses as well as processes.

3.5 Bisimulation and Proof Techniques

We will now present bisimulation and barbed congruence, two equivalence re-
lations which relate processes showing the same behaviour toward the envi-
ronment. Both equivalences have strong and weak version, where the strong
version demands that processes coincide after every step, while the weak version
allows that one process may perform several steps while the equivalent process
only performs one step.

It is more convenient to define bisimulation equivalence in labelled transi-
tion semantics, so we will start with this semantics and move on to reduction
semantics later.

Bisimulation: Let R be a symmetric relation on CCS expression. We call R
a strong bisimulation if

p R q, p
α
→ p′ ⇒ ∃ q′ : q

α
→ q′, p′ R q′
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where α ∈ L ∪ L̄ ∪ {τ}. That is if p can perform an α-step, q can match this
and both resulting processes are equivalent wrt. R.

Two processes p, q are called called strongly bisimilar (p ∼ q) if there exists
a strong bisimulation R such that p R q.

This definition seems to be too strong rather often since it attempts to
match even internal actions of the processes. Thus we obtain weak bisimulation
if we replace the condition above by:

p R q, p
α
→ p′ ⇒ ∃ q′ : q

τ
→∗ α

→
τ
→∗ q′, p′ R q′ if α ∈ L ∪ L̄

p R q, p
τ
→ p′ ⇒ ∃ q′ : q

τ
→∗ q′, p′ R q′

And, as above, two processes p, q are called called weakly bisimilar (p ≈ q)
if there exists a weak bisimulation R such that p R q.

In CCS, bisimulation, although undecidable, still has some interesting propo-
erties. Slight modifications of the definition above (see [Mil90]) turn bisimilarity
into a congruence, which is very important in practice: when we want to replace
a process with another, maybe more efficient, process, it is important to check
if the resulting systems behaves as before, and normally it is not sufficient to
check if isolated processes behave the same. If bisimilarity was a congruence,
however, this proof could be straightforward.

Furthermore we can give a set of algebraic equations describing strong bisim-
ilarity, such that the equations are complete for important subsets of CCS.
There are, e.g. equations corresponding to the laws of structural congruence or
the expansion law linking parallel combination and summation. An instance of
the expansion law would be: let p := α1.p1 + α2.p2, q := β1.q1 + β2.q2. Then

p | q ∼ α1.(p1 | q) + α2.(p2 | q) + β1.(p | q1) + β2.(p | q2) + r11 + r12 + r21 + r22

where rij :=

{
pi | qj if αi = βj
0 otherwise

. As you can see the expansion law shows

some similarities to the multiplication of sums.
Because of this algebraic representation, some process calculi are also called

process algebras.

Let us now turn to another way of defining bisimulation, i.e. barbed bisimu-
lation [San92, MS92b]. It tackles two problems at once: first it gives an accept-
able solution for calculi with reduction semantics, second it defines bisimilarity
such that it is a congruence in any case.

We will first define the notion of barbs. A process p has a barb a (p ↓ a)

if there exists a process p′ such that either p
a
→ p′ or p

ā
→ p′. It is, of course,

possible to define barbs without labelled transition semantics. Furthermore
p ⇓ a if there exists a process p′ such that p→ p′ ↓ a.

Barbed Congruence: A relation R on processes is called a strong barbed
bisimulation if

p R q, p ↓ a ⇒ q ↓ a (3.1)

p R q, p→ p′ ⇒ ∃ q′ : q → q′, p′ R q′ (3.2)
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And p, q are called strongly barbed-bisimilar(p∼̇q) if there exists a weak barbed
bisimulation R such that p R q.

p, q (p ∼ q) are called strongly barbed-congruent if for every context C:
C[p]∼̇C[q].

≈ (the weak version of barbed congruence) is defined analogously, we only
have to replace (3.1) and (3.2) by

p R q, p ⇓ a ⇒ q ⇓ a (3.1’)

p R q, p→ p′ ⇒ ∃ q′ : q →∗ q′, p′ R q′ (3.2’)

In practice, it is rather hard or even impossible to prove bisimilarity of
processes on the basis of this definition. The hard thing is the quantification
over all contexts. It is therefore necessary to prove a context lemma in order to
reduce the number of relevant contexts [San96].

Another technique simplifiying bisimulation proofs is the concept of bisim-
ulations up-to. A relation R on processes is called a weak barbed bisimulation
up-to strong barbed congruence if if satisfies (3.1’) and

p R q, p→ p′ ⇒ q →∗ q′, p′ ∼ R ∼ q′

Every R defined in such a way is a weak barbed bisimulation.

The main idea with bisimulations-up-to is to factor out annoying and less
important aspects of the proof. Weak barbed bisimulation up-to weak barbed
congruence, however, is not necessarily a weak barbed congruence, a counterex-
ample can be found in [MS92a].

Apart from to strong bisimulation, there are other “up-to relations” which
can be used, such as bisimulation up to context, up to expansion or up to
almost-weak bisimulation [MS92a].

3.6 Comparison of Calculi and Full Abstraction

When working with calculi, it is often an interesting question, if they can be
translated into one another, i.e. if there is an encoding Θ : A → B of calculus
A into calculus B.

It is necessary to impose some condition on Θ, e.g. we can demand that all
reductions of an expression in A are matched by its encoding (see chapter 7).

Another desirable property of encodings is full abstraction, i.e. we demand
that

p ≈A q ⇐⇒ Θ(p) ≈B Θ(p′)

where ≈A and ≈B are bisimilarities or other suitable behavioural equivalences.

Important results in this direction are the encoding of the higher-order π-
calculus into the π-calculus [San92] and the encoding of the λ-calculus in the
π-calculus [Mil92, SW98], in CHOCS [Tho89b, Tho95] or in the blue-calculus
[Bou97] (see below).
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3.7 Synchronicity and Asynchronicity

Up until now communication in the presented calculi has always been syn-
chronous, i.e. both communication partners have to rendez-vous. On the syn-
tactic level, asynchronicity can be obtained very easily: we demand that the
only possible continuation of an output prefix is the dead process, i.e. if we have
a process of the form ā.p or āa1 . . . an.p it follows that p = 0. These processes
can also be regarded as messages.

That is synchronous sending āa1 . . . an.p can now only be represented by its
asynchronous version āa1 . . . an.0 | p.

Saying that an asynchronous calculus is simply a subcalculus of a syn-
chronous calculus is, however, not correct. It is expected, that in an asyn-
chronous calculus input action cannot be observed from the outside. E.g. in
the case of barbed bisimulations there are only barbs for output actions, which
leads to a different notion of bisimulation [ACS96].

3.8 Graph Calculi

Graph-based description of process calculi are widespread, they are mainly used
for visualization purposes [Mil94, Mil90].

Describing the semantics of processes by graph rewriting is common in re-
lated areas: there are, for example, the description of actors by graphs [JR90],
interaction nets and interaction combinators related to linear logic[Laf90, Laf97],
∆-grammars specifying concurrent languages and systems [KLG93, Loy92], a
graph notation for concurrent combinators [Yos94] or the specification of the
behaviour of petri nets by hypergraph grammars [Rei80].

The idea of describing the semantics of a concurrent or distributed program-
ming language with a graph grammar semantics, similar to our approach, can
also be found in [BS93].

In [Tae96] the graph transformation model is expanded in order to describe
parallel and distributed graph transformation.

3.9 Type Systems

While in CCS and in the monadic π-calculus, no process can ever run into
runtime-errors, this is not true for the polyadic π-calculus and other calculi.
Therefore simple type systems—often called sort systems—ensuring the free-
dom of runtime errors were introduced [Mil91, Gay93].

These type systems were extended in order to handle polymorphism and
recursive types [Vas94, Tur95] or to verify more complex properties of processes
such as input/output capabilities [PS93], security and privacy issues [Aba97],
absence of deadlocks [Kob97] or confluence [NS97]

For more details on type systems see chapter 8.
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3.10 Other Process Calculi

This overview can necessarily not deal with all existing process calculi. We give
a structured enumeration over important calculi and mention important work:

First-Order Calculi:

CCS (R. Milner) Calculus of Communicating Systems [Mil80, Mil90,
Mil89]

CSP (C.A.R. Hoare) Communicating Sequential Processes [Hoa85]

Petri Nets [Rei85] Petri nets are modelling the execution of actions wrt.
pre- and post-conditions (a representation of Petri nets by hyper-
graph grammars can be found in [Rei80]) [Rei85]

Mobile Calculi:

π-calculus (R. Milner) [MPW89a, MPW89b, Mil91]

Higher-order π-calculus (D. Sangiorgi) Mobility of port addresses and
processes with static binding [San92, MS92b, San96]

CHOCS (Bent Thomsen) Calculus of higher-order communicating sys-
tems: Mobility of processes with dynamic binding [Tho89a, Tho89b,
Tho95]

Join Calculus (C. Fournet and G. Gonthier) process calculus, based
directly on the chemical abstract machine [FG96, FGL+96]

Fusion Calculus (J. Parrow and B. Victor) extension of the π-calculus
with a different concepts of scopes [PV98]

Blue Calculus (G. Boudol) [Bou97] higher-order calculus, extension of
both λ- and π-calculus, an early version was the γ-calculus [Bou89]

Foundations of Process Calculi:

Action Structures (R. Milner) framework for different calculi based on
interactions with the environment [Mil96, Mil93]

Interaction Categories (S. Abramsky) Models processes in terms of
category theory where processes are represented as morphisms and
interfaces are represented as objects [AGN95]

Calculi with additional Features:

Distributed Calculi (J. Riely and M. Hennessy) Calculi modelling lo-
cations, movement of processes or threads to another location and
failure of locations [RH97, RH98].

Spi Calculus (M. Abadi) a calculus which describes encryption of mes-
sages, useful for modelling security protocols and privacy [Aba97,
AG97]

Object Calculus (M. Abadi, L. Cardelli) [AC96]



Chapter 4

The Spider Calculus: Syntax

and Semantics

4.1 Syntax

We will now describe the syntax and semantics of the graph-based calculus
Spider. It is an asynchronous calculus featuring higher-order communication
and mobility of port addresses.

A Spider expression is simply a hypergraph, consisting of two different
types of edges: processes and messages. The nodes of a hypergraph are meant
to represent ports.

Messages are always connected to a certain port—the port they are sent
to—and are labelled with their content, which is again a Spider expression.

Processes are either waiting for messages, which means they are labelled
with a process abstraction, detailing the behaviour of a process upon receipt of
a message. Or they are labelled with a replication operator, meaning that this
process can create copies of its content at will. They can also be labelled with a
variable, which indicates that they will be replaced by an entire process graph
in the course of message reception.

Definition 4.1.1 (Spider expression) Let X be a set of variables and let
Z := {proc,mess, var} be a set of edge sorts.

The class S of all Spider expressions is the smallest class satisfying:

• Every element of S is a hypergraph.

• IfH1, . . . , Hn ∈ S and C〈x1, . . . , xn〉 is a discrete context with x1, . . . , xn ∈
X and sort(xi) = card(Hi) it follows that

(Context) C〈H1, . . . , Hn〉 ∈ S

• If H ∈ S with n := card(H) it follows that

(Message) messm(H) ∈ S, where m ≥ 1

(Process with Replication) procn(!H) ∈ S
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(Process with Process Abstraction)

procm(λkx.H) ∈ S, where m ≤ card(H), k ∈ {1, . . . ,m}

(Process with a Variable)

procn(x) ∈ S, where x ∈ X, sort(x) = n

Labels of the form !H, λkx.H or x are also called process descriptions.
free(H) ⊆ X is the set of all variables occurring in a Spider expression H,

which are not bound by an abstraction λnx. 2

The set of all processes is denoted by PH (i.e. PH := Eproc
H ) and the set of

all messages is denoted by MH (i.e. MH := Emess
H ).

The last node of a message (if it exists) is also called its send-node, i.e. the
node it is sent to. Let e ∈ EH . We define sendH(e) := (sH(e))card(e).

If there is no free variable x in H, then λkx.H can be abbreviated to λk.H.
In the following we will use the name “node” and “port” interchangeably,

since our use of nodes corresponds to the concept of a port in process calculi.

4.2 Graphical Representation

Spider has an intuitive graphical representation which we will use extensively
in the rest of this work. The components are represented as follows:

Port

Process

S

...
source ports

Message
send

source ports...

H

Process Abstraction

Hλk x.

Replication Operator

H!

The name Spider for the calculus was chosen because of the resemblance
of an expression with a spider net with many spiders (i.e. processes) in it.
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4.3 Semantics

We will now define substitution of variables H[J/x] in the entire expression.

Definition 4.3.1 (Substitution of Variables) Let H, J be Spider expres-
sions and let x be a variable with sort(x) = card(J). We define H[J/x] induc-
tively as follows:

(C〈H1, . . . , Hn〉)[J/x] := C〈H1[J/x], . . . , Hn[J/x]〉

messn(H)[J/x] := messn(H[J/x])

procn(y)[J/x] :=

{
J if x = y
procn(y) otherwise

procn(!H)[J/x] := procn(!(H[J/x]))

procn(λky.H)[J/x] :=





procn(λky.H) if x = y
procn(λky.(H[J/x])) if x 6= y, y 6∈ free(J)
procn(λkz.((H[procn(z)/y])[J/x]))

if x 6= y, y ∈ free(J), z 6∈ free(H) ∪ free(J),
n = sort(y) = sort(z)

2

In the spirit of the Chemical Abstract Machine (CHAM) [BB92] we now
define rules of structural congruence for Spider, i.e. expressions are considered
to be equivalent if they have the same structure and if they can be converted
into one another by simple renaming of variables (α-conversion).

Definition 4.3.2 (Structural Congruence) ≡ is the least equivalence sat-
isfying:

Rules of Structural Congruence:

(C-MESS)
H1 ≡ H2

messn(H1) ≡ messn(H2)

(C-PA)
H1 ≡ H2

procn(λkx.H1) ≡ procn(λkx.H2)

(C-REPL)
H1 ≡ H2

procn(!H1) ≡ procn(!H2)

(C-α) procn(λkx.H) ≡ procn(λky.(H[procm(y)/x]))
if y 6∈ free(H), sort(x) = sort(y) = m

(C-CON)
C ∼= C ′, Hi ≡ Ji, i ∈ {1, . . . , n}
C〈H1, . . . , Hn〉 ≡ C ′〈J1, . . . , Jn〉
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where H,H1, J1 ∈ S, n ∈ lN, x ∈ X, S1, S2 are process descriptions and C is
a context with n holes where the i-th hole has sort card(Hi) = card(Ji).

2

The rules of structural congruence are equivalent to the following rules,
where ≡ is also defined on process descriptions:

(C-PA’)
H1 ≡ H2

λnx.H1 ≡ λnx.H2
(C-REPL’)

H1 ≡ H2

!H1 ≡!H2

(C-α’) λkx.H ≡ λky.(H[procm(y)/x])
if y 6∈ free(H), sort(x) = sort(y) = m

(C-CON’)
H ∼=≡ H ′

H ≡ H ′

Table 4.1: Alternative rules of structural congruence

We will make use of the alternative definition in chapter 7 where we compare
different calculi.

We now define a redex, i.e. a process with a message attached to one of its
nodes. Let S be a process description and let J be a Spider expression. A
redex Redk,m,n(S, J) in graphical notation is of the following form:

(k)(1) (m+1) (m+n)(m)

J

... ... ...send

S

Redk,m,n(S, J) := (procm(S), ζP ) ⊗ (messn+1(J), ζM )

where

ζP : m → m + n, ζM : n + 1 → m + n

with ζP (χm) := bχm+nc1...m and ζM (χn+1) := bχm+ncm+1...m+nk.

We are now ready to give the reduction semantics of the calculus:

Definition 4.3.3 (Reduction Semantics) Let → be the least relation satis-
fying
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Reduction Rules:

(R-MR) Redk,m,n(λkx.H, J) → H[J/x] if m+ n = card(H),
card(J) = sort(x)

(R-REPL) procn(!H) → procn(!H)2H if n = card(H)

(R-CON)
Hi → H ′

i

C〈H1, . . . , Hi, . . . , Hn〉 → C〈H1, . . . , H
′
i, . . .H

′
n〉

(R-EQU)
J ≡ H,H → H ′, H ′ ≡ J ′

J → J ′

where H, J,H ′, J ′ ∈ S and k,m, n ∈ lN and x ∈ X and C is a context with a
hole of sort card(H). 2

The two basic rules of reduction are (R-MR) and (R-REPL) (see figure 4.1).
(R-MR) describes the reception of a message messn+1(J) by a process
procm(λkx.H). The message can be received if its send-port is identical with
the k-th port of the process. The content J of the message is substituted for x
in H and the entire graph H is embedded into the existing graph. Note that
the n ports which are attached to the message are taken over by H and are
merged with the n last ports in χH . This corresponds exactly to the mobility
of port addresses which can also be found in the π-calculus.

(R-REPL) describes the replication of a process, i.e. it can create arbitrarily
many copies of its content, which are still attached to its string of external ports.

Definition 4.3.4 (Bad Redex) We say that a Spider expression H contains
a bad redex if it has either a factor Redk,m,n(λkx.J1, J2) where m+n 6= card(J1)
or sort(x) 6= J2 or a factor procn(!J) where n 6= card(J). 2

We will now give an alternative description of reduction which will facil-
itate some proofs. Our aim is to show that the reduction semantics remains
unchanged if we use only binary contexts in (R-CON) and allow the application
of (R-EQU) at most once.

Proposition 4.3.5 If H → H ′ it follows that there exist a binary context C
and process graphs H1, H2 such that

H ≡ C〈H1, H2〉 H ′ ≡ C〈H ′
1, H2〉

and H1
(R−MR)
−→ H ′

1 or H1
(R−REPL)

−→ H ′
1

Proof: We proceed by induction on the reduction rules:

• In the case of (R-MR) and (R-REPL) we haveH → H ′ and can choose the
context varn(x1) ⊕ var0(x2) where n := card(H) and H1 := H, H2 := 0.
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kλ
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Figure 4.1: Message Reception and Replication
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• In the case of (R-EQU) the proposition follows immediately with the
induction hypothesis and the transitivity of ≡.

• In the case of (R-CON) we have H → H ′ where

H = C〈H1, . . . , Hn〉 H ′ = C〈H1, . . . , H
′
i, . . . , Hn〉

and Hi → H ′
i. The induction hypothesis implies that

Hi = D〈J1, J2〉 H ′
i ≡ D〈J ′

1, J2〉

and J1
(R−MR)
−→ J ′

1 or J1
(R−REPL)

−→ J ′
1.

It follows with propositions 2.2.13 and 2.2.15 that there exist contexts
C̃, D̃ such that

C〈x1, . . . , xi−1, D〈y1, y2〉, xi+1, . . . , xn〉
∼= C̃〈y1, D〈x1, . . . , xi−1, xi+1, . . . , xn, y2〉〉

Therefore

H ≡ C̃〈Jj , D̃〈H1, . . . , Hi−1, Hi+1, . . . , Hn, J2〉〉

H ′ ≡ C̃〈J ′
j , D̃〈H1, . . . , Hi−1, Hi+1, . . . , Hn, J2〉〉

and Jj → J ′
j .

2

4.4 Example: Client-Server-Interaction

λ

send

DB Content

(2)

x

x.
(1)

!
1

(1)

Server :=

Figure 4.2: A simple database server

We model the following client-server interaction: A client sends to a server
a database query with a return address. The query is itself a process, able to
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process the database content and to filter the desired information. The server
(see figure 4.2) will replicate itself, in order to be able to process other queries,
and will then receive the query process and insert it in such a way that the
query process is able to receive the database content (see figure 4.3).

In the first step the server creates a copy of itself according to (R-REPL).
Both processes (the server and its copy) are still attached to the same port.
Then the copy receives a message attached to the very same port whose content
is the query process. (R-MR) states that the redex is replaced by the hypergraph
inside the process, which means that, in this case, the port attached to the
message is taken over by the second port of the hypergraph. At the same time
the content of the message is substituted for the variable x.

Since this example is there to give a first glimpse onto Spider we do not
further specify the database content, the query process or the client.

Server

x.

x

send

Client!
DB Query Process

(1)

(2)

send

ClientDB Query Process

DB Content

Server

send

Client

DB Query Process

(1)

(2)

send

DB Content

(2)

send

DB Content

(2)

λ

λ

x.

x

(1)

(1)

(R-REPL)

(R-MR)

(1)1

1

Figure 4.3: Client-Server interaction
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In order to emphasize the ports of a hypergraph H in a process abstraction
λkx.H which are merged with the ports attached to the message, they are filled
with gray.

An extended example (mail delivery system) can be found in chapter 5.



Chapter 5

Extended Example: Mail

Delivery System

5.1 Informal Description

We will now show how Spider’s features can be exploited in order to specify a
Mail Delivery System.

Imagine several processes who want to communicate with one another. A
communication structure connecting these processes shall be developed. It is
not the aim of this chapter to describe virtual connections between processes,
i.e. a scenario where there is a link between each pair of processes. The aim is
to model a communication structure closer to reality by describing a physical
net of components and by specifying the routing information we need to reach
a certain process in the net.

Every process has a binary mail address. The mail addresses are organized
hierarchically. For every binary string being a prefix to more than one mail
address there is a process acting as a router for this prefix. A mail sent to mail
address “100” for example is first sent to the topmost router who passes it on to
the router representing “1”. From there it is sent to the router “10” who finally
passes it to the receiver process. Such a hierarchical structure is depicted as a
hypergraph in figure 5.1. The processes labelled P are the actual receiver and
sender processes having access only to the topmost router. The process marked
grey has the mail address “100”.

The set of all mail addresses is partitioned into domains. There is a local
administrator for each domain, handling requests such as the entering and leav-
ing of processes participating in the mail system. A process leaving the system
gives up its mail address and sends a message containing its mail address to
the local administrator. A process entering the system sends a request to the
administrator and receives a reply with a free mail address if available.

We can see that we have to use Spider’s ability to send ports. Later we
will see that higher-order communication is also very helpful.

In the following sections we will implement a router and an administator
and will show how a message can be enriched with routing information. We
will also specify a protocol for processes wishing to enter or leave the system.

68
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P

100

"0" "1"

"01""00" "10"

""

P P P P PP
000 001 010 011

11

101

Figure 5.1: A hierarchical communication structure

5.2 Routers and Routing Information

Routing information and routers depend on one another. If we use another kind
of routing information we need another kind of router which can interpret this
information correctly. Messages with routing information are called mails.

A router is a process of cardinality 3 (see figure 5.1). It receives mails on
its first source port and sends them on its second or third port depending on
the routing information. It is depicted in figure 5.2.

m

λ1 m. (1)

(2) (3)

(1)

(2) (3)

!

Figure 5.2: A router as a Spider expression

Because a router is not only used once but several times we use a replication
operator !. Prior to receiving a mail a router has to duplicate itself in order
to be available afterwards. (The ability of a router to replicate itself not only
ensures its constant availability, but also solves the bottleneck problem, since
there can be several routers acting concurrently.)
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After replication a message is received and its content is substituted for
m. This content has to be a process graph which ensures that the rest of the
message is passed to the correct destination.

Let me state this more clearly: we will code both the content of a mail
and its routing information into a Spider expression. Let content ∈ S be the
actual content of the mail and let a ∈ {0, 1}∗ be the mail address of the recipient.
mri(content, a) is the corresponding message with routing information. It is
defined as follows:

mri(content, ε) := content, where ε is the empty string

a ∈ {0, 1}∗, mri(content, 0a) :=
send

(2)

mri(content,a)

(1)

a ∈ {0, 1}∗, mri(content, 1a) :=
mri(content,a)

(2)

send

(1)

A mail with content content and routing information to the mail address
“100” is shown in figure 5.3.

(2)

content

send

send

send

(1) (2)

(2)(1)

(1)

Figure 5.3: Mail with routing information to mail address “100”

Let us see what happens when we send this mail with routing information
to the topmost router in figure 5.1. The reductions that result in the arrival of
the content of the message are depicted in figure 5.4. Only the relevant parts
of the communication structure are shown. Note that the routing information
diminishes during reduction and in the end only the mail content is left.

A process has to be able to send its mail address to another process. When
sending the routing information as an expression it is convenient to treat the
content as a formal parameter. A process therefore sends a process abstraction
as a mail address which the receiver can use to insert a content and send it
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(REP)

(MR)

P

content

send

router

P

content

send

(1) (2)

router

P

router

P

router

router

router m

λ1 m. (1)

(2) (3)

(2)

content

send

send

send

send

(1) (2)

(1) (2)

(1) (2)

router

router

P

λ1 m. (1)

(2) (3)

(1)

(2) (3)

!

m

(R-REPL) (R-MR)

router

router

router

router
send

(R-REPL)

(R-MR)

router

router

content

send

send

send

(1) (2)

(1) (2)

content

send

send

send

send

(1) (2)

(1) (2)

(1)

Figure 5.4: Routing of a message
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back to the address. Such a process abstraction of cardinality 2 is depicted
in figure 5.5 for a process with mail address a. It is also called an address
abstraction.

(2)

(1)

(1)

(2)

send

λ c.1

mri(c,a)

Figure 5.5: Address abstraction representing the mail address a

Figure 5.6 shows a process receiving a mail address via its first input port
and afterwards sending content to this very mail address.

λ

send

content

1 b.

b

(1)

(2)

(1)
send

(2)

(1)

(1)

(2)

λ c.1

mri(c,a)

send

Figure 5.6: Process replying to a mail address
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5.3 Local Administrators

We can establish domains of processes by grouping processes with the same
prefix of their mail addresses. Every domain has a local administrator handling
requests from processes who want to leave or enter the system. An administra-
tor has cardinality 3. It receives leaving requests on its first port and entering
requests on its second port. The third port is connected to the topmost router.

If a process wants to give up its mail address and leave the system it sends
a message with its address abstraction to the administrator. Attached to the
message is a source port which was the connection of the process to the mail
system.

There might be several such messages waiting at the first source port of
the administrator. The administrator replicates itself, receives one of these
messages and waits for an entering request with a reply port attached to it.
To this reply port it sends the free mail address with its corresponding source
port. Attached to this message is also a port which establishes a connection to
the topmost router.

A local administrator is depicted in figure 5.7.

2 .

λ1 b.

(1) (2)

(3)

(1) (2)

(3)

λ

admin  :=

b

send

(5)(4)

(3)(1) (2)

(4)

!

Figure 5.7: Local administrator for a domain of processes

Administrators are added to the communication structure of figure 5.1. The
resulting mail system is shown in figure 5.8. The processes are grouped into
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domains according to the first digit of their mail addresses. All the participants
of the mail system know the first source port of the administrator in order to
be able to send a leaving request. The second source port could be connected
to potential participants not yet connected to the system.

PPP P

P

PP

admin

routerrouter

router

router

routerrouterrouter

admin

Figure 5.8: Communication structure with administrators

A process who wishes to leave the system has to obey the following protocol:

• It sends a message with its address abstraction to the first port of the
local administrator.

• Attached to the message is the port via which the process has received
the mails. The process must not retain any connection to this port.

A process wishing to enter the system must proceed as follows:

• It sends a message with dummy content to the second port of the admin-
istrator, signalling its request.

• Attached to the message is a reply port on which it listens out for the
reply which contains the address abstraction for its new mail address.

• The reply also brings a port to which the process attaches itself in order
to receive mails and a target port which connects the process with the
topmost router and enables it to send mails to other participants of the
system.
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5.4 Possible Extensions

• What happens if there are more potential participants than mail
addresses?

We can always enlarge the communication structure by inserting a router
at the place of a participating process. The router then has to announce
the availability of its two mail addresses to the local administrator.

• What happens if a former participant keeps its mail address
instead of giving it back?

In our current scenario this situation can happen. But we might specify
a router which creates a new port every time a new process is inserted.
This effectively keeps the former participant from receiving mails which
are not meant for it.



Chapter 6

Bisimulation and Proof

Techniques

6.1 Barbed Congruence

We now show how to incorporate a very important concept of process calculi into
our formalism: the notion of bisimulation (for more information on bisimulation
in process calculi see section 3.5).

Structural equivalence, as defined in chapter 4 is much too fine-grained for
most purposes. We do not want to distinguish processes showing the same
behaviour with respect to their environment. The following notion of barbed
congruence is close to a definition of Davide Sangiorgi in [San92, MS92b]. We
will modify it slightly in order to avoid complications in the rest of this chapter.

It is important that this relation is a congruence. This gives us the possibil-
ity to replace a process with an equivalent process in a larger context, without
changing the behaviour of the entire system.

We assume that we can only distinguish processes by checking their com-
munication abilities (“black-box view”). Therefore we will define the notion of
active ports.

Definition 6.1.1 (Active Ports) Let H be a Spider expression. We say
that H outputs on the k-th port or respectively that bχHck is an active output
port iff there exists a message q ∈ MH such that sendH(q) = bχHck. We say
card(q) is the cardinality of this active output port.

And we say thatH expects input on the k-th port or respectively that bχHck
is an active input port iff there exists a process p ∈ PH such that lH(p) = λix.J
and bsH(p)ci = bχHck. We say that card(J)− card(p) is the cardinality of this
active input port (= cardinality of the expected message). 2

(Note that in the definition above an input/output port may have several
cardinalities. This, however, can lead to runtime errors which can be detected
by a type system (see chapter 8). In a well-typed Spider expression, a port
can have only one cardinality.)

In asynchronous calculi we are not expected to be able to observe if a process
is expecting input (for more details on bisimulation in the asynchronous π-
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calculus see [ACS96]). Thus we will only distinguish processes by their output
capabilities.

We are now ready to define weak barbed congruence. While the following
definition of weak barbed congruence is very intuitive, it turns out that it can be
very hard to prove anything with respect to this definition. Therefore the rest
of the chapter will be devoted to proof techniques which can greatly simplify
our proofs.

Definition 6.1.2 (Weak Barbed Congruence)

A relation R is a weak barbed congruence on Spider expressions iff

• R is an equivalence

• H R J implies card(H) = card(J)

• Hi R Ji for i ∈ {1, . . . , n} implies

C〈H1, . . . , Hn〉 R C〈J1, . . . , Jn〉 (6.1)

for every discrete n-ary context C〈x1, . . . , xn〉 with holes of cardinality
card(H1), . . . , card(Hn).

• H R J andH → H ′ implies the existence of an expression J ′ with J →∗ J ′

and H ′ R J ′

• H R J and H outputs on the external port bχck implies that there exists
an expression J ′ with J →∗ J ′, J ′ outputs on bχck and H R J ′.

Two Spider expressions H, J are called weakly barbed congruent (H ≈ J) iff
there is a weak barbed congruence R such that H R J . 2

It is not difficult to show that ≈ is also a weak barbed congruence. Note also
that since R is reflexive, (6.1) holds also for non-discrete contexts C〈x1, . . . , xn〉.

Note: The definition above does not quite match the definition of barbed bisim-
ulation in Sangiorgi’s work [San92, MS92b]. The last condition should actually
read:

• H R J and H outputs on the external port bχck implies that there exists
an expression J ′ with J →∗ J ′ and J ′ outputs on bχck.

This means that our definition is stronger and it is not quite clear if both
definitions coincide. We chose the definition above since it is easier to handle
and since it enables us to prove the ⇒-part of proposition 6.3.4. And since
bisimulation is not the main objective of this paper, we consider it appropriate
to keep matters clear and manageable.

We will now conduct our first step to simplify proofs for the weak barbed
equivalence. The main point in this case is to avoid the transitivity of R.
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Proposition 6.1.3 Let R ⊆ S × S be a reflexive and symmetric relation on
Spider expressions and let R∗ be its transitive closure. Furthermore:

• H R J implies card(H) = card(J)

• Hi R Ji for i ∈ {1, . . . , n} implies

C〈H1, . . . , Hn〉 R
∗ C〈J1, . . . , Jn〉

for every discrete n-ary context C〈x1, . . . , xn〉 with holes of cardinality
card(H1), . . . , card(Hn).

• H R J and H → H ′ implies the existence of an expression J ′ with J →∗ J ′

and H ′ R J ′.

• H R J and H outputs on the external port bχck implies that there exists
an expression J ′ with J →∗ J ′, J ′ outputs on bχck and H R∗ J ′.

Then R∗ is a weak barbed congruence.

Proof: R∗ can be characterised in the following way:

H R∗ J ⇐⇒ ∃n ∈ lN, K1, . . . ,Kn ∈ S : H R K1 R . . . R Kn R J

• If H R∗ J then card(H) = card(K1) = . . . = card(Kn) = card(J).

• If Hi R
∗ Ji, i ∈ {1, . . . , n} it follows that there are process graphs K j

i ,
i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi} such that

Hi R K1
i R . . . R Kmi

i R Ji

Since R is reflexive we can choose the Kj
i such that m1 = . . . = mn =: m.

It follows that

C〈H1, . . . , Hn〉 R∗ C〈K1
1 , . . . ,K

1
n〉 R

∗ . . . R∗ C〈Km
1 , . . . ,K

m
n 〉

R∗ C〈J1, . . . , Jn〉

• We will show that H R∗ J , H → H ′ implies J →∗ J ′, H ′ R∗ J ′ by
induction on n where n is the number of R-steps between H and J : the
case H R J is obvious. If H Rn K R J and H → H ′, the induction
hypothesis implies that K →∗ K ′ and H ′ R∗ K ′. By induction on the
length of K →∗ K ′ we can show the existence of J ’ with J →∗ J ′ and
K ′RJ ′.

• We will show again by induction on n that if H R∗ J and H outputs on
the k-th port then there exists an expression J ′ with J →∗ J ′, J ′ also
outputs on the k-th port and H ′ R∗ J ′: The case H R J is obvious.

If H Rn K R J and H outputs on the k-th output port, the induction hy-
pothesis implies thatK →∗ K ′, K ′ outputs on the k-th port andH R∗ K ′.
We know (see above) that there exists a J ′ with J →∗ J ′ and K ′ R J ′.
Since K ′ outputs on the k-th port it follows that J ′ →∗ J ′′, J ′′ outputs
on the k-th output port and K ′ R∗ J ′′ which implies that H R∗ J ′′.

2
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6.2 Garbage Collection

In this section we present a first application of barbed congruence: we show
that garbage, i.e. edges and nodes that have no connection to external ports,
can be removed from a process graph without changing its behaviour. This fact
will be also needed in the proof of proposition 6.3.4.

Definition 6.2.1 (Garbage) Let H be a Spider expression such that H ≡
H ′ ⊕GH where card(GH) = 0. Then GH is called garbage of H. 2

We now show that removing this garbage yields another process which is
weakly barbed congruent to the original process.

Proposition 6.2.2 (Garbage Collection) Let H be a Spider expression with
H ≡ H ′ ⊕GH such that card(GH) = 0. Then H ≈ H ′.

Proof: We define

R := {(K ⊕GH ,K ⊕GJ) | K ∈ S, card(GH) = card(GJ) = 0}

It is obvious that R is reflexive and symmetric and that H R H ′. We will now
show that all conditions of proposition 6.1.3 are satisfied:

• If K ⊕GH R K ⊕GJ with card(GH) = card(GJ) = 0 then

card(K ⊕GH) = card(K) = card(K ⊕GJ)

• Let K⊕GH → H ′. Then either H ′ ≡ K ′⊕GH and K → K ′. In this case
K ⊕GJ → K ′ ⊕GJ R H ′.

If on the other hand H ′ ≡ K⊕G′
H and GH → G′

H (and thus card(G′
H) =

0) then K ⊕GJ →0 K ⊕GJ R K ⊕G′
H . Since R is symmetric it follows

that K ⊕G′
H R K ⊕GJ .

• LetKi⊕GiH R Ki⊕GiJ and let C〈x1, . . . , xn〉 be a given context. It follows
with propositions 2.2.13 and 2.2.15 that there are contexts C ′〈y1, . . . , yn+1〉
and C ′′〈z1, . . . , zn〉 with

C〈K1 ⊕G1
H , . . . ,Kn ⊕GnH〉 ≡ C ′〈K1, . . . ,Kn, C

′′〈G1
H , . . . , G

n
H〉〉

C〈K1 ⊕G1
J , . . . ,Kn ⊕GnJ〉 ≡ C ′〈K1, . . . ,Kn, C

′′〈G1
J , . . . , G

n
J〉〉

With proposition 2.2.13 we can show that

C〈K1, . . . ,Kn, G〉 ≡ C〈K1, . . . ,Kn,0〉 ⊕G

if card(G) = 0. It follows immediately that

C〈K1 ⊕G1
H , . . . ,Kn ⊕GnH〉 R C〈K1 ⊕G1

J , . . . ,Kn ⊕GnJ〉

• Let K ⊕ GH R K ⊕ GJ and K ⊕ GH outputs on the k-th port, then, of
course, K outputs on the k-th port and the same is true for K ⊕GJ .

2
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6.3 Normal Bisimulation

Bisimulation proofs can be much more complicated than the proof of proposi-
tion 6.2.2. The main problem is the great number of contexts we have to deal
with. But, as it turns out, we do not need to consider arbitrary contexts. Only
messages received from and sent to the exterior are really important. This is
similar to the bisimulation equivalence based on labelled transition semantics.

Furthermore we consider bisimulation up-to-context. That is, as in propo-
sition 6.1.3 there is a stronger relation R on the left side and a weaker relation
R̂ on the right side of an implication.

Definition 6.3.1 Let R ⊆ S×S be a symmetric relation on Spider expression.
We define

R̂ := {(C〈H1, . . . , Hn〉, C〈J1, . . . , Jn〉) | C is a n-ary discrete context, Hi R Ji}

2

Proof: Immediate with proposition 2.2.13. 2

Lemma 6.3.2 (Properties of R̂) Let R be a symmetric relation. Let Hi, Ji
be Spider expressions with Hi R̂ Ji and let C be a discrete n-ary context with
holes of cardinality card(H1), . . . , card(Hn). Then

C〈H1, . . . , Hn〉 R̂ C〈J1, . . . , Jn〉

For the following definitions we need two special contexts: Rk,m,n (repre-
senting a process x1 receiving a message x2) and Dk,m,n (representing a process
sending a message x2, where x1 is the rest of the process).

.........

, > x1 x2x :=1 x2Rk,m,n

(m+1) (m+n)(k)(1)

<

(m)

...... ...
>D x1 x2x1 x2k,m,n

(k)(1)

:=

(m)
n

< ,

We are now ready to define the notion of normal bisimulation.

Definition 6.3.3 (Normal Bisimulation) A relation R on Spider expres-
sions is a normal bisimulation iff

• R is reflexive and symmetric

• H R J implies card(H) = card(J)
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• H R J andH → H ′ implies the existence of an expression J ′ with J →∗ J ′

and H ′ R̂ J ′

• If H R J and H ≡ Dk,m,n〈H
′,messn+1(MH)〉 where H ′,MH ∈ S then

there exist K ′,MK ∈ S such that

H ′ R̂ K ′

messn+1(MH) R messn+1(MK)

J →∗ Dk,m,n〈K
′,messn+1(MK)〉

(If H outputs a message on the k-th port, J can output an equivalent
message, and the rest of the expressions is also equivalent.)

• If H R J and bχck is an active input port (of cardinality n) in H then
J →∗ K such that for every pair messn+1(M) R messn+1(N):

Rk,m,n〈H,messn+1(M)〉 R̂ Rk,m,n〈K,messn+1(N)〉

where m := card(H), n ∈ lN.

(If H expects a message on the k-th port, H and J behave the same if
they receive equivalent messages from the environment.)

Two Spider expressions H, J are called normally bisimilar (H ≈N J) iff there
is a normal bisimulation R such that H R̂∗ J 2

Proposition 6.3.4 Barbed congruence and normal bisimulation are identical,
i.e. for every H, J ∈ S:

H ≈ J ⇐⇒ H ≈N J

Proof:

⇒: Let H ≈ J . We will show that the conditions of definition 6.3.3 are satisfied
for R =≈. Since ≈ is a bisimulation it is easy to see that it satisfies the
first three conditions of definition 6.3.3. The fifth condition is satisfied
since ≈ is a congruence by definition. We will now check the fourth
condition:

Let H ≡ Dk,m,n〈H
′,messn+1(MH)〉 where card(MH) =: a.

We define the following context C〈x1〉:
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(3n+2)...

... ...

... ...
i

(m+n) (m+n+1)(m+1)

(n)(1)(m)(k)(1)

...
(n+1) (2n)

send

(2n+1)

(m+2n) (m+2n+1)

λ

x1

y.

y

...
(1) (a)

(2n+2)

2n+2

(2n+3)

Since H ≈ J , we conclude that also C〈H〉 ≈ C〈J〉. Since in H a message
of content MH is sent to bχck, C〈H〉 can perform a reduction where the
process on the right hand side receives this very message. It is easy to see
that the resulting process has the form H ′ ⊕messn+1(MH) =: H̃.

Since H ′⊕messn+1(MH) outputs on the (m+2n+1)-th port we conclude
that C〈J〉 →∗ J̃ ≈ H̃ and J̃ also outputs on the (n+2n+1)-th port. This
works only if at some time in the reduction process a message is received
by the right hand process in C. This implies that

C〈J〉 →∗ C〈Dk,m,n〈K,messn+1(MK)〉〉 → K ⊕messn+1(MK)

→∗ K ′ ⊕messn+1(MK) ≡ J̃

It follows that

C〈J〉 →∗ C〈Dk,m,n〈K,messn+1(MK)〉〉 →∗ Dk,m,n〈K
′,messn+1(MK)〉〉

→ K ′ ⊕messn+1(MK)

Since H ′ ⊕messn+1(MH) ≈ K ′ ⊕messn+1(MK) and ≈ is a congruence
it follows that

H ′ ⊕ σε(messn+1(MH)) ≡ σ1...m+n(H
′ ⊕messn+1(MH))

≈ σ1...m+n(K
′ ⊕messn+1(MK)) ≡ H ′ ⊕ σε(messn+1(MK))

σε(H
′) ⊕messn+1(MH) ≡ σm+n+1...m+2n+1(H

′ ⊕messn+1(MH))

≈ σ1...m+n(K
′ ⊕messn+1(MK)) ≡ σε(H

′) ⊕messn+1(MK)

With proposition 6.2.2 it follows that H ′ ≈ K ′ and messn+1(MH) ≈
messn+1(MK).

⇐: Let R be a normal bisimulation. We will show that R̂ is a weak barbed
congruence with the help of proposition 6.1.3.

• R̂ is symmetric since R is symmetric.
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• H R̂ J implies H ≡ C〈H1, . . . , Hn〉 and J ≡ C〈J1, . . . , Jn〉 for some
context C〈x1, . . . , xn〉. It follows that card(H) = card(C〈x1, . . . , xn〉) =
card(J).

• It follows immediately with lemma 6.3.2 that Hi R̂ Ji implies

C〈H1, . . . , Hn〉 R̂ C〈J1, . . . , Jn〉

• Let H R̂ J , (H ≡ C〈H1, . . . , Hn〉, J ≡ C〈J1, . . . , Jn〉, Hi R Ji), H
outputs on χk.

Then there is a process p of C, labelled xi with bsC(p)cj = bχck for
some j andHi outputs on bχcj , i.e. Hi ≡ Dj,mi,ni

〈H ′
i,messni+1(MHi

)〉.

Since Hi R Ji we conclude that

Ji →
∗ Ki ≡ Dj,mi,ni

〈K ′
i,messni+1(MKi

)〉

with H ′
i R̂ K ′

i and messn+1(MHi
) R messn+1(MKi

).

It follows with lemma 6.3.2 that Hi R̂ Ki and that

H ≡ C〈H1, . . . , Hn〉 R̂ C〈J1, . . . , Ji−1,Ki, Ji+1, . . . , Jn〉 =: K

Furthermore J →∗ K and since Ki is active in the j-th output port
and bsC(p)cj = bχck it follows that K is active in the k-th output
port.

• Let H R̂ J , (H ≡ C〈H1, . . . , Hn〉, J ≡ C〈J1, . . . , Jn〉, Hi R Ji), and
let H → H ′. We have to show that J →∗ K and H ′ R̂ K.

There are two cases:

– The reduction takes place in one of the Hi, i.e. Hi → H ′
i. In

this case the properties of R assure that Ji →∗ Ki and H ′
i R̂ Ki.

It follows with lemma 6.3.2 that

C〈J1, . . . , Jn〉 →
∗

C〈J1, . . . , Ji−1,Ki, Ji+1, . . . , Jn〉 R̂ C〈H1, . . . , Hn〉

– The reduction takes place inH ≡ C〈H1, . . . , Hn〉 andHi receives
a message of Hj . Hi expects an input on bχHi

cki
and Hj outputs

on bχHj
ckj

. That is

Hj ≡ Dkj ,mj ,n〈H
′
j ,messn+1(MHj

)〉

We assume that C has edges ei, ej with lC(ei) = xi, lC(ej) = xj
and bsC(ei)cki

= bsC(ei)ckj
.

We can show that there exists a context C ′〈x1, . . . , xn〉 (with
mj + nj = sort(xj), mj = sort(xi) and sort(xl) = sort(yl) if
l 6= i, j) such that

C〈x1, . . . , xj−1, Dkj ,mj ,n〈xj , xn+1〉, xj+1, . . . , xn〉

≡ C ′〈x1, . . . , xi−1, Rki,mi,n〈xi, xn+1〉, xi+1, . . . , xn〉
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This implies that

H ≡ C ′〈H1, . . . , Rki,mi,n〈Hi,messn+1(MHj
)〉, . . . , H ′

j , . . . , Hn〉

Since Hj R Jj and Hj outputs on bχckj
it follows that Jj →

∗ Kj

where Kj ≡ Dkj ,mj ,n〈K
′
j ,messn+1(MKj

)〉 and

H ′
j R̂ K ′

j

messn+1(MHj
) R messn+1(MKj

)

Since Hi R Ji and Hi expects an input on bχcki
it follows that

Ji →
∗ Ki such that

Rki,mi,n〈Hi,messn+1(MHj
)〉 R̂ Rki,mi,n〈Ki,messn+1(MKj

)〉

Therefore

J →∗ C〈J1, . . . ,Ki, . . . ,Kj , . . . , Jn〉

≡ C〈J1, . . . ,Ki, . . . , Dkj ,mj ,n〈K
′
j ,messn+1(MKj

)〉, . . . , Jn〉

≡ C ′〈J1, . . . , Rkj ,mj ,n〈Ki,messn+1(MKj
)〉, . . . ,K ′

j , . . . , Jn〉

R̂ H

2

6.4 Example: Simulating Replication

We now show the usefulness of normal bisimulation by simulating the replication
operator. This actually means that the replication operator is not necessary in
order to obtain full computational power in a higher-order calculus. This result
is not unexpected, and a similar result was shown for the fixed-point operator
by Bent Thomsen in [Tho95] for the calculus of higher-order communicating
systems CHOCS.

The corresponding expression in the λ-calculus is the paradoxical combina-
tor Y .

It is, however, sensible to keep the replication operator in order to facilitate
programming and in order to retain full computational power when we restrict
Spider to its non-higher-order fragment.

We will need the following context:

... ...
...

(m) (m+1)

x1 >x2<Bm+1 , x:=
1 x2

(1)
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Furthermore:

...

...

...

...

...

m (H)

ZmBm+1 <H,

Y :=

Zm

:=

(m)

(m+1)

Z m λm+1 x.

send
(1) (m)

(1) (m) (m+1)

>

(1) (m+1)

send

(1) (m) (m+1)

x

x

(1) (m)

where m := card(H).

And the only reduction Ym(H) can perform is

Ym(H) →

...

...

mBm+1 <H, >

Z<H, >mBm+1

Z

send
(1) (m)

(1) (m) (m+1)

≡ (H2Ym(H)) ⊕ 1̄

Proposition 6.4.1 (Simulating Replication) Let H be a Spider expres-
sion with m = card(H).

Ym(H) ∼= procm(!H)

Proof: In order to show that Ym(H) ≈ procm(!H) we have to show that the
reflexive and symmetric closure of

R := {(Ym(H) ⊕ n̄, procm(!H)) | n ∈ lN}

is a normal bisimulation.

The first two conditions are obvious and the last two need not be checked
since none of the processes contains any active ports. So only the third condition
remains: for the reflexive part of R this is obvious.

If Ym(H)⊕ n̄ → (H2Ym(H))⊕n + 1 ≡ H2(Ym(H)⊕n + 1) it follows that
procm(!H) → H2procm(!H) and

H2(Ym(H) ⊕ n + 1) R̂ H2procm(!H)
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Finally, the case procm(!H) → H2procm(!H) is nearly analogous:

Ym(H) ⊕ n̄→ H2(Ym(H) ⊕ n + 1) R̂ H2procm(!H)

2



Chapter 7

Comparison with other

Formalisms

7.1 How to Compare Calculi

In this chapter we will relate Spider to important calculi, like the λ-calculus
and the π-calculus. We will encode expressions from these calculi into Spider.
To be able to show that such a translation is in some way “correct” we need
a notion of what it means that a translation is preserving the semantics of
a calculus. The following definitions are inspired by G. Boudol [Bou89] and
appear, in a similar form, also in [PS93].

Definition 7.1.1 (Strong (Weak) Simulation)
Let A = (A,→A), B = (B,→B) be two calculi (or transition systems) where

A,B are sets of expressions and →A,→B are reduction relations. Furthermore
there are equivalence relations ≡A,≡B and we demand that in both calculi
there is the rule

x ≡ x′, y ≡ y′, x→ y

x′ → y′

Let a, a′ ∈ A, b, b′ ∈ B. We say that B strongly simulates A if there exists
a mapping ∆ : B′ → A with B′ ⊆ B such that:

∀ a ∈ A∃ b ∈ B′ : ∆(b) ≡A a (7.1)

b ≡B b′ ⇒ ∆(b) ≡A ∆(b′) (7.2)

b→B b′ ⇒ ∆(b) →A ∆(b′) (7.3)

∆(b) →A a
′ ⇒ ∃ b′ ∈ B′ : b→B b′, ∆(b′) ≡A a

′ (7.4)

A is weakly simulated by B if we replace →A,→B by →∗
A,→

∗
B in the definition

above. 2

It is possible to gain simulations out of existing simulations:

Proposition 7.1.2 (Transitivity of Simulation)
If A can be strongly (weakly) simulated by B and B can be strongly (weakly)

simulated by C then A can be strongly (weakly) simulated by C.

87
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Proof: Straightforward by composition of the ∆-mappings. 2

Let us now consider a special case where we can show simulation with a
mapping Θ : A → B instead of a mapping ∆ : B′ → A. Note that the
conditions given below are less general than the conditions in definition 7.1.1.

Proposition 7.1.3 Let A,B be calculi as defined in definition 7.1.1. And let
Θ : A → B be a mapping satisfying:

Θ(a) ≡B Θ(a′) ⇐⇒ a ≡A a
′ (7.5)

a→A a
′ ⇒ Θ(a) →B Θ(a′) (7.6)

Θ(a) →B b′ ⇒ ∃ a′ ∈ A : a→A a
′, Θ(a′) ≡B b′ (7.7)

Then A can be strongly simulated by B.

Proof: Let B′ := Θ(A). Since Θ|B
′
is a bijection from the equivalence classes

of A into the equivalence classes of B′ (see condition 7.5) there exists a mapping
∆ : B′ → A with

b ≡B b′ ⇒ ∆(b) ≡A ∆(b′)

Θ(∆(b)) ≡B b for every b ∈ B

∆(Θ(a)) ≡A a for every a ∈ A

This immediately implies (7.1) and (7.2).
We will now show that the other two conditions of definition 7.1.1 are sat-

isfied:

(7.3) Let b →B b′. We define a := ∆(b) with Θ(a) ≡ b. It follows that
Θ(a) →B b′. (7.7) implies that there exists a a′ such that a → a′ and
Θ(a′) ≡ b′. Furthermore ∆(b′) ≡A a

′.

It follows that
∆(b) ≡A a→ a′ ≡A ∆(b′)

(7.4) Let ∆(b) → a′. With 7.6 it follows that

b ≡B Θ(∆(b)) → Θ(a′)

If we define b′ := Θ(a′) it follows that b→ b′ and ∆(Θ(a′)) ≡A a
′.

2

When dealing with process calculi it is also desirable to compare the in-
put/output capabilities of two related expressions and make sure that they are
the same.

Normally it is expected that the translation is fully abstract , i.e. that it
preserves the semantical equivalences of the different calculi. That is if ≈A,
≈B are the semantical equivalences (e.g. some sort of bisimulation or barbed
congruence) we expect that

b ≈B b′ ⇐⇒ ∆(b) ≈A ∆(b′)
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We will now assume that in both calculi the semantical equivalence is weak
barbed congruence. In order to be able to define barbed congruence in a calculus
A we will assume that there are n-ary contexts cA such that cA〈a1, . . . , an〉 ∈ A
if it is defined. We assume that if cA〈a1, . . . , an〉 ∈ A is defined and ai ≡ a′i ,
i ∈ {1, . . . , n}, then cA〈a

′
1, . . . , a

′
n〉 is also defined and

cA〈a1, . . . , an〉 ≡ cA〈a
′
1, . . . , a

′
n〉

Furthermore we assume that each expression a is associated with a set of
active ports activeA(a). Where a ≡ a′ implies activeA(a) = activeA(a′).

Now it is possible to define weak barbed congruence as in definition 6.1.2:

Definition 7.1.4 (Weak Barbed Congruence for Arbitrary Calculi) Let
A = (A,→) be a calculus with contexts and active ports as defined above.

A relation R is a weak barbed congruence on A iff

• R is an equivalence

• ai R a′i for i ∈ {1, . . . , n} implies

cA〈a1, . . . , an〉 R cA〈a
′
1, . . . , a

′
n〉 (7.8)

for every discrete n-ary context cA. Furthermore if cA〈a1, . . . , an〉 is de-
fined then cA〈a

′
1, . . . , a

′
n〉 is also defined.

• a R a′ and a → â implies the existence of an expression â′ with â →∗ â′

and â R â′

• a R a′ and if act ∈ activeA(a) then there exists an expression â′ with
a′ →∗ â′, act ∈ activeA(â′) and a R â′.

Two expressions a, a′ are called weakly barbed congruent (a ≈ a′) iff there is a
weak barbed congruence R such that a R a′) 2

We will now investigate what conclusions can be drawn from a simulation
∆ concerning full abstraction.

Proposition 7.1.5 Let ∆ : B′ → A be a mapping describing the simulation of
calculus A by calculus B. Furthermore let ≈A,≈B be weak barbed congruences
on A respectively B.

We extend ∆ to contexts such that for every context cA of A there is a
context cB of B such that ∆(cB) ≡ cA. And

∆(cB〈b1, . . . , bn〉) ≡B ∆(cB)〈∆(b1), . . . ,∆(bn)〉

(if one of both sides is defined) and there is a bijection f with activeB(b) =
f(activeA(∆(b))).

It follows that

b ≈B b′ ⇒ ∆(b) ≈A ∆(b′)
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Proof: Let b ≈B b′. This implies that there exists a weak barbed congruence
RB with b RB b′. We define

RA := {(a, a′) | ∃b, b′ : b RB b′, ∆(b) ≡ a, ∆(b′) ≡ a′}

• RA is reflexive because of (7.1). And since RB is symmetric and transitive
it follows that also RA is symmetric and transitive.

• Let ∆(bi) ≡ ai RA a′i ≡ ∆(b′i) with bi RB b′i. Let cA be a context in A
where cA〈a1, . . . , an〉 ≡ cA〈∆(b1), . . . ,∆(bn)〉 is defined. With the condi-
tion above it follows that there is a context cB in B satisfying ∆(cB) ≡A

cA. It follows that ∆(cB〈b1, . . . , bn〉) ≡A ∆(cB)〈∆(b1), . . . ,∆(bn)〉 and
cB〈b1, . . . , bn〉 is defined.

This implies that cB〈b
′
1, . . . , b

′
n〉 is defined and since RB is a weak barbed

congruence it follows that

cB〈b1, . . . , bn〉 RB cB〈b
′
1, . . . , b

′
n〉

Furthermore

cA〈a1, . . . , an〉 ≡ cA〈∆(b1), . . . ,∆(bn)〉 ≡A ∆(cB〈b1, . . . , bn〉)

RA ∆(cB〈b
′
1, . . . , b

′
n〉) ≡A cA〈∆(b′1), . . . ,∆(b′n)〉 ≡ cA〈a

′
1, . . . , a

′
n〉

• Let a ≡ ∆(b) RA ∆(b′) ≡ a′ with b RB b′ and let a → â and thus also
∆(b) → â. It follows with 7.4 that b→∗ b̂ and ∆(b̂) ≡A â.

Since RB is a weak barbed congruence it follows that b′ →∗ b̂′ and b̂ RB b̂
′.

(7.3) then implies that a′ ≡ ∆(b′) →∗ ∆(b̂′) and â RA ∆(b̂) RA ∆(b̂′).

• Let a ≡ ∆(b) RA ∆(b′) ≡ a′ with b RB b′ and let act ∈ activeA(a) =
activeA(∆(b)). This implies that f(act) ∈ activeB(b).

It follows that b′ →∗ b̂′, f(act) ∈ activeB(b̂′) and b RB b̂′.

It follows with (7.3) that a′ ≡ ∆(b′) →∗ ∆(b̂′) with a ≡ ∆(b) RA ∆(b̂′).
And since activeA(∆(b̂′)) = f−1(activeB(b̂′)) it follows that

act ∈ activeA(∆(b̂′)

2

7.2 The λ-Calculus

7.2.1 Informal Comparison

The original idea behind Spider was to combine the λ-calculus with concepts
from graph rewriting in order to describe concurrent programs only by graph
syntax, functional abstraction and application.
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Since the semantics of Spider is based on lazy evaluation it is sensible to
compare it with the lazy-evaluation semantics of the λ-calculus. Its syntax is
as follows:

E ::= x | λx.E | (E1E2)

Renaming of bound names, i.e. α-conversion, leads to equivalent expressions.
That is λx.E ≡α λy.E[y/x] if y does not occur free in E. The reduction rules
are the following:

Rules of Structural Rules:

(C-λ-α)
E ≡α E

′

E ≡ E′ (C-λ-APPL)
E1 ≡ E′

1, E2 ≡ E′
2

(E1E2) ≡ (E′
1E

′
2)

(C-λ-ABSTR)
E ≡ E′

λx.E ≡ λx.E′

Reduction Rules:

(R-λ-β) ((λx.E1)E2) → E1[E2/x] (R-λ-APPL)
E1 → E′

1

(E1E2) → (E′
1E2)

(R-λ-EQU)
E1 ≡ E′

1, E2 ≡ E′
2, E1 → E2

E′
1 → E′

2

We assume that E1[E2/x] denotes the syntactical substitution of x by E2 in E1

(with change of bound variables in order to avoid capture of free variables in
E2).

The set of all λ-expressions will be denoted by Λ.

Some elements of the λ-calculus reappear in Spider with the gravest changes
being made in the application of a function to a parameter. Instead of only
two expressions (E1E2) there can be any number of connected processes and
messages in a hypergraph. We can say that processes play the role of functions
while messages play the role of parameters. The processes and messages are
linked via ports (the nodes of the hypergraph).

Whereas an abstraction λx.E in the λ-calculus has access to only one pa-
rameter, a process can receive a message from any port at any time. The
number k in the process abstraction λkx.H indicates at which port the process
is listening. Another difference to the λ-calculus is the fact that ports can be
attached to a message, which are taken over by the receiver allowing it to gain
access to even more messages. The port via which a message is received does
not get lost but is available afterwards as well.

In the λ-calculus it is immediately obvious how to replace a substring by an-
other string. In a graph-based calculus it is necessary to introduce a mechanism
for the construction of graphs, as we have done in chapter 2.
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Unlike in the λ-calculus, which is confluent, there are two forms of nonde-
terminism which can occur in Spider:

• Several messages might be waiting at one port. A process listening at
this port nondeterministically receives any of them.

• Several processes might be listening at the same port. If a message arrives
at this port any one of the processes will receive it.

Consequently Spider is not confluent any more. In section 8.3, however, we will
present a type system which will guarantee confluence for typed expressions.

We will now introduce two ways of encoding the λ-calculus into Spider.
Although both simulate lazy evaluation, they are different in their approach.

7.2.2 Encoding the λ-Calculus into Spider, Version I

In the λ-calculus a function substitutes a parameter and so becomes the result.
That is there is no real output. In this spirit we will give an encoding of the
λ-calculus into Spider.

In section 7.2.3 we will follow a different approach, that respects the para-
digm of process calculi. That is a function is simulated by a process which
receives its parameters and outputs the result as a message.

The mapping Θ1
λ desribed in the following encodes every λ-expression into

a Spider expression of cardinality 1 (see figure 7.1). On this one external port
a message, i.e. the parameter, is expected. This message is expected to bring
along a port attached to it, from which the next parameter is to be received.
This port is also called the continuation.

2
(

Θ

Θ

=

=λ

λ send

2

(1)

(1)
1

(1)

1

(1)

(2)λ

1(x)

λΘλ
1( x.E)

x

x.1

(E)Θλ
1

E  E   )  = 1
Θλ

1(E  )

Θλ
1(E  )

Figure 7.1: Encoding the λ-Calculus into Spider, Version I

(For the meaning of the long dashed lines see the explanation at the end of
section 2.1.)

Proposition 7.2.1 The λ-calculus can be strongly simulated by Spider.
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Proof: Our aim is to define an inverse translation ∆1
λ : Λ → S and to show

that it satisfies the conditions of definition 7.1.1.
By induction on the length of the reduction we can show that if Θ1

λ(E) →∗ H
then H ≡ H ′ ⊕ m where m ∈ lN and H ′ is equivalent either to (a) or (b) in
the following figure, where H0, H1, . . . , Hn also have form (a) or (b) (for some
n ∈ lN).

0H

x

(b)(a)

send

send

send

send

λ

(1) (1)

(1) (2)x.1

H

H

H

H

1 1

n n

We define

∆1
λ(H) :=

{
λx.∆1

λ(H0)∆
1
λ(H1) . . .∆

1
λ(Hn) if H ′ has form (a)

x∆1
λ(H1) . . .∆

1
λ(Hn) if H ′ has form (b)

}

We can show by induction that

Θ1
λ(E1[E2/x]) ≡ Θ1

λ(E1)[Θ
1
λ(E2)/x]

∆1
λ(H[J/x]) ≡ ∆1

λ(H)[∆1
λ(J)/x]

∆1
λ(Θ

1
λ(E) ⊕ n̄) ≡ E

∀H ∃m ∈ lN : Θ1
λ(∆

1
λ(H)) ⊕ n̄ ≡ H

We will now show that the four conditions of definition 7.1.1 are satisfied:

(7.1) because of ∆1
λ(Θ

1
λ(E)) ≡ E

(7.2) By induction on the (alternative) rules of structural congruence of Spi-

der (see table 4.1).

(7.3) Let H → H ′.

According to proposition 4.3.5 it follows that

H ≡ C〈J1, J2〉 H ′ ≡ C〈J ′
1, J2〉

and J1
(M−MR)
−→ J ′

1.

This is only possible if H has form (a) and H ′ has the following form:
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0
H

n se
nd

se
nd(1
)

H
2

H [ 
H

/x
]

1

It implies that

∆1
λ(H) = λx.∆1

λ(H0)∆
1
λ(H1) . . .∆

1
λ(Hn)

→ ∆1
λ(H0)[∆

1
λ(H1)/x]∆

1
λ(H2) . . .∆

1
λ(Hn)

≡ ∆1
λ(H0[H1/x])∆

1
λ(H2) . . .∆

1
λ(Hn)

= ∆1
λ(H

′)

(7.4) Let ∆1
λ(H) → E′. We have to show that H → H ′ such that ∆1

λ(H) ≡ E′.

• We will first show that E1 ≡ E2 ⇒ Θ1
λ(E1) ≡ Θ1

λ(E2) (by induction
on the rules of structural congruence)

• Then it can be show that E → E ′ implies Θ1
λ(E) → Θ1

λ(E
′)⊕1̄. This

can be done by straightforward induction on the reduction rules.

Therefore Θ1
λ(∆

1
λ(H)) → Θ1

λ(E
′) ⊕ 1̄ and

H ≡ Θ1
λ(∆

1
λ(H)) ⊕ n̄ → Θ1

λ(E
′) ⊕ n + 1 := H ′

where ∆1
λ(H

′) ≡ E′.

2

7.2.3 Encoding the λ-Calculus into Spider, Version II

The encoding above is correct in the sense defined in section 7.1, but it has
one weakness: it is hard to combine encoded λ-expressions with other Spider

processes. If we regard an encoded expression as a black box, we see a process
which only receives but never sends messages. Its interaction with the envi-
ronment is thus rather limited, especially in our asynchronous case where the
reception of a message cannot be observed. Since there are no active ports to
observe, we have problems with full abstraction.

What we want to do now is create functions receiving their parameters and
sending the reult as a message. We will define the following two operators.

• λx .expr (x ∈ Id, expr ∈ E), a Spider expression of cardinality 2, which
can receive an expression, substitute this expression for x in expr and
send the result of the substitution.

• @, a process description which receives a function on its first port, a
parameter on its second port and which will insert the function such that
it receives the parameter and outputs the result.
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(1)

λ

(2)

(1)

(2)

x.1

H
f

λx .H := @ := λ f.

(3)

(2)(1)
1

Figure 7.2: Operators for abstraction and application

The operators λx .expr,@ are defined in figure 7.2.

We use the operators to define the encoding depicted in figure 7.3. It takes
a λ-expression and maps it onto a Spider expression of cardinality 1. Note
that Θ2

λ(E) is active in its output port if and only if E is of the form λx.E ′.

λ =  .

@

send

(1)

(1)

=Θλ

Θλ

Θλ

(1)

Θλ Θλ

Θλλ

(x)2 x

(2 x.E) x 2(E)

(2 E  E   )  = 
1 2

2(E  )
1

2 (E  )2

send

Figure 7.3: Encoding the λ-Calculus into Spider, Version II

Proposition 7.2.2 The λ-calculus can be weakly simulated by Spider.

Proof: By induction on the length of the reduction we can show that if
Θ2
λ(E) →∗ H then H ≡ H ′ ⊕ m̄ where H ′ either has form (a), (b) or (c)

in figure 7.4 (where the expressions Hi have form (a) or (b)).

We can define an inverse mapping ∆2
λ for every Spider expression H with
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1out1 out1
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@
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@
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@
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send

H 1

H m

x H H 1

H m

λ λ

send

in1

out1

x
H o

H 1

x,1.

H m

out

Figure 7.4: Encoded λ-expressions

Θ2
λ(E) →∗ H:

∆2
λ(H) :=





x∆2
λ(H1) . . .∆

2
λ(Hm) if H has form (a)

(λx.∆2
λ(H0))∆

2
λ(H1) . . .∆

2
λ(Hm) if H has form (b)

∆2
λ(H0)[∆

2
λ(H1)/x]∆

2
λ(H2) . . .∆

2
λ(Hm) if H has form (c)

We can show that

Θ2
λ(E1[E2/x]) ≡ Θ1

λ(E1)[Θ
2
λ(E2)/x]

∆2
λ(H[J/x]) ≡ ∆2

λ(H)[∆2
λ(J)/x]

∆2
λ(Θ

2
λ(E) ⊕ n̄) ≡ E

∀H∃m ∈ lN : H →∗ Θ2
λ(∆

2
λ(H)) ⊕ m̄

Now we will show that all four conditions of definition 7.1.1 are satisfied.

(7.1) Obvious since ∆2
λ(Θ

2
λ(E)) ≡ E

(7.2) By induction on the (alternative) rules of structural congruence of Spi-

der.

(7.3) Let H → H ′.

According to proposition 4.3.5 it follows that

H ≡ C〈J1, J2〉 H ′ ≡ C〈J ′
1, J2〉

and J1
(M−MR)
−→ J ′

1.

There are two cases:
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• H has form (b) and the reduction is the reception of the message

λx .H0. Then H ′ has form (c) and

∆2
λ(H) → ∆2

λ(H0)[∆
2
λ(H1)/x]∆

2
λ(H2) . . .∆

2
λ(Hm)

= ∆2
λ(H0[H1/x])∆

2
λ(H2) . . .∆

2
λ(Hm) = ∆2

λ(H
′)

• H has form (c) and the reduction is the reception of the message H1.

Then

∆2
λ(H

′) = ∆2
λ(H0[H1/x])∆

2
λ(H2) . . .∆

2
λ(Hm)

= ∆2
λ(H0)[∆

2
λ(H1)/x]∆

2
λ(H2) . . .∆

2
λ(Hm)

= ∆2
λ(H)

(7.4) Let ∆2
λ(H) → E′. We have to show thatH → H ′ such that ∆2

λ(H
′) ≡ E′.

• We will first show that E1 ≡ E2 ⇒ Θ1
λ(E1) ≡ Θ1

λ(E2) (by induction
on the rules of structural congruence).

• Now we can show that E → E ′ implies Θ1
λ(E) →2 Θ1

λ(E
′)⊕ 2̄. This

can be done by then by straightforward induction on the reduction
rules.

Therefore Θ1
λ(∆

2
λ(H)) →∗ Θ1

λ(E
′) ⊕ 2̄ and

H ≡ Θ1
λ(∆

2
λ(H)) ⊕ n̄ → Θ1

λ(E
′) ⊕ n + 2 := H ′

Furthermore ∆2
λ(H

′) ≡ E′.

2

7.3 Spider with Graph Expressions

In chapter 2 we have shown that there are alternative representations of hy-
pergraphs, e.g. graph expressions. When we represent Spider expressions in
this notation, it is useful to have a representation of reduction rules in this
approach.

We will now introduce an equivalent version of the Spider calculus, based
on the graph expressions.

Syntax: A Spider expression can be represented as a graph expression g where
g has the form

Process with a Variable: procm(x) where x ∈ X, m = sort(x)

Process with Replication: procm(!g)

Process with Process Abstraction: procm(λkx.g) where m ≤ card(g), k ∈
{1, . . . , n}
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Message: messn(g) where n ≥ 1

Sum: g1 ⊕ g2

Redefinition of External Nodes: σα(g)

Node Fusion: θδ(g)

where g, g1, g2 are again Spider expressiond represented as graph expressions.

As in definition 4.3.1 we can define substitution of variables by terms as
follows:

Definition 7.3.1 (Substitution of Variables) Let g, g′ be Spider expres-
sions represented as graph expressions and let card(g′) = sort(x).

We define g[g′/x] inductively as follows:

(g1 ⊕ g2)[g
′/x] := g1[g

′/x] ⊕ g2[g
′/x]

σα(g)[g′/x] := σα(g[g′/x])

θδ(g)[g
′/x] := θδ(g[g

′/x])

procn(y)[g
′/x] :=

{
g′ if x = y
procn(y) otherwise

messn(g)[g
′/x] := messn(g[g

′/x])

procn(!g)[g
′/x] := procn(!(g[g

′/x]))

procn(λky.g)[g
′/x] :=





procn(λky.g) if x = y
procn(λky.(g[g

′/x])) if x 6= y, y 6∈ free(g′)
procn(λkz.((g[z/y])[g

′/x]))
if x 6= y, y ∈ free(J), z 6∈ free(g) ∪ free(g′)

2

The operational semantics of the Spider calculus based on graph expres-
sions is given in figure 7.5.

Proposition 7.3.2 The algebraic calculus above can be strongly simulated by
Spider.

Proof: We will define a mapping ΘA which takes an algebraic Spider expres-
sion and converts it into an ordinary Spider expression:

ΘA(g) := vala(Θ
′
A(g))

Θ′
A(g1 ⊕ g2) := Θ′

A(g1) ⊕ Θ′
A(g2)

Θ′
A(θδ(g)) := θδ(Θ

′
A(g))

Θ′
A(σα(g)) := σα(Θ′

A(g))

Θ′
A(procm(!g)) := procm(!ΘA(g))

Θ′
A(procm(λkx.g)) := procm(λkx.ΘA(g))

Θ′
A(messn+1(g)) := messn+1(ΘA(g))
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Rules of Structural Congruence:

(C-A-PA)
g1 ≡ g2

λkx.g1 ≡ λkx.g2

(C-A-REPL)
g1 ≡ g2
!g1 ≡!g2

(C-A-CON)
g1 '≡ g2
g1 ≡ g2

(C-A-α) λnx.g ≡ λny.(g[procn(y)/x])
if y 6∈ free(g), sort(x) = sort(y) = n

Reduction Rules:

(R-A-REPL) procm(!g) → σα(θδ(procm(!g) ⊕ g))

(R-A-MR) σ1...m+n(θk,m+n+1(procm(λix.g1) ⊕messn+1(g2))) → g1[g2/x]

(R-A-EQU)
h ≡ g, g → g′, g′ ≡ h′

h→ h′
(R-A-σ)

g → g′

σα(g) → σα(g′)

(R-A-θ)
g → g′

θδ(g) → θδ(g
′)

(R-A-⊕)
g1 → g′1

g1 ⊕ g2 → g′1 ⊕ g2

where

δ is the transitive closure of {(i,m+ i) | 1 ≤ i ≤ m}

α : {1, . . . ,m} → {1, . . . , 2m} with α(i) := i mod m

Figure 7.5: The Spider calculus based on graph expressions

It is left to show that ΘA satisfies the conditions of proposition 7.1.3. This
proof is more or less analogous to the proof of proposition 7.4.3 in the following
section. 2

7.4 Spider in the Name-based Notation

In the name-based notation it is only possible to describe hypergraphs without
duplicates in the sequence of external nodes.

Let Sn ⊆ S be the class of all Spider expressions, which contains only
hypergraphs H where χH does not contain any duplicates, i.e. all graphs can
be represented in the form H ∼= valn(h[t]) where h[t] is name-based graph term.

We will first make sure that Sn is closed under reduction. It is also important
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that any hypergraph in Sn containing a redex can always be described as the
composition of the redex and of a graph in Sn.

Proposition 7.4.1 (Subcalculus Sn) Let H ∈ Sn. If H → H ′ then

• There exists a binary context C〈x1, x2〉 where χC is duplicate-free and
Spider expressions H1, H2 ∈ Sn such that

H1
(R-MR)
−→ H ′

1 or H1
(R-REPL)

−→ H ′
1

H ′ ∼= C〈H ′
1, H2〉

• H ′ ∈ Sn, i.e. Sn is closed under reduction.

Proof: According to proposition 4.3.5 there is a binary context H ∼= C〈H1, H2〉

such that H1
(R-MR)
−→ H ′

1 or H1
(R-REPL)

−→ H ′
1 and H ′ ∼= C〈H ′

1, H2〉. However
H2 is not necessarily an element of Sn.

We will regard the non-discrete context J〈x1〉 := C〈varm1(x1), H2〉 where
m1 := sort(x1). With proposition 2.1.7 and its proof it follows that there exists
a factorization η1 : varm1(x1) � J , η2 : J2 � J such that J2 ∈ Sn.

Propositions 2.2.18 and 2.2.21 imply that there exists a context C ′〈y1, y2〉
such that J〈x1〉 ∼= C ′〈varm1(x1), J2〉. Thus

H ∼= J〈H1〉 ∼= C ′〈H1, J2〉 H ′ ∼= J〈H ′
1〉

∼= C ′〈H ′
1, J2〉

and H1 → H ′
1.

H ′ ∈ Sn follows immediately since Sn is closed under graph construction
with contexts C where χC is duplicate-free. 2

Now that we know that a name-based subcalculus is closed under reduction
we can define its syntax as follows:

Syntax: A name-based Spider expression can be represented as a name-based
graph term h[t] where h has the form

Process with a Variable: (x)P [t] where x ∈ X, |t| = sort(x)

Process with Replication: (!h[t′])P [t]

Process with Process Abstraction:

(λkx.h[t
′])P [t] where |t| ≤ |t′|, k ∈ {1, . . . , |t|}

Message: (h[t′])M [t] where |t| ≥ 1

Parallel Composition: h1|h2

Node Hiding: (νa)h

where h, h1, h2 are again name-based Spider expressions and t, t′ are duplicate-
free sequences of names.

As in definition 4.3.1 we can define substitution of variables by terms as
follows:
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Definition 7.4.2 (Substitution) We define h[t][h′[t′]/x] inductively as fol-
lows:

h[t][h′[t′]/x] := (h[h′[t′]/x])[t]

(h1 | h2)[h
′[t′]/x] := h1[h

′[t′]/x] | h2[h
′[t′]/x]

((νa)h)[h′[t′]/x] := (νa)(h[h′[t′]/x])

((y)P [s])[h′[t′]/x] :=

{
h[s/t′] if x = y
(y)P [s] otherwise

((h[t])M [s])[h′[t′]/x] := (h[t][h′[t′]/x])M [s]

((!h[t])P [s])[h′[t′]/x] := (!(h[t][h′[t′]/x]))P [s]

((λky.h[t])P [s])[h′[t′]/x] :=





(λky.h[t])P [s] if x = y
(λky.(h[t][h

′[t′]/x]))P [s] if x 6= y, y 6∈ free(g′)
(λky.((h[t][((z)P [u])[u]/y])[h′[t′]/x]))P [s]

if x 6= y, y ∈ free(J), z 6∈ free(g) ∪ free(g′)

2

The operational semantics of the Spider calculus based on the name-based
notation is given in figure 7.5.

Proposition 7.4.3 The name-based calculus above can be strongly simulated
by Spider.

Proof: We will give another set of reduction rules (reduction relation ;) and
show that this calculus can be strongly simulated by Spider.

But first we have to prove that the new reduction rules are equivalent to
the old rules. After showing

h ; h′ ⇒ h[t] → h′[t]

h[t] → h′[t′] ⇒ h ; h′[t/t′]

by induction on the reduction rules ((R-N-CON’) additionally needs induction
on h) it follows immediately that

h[t] → h′[t′] ⇐⇒ h[t] ; h′[t′]
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Rules of Structural Congruence:

(C-N-CON)
h1[t1] '≡ h2[t2]

h1[t1] ≡ h2[t2]

(C-N-PA)
h1[t1] ≡ h2[t2]

λnx.h1[t1] ≡ λnx.h2[t2]
(C-N-REPL)

h1[t1] ≡ h2[t2]

!h1[t1] ≡!h2[t2]

(C-N-α) λkx.h[t] ≡ λky.(h[t][((y)P [s])[s]/x])
if y 6∈ free(g), sort(x) = sort(y) = |s|

Reduction Rules:

(R-N-REPL) (!h[s])P [s′] → (!h[s])P [s′] | h[s′/s]

(R-N-MR)
(λkx.h1[s1])P [a1 . . . am] | (h2[s2])M [am+1 . . . am+nak]

→ (h1[h2[s2]/x])[a1 . . . am+n/s]

(R-N-PAR)
h1 → h′1

h1|h2 → h′1|h2
(R-N-RESTR)

h→ h′

(νa)h→ (νa)h′

(R-N-CL)
h→ h′

h[t] → h′[t]

(R-N-EQU)
h2[t2] ≡ h1[t1], h1[t1] → h′1[t

′
1], h

′
1[t

′
1] ≡ h′2[t

′
2]

h2[t2] → h′2[t
′
2]

Figure 7.6: The Spider calculus in the name-based notation

Reduction Rules:

(R-N-REPL’) ((!h[s])P [t])[t] ; ((!h[s])P [t] | h[s′/s])[t]

(R-N-MR’)
((λkx.h1[s1])P [a1 . . . am] | (h2[s2])M [am+1 . . . am+nak])[t]

; h((h1[h2[s2]/x])[a1 . . . am+n/s])[t]
where t = a1 . . . am+n

(R-N-CON’)
hi[ti] ; h′i[t

′
i]

h[t]〈h1[t1], . . . , hn[tn]〉 ; h[t]〈h1[t1], . . . , h
′
i[t

′
i], . . . , hn[tn]〉

(R-N-EQU’)
h2[t2] ≡ h1[t1], h1[t1] ; h′1[t

′
1], h

′
1[t

′
1] ≡ h′2[t

′
2]

h2[t2] ; h′2[t
′
2]
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We therefore define the mapping ΘN which takes a name-based Spider

expression and converts it into an ordinary Spider expression:

ΘN (h[t]) := valn(Θ
′
N (h)[t])

Θ′
N (h1|h2) := Θ′

N (h1)|Θ
′
N (h2)

Θ′
N ((νa)h) := (νa)Θ′

N (h)

Θ′
N ((!h[t])P [t′]) := (!ΘN (h[t]))P [t′]

Θ′
N ((λkx.h[t])P [t′]) := (λkx.ΘN (h[t]))P [t′]

Θ′
N ((h[t])M [t′]) := (ΘN (h[t]))M [t′]

Proposition 2.4.5 and induction on the hierarchy levels imply that h[t] ≡ h′[t′]
if and only if ΘN (h[t]) ≡ ΘN (h′[t′]).

With proposition 2.4.7 it follows that

ΘN (h[t]〈h1[t1], . . . , hn[tn]〉) ∼= ΘN (h[t])〈ΘN (h1[t1]), . . . ,ΘN (hn[tn])〉 (7.9)

We can show that ΘN satisfies the three conditions of proposition 7.1.3:

(7.5) By induction on the rules of structural equivalence and with

We have to show that ΘN (h[t]) ≡ ΘN (h′[t′]) implies h[t] ≡ h′[t′]. This
can be done by induction on h[t] with the help of proposition 2.4.5. (For
Spider we will use the alternative set of rules of structural congruence).

(7.6) By induction on the reduction rules and with equation (7.9).

(7.7) By induction on the reduction rules and with propositions 7.4.1, 2.4.7.

It is now not difficult to show that the alternative reduction rules are equivalent
to the original reduction rules. 2

7.5 The π-Calculus

Milner’s π-calculus [MPW89a, MPW89b, Mil92, Mil91] is a calculus describing
communicating systems which models mobile processes being able to send port
addresses. The π-calculus is a widespread and thoroughly analyzed paradigm
describing concurrency and communication.

In the previous sections we have shown that higher-order functions of the
λ-calculus can be modelled in Spider. We will now encode the asynchronous
polyadic π-calculus without sum into Spider. We will use a slight variant of
the π-calculus in order to simplify our proof.

p ::= 0 | (νa)p | āa1, . . . , an | a(x1, . . . , xn).p | p1|p2 | !p

where a, a1, . . . , an, x1, ldots, xn are taken from a fixed set of names.
The set of all free names in a process p will be denoted by fn(p). We

will translate Spider expressions with the help of name-based graph terms
introduced in section 2.4. We have shown in section 7.4 that name-based Spider
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Rules of Structural Congruence:

(C-π-COM) p1|p2 ≡ p2|p1 (C-π-ASSO) p1|(p2|p3) ≡ (p1|p2)|p3

(C-π-RESTR1) (νa)0 ≡ 0 (C-π-RESTR2) (νa)(νb)p ≡ (νb)(νa)p

(C-π-RESTR3) ((νa)p1)|p2 ≡ (νa)(p1|p2) if a 6∈ fn(p2)

(C-π-0) p|0 ≡ p (C-π-REN1) (νa)p ≡ (νb)(p[b/a]) if b 6∈ fn(p)

(C-π-REN2) a.(x1, . . . , xn).p ≡ a.(y1, . . . , yn).p[y1 . . . yn/x1 . . . xn]
if y1, . . . , yn 6∈ fn(p)

Reduction Rules:

(R-π-COMM) a(x1, . . . , xn).p | āa1 . . . an → p[a1 . . . an/x1 . . . xn]

(R-π-REPL) !p→!p|p

(R-π-PAR)
p→ p′

p|q → p′|q
(R-π-RESTR)

p→ p′

(νa)p→ (νa)p′

(R-π-EQU)
q ≡ p, p→ p′, p′ ≡ q′

q → q′

Figure 7.7: π-Calculus, Operational Semantics

can be strongly simulated by the original Spider calculus. We encode the π-
calculus into name-based Spider, the rest follows with the transitivity of strong
simulation.

Let ≤ be a total order on the set of all names. Let p be a process in the
π-calculus. Then fnp is a duplicate-free string, ordered according to ≤, of all
names in fn(p).

Θs
π(p) := (Θ′

π(p)|dbsc1e| . . . |dbscme)[s]

where s is a duplicate-free string with m := |s|, fn(p) ⊆ Set(s) and where Θ′
π

is defined inductively as follows:

Θ′
π(p1|p2) := Θ′

π(p1)|Θ
′
π(p2)

Θ′
π((νa)p) := (νa)Θ′

π(p)

Θ′
π(0) := 0

Θ′
π(āa1, . . . , am) := (0)M [a1 . . . ama]
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Θ(!p) := (!Θ
fnp
π (p))P [fnp]

Θ(a(x1, . . . , xn).p) := (λk.Θ
fnpx1...xn
π (p))P [fnp] where bfnpck = a

The following partial mapping ∆s
π “inverts” Θs

π:

∆s
π(h[t]) := (∆π(h))[s/t]

where

∆π(h1|h2) := ∆π(h1)|∆π(h2)

∆π((νa)h) := (νa)∆π(h)

∆π(0) := 0

∆π(dae) := 0

∆π((0)M [a1 . . . an+1]) := an+1a1 . . . an

∆π((!h[s])P [a1 . . . am]) := !∆a1...am
π (h[s])

∆π((λk.h(s))P [a1 . . . am]) := ak(x1 . . . xn).∆
a1...amx1...xn
π (h[s])

where x1, . . . , xn are fresh names

and n := |s| −m

Proposition 7.5.1 (Simulation of the π-calculus) The π-calculus can be
strongly simulated by the name-based Spider calculus wrt. the encoding ∆t

π.

Proof: Let N ′ := {h[t] | ∆π(h[t]) is defined} be the part of the name-based
Spider calculus which simulates the π-calculus.

Furthermore we define n̄ := (νa)dae| . . . |(νa)dae︸ ︷︷ ︸
n times

We can show by induction on p that

p ≡ p′ ⇒ Θs
π(p) ≡ Θs

π(p
′)

∆s
π(Θ

t
π(p)) ≡ p[s/t]

Furthermore if h′[t′] := Θs
π(∆

s
π(h[t])) then there is a natural number n such

that (h′|n̄)[t′] ≡ h[t] (proof by induction on h[t]). That is Θs
π(∆

s
π(h[t])) and h[t]

are equivalent up to isolated ports, if ∆s
π(h[t]) is defined.

We will check that the four conditions of definition 7.1.1 are satisfied.

(7.1) Obvious since ∆t
π(Θ

t
π(p)) ≡ p

(7.2) Can be shown be induction on the rules of structural congruence of the
name-based Spider calculus.

(7.3) We have to show that h[t] → h′[t′] implies ∆s
π(h[t]) → ∆s

π(h
′[t′]). We

will additionally show that h→ h′ implies ∆π(h) → ∆π(h
′).

Both can be shown by induction on the reduction rules.
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(7.4) We have to prove that if ∆s
π(h[t]) → p′ there exists a name based expres-

sion h′[t′] such that h[t] → h′[t′] and ∆s
π(h

′[t′]) ≡ p′.

We can show by straightforward induction on the reduction rules of the
π-calculus that p → p′ implies Θ′

π(p) → Θ′
π(p

′) | da1e | . . . | dale | n̄ for
some natural number n and where a1, . . . , al ∈ fn(p).

Now let p→ p′ and h[s] := Θs
π(p), h

′[s] := Θs
π(p

′).

h ≡ Θ′
π(p) | dbsc1e | . . . | dbscme

→ Θ′
π(p

′) | dbsc1e | . . . | dbscme | da1e | . . . | dale | n̄

≡ Θ′
π(p

′) | dbsc1e | . . . | dbscme | n̄

where m := |s| and {1, . . . , al} ⊆ fn(p) = Set(s).

Ths implies that h[t] → (h′|n̄)[t′].

If ∆s
π(h[t]) → p′ we define

h1[t1] := Θs
π(∆

s
π(h[t]))

h2[t2] := Θs
π(p

′)

It follows that h[t] ≡ (h1|n̄)[t], h1[t1] → (h2|m̄)[t2] for natural numbers
n,m.

Therefore
h[t] → (h2|n+m)[t2] =: h′[t′]

and ∆s
π((h2|n+m)[t2]) ≡ p′.

2



Chapter 8

Generating Type Systems

Type systems are an important tool for programming since they allow us to
check for runtime-errors and verify programs, revealing, for instance, security
problems.

In many cases a type is meant to represent a set of objects, e.g. the integers
or the booleans. But this is not the view we will take here. Actually a type is,
in our case, a partial behaviour description of a process that allows us to infer
certain properties of a process, one of them being absence of runtime errors.
We now summarize the requirements for types in process calculi:

Verification: a type makes assertions on the behaviour of a process. It is
however not necessary that every process showing this very behaviour
actually has a type. Therefore it is not uncommon to design type systems
for properties that are undecidable. The point is to capture as many
meaningful processes as possible.

Subject Reduction Property: types stay invariant under reduction in the
calculus, i.e. if a process has a type T then all its successors have this
type as well.

Compositionality: the type of an expression can be derived from the types
of its subterms. This property normally manifests itself in the fact that
there is a typing rule for every syntactic construction.

There are two more properties often associated with type systems but which
are not necessarily satisfied by all of them. Our type systems will, however,
satisfy them.

Principal Types: if several types can be assigned to one expression, there is
one most general type, called the principal type. That is every other type
of the expression can be derived from the principal type by some simple
operation (e.g. substitution, in our case: hypergraph morphisms).

Type Inference: there is an algorithm which takes an expression as input and
assigns a type to it, if one exists. That is, typing is effectively computable.

Normally we expect the algorithm to output the principal type of an
expression.

107
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There exists a large theory of type systems for the λ-calculus (see e.g.
[DM82, Bar90]). One aim of these type systems is to guarantee strong nor-
malization for λ-terms.

In [Mil91] Milner introduced a type system, which was actually called a sort
system, for the polyadic π-calculus. A corresponding sort inference algorithm
was proposed by Simon Gay [Gay93]. Unlike in the λ-calculus or in the monadic
π-calculus, reductions in the polyadic π-calculus can actually lead to runtime
errors, which are detected by the sort system. Milner’s sort system was extended
by recursive types and polymorphism [Tur95, VH93, Vas94] in order to be able
to type meaningful processes. While arbitrary recursive types in the λ-calculus
are meaningless since they allow the typing of all expressions (see [Urz95]), they
are essential for the typing of processes. For example, a process emitting its
own address—a very common case—can only be typed by recursive types.

Examples of type systems checking other properties than the absence of
runtime errors can be found in [PS93], where the input/output capabilities of a
port are controlled, and in [Aba97], where security in communication protocols
is enforced. In both cases, ports are associated with lattice elements, in the first
case the lattice contains the elements + (input capabilities), − (output capabil-
ities), ± (input and output capabilities) where + < ± and − < ±, whereas in
the second case it contains the elements Secret (secret channel), Public (public
channel) and Any (any channel) where Secret < Any and Public < Any.

There are other specialized type systems checking confluence properties
[NS97] and the absence of deadlocks [Kob97].

As far as we know there is no type system that takes a more general approach
and provides the framework for a type system based on arbitrary lattices and
parametrized typing rules for the basic components of a process calculus, i.e.
processes and messages. Our contribution is to propose a generation method
for type systems, i.e. in our case designing a type system for a certain property
only involves filling the parameters of the typing system.

In the following section we will introduce a generic type system for Spider,
show that it satisfies all the properties of type systems mentioned above, but
will leave open some parameters, namely the actual lattice and methods of
assigning type information to hyperedges. In a second step we will extend the
type system and replace lattices with lattice-ordered monoids.

Since our process calculus is based on graphs, the type of an expression
will also be a graph. As it turns out, graphs are very useful for the following
reasons:

Recursive Types: in a graph notation recursive types can be represented by
cycles in a graph. This relieves us of inserting extra rules for recursive
types into our system. This approach is, for example, also taken in [RV97].

Labelling: since in a graph it is possible to explicitly represent ports, pro-
cesses and messages, it is easy to superimpose additional labelling. We
will, among others, design a type system where it is necessary to assign
lattice elements to arbitrary pairs of ports. Doing such a thing for types
represented as terms seems to be rather difficult to us.
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Morphisms: it will turn out that there exists a process graph morphism from
an expression into its type. So, if a property is preserved by inverse graph
morphism, and this property is true for the type graph, it is also true for
the process graph and (because of the subject reduction property) for all
its successors.

Furthermore the existence of such a morphism provides an intuitive method
to show what has gone wrong if the type inference algorithm does not suc-
ceed.

8.1 Motivation

We introduce the features of the type system by giving an example concerning
security issues in process communication.

Suppose we have a process which communicates with two types of partners
via different ports: first, ports for secret communication, and second, ports for
general communication. Not only does a process have to check that no secret
information is passed to general communication partner, but it also has to make
sure that no port via which secret communication is conducted, is passed to a
general communication partner.

We now assume the following situation: the set of external ports of an
expression is partitioned into two subsets: the set of public and the set of secret
ports. Both can be used to exchange messages with the outside but the process
is not allowed to send a message with a secretport attached to it to a public
port.

Consider the following Spider expression. We will assume that the first
external port is secret and that the second external port is public.

(1) (2)

(1) (2)

0(2)(1)

.

PublicSecret

λ1 x.

(3)(1) (2)

0

(3)

x
λ1

Reducing this expression we obtain the following steps:
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(2)(1)

0

(R-MR)

(2)

(2)

0

(2)

0

(1)

(2)(1)

(1)

Public

λ1 x.

(R-MR)

(3)

x

0

(3)(1) (2)

0

(3)(1) (2)

λ1.

(1)

λ1.

Secret

As we can see, this expression violates the conditions imposed on it, i.e.
a secret port is sent to a public port, a fact not visible at first glance. The
question is: is it possible to decide statically (before runtime) if an expression
might run into problems? Our solution is the following: we will compute a
type for each expression which does not change while the expression is reduced,
and which, at the same time, captures the relevant structural properties of an
expression.

Our basic requirements for types are the following: types are hypergraphs
and an expression can be mapped onto its type by a graph morphism. Fur-
thermore a type can contain extra annotation, not to be found in the original
expression.

We now proceed and motivate types in a very intuitive, constructive way.
Later we will formalize our approach and give non-constructive methods of
typing. These non-constructive methods will be better suited for proving the
central theorem of a type system: the subject reduction property, i.e. a theorem
that says that types do not change while an expression is reduced. But for now
we choose a rather informal approach.

We first assign labels to the edges and sub-expressions of our expression.
This is just for convenience, so that we can find the edges again in the type
graph.

We will now transform the hierarchical process graph into a flat graph,
introduce additional content-edges, representing the contents of messages, and
fold the resulting type graph in such a way that it respects the subject reduction
property:
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1.
(2)

(1) (2)

(1) (2)

0

0

D

B

A

C

E

λ F(2)

H

x

(1)λ1
(3)

 x.

G

(3)(2)

(3)(1)

• Our first step in constructing a type graph is to simply take the edges of
the “outer level” and to annotate them. Annotation, in this case, simply
means that we draw arrows from ports attached to a message to the send-
port of the same message. Thus, if an arrow from a secret to a public
port appears, this indicates a violation of our conditions. We obtain the
following graph:

(1) (2)

HEA

Looking at the reduction of the expression, it is, of course, obvious that
this graph does not correspond to our requirements, namely the subject
reduction property. It is intuitively clear that the other levels of the
expression have to be integrated into the type graph as well. We are,
however, not interested in constructing just another hierarchical graph,
but a flat graph, respecting the fact that the levels can merge during
reduction.

• Our next step is to introduce edges that represent the content of a mes-
sage. These kinds of edges do not exist in ordinary Spider expressions.
We draw them with dotted lines and assume that the last node (in the
string of nodes associated with the edge) is the port, the message is sent
to. The cardinality of such a content-edge will be the cardinality of the
content incremented by one. The edge(s) representing the context can
thus be attached to the ports of the content-edge.

In this case only the message with the label A has an actual content:
the edge B. This edge is attached accordingly which yields the following
graph:
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(2)(1)

A

B

A HHE

• Our next step involves finding a way to encode the process abstractions
λ1 and λ1x into the type graph. Each process abstraction will be rep-
resented by a message-edge and by a content-edge, whose send-ports are
the receiver port. The message-edge connects the receiver port with the
ports, which are going to be attached to the ports brought by an arriv-
ing message. And the content-edge connects the receiver port with the
ports connected to the variable, the content of the arriving message will
be substituted for.

In the case of the first process abstraction λ1 (which is denoted by the
label C) the content edge is quite trivial and will be connected to nothing
save the receiver port. The message-edge however will be connected to the
receiver port and to another port, symbolizing the port that the message
brings with it.

In the case of the other process abstraction λ1x (denoted by the label
F ) it is the other way round. The message-edge is quite trivial, but the
content-edge is connected to the ports which correspond to the ports of
the edge labelled x.

The additional edges are labelled with the letter of the corresponding
process abstraction.

(2)

B

H

CC

HEA

(1)

F F

A
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Note that we have drawn messages, but have not annotated them (by a
broad arrow). This is because these messages can be considered as virtual,
simply representing messages which are yet to come.

• We have now almost finished adding edges. In the final step we will now
add an edge labelled G, representing the process with the variable x, and
a message- and a content-edge labelled D, representing the corresponding
message. Since this is now again a real message, we add the annotation,
i.e. a broad arrow between ports.

(2)

B

G

D

CC

HEA

(1)

F F

A H

D

• Is this the type graph we are looking for? The answer is no and can be
motivated rather easily. The following type graph is derived from the final
graph in the reduction sequence, by simply annotating it:

(2)(1)

0

It is our intention that there exists a strong morphism, preserving the
annotions, from this graph into the type graph. (What it formally means
to preserve annotations we have not yet defined.) But there is no way to
define such a morphism. This fact is no surprise since we have neglected
one important feature of the calculus: during message reception previously
distinct ports may merge. That is, it is now our task to find sets of ports
which might be merged during the reduction process and to actually fuse
them in the type graph.

Some consideration reveals two simple rules for merging ports (and, at
the same time, hyperedges):
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– If two message-edges are sent to the same port these messages are to
be merged (and all of the ports attached to them are to be merged
in the correct order)

– If two content-edges are sent to the same port these messages are to
be merged (and all of the ports attached to them are to be merged
in the correct order)

We will add a third rule whose intent will not be clear now, but will be
revealed in the following sections:

– If two process-edges are associated with the very same string of ports,
they are also to be merged.

It seems clear that this process has to be executed several times, before
all relevant edges are merged.

We will now compute the sets of edges in the type graph, which are to be
merged. Edges which we will now fuse are denoted by the same letter.

(2)

c

(1)

b a

ba

c d

e

e

d

It now becomes clear why it was necessary to insert dummy edges repre-
senting the process abstractions. These dummy edges are now essential
to ensure that the correct ports are merged.

The folding process (which can actually be desribed by a surjective mor-
phism) yields the following result:
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(2)
(1)

ba

e

d c

This is now the final type graph and it has all the desirable properties.
It also contains, as annotation, an arrow leading from the first (secret)
external port to the second (public) external port, which means that a
secret port is sent to a public port, thereby violating our conditions on
secrecy.

Note that in all other cases (second external port is secret, or both external
ports are public) the process graph would have been well-typed.

8.2 Lattices, Monoids and Type Graphs

We have stated above that we want to associate components of a process graph
with lattice elements, describing e.g. their input/output capabilities or their
security status. The first idea is to associate type graphs with an additional
labelling of the ports, that maps each port onto a lattice element. As it turns
out, this approach is not sufficiently general. Sometimes we might want to
associate a lattice element with a pair of ports or even with a hyperedge. E.g.
in the example in section 8.1 the labelling function for a graph G was l : V 2

G →
{true, false} where l(v1, v2) = true indicates that there exists an arrow from
v1 to v2.

We solve this problem by associating only one lattice element to every hy-
pergraph. This works because the set of all mappings assigning labels to ports
can also be regarded as a lattice if we consider pointwise order.

Later we will extend our type system to work with monoids. One example
where this is needed is a type system which guarantees upper bounds for the
number of messages attached to each port. When composing a type it is not
appropriate to take the supremum of two numbers, we actually have to add
them. It turns out that we need lattice-ordered commutative monoids. Since
lattices, at least lattices with bottom elements, are only a special case of these
monoids we will concentrate on monoids and only mention simplifications for
the case of lattices.

The following definitions are from [Bir67, Cro93]
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8.2.1 Lattice-Ordered Commutative Monoids

Definition 8.2.1 (Lattice) A lattice is a partially ordered set (or poset) (I,≤)
such that every finite nonempty subset F of I has a greatest lower bound or
infimum (

∧
F ) and a least upper bound or supremum (

∨
F ).

(We define a ∧ b :=
∧
{a, b}, a ∨ b :=

∨
{a, b}.) 2

If (I,≤) has a smallest element it is called bottom (⊥), the greatest element,
if it exists, is called top (>).

⊥ :=
∨

∅ > :=
∧

∅

Example: The subtype relation in most programming languages is a lattice
if all types have a common supertype.

Definition 8.2.2 (Lattice-ordered Commutative Monoid)

A lattice-ordered commutative monoid (l-monoid) is a tuple (I,+,≤) (I for
short) where I is a set, + : I × I → I is a binary operation and ≤ is a partial
order which satisfy:

• (I,+) is a commutative monoid, i.e. + is associative and commutative
and there is a neutral element 0 with ∀ a ∈ I : 0 + a = a

• (I,≤) is a lattice.

• For a, b, c ∈ I: a+ (b ∨ c) = (a+ b) ∨ (a+ c)

2

Every lattice with a bottom element ⊥ (I,∨,≤) is a lattice-ordered com-
mutative monoid where ⊥ is the neutral element. And an l-monoid (I,+,≤) is
called a lattice if + and ∨ coincide.

Definition 8.2.3 (Residuated l-monoid) Let I be an l-monoid.

Let a, b ∈ I. The residual a − b is the smallest x (if it exists) such that
a ≤ x+ b. I is called residuated iff all residuals a− b exist in I for a, b ∈ I. 2

If I is a group where −a denotes the inverse of a, a residual a − b is the
same as a+ (−b).

Definition 8.2.4 (Idempotency) Let I be an l-monoid.

An element a ∈ I is called idempotent iff a+ a = a. 2

In a lattice all elements are idempotent.

Examples: We will give some examples for l-monoids:

• The integers with the usual ≤-order and sum form a residuated l-monoid.
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• The positive integers form a residuated l-monoid where + is integer mul-
tiplication and

a ≤ b ⇐⇒ (a divides b)

In this case the supremum is the smallest common multiple, the infimum
is the greatest common divisor and the residual of a and b is da ÷ be
(divide a by b and take the smallest integer which is greater or equal than
the result).

• The set Int∞—the integers with infinity (∞) and minus infinity (−∞)—
forms a residuated l-monoid where ≤ is the usual order on the integers
and + is integer summation with

∀x ∈ Int∞ : ∞ + x := ∞, −∞ + x :=

{
−∞ if x 6= ∞
∞ otherwise

Supremum and infimum are the usual maximum and minimum. For in-
tegers a, b the residual is a− b = a+ (−b). Otherwise we obtain

(−∞) − x = −∞, x−∞ = −∞

∞− x =

{
∞ if x 6= (−∞)
−∞ otherwise

x− (−∞) =

{
∞ if x 6= (−∞)
−∞ otherwise

• Let I be a residuated l-monoid with residuals a−b. Then {a|a ∈ I, a ≥ 0}
(the positive cone of I) is also a residuated l-monoid where the residual
of a, b is (a− b) ∨ 0.

• Let (I,+,≤) be a residuated l-monoid and let S be an arbitrary set. Then
{S → I}, i.e. the set of all functions from S into I is also a residuated
l-monoid (sum and residuals are taken pointwise).

• Let (I,+,≤) be a residuated l-monoid and let n ∈ lN. Then In with
pointwise order is also a residuated l-monoid (sum and residuals are taken
pointwise).

• Let (I,+,≤) be an l-monoid with a smallest element ⊥. We define a⊕b :=
(a+ b)∨a∨ b. Then (I,⊕,≤) is an l-monoid with neutral element ⊥. For
monoid elements aj ∈ I, j ∈ J it follows that

∑

j∈J

aj ≤
⊕

j∈J

aj

if the index set J contains more than one element. If J = ∅ it follows that

∑

j∈J

aj = 0 ≥ ⊥ =
⊕

j∈J

aj

If + equals ∨, i.e. if I is a lattice, the operations ⊕ and ∨ coincide.
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Proposition 8.2.5 The following laws hold in a residuated l-monoid I. Let
a, b, c ∈ I.

Monotonicity: a ≤ b ⇒ a+ c ≤ b+ c (8.1)

a ≤ b ⇒ a− c ≤ b− c (8.2)

b ≥ c ⇒ a− b ≤ a− c (8.3)

Residuals: a ≤ (a− b) + b (8.4)

(a+ b) − b ≤ a (8.5)

Proof:

(8.1) Since a ≤ b it follows that a∨b = b. Thus b+c = (a∨b)+c = (a+c)∨(b+c)
which implies that a+ c ≤ b+ c.

(8.4) Straightforward with the definition of a− b.

(8.2) (b − c) + c
(8.4)

≥ b ≥ a. a − c is the smallest x with x + c ≥ a. Therefore
a− c ≤ b− c.

(8.3) (a − c) + b ≥ (a − c) + c
(8.4)

≥ a. a − b is the smallest x with x + b ≥ a.
Therefore a− c ≤ b− c.

(8.5) (a+ b)− b is the smallest x such that a+ b ≤ x+ b. Since a satisfies this
inequality as well we obtain (a+ b) − b ≤ a.

2

Definition 8.2.6 (l-monoid Morphism) Let I, I ′ be l-monoids. A mapping
t : I → I ′ is called l-monoid morphism (or monoid morphism) if for all a, b ∈ I:

a ≤ b ⇒ t(a) ≤ t(b) (8.6)

t(0) = 0 (8.7)

t(a+ b) = t(a) + t(b) (8.8)

2

The composition of two monoid morphisms is again a monoid morphism.
Since composition is associative and identity morphisms exist, the l-monoid
morphisms form a category M.

In the case where + equals ∨, law (8.8) implies (8.6), i.e. in this case a
monoid morphism coincides with a join-morphism preserving ⊥.

8.2.2 Type Graphs and Type Functors

As described above, type graphs will be arbitrary, non-hierarchical hypergraphs,
where each graph G[χ] is associated with an l-monoid element a. Every type
graph has the form G[χ, a]. We do not work with one single l-monoid but there
will be one l-monoid for every type graph.
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Type functors map type graphs onto their corresponding l-monoids and
describe how l-monoid elements are tranformed by morphisms.

We will now use a few concepts of category theory, for a short introduction
see section 2.2.1

Definition 8.2.7 (Type Functor and Type Graphs) Let

F : G(Z,L) → M

be a functor from the category of simple hypergraph morphisms G(Z,L) into
the category of l-monoid morphisms M.

Then F is called a type functor .

A type graph T = G[χ, a] consists of a hypergraph G[χ] and a monoid
element a ∈ F (G). 2

Notation: We also write Fφ instead of F (φ) (F applied to a morphism φ). Let
H = G[χ] be a hypergraph and let a ∈ F (G). Then H[a] := G[χ, a].

Example: Let F be a type functor that maps every graph G to a
lattice consisting of all labellings of the form a : V G → Int∞ where
(Int∞,∨,≤) is a lattice. Let φ : G → G′ be a graph morphism. We
assume that a′ := Fφ(a) where

a′(v′) :=
∨

φ(v)=v′

a(v) if v ∈ VG

If we regard the l-monoid (Int∞,+,≤), one possible type functor is, e.g.,
J with a′ := Jφ(a) and

a′(v′) :=
∑

φ(v)=v′

a(v) if v ∈ VG

Type graph morphisms are expected not only to preserve the graph struc-
ture, but also the order in the underlying monoid.

Definition 8.2.8 (Type Graph Morphisms) Let F be a type functor and
let φ : G[χ] → G′[χ′] be a graph morphism. Let a ∈ F (G), a′ ∈ F (G′) and let
θ ∈ {=,≤,≥}. We say that φ is a (F, θ)-morphism from G[χ, a] into G[χ′, a′]

φ : G[χ, a]
F,θ
−→ G′[χ′, a′]

iff Fφ(a) θ a
′. 2

The category of type graph morphisms with respect to a type functor F is
called TF .
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Example: The following morphism φ (the two hyperedges labelled A
are mapped onto the corresponding hyperedge on the right hand side) is
a (F,=)-morphism (and a (J,=)-morphism for the numbers in brackets).
F, J are the two functors from the previous example, where F takes the
supremum of monoid elements and J adds them up.
Note that 0 is the empty sum and −∞ (the bottom element) is the
supremum of the empty set.

- (0)

A BA A
φ

(1) (2)(2)(1)
1 4 7 1(1) 7(11)

T T’

Our method of graph construction can also be applied to type graphs.

Definition 8.2.9 (Constructing Type Graphs) Let F be a type functor.
Let ζi : mi � D, i ∈ {1, . . . , n} be a discrete factorization. Furthermore let

Ti := Gi[χi, ai] be type graphs with |χi| = mi.
We define

G[χ] :=
n⊗

i=1

(Gi[χi], ζi)

Let ηi : Gi[χi] � G[χ] be the corresponding embeddings. We define a :=∑n
i=1 Fηi

(ai). Then
n⊗

i=1

(Ti, ζi)F := G[χ, a]

2

Note: We can now easily define the construction of type graphs for other graph
representations: let C be an n-ary context and let T1, . . . , Tn be type graphs.
Then

C〈T1, . . . , Tn〉F :=

n⊗

i=1

(Ti, ζi)F

where (ζi)i∈{1,...,n} is the unique factorization with

C〈x1, . . . , xn〉 ∼=

n⊗

i=1

(varmi
(xi), ζi)

(see proposition 2.2.18).

Note: Let F be a type functor such that F (G) is a lattice for every graph G.
Then G[χ, a] is the co-limit of

ζi : mi[⊥]
F,≤
� D[⊥] and φi : mi[⊥]

F,≤
−→ Gi[χi, ai]

in the category of type graph morphisms.
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This is not true if F (G) is not always a lattice. Consequently type systems
based on monoids are more difficult to handle than type systems based on lat-
tices. Therefore we will start with type systems based on lattices in section 8.3
and deal with the other variant in section 8.4.

Example: We define T12FT2 := C〈T1, T2〉F where C〈x1, x2〉 :=
procn(x1)2procn(x2) with n = card(T1) = card(T2).
If we construct T2FT

′ with T, T ′ from the example above, the result is
(the numbers in brackets denote the labelling of T2JT

′):

BA

(1) (2)

T’

071

0(0)

AA

(2)(1)

T

1 4 7

(2)(1)

A A A B

7(11) 7(7)1(2)

Note that the co-limit in the category of (J,≤)-morphisms would be (at
least in this case) identical to T2FT

′.

Definition 8.2.10 (Isomorphism of Type Graphs) G[χ, a] and G′[χ′, a′]
are called isomorphic

G[χ, a] ∼=F G
′[χ′, a′]

if there exists an isomorphism φ : G[χ] → G′[χ′] with Fφ(a) = a′. We write

G[χ, a]
∼
<F G

′[χ′, a′]

if Fφ(a) ≤ a′.
∼
<F is reflexive and transitive and

G[χ, a]
∼
<F G

′[χ′, a′], G[χ, a]
∼
>F G

′[χ′, a′] ⇒ G[χ, a] ∼=F G
′[χ′, a′]

2

Just as we can construct new graphs with a context, we can also pack
together morphisms ψ1, . . . , ψn in order to form a morphism C〈ψ1, . . . , ψn〉 (see
definition 2.2.22). We now demonstrate that this kind of construction is also
feasible for (F, θ)-morphisms.

Lemma 8.2.11 (Composition of Type Graph Morphisms)
Let ψ1, . . . , ψn be (F, θ)-morphisms and let C be a discrete context with holes

of cardinality card(ψ1), . . . , card(ψn). Then

C〈ψ1, . . . , ψn〉 is also a (F, θ)-morphism (8.9)
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Proof: Let ψi : Gi[χi, ai] → G′
i[χ

′
i, a

′
i] and let ψ := C〈ψ1, . . . , ψn〉F with

ψ : C〈G1[χ1], . . . , Gn[χn]〉 → C〈G′
1[χ

′
i], . . . , G

′
n[χ

′
n]〉

such that η′i ◦ ψi = ψ ◦ ηi where

ηi : Gi[χi] � C〈G1[χ1], . . . , Gn[χn]〉

η′i : G′
i[χ

′
i] � C〈G′

1[χ
′
1], . . . , G

′
n[χ

′
n]〉

are canonical factorizations for i ∈ {1, . . . , n}
It is left to show that ψ is a (F, θ)-morphism:

Fψ(
∑

1≤i≤n

Fηi
(ai)) =

∑

1≤i≤n

Fψ(Fηi
(ai)) =

∑

1≤i≤n

Fη′i(Fψi
(ai)) θ

∑

1≤i≤n

Fη′i(a
′
i)

2

With the proposition above we can show another important property of
∼
<:

Lemma 8.2.12 (Properties of
∼
<)

∼
<F is preserved by substitution, i.e. if

Ti
∼
<F T

′
i for i ∈ {1, . . . , n} then

C〈T1, . . . , Tn〉
∼
<F C〈T

′
1, . . . , T

′
n〉

for any discrete context C with holes of cardinality card(T1), . . . , card(Tn).

Proof: There are (F,≤)-isomorphisms ψi : Ti → T ′
i . With lemma 8.2.11 it

follows that there is a strong (F,≤)-morphism

ψ = C〈ψ1, . . . , ψn〉 : C〈T1, . . . , Tn〉 → C〈T ′
1, . . . , T

′
n〉

Since the ψi are isomorphisms and ψ is constructed as described in propo-
sition 2.2.12, (B) by a co-limit and is therefore unique it follows that ψ is an
isomorphism and therefore

C〈T1, . . . , Tn〉
∼
< C〈T ′

1, . . . , T
′
n〉

2

We need a method of converting each process graph into a type graph. This
is done by a linear mapping, which is linear in the sense defined below. This
mapping is one of the parameters of the type system, i.e. we do not fix it a
priori. In the following section we define conditions having to be satisfied by
such a linear mapping in order to be acceptable for the type system.

Proposition 8.2.13 (Linear Mapping) Let F be a type functor. We define
a function A which maps basic graphs of the form zn(l) onto type graphs, i.e.
A(zn(l)) = T with card(T ) = n. Furthermore H1

∼= H2 for two basic graphs
H1, H2 implies A(H1) ∼=F A(H2).
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We expand A to arbitrary hypergraphs in the following way:

A(C〈H1, . . . , Hn〉) := C〈A(H1), . . . , A(Hn)〉F

where H1, . . . , Hn are basic graphs. A is well-defined, i.e. H ∼= H ′ implies
A(H) ∼=F A(H ′), and is called a linear mapping wrt. F . Furthermore

A(C〈H1, . . . , Hn〉) := C〈A(H1), . . . , A(Hn)〉F

for arbitrary hypergraphs H1, . . . , Hn.

Proof:

• We will first show that A(H) is well-defined:

– We will first consider the case where C〈H1〉 ∼= H is a basic graph.
We have to show that A(H) ∼= C〈A(H1)〉.

Since H1 is also a basic graph and since factorization into basic
graphs is unique (proposition 2.2.20) it follows that H1

∼= H and
C〈x1〉 ∼= varcard(H)(x1). Thus

A(H) ∼=F A(H1) ∼=F C〈A(H1)〉

– Let C〈H1, . . . , Hn〉 ∼= C ′〈H ′
1, . . . , H

′
k〉 where C,C ′ are discrete con-

texts and the H1, . . . , Hn, H
′
1, . . . , H

′
k are basic graphs.

Proposition 2.2.20 implies that n = k and there exists a permutation
α : {1, . . . , n} → {1, . . . , n} such that Hα(i)

∼= H ′
i for every i and

C〈x1, . . . , xn〉 ∼= C ′〈xα(1), . . . , xα(n)〉.

It follows that

C〈A(H1), . . . , A(Hn)〉 ∼=F C ′〈A(Hα(1)), . . . , A(Hα(n))〉
∼=F C ′〈A(H ′

1), . . . , A(H ′
n)〉

• We will now prove that A satisfies

A(C〈H1, . . . , Hn〉) ∼=F C〈A(H1), . . . , A(Hn)〉F

even if H1, . . . , Hn are not necessarily basic graphs. Every Hi has the
form Ci〈Hi1, . . . , Himi

〉 where Ci is a discrete context and Hi1, . . . , Himi

are basic graphs.

We define Nn :=
∑n

i=1mi and

C̃〈x1, . . . , xxn〉 := C〈C1〈x1, . . . , xN1〉, . . . , Cn〈xNn−1+1, . . . , xNn〉〉

and C̃ is also a discrete context

A(C〈H1, . . . , Hn〉) ∼=F A(C̃〈H11, . . . , H1m1 , . . . , Hn1, . . . , Hnmn〉
∼=F C̃〈A(H11), . . . , A(H1m1), . . . , A(Hn1), . . . , A(Hnmn)〉F
∼=F C〈C1〈A(H11), . . . , A(H1m1)〉F , . . . , Cn〈A(Hn1), . . . , A(Hnmn)〉F 〉F
∼=F C〈A(H1), . . . , A(Hn)〉F
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2

If we draw a parallel between the factorization of graphs and the represen-
tation of a vector as a linear composition of base vectors, the proposition above
has its equivalent in the fact that a linear mapping between vector spaces is
determined uniquely by the images of the base vectors.

8.3 A Type System Based on Lattices

We now present the first version of the type system, which enables us to type
higher-order communication, detects runtime-errors and produces type graphs
labelled with lattices. With this type system, we are able to check a few inter-
esting properties of Spider expressions, namely input/output capabilities and
secrecy in communication.

8.3.1 The Type System

In this section we assume that there is a fixed type functor F such that for
every simple hypergraph G F (G) is a lattice with a smallest element ⊥.

Furthermore we assume that the set of Z of edge sorts contains at least
the elements proc,mess, cont, representing “process”, “message” and “message
content” and that the set L of edge labels contains the dummy element 3.

Definitions: We will define zn := zn(3). The subsets of the hyperedge set
ET of a type graph containing processes, messages or message contents are
denoted by PT := Eproc

T ,MT := Emess
T , CoT := Econt

T . For c ∈ CoT we define
sendT (c) := bsT (c)ccard(c).

Furthermore there is a basic mapping A satisfying the restraints specified
in table 8.1.

Definition 8.3.1 (True Type Graphs) G is a true graph if it satisfies:

∀ p1, p2 ∈ PG : sG(p1) = sG(p2) ⇒ p1 = p2 (8.10)

∀ q1, q2 ∈MG : sendG(q1) = sendG(q2) ⇒ q1 = q2 (8.11)

∀ c1, c2 ∈ CoG : sendG(c1) = sendG(c2) ⇒ c1 = c2 (8.12)

T = G[χ, a] is called a true type graph iff G is a true graph. 2

In a true type graph T there is, for every port v, at most one message m
and at most one content c such that sendT (m) = v and contT (c) = v. Thus we
can define unique partial functions sendT and contT on VT with sendT (v) := m
and contT (v) := c.

Condition (1) of the linear mapping makes sure that equivalent processes
have the same type. Conditions (2) and (3) are utilized in lemma 8.3.8 and in
proposition 8.3.9 where invariance of type under substitution is shown.
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(1) H1 ≡ H2 ⇒ A(H1) ∼=F A(H2)

(2) A(procn(x)) ∼=F A(procn(y)) if sort(x) = n = sort(y)

(3) A(procn(S)) ∼=F A(procn(S[H/x])) for every process graph H with
card(H) = sort(x) and for every process description S 6∈ X.

A(messn(S)) ∼=F A(messn(H[H ′/x])) for process graphs H,H ′ with
card(H ′) = sort(x).

(4) There is a strong morphism

φ : procn[⊥]
F,≤
−→ A(procn(S))

for every n ∈ lN and every process description S.

(5) There is a strong morphism

φ : σ1,...,n(θn,n+k+1(messn ⊕ contk+1))[⊥]
F,≤
−→ A(messn(H))

where n ∈ lN, H is a process graph and k := card(H).

σ1,...,n(θn,n+k+1(messn ⊕ contk+1)) has the following form

(n-1)

send

...
(1)

...

k(n)

send

This means that a message is represented not only by a message but
also by another hyperedge (drawn with a dotted line) attached to the
send-port representing the content of the message.

Table 8.1: Conditions for the linear mapping

Conditions (5), (8.11) and (8.12) are necessary because of the mobility of
ports and processes in Spider. They will have the effect that ports which
might be merged during reduction, are already merged in the type graph. This
ensures the subject reduction property (see proposition 8.3.11).

Conditions (4) and (8.10) are less central and could be discarded without
harm. We will, however, need them in the type system based on monoids. Thus
we will introduce them now in order to facilitate comparison of the two type
systems.

Now we present the typing rules of this type system. Note that two param-
eters of the type system are still not fixed: the functor F (see definition 8.2.7)
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and the linear mapping A (see proposition 8.2.13).

Definition 8.3.2 (Typing Rules) A type environment of G is a set E con-
taining assignments of the form x : ηx, where each x occurs at most once.
ηx : mx � G[ε] is an embedding where mx := sort(x) and G is a true graph.

E\x denotes the set E without assignments of the form x : ηx.
A process graph or process description has a type of the form E, T where

E is a type environment for G and T = G[χ, a]. We write E, T `LA,F S (or
E, T ` S for short).

The following rules describe how a type can be assigned to an expression.

(TL-VAR) E,G[ηx(χmx), a] ` x if x : ηx ∈ E

(TL-REPL)
E,G[χ, a] ` H
E,G[χ, a] `!H

(TL-CON)
E,G[φ(ζi(χmi

)), ai] ` Hi, ζi : mi � D, φ : D → G[χ]

E,G[χ,
∨
ai] `

⊗n
i=1(Hi, ζi)

(TL-PROC) E,G[χ, a] ` S, φ : A(procn(S))
F,≤
−→ G[χ, a]

E,G[χ, a] ` procn(S)

(TL-MESS) E,G[χ′, a] ` H, φ : A(messn(H))
F,≤
−→ G[χ, a]

E,G[χ, a] ` messn(H)
if ∃ c ∈ CoG : sG(c) = χ′ ◦ bχcn

(TL-PA)
E\x ∪ {x : ηx}, G[χ, a] ` H
E,G[bχc1...m, a] ` λkx.H

if ∃ q ∈MG, c ∈ CoG, p ∈ PG :
sG(q) = bχcm+1...m+nk, sG(c) = ηx(χmx) ◦ bχck, sG(p) = bχc1...m

2

The rules were constructed with two purposes in mind: first if E, T ` H,

then there exists a morphism φ : A(H)
F,≤
→ T . And second, the subject reduction

property is satisfied, i.e. the type stays invariant under reduction.
The morphisms in the preconditions of (TL-PROC) and (TL-MESS) (and

of course also rule (TL-CON)) are there to ensure the existance of φ. The
conditions in (TL-MESS) and (TL-PA), demanding the existance of certain
hyperedges, are central for subject reduction property. They ensure that ports
that might be merged during reduction, are already merged in the type graph.

8.3.2 Subject Reduction Property

We now concern ourselves with one of the central properties of type systems: the
subject reduction property, which basically says that the type of an expression
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does not change during reduction. That is if E, T ` H and H →∗ H ′ it follows
that E, T ` H ′. Note, however, that H ′ might have “more” types than H, i.e.
the inverse implication is normally not true.

We will first prove a few simple, but useful, lemmas:

Lemma 8.3.3 If E,G[χ, a] ` H then card(H) = |χ|.

Proof: By induction on the typing rules. 2

Lemma 8.3.4 Let S be a process description.
If E,G[χ, a] ` S and a ≤ b then E,G[χ, b] ` S.

Proof: Straightforward by induction on the typing rules. 2

Lemma 8.3.5 (Weakening Law) Let E,G[χ, a] ` S and let E ⊆ E ′ where
E′ is a type environment. It follows that E ′, G[χ, a] ` S.

Proof: Straightforward by induction on the typing rules. 2

Lemma 8.3.6 Let E,G[χ, a] ` S and let x 6∈ free(S).
It follows that E\x,G[χ, a] ` S.

Proof: Straightforward by induction on the typing rules. 2

In the following proofs it will sometimes be necessary to “reverse” the typing
process, i.e. to find out which rules were used in order to type an expression.
While this reversal is unambiguous in the case of the rules (TL-VAR), (TL-
REPL), (TL-PROC), (TL-MESS) and (TL-PA), it is not so obvious in the case
of (TL-CON). We will therefore need the following lemma:

Lemma 8.3.7 Let E,G[χ, a] `
⊗n

i=1(Hi, ζi) where ζi : mi � D.
It follows that there is a strong morphism ψ : D → G[χ] such that

E,G[ψ(ηi(χmi
)), a] ` Hi

Proof: See appendix A.2.1. 2

We will now investigate how types behave under substitution and alpha-
conversion:

Lemma 8.3.8 Let E, T ` S such that y 6∈ free(S) and {x : ηx} ∈ E where
sort(x) = sort(y) = n. It follows that

E\x\y ∪ {y : ηx}, T ` S[procn(y)/x]

Proof: By induction on the typing of H and with condition (2) of the linear
mapping. 2
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Proposition 8.3.9 (Substitution)
If E\x ∪ {x : ηx}, G[χ, a] ` S and E,G[ηx(χmx), a] ` J then

E,G[χ, a] ` S[J/x]

Proof: We proceed by induction on the typing of H:

(TL-PROC), (TL-MESS)

• S = procn(x): in this case it follows with (TL-VAR) and (TL-PROC)
ηx(χmx) = χ. And since S[J/x] := J it follows that

E,G[χ, a] ` S[J/x]

• S = procn(y) where x 6= y. Since x 6∈ free(procn(y)) it follows
with lemma 8.3.6 that (E\x ∪ {x : ηx})\x,G[χ, a] ` S. And since
S[J/x] := S and (E\x ∪ {x : ηx})\x = E\x it follows that

E\x,G[χ, a] ` S[J/x]

The rest follows with lemma 8.3.5.

• S = procn(S
′) or S = messn(H): the proposition follows with the

induction hypothesis and condition (3) of the linear mapping.

(TL-REPL) immediate with the induction hypothesis.

(TL-CON) with lemma 8.3.7 and the induction hypothesis.

(TL-PA) S = λky.H. There are the following cases:

• y = x: in this case S[J/x] := S and as in the case S = procn(y)
above the proposition follows with lemmas 8.3.6 and 8.3.5.

• y 6∈ free(J): immediate with the induction hypothesis.

• y ∈ free(J), z 6∈ free(H) ∪ free(J), i.e.

(λky.H)[J/x] := λkz.(H[procn(z)/y])[J/x]

Since E\x ∪ {x : ηx}, G[χ, a] ` λk.H it follows with (TL-PA) that

E\x\y ∪ {x : ηx} ∪ {y : ηy}, G[χ ◦ χ′, a] ` H

Lemma 8.3.8 implies that

E\x\y\z ∪ {x : ηx} ∪ {z : ηy}, G[χ ◦ χ′, a] ` H[procn(z)/y]

With the induction hypothesis and lemma 8.3.5 it follows that

E\z ∪ {z : ηy}, G[χ ◦ χ′, a] ` (H[procn(z)/y])[J/x]

And (TL-PROC) implies that

E,G[χ, a] ` λkz.(H[procn(z)/y])[J/x]
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2

We will now undertake the first step in order to prove the subject reduction
property and show that equivalent expressions have the same type:

Proposition 8.3.10 (Equivalence)

Let H be a process graph with E,G[χ, a] ` H. Furthermore let H ≡ H ′.
Then E,G[χ, a] ` H ′.

Proof: By induction on the rules of structural congruence. For (C-α) use
lemma 8.3.8 2

The subject reduction property is the main result in this section. It states
that during reduction the type of an expression stays invariant.

Proposition 8.3.11 (Subject Reduction Property)

Let E, T ` H and H →∗ H ′. Then E, T ` H ′. Furthermore H contains no
bad redexes.

Proof: See appendix A.2.1. 2

8.3.3 Type Inference Algorithm

The following algorithm will compute the principal type of a process. We will
specify first what “principal” means in this context.

Definition 8.3.12 (Principal Type) E, T is called a principal type of S if

• E, T ` S

• If φ̂ : T
F,≤
→ T ′ it follows that φ̂(E), T ′ ` S

• If E′, T ′ ` S then there exists a morphism φ̂ : T
F,≤
−→ T ′ such that

φ̂(E) = E′.

2

That is, the principal type is the smallest type of an expression. We will
show later that if an expression has a type, then it also has a principal type.

We now show how to construct type graphs. One important concept, which
is be exploited here, is the modularity of the type system, i.e. a type of an ex-
pression can be computed out of the types of its subexpressions. The algorithm
basically proceeds as follows: we compute the types of the subexpressions, at-
tach them accordingly by forming a quotient graph (see definition 2.1.9) and
then fold the resulting type graph as described in proposition 8.3.13. The fold-
ing is necessary since the building of a new type graph out of true type graphs
does not always yield a true type graph.
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Proposition 8.3.13 (Folding Type Graphs)
Let T = G[χ, a] be a type graph. Folding a type graph works as follows: let

≈ be the smallest equivalence such that:

p1, p2 ∈ PG, sG(p1) = sG(p2) ⇒ p1 ≈ p2

m1,m2 ∈MG, sendG(m1) = sendG(m2) ⇒ m1 ≈ m2

c1, c2 ∈ CoG, sendG(c1) = sendG(c2) ⇒ c1 ≈ c2

If ≈ is consistent we define

FOLDF (T ) := (G/≈)[FOLDT (χ), FFOLDT (a)]

where FOLDT = FOLDG : G→ G/≈ is the projection of G into G/≈.

(1) FOLDF (T ) is the “smallest” true type graph into which exists a
morphism from T . That is, FOLDF (T ) is a true type graph and for

every true type graph T ′ with a strong morphism ψ : T
F,≤
−→ T ′ it follows

that FOLDF (T ) is defined and there exists a unique strong morphism

φ : FOLDF (T )
F,≤
−→ T ′ such that

φ ◦ FOLDT = ψ

(2) Let T = G[χ, a] be a type graph and let ≈ be the equivalence defined
as above. Furthermore let ≈′⊆≈. Let p : G → G/≈′ be the projection of
G into G/≈′. It follows that

FOLDG ∼= FOLDG/≈′
◦ p

(3) Let T ∼=F C〈T1, . . . , Tn〉F be a type graph and let i ∈ {1 . . . , n}. Fur-
thermore let T ′ ∼=F C〈T1, . . . , Ti−1, FOLDF (Ti), Ti+1, . . . , Tn〉F . It fol-
lows that

FOLDF (T ) ∼=F FOLDF (T ′)

FOLDT ∼= FOLDT ′
◦ C〈idT1 , . . . , idTi−1 , FOLD

Ti , idTi+1 , . . . , idTn〉F

Proof: See appendix A.2.1. 2

We first specify the algorithm and prove its correctness afterwards.

Algorithm 8.3.14 (Type Inference Algorithm)

Input: a process description S, a natural number m indicating the cardinality
of S, an environment E with embeddings ηx : mx � G for all x ∈ free(S)
and a lattice element a ∈ F (G).

Output: a morphism φ : G→ G′, a string χ′ ∈ V ∗
G′ and a′ ∈ F (G′) such that

φ(E), G′[χ′, a′] ` S

The mapping (φ, χ′, a′) = W (S,m,E, a) is defined inductively as follows:
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Variable: S = x

Return (idG, ηx(χmx), a) if x : ηx ∈ E, ηx : mx → G and idG : G → G is
the identity.

Replication: S =!H

Return W (!H, card(H), E, a)

Process: S = procn(S
′)

Let (φ, χ′, a′) := W (S′, n, E, a) where φ : G → G′ and let ≈ be the
smallest equivalence on P [χP , aP ] := A(procn(S)) and G′[χ′, a′] with

(bχP ci, 0) ≈ (bχ′ci, 1) i ∈ {1, . . . , n}

Let G̃ := (PG′)/≈, let pP : P → G̃ be the projection of P into G̃ and let
pG′ : G′ → G̃ be the projection of G′ into G̃.

Return (FOLDG̃◦pG′◦φ, FOLDG̃(pP (χP )), F
FOLDG̃(FpP

(aP )∨FpG′ (a
′))).

Message: S = messn+1(H)

Let (φ, χ′, a′) := W (H,m,E, a) where m := card(H), φ : G → G′ and
let ≈ be the smallest equivalence on M [χM , aM ] := A(messn+1(H)) and
G′[χ′, a′] with

(bsM (contM (bχMcn+1))ci, 0) ≈ (bχ′ci, 1) i ∈ {1, . . . , n+ 1}

Let G̃ := (MG′)/≈, let pM : M → G̃ be the projection of M into G̃ and
let pG′ : G′ → G̃ be the projection of G′ into G̃.

Return (FOLDG̃◦pG′◦φ, FOLDG̃(pM (χM )), F
FOLDG̃(FpM

(aM )∨FpG′ (a
′))).

Process Graph: S = H =
⊗n

i=1(Hi, ζi) where ζi : mi → D and φ : D → H.

We define a0 := a and E0 := E. Furthermore

(φi, χi, ai) := W (Hi, card(Hi), Ei−1, ai−1)

where φi : Gi−1 → Gi and

Ei := {x : φi ◦ η
i−1
x | x : ηi−1

x ∈ Ei−1}

We define χ′
i := (φn ◦ . . . ◦ φi+1)(χi) ∈ V ∗

Gn
. Let ≈ be the smallest

equivalence on D,Gn satisfying

(bζi(χmi
)cj , 0) ≈ (bχ′

icj , 1) j ∈ {1, . . . ,mi}

Define1 G̃ := (D0Gn)/≈ and let pD : D0 → G̃ and pGn : Gn → G̃ be the
projections into G̃.

Return (FOLDG̃◦pGn◦φn◦. . .◦φ1, FOLD
G̃(pD(χD)), F

FOLDG̃(FpGn
(an))).

1If H = G[χ] we define H0 := G.
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Process Abstraction: S = λkx.H

Let Ḡ := G ⊕ mx
0 and let pG : G → Ḡ, pmx : mx

0 → Ḡ be the corre-
sponding projections.

Furthermore let (φ, χ′, a′) := W (H, card(H), pG(E)\x∪{x : pmx}, FpG
(a))

where φ : Ḡ→ G′.

We define P [χP ] := procM , M [χM ] := messn+1, Co[χCo] := contsort(x)+1.

Let ≈ be the smallest equivalence on G′, P,M,Co satisfying:

(bχ′ci, 0) ≈ (bχP ci, 1) i ∈ {1, . . . ,m}

(bχ′cm+i, 0) ≈ (bχMci, 2) i ∈ {1, . . . , n}

(bχ′ck, 0) ≈ (bχMcn+1, 2)

(b(φ ◦ pmx)(χmx)ci, 0) ≈ (bχCoci, 3) i ∈ {1, . . . , sort(x)}

(bχ′ck, 0) ≈ (bχCocsort(x)+1, 3)

Define G̃ := (G′PMCo)/ ≈ and let pG′ : G′ → G̃ be the projection of
G′[χ′] into G̃.

Return (FOLDG̃◦pG′◦φ◦pG, bFOLD
G̃(pG′(χ′))c1...m, FFOLDG̃(FpG′ (a

′))).

The type inference algorithm fails if a quotient graph or a fold operation is
undefined. 2

We will now show that the algorighm above has the following property: if
an expression has any type at all, the algorithm computes its principal type.

First we show that the result of the algorithm is a type of the expression
(in the case where φ̂′ = idĜ), and that every type which can be derived from
the result by a morphism, is also a type of the expression.

Lemma 8.3.15 Let (φ, χ′, a′) := W (S,m,E, a). It follows that Fφ(a) ≤ a′.

Proof: Straightforward by induction on S. 2

Proposition 8.3.16 (Correctness of the Type Inference Algorithm) Let
(φ̂, χ̂, â) := W (S,m,E, a) where φ̂ : G→ Ĝ and let

φ̂′ : Ĝ[χ̂, â]
F,≤
−→ Ĝ′[χ̂′, â′]

Then

(φ̂′ ◦ φ̂)(E), Ĝ′[χ̂′, â′] ` S

Proof: See appendix A.2.1. 2

We will now show that if an expression has a type E, T , then the algorithm
yields a result. And furthermore, there exists a morphism from the result into
E, T .
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Proposition 8.3.17 (Soundness of the Type Inference Algorithm)

Let Ê, Ĝ[χ̂, â] ` S and let φ̂ : G
F,≤
−→ Ĝ with Ê = φ̂(E) and Fφ̂(a) ≤ â then

(φ, χ′, a′) := W (S, |χ̂|, E, a)

(where φ : G→ G′) is defined and there exists a morphism

ψ : G′[χ′, a′]
F,≤
−→ Ĝ[χ̂, â]

such that φ̂ = ψ ◦ φ.

Proof: See appendix A.2.1. 2

The type inference algorithm computes the principal type of an expression,
if it exists:

Proposition 8.3.18 (Principal Types) Let Ê, Ĝ[χ̂, â] ` S.

Let X := free(S), mx := sort(x) and let G :=
⊕

x∈X mx (i.e. G is a
discrete hypergraph with

∑
x∈X mx nodes). Furthermore let ηx : mx → G be

the canonical projections into G.

We define E := {x : ηx | x ∈ X}. It follows that

(φ, χ′, a′) := W (S, |χ̂|, E,⊥)

where φ : G→ G′ is defined and that φ(E), G′[χ′, a′] is the principal type of S.

Proof: According to lemma 8.3.6 we can assume that Ê is of the form {x : η̂x |
x ∈ free(S)}.

We have to show that there exists a morphism φ̂ : G→ Ĝ such that φ̂(E) =
Ê. We define φ̂(ηx(χmx)) := η̂x(χmx) where x : η̂x ∈ Ê. It is straightforward
to check that φ̂ is well-defined.

The rest is straightforward with propositions 8.3.16 and 8.3.17. 2

8.3.4 Verification with the Type System

We will now show how to exploit the type system for verification purposes.
That is, for every typed expression H, there is a morphism from A(H) into
the type of H. So if the type satisfies a certain property which is closed under
inverse morphisms, A(H) satisfies this property as well.

Proposition 8.3.19 Let E, T ` H. This implies that there is a morphism

ψ : A(H)
F,≤
−→ T

Proof: See appendix A.2.1 2
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Proposition 8.3.20 Let F be a type functor and let A be a linear mapping.
Let P be a predicate on Spider expressions and let Q be a predicate on type

graphs. P,Q satisfy

Q(A(H)) ⇒ P (H) (8.13)

φ : T
F,≤
−→ T ′, Q(T ′) ⇒ Q(T ) (8.14)

i.e. Q is closed under inverse (F,≤)-morphisms.
Then E, T ` H and Q(T ) imply P (H ′) for all H →∗ H ′.

Proof: The subject reduction property (proposition 8.3.11) implies E, T ` H ′

for every H →∗ H ′.
If E, T ` H ′ it follows with proposition 8.3.19 that there exists a (F,≤)-

morphism φ′ : A(H ′) → T . Since Q(T ) and Q is closed under inverse morphisms
it follows that Q(A(H ′)) which implies P (H ′). 2

A type system for checking a predicate P thus consists of a type functor F ,
a linear mapping A and a predicates Q on type graphs as defined above. That
is TS = (F,A, P,Q).

8.3.5 Composing Type Systems

Let TSi := (Fi, Ai, Qi, Pi), i = 1, 2 be two type systems. We define

F (T ) := F1(T ) × F2(T )

A(H) := G[χ, (a1, a2)] if A1(H) ∼=F G[χ, a1] and A2(H) ∼=F G[χ, a2]

That is we demand that the linear mappings map equivalent process graphs
onto type graphs of the same structure.

We define

Q∧(G[χ, (a1, a2)]) := Q1(G[χ, a1]) ∧Q2(G[χ, a2])

Q∨(G[χ, (a1, a2)]) := Q1(G[χ, a1]) ∨Q2(G[χ, a2])

It is easy to check that

TS∧ := (F,A,Q∧, P1 ∧ P2) and

TS∨ := (F,A,Q∨, P1 ∧ P2)

are also type systems, checking the conjunction respectively disjunction of P1

and P2.

8.3.6 Examples

The lattice will contain mappings of the form a : V k
T → I or a : ET → I where

I is a lattice. The type functor F has to satisfy

Fφ(a)(s
′) =

∨

φ(s)=s′

a(s) if s′ ∈ V k
T
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in the first case and

Fφ(a)(e
′) =

∨

φ(e)=e′

a(e) if e′ ∈ ET

in the second case. It is straightforward to verify that both are indeed type
functors.

In the following examples we will assume a linear mapping A with

A(procn(S)) := P [χP , aP ] where P [χP ] := procn

A(messn(H)) := M [χM , aM ] where

M [χM ] := σ1,...,n(θn,n+k+1(messn ⊕ contk+1))

That is the graph structure of A(H) is fixed. Only the lattice elements will
vary.

Avoiding Run-Time Errors

We set k := 0 and take the trivial lattice I = {0}. In this case the mapping
A is constant, i.e. aP = 0 and aM = 0 where A(procn(S)) := P [χP , aP ],
A(messn(H)) := M [χM , aM ] (see remark above). We get a standard type
system, that only types process graphs without runtime errors.

Applying this type system to the example in section 8.1 yields the type
graph on page 113 without any extra labels or arrows.

Input/Output-Capabilities

We want to ensure that some external ports are only used as input ports and
that some are only used as ouput ports.

We choose k = 1, I = {⊥, in, out, both} where ⊥ < in < both and ⊥ < out <
both, i.e. in ∨ out = both.

The mapping a is defined in the following way:

aP (bχP ci) :=

{
in if S = λi.H
⊥ otherwise

aM (bχMci) :=

{
out if i = n
⊥ otherwise

aM (bcont(bχMcn)ci) := ⊥

where A(procn(S)) := P [χP , aP ], A(messn(H)) := M [χM , aM ].
We want to ensure that H will never reduce to a process graph H ′ where a

message is sent to bχHci. The corresponding predicate Q is:

Q(G[χ, a]) := (a(bχci) ≤ in)

If, on the other hand the type of H satisfies

Q(G[χ, a]) := (a(bχci) ≤ out)
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we can conclude that H will never reduce to a process graph H ′ where a process
listens at bχHci.

Applying this type system to the example in section 8.1 yields the following
principal type graph:

both
(1) (2)

out
both

That is the second external port is only used as an output port and the first
external port is not used for any input/output-operations at all.

A more sophisticated version of this type system is presented in [PS93].
There is, of course, a trade-off between generality and the percentage of pro-
cesses which can be typed: e.g. in this case our type system can type fewer
processes than the type system introduced in [PS93], which can partly be ex-
plained by the very general nature of our type system and partly by the fact
that the type system in [PS93] does not have principal types.

Secrecy of Message Contents

We assume that there exists a subset SECRET ⊆ S of Spider expressions
which are to be considered secret and which are not to be communicated to the
outside.

Because of restraints of the type system we have to assume that

H ≡ H ′, H ∈ SECRET ⇒ H ′ ∈ SECRET

H[H ′/x] ∈ SECRET ⇐⇒ H ∈ SECRET

∀x, y ∈ X with sort(x) = sort(y) = n :

procn(x) ∈ SECRET ⇐⇒ procn(y) ∈ SECRET

Our lattice is the set of all mappings a : CoT → {sec, pub} where pub < sec.
The mapping aM has the following form:

aM (cont(bχMcn)) :=

{
sec if H ∈ SECRET
pub otherwise

where A(messn(H)) := M [χM , aM ] (see remark above).
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We want to make sure that H never reduces to a process graph H ′ which
contains a message labelled with a secret content and sent to an external port.
The corresponding predicate Q is:

Q(G[χ, a]) := (∀ i ∈ {1, . . . , card(H)} : a(contG(bχci)) = pub)

We investigate again the example from section 8.1 and assume that the
content of the message on the left is considered secret and that all messages
labelled 0 are considered public. This yields the following principal type graph:

pub

(1) (2)

sec pub

That is, no secret message is sent to an external port.

Secrecy of External Ports

We assume that the external ports of a process graph can have different levels
of secrecy. They might either be public or secret. Both sorts of ports can be
used to send or receive messages, but it is not allowed to forward a secret port
to a receiver listening at a public port.

We choose k = 2, I = {true, false} where {true, false} is the boolean lattice
with false < true.

The mapping a has the following form:

aP (bχP ci, bχcj) := false

aM (bχMci, bχcj) :=

{
true if i = n, j 6= n
false otherwise

aM (bcont(bχMcn)ci) := false

where A(procn(S)) := P [χP , aP ], A(messn(H)) := M [χM , aM ] (see remark
above).

Let H be a process graph and we assume that the sets SEC and PUB form
a partition of {1, . . . , card(H)}. If the type of H satisfies

Q(G[χ, a]) := (∀ i ∈ PUB, j ∈ SEC : a(bχci, bχcj) = false)

it follows that no message, with secret ports attached to it, is ever sent to a
public port.

In section 8.1 we demonstrated the construction of a type graph for this
type system.
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8.4 A Type System Based on Monoids

We will now present another type system that is, in some ways, more advanced,
since it allows us to handle monoids instead of lattices making it possible to
count.

Restrictions: We will, however, make an important restriction and drop
higher-order communication. That is during this chapter we demand that mes-
sages are always labelled 0. As a consequence we drop all variables x ∈ X and
will abbreviate λnx with λn.

Furthermore we demand that all expessions are in the subcalculus Sn (see
section 7.4). That is, we restrict ourselves to the part of Spider into which the
π-calculus can be coded (see section 7.5).

Discussion of Problems: Taking l-monoids instead of lattices leads to some
drawbacks. We have already mentioned the first: construction of type graphs
can not, any more, be represented as a co-limit of (F,≤)-morphisms.

A second problem arises since we might have negative numbers. In the
example in the introduction chapter, we constructed the type graph in two
steps: first attach all parts and fold them afterwards (these two steps were
integrated into one in the type system based on lattices). If we look at this
issue closely we find out that we need two kinds of monoid operations: in the
first step it is ordinary summation, but in the folding step we have to make sure
that the monoid label of every components does not decrease, otherwise the type
system would be useless for verification purposes. This, however, can happen
if we use the ordinary summation for folding and if we work with negative
numbers. As it turns out, we need the operator ⊕ with a⊕ b := (a+ b) ∨ a ∨ b
(defined in the introduction) for the folding process.

So we actually need two type functors: one, which we will call F and which
is used for type construction, and the other one, which we will call J and
which is used for folding type graphs. We cannot demand that F, J satisfy the
equivalent of condition (3) in proposition 8.3.13, i.e. normally

FOLDJ(C〈T1, . . . , Tn〉F ) 6∼=F FOLDJ(C〈T1, . . . , FOLDJ(Ti), . . . , Tn〉F )

since for many monoids and type functors this property is not satisfied.

So, instead of mixing the two phases of type graph construction and type
graph folding, as we have done in the previous chapter, we now first construct
the type graph and fold it afterwards. This has some disadvantages, especially
for the compositionality of types, but we do not see any other way to do this.

8.4.1 The Type System

We will now assume that there are two type functors F and J .

A type graph G[χ, a] consists (as before) of a hypergraph G[χ] and of a ∈
F (G).
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We will use the same definitions of true type graphs as in the type system
based on lattices. But for the linear mapping A we change conditions (4) and
(5) to

(4) If P [χP , aP ] := A(procn(S)) it follows that P [χP ] ∼= procn

(5) If M [χM , aM ] := A(messn(S)) it follows that either M [χM ] ∼= messn or
M [χM ] ∼= σ1,...,n(θn,n+k+1(messn ⊕ contk+1)). (This has to be handled
consistently within a type system.)

Conditions (4) and (5) will be needed in the proof of proposition 8.4.8 (subject
reduction property for (R-MR)). Actually they are no real restriction since
relations between ports can always be modelled by extra monoid elements.

Definition 8.4.1 (Compatible Type Functors) Let F, J be two type func-
tors.

F, J are called compatible, if for every graph G, F (G) = (I,+,≤) and
J(G) = (I,⊕,≤) where (I,+,≤), (I,⊕,≤) are l-monoids with a⊕ b := (a+ b)∨
a∨ b (see section 8.2). Furthermore in (I,+,≤) the residual 0− a is defined for
every a ∈ I and I has a smallest element ⊥.

Furthermore

Jφ ≤ Fφ if φ is an injective morphism (8.15)

Jφ ≥ Fφ if φ is a surjective morphism (8.16)

Let ψ1, . . . , ψn be nice (J,≤)-morphisms (nice hypergraph morphisms are de-
fined in definition 2.1.4) and let C be a discrete context with holes of cardinality
card(ψ1), . . . , card(ψn). Then

C〈ψ1, . . . , ψn〉F is also a (J,≤)-morphism (8.17)

2

In section 8.4.6 we will present a pair of compatible type functors.

Since Gφ = Fφ if φ is an isomorphism the relations
∼
<F and

∼
<J coincide.

Notes: We will need a few abbreviations which we will define now: Since
we do not work with higher-order message passing any more, a redex can be
described by

Redk,m,n(S) := Redk,m,n(S,0)

Furthermore we define
(G[χ, a])− := G[χ, 0 − a]

We will now introduce the typing rules of the type system based on monoids.
It differs from the type system based on lattices in that it is more construc-
tive and that the type environment E is missing. The type environment is
unnecessary since we have excluded expressions with variables.

Again, parameters of the type system are the functors F,G and the linear
mapping A.
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Definition 8.4.2 (Typing Rules) Let F,G be compatible type functors and
let A be a linear mapping as defined above.

A type of a process graph or process description S consists of a (not neces-
sarily true!) type graph T . We write T 

M
A,F,G S or T  S for short.

The following rules describe how a type can be assigned to an expression.

(TM-≤)
T  S, T

∼
< T ′

T ′
 S

(TM-REPL) T  H, T2FT
J,≤
−→ T

T !H

(TM-PA)
T  H

σ1...m(T2FA(Redk,m,n(λk.H))−)  λk.H

(TM-MESS) A(messn(0))  messn(0)

(TM-PROC) T  S, n[0]
J,≤
−→ T

A(procn(S))2FT  procn(S)

(TM-CON)
Ti  Hi, i ∈ {1, . . . , n}

C〈T1, . . . , Tn〉F  C〈H1, . . . , Hn〉

2

The intuitive meaning of some of the rules can be informally explained as
follows:

(TM-REPL) In order to type !H with T it is necessary that the type graph
can be folded into itself, in order to ensure the subject reduction prop-
erty. Because of the idempotency of lattice elements this condition is not
necessary for (TL-REPL).

The existence of a hypergraph morphism from T2T into T is clear, it is
left to check that it is a (J,≤)-morphism.

(TM-PROC) Here, the problem with the negative numbers surfaces again.
Since the external nodes of T might be labelled with negative elements, it
might be the case that the labels of A(procn(S)) are decreased. For the
purpose of verification it is, however, essential that there is a morphism

A(procn(S))
J,≤
−→ A(procn(S))2FT . The side condition is there to ensure

the existence of this morphism.

(TM-PA) In this rule we subtract the labels of the redex (or at least the
labels of the external nodes) from the labels of T . By doing so we take
into account the fact that parts of a graph are removed during reduction.
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Note: Let T  H. Since we assume that H is in the subcalculus Sn, i.e. every
hypergraph inside of H has duplicate-free sequences of external nodes we can
conclude, by induction on the typing rules, that χT is also duplicate-free. We
need this fact for proposition 8.4.10.

Definition 8.4.3 (True Type) Let S be a process graph or a process descrip-
tion. We say that S can be typed by the true type TT

TT ` S

if TT is a true type graph, T  S and there is a (J,≤)-morphism φ : T → TT .
2

8.4.2 Subject Reduction Property

In this section we assume that there are fixed compatible type functors F, J
and a basic mapping A.

Lemma 8.4.4 If T  H then card(H) = card(T ).

Proof: By simple induction on the typing rules. 2

As in the previous chapter we need some way to unravel the typing of an
expression and to retrace our steps. In the case of (TM-≤), (TM-REPL), (TM-
PA), (TM-MESS) and (TM-PROC) this is easy. But in the case of (TM-CON)
ambiguity appears. The following lemma is essential in unravelling the type of
a process graph. It corresponds to lemma 8.3.7.

Lemma 8.4.5 Let T  C〈H1, . . . , Hn〉. Then there exist type graphs T1, . . . , Tn
such that

Ti  Hi

T
∼
>F C〈T1, . . . , Tn〉F

Proof: Let H ∼= C ′〈H ′
1, . . . , H

′
m〉 such that C ′ is a discrete context and H ′

1,. . .,
H ′
m are basic graphs. During the typing of H a type graph T ′

i is assigned to
each basic graph H ′

i.We define a linear mapping with

B(J) :=

{
T ′
i if J ∼= H ′

i

k[0] with k := card(J) if J is any other basic graph

By induction on the typing of H we can show that B(H)
∼
<F T . And further-

more it follows with (TM-CON) that B(H)  H.
If we define Ti := B(Hi) it follows that Ti  Hi and

T
∼
>F B(H) ∼=F C〈T1, . . . , Tn〉F

2

As in the previous chapter (see proposition 8.4.6) we have to check that
equivalent process graphs have the same type.
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Proposition 8.4.6 (Equivalence) Let H1, H2 ∈ S with H1 ≡ H2.
T  H1 ⇐⇒ T  H2 for any type graph T .
This implies immediately TT ` H1 ⇐⇒ TT ` H2 for any true type graph

TT .

Proof: See appendix A.2.2. 2

It is now our aim to show that no type contains bad redexes and that the
type is invariant under reduction. In the case of replication this is not very

difficult, because of the precondition T2FT
J,≤
→ T in rule (TL-REPL).

Proposition 8.4.7 (Replication) Let TT ` H. If H contains a subgraph of
the form procn(!K) then replication is defined, i.e. n = card(K).

Let H
(R-REPL)

−→ H ′. It follows that H ′ has the same type as H, i.e.
TT ` H ′.

Proof: Let T  H such that there is a (J,≤)-morphism ψ : T → TT .
It follows with proposition 4.3.5 that H ≡ C〈H1, H2〉, H

′ ≡ C〈H ′
1, H2〉 and

H1
(R−REPL)

−→ H ′
1. In this case H1 ≡ procn(!K) and H ′

1 = procn(!K)2K.
Lemma 8.4.5 implies that there are type graphs T1, T2 with Ti  Hi. It is

left to show that T1  H ′
1.

It follows with (TM-PROC) and (TM-REPL) that

T1
∼
>F A(procn(!K))2TK  procn(!K)

and TK  K. Furthermore there is a morphism φ : TK2TK
J,≤
−→ TK .

Since A(procn(!K))2TK is defined we conclude n = card(TK) = card(K).
(TM-CON) implies that T ′ := A(procn(!K))2TK2TK  procn(!K)2K.
Since φ is a nice morphism it follows with (8.17) that there exists a (J,≤)-

morphisms φ′ : T ′ → T .

It follows that ψ ◦ φ′ : T ′ J,≤
−→ TT . 2

In the case of message reception it is more difficult to prove the subject
reduction property. The main reason for these difficulties is the fact that the
folding of a type graph into a true type graph is done at the very end of the
typing process. Typing a process after message reception, however, causes
adjustments deep inside the typing process. These adjustments include the
merging of ports which are fused during the folding.

In the case of message reception T  Redk,m,n(λk.H) does not imply T  H.
And in the case of ` local arguments (showing that T ` Redk,m,n(λk.H) implies
T ` H) are not sufficient and we have to take a global view on the whole typing
process.

Proposition 8.4.8 (Message Reception) Let TT ` H. If H contains a
redex

Red := Redk,m,n(λkx.K)

then message-reception is defined, i.e. m+ n = card(K).

Let H
(R-MR)
−→ H ′. It follows that H ′ has the same type as H, i.e. TT ` H ′.
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Proof: See appendix A.2.2. 2

Proposition 8.4.9 (Subject Reduction) Let TT ` H and H →∗ H ′. Then
TT ` H ′. Furthermore H contains no bad redexes.

Proof: Straightforward with propositions 8.4.6, 8.4.7 and 8.4.8. 2

8.4.3 Type Inference

The type system presented in this section is of a more constructive nature than
the type system presented in section 8.3. Only the rules (TM-REPL) and (TM-
PROC) are non-constructive and may require the additional use of (TM-≤). For
the existence of principal types we therefore demand that the sets

{T ′ ∈ TJ | T ′ ∼
>F T, T

′
2FT

′ J,≤
−→ T ′}

{T ′ ∈ TJ | T ′ ∼
>F T, n[0]

J,≤
−→ T ′}

contain a smallest element wrt.
∼
<F for every type graph T . These smallest

elements are denoted by R(T ) respectively P (T ).

If this smallest element is computable, the type inference algorithm corre-
sponds exactly to the typing rules.

As mentioned above, compositionality of types is only true for  and not
for `. This is unfortunate, but we did not find any elegant solution for a more
compositional type system.

8.4.4 Verification with the Type System

We now show how to exploit the type system for verification purposes. Note that
in the proof of the following proposition we utilize the fact that the sequence
of external nodes of a type graph does not contain duplicates.

Proposition 8.4.10 Let T  H. This implies that there is a morphism

A(H)
J,≤
−→ T

This implies immediately that if TT ` H, then there also exists a morphism

A(H)
J,≤
−→ TT .

Proof: We consider the following cases:

(TM-MESS) If T  messn(0), then clearly T ∼=F A(messn(0)) and there is
a nice (J,≤)-morphism (the identity morphism) id : A(messn(0)) → T .

(TM-PROC) If T  procn(S), then T ∼=F A(procn(S))2FT
′ and there exists

a morphism ψ : n[0]
J,≤
−→ T ′. Since χT ′ is duplicate-free, it follows that ψ

is a nice morphism.
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It follows with lemma 8.2.11 that

C〈id, ψ〉 : A(procn(S))2Fn[0]
J,≤
−→ A(procn(S))2FT

′

where A(procn(S)) ∼=F A(procn(S))2Fn[0].

C〈id, ψ〉 is again a nice morphism.

(TM-CON) If T  C〈H1, . . . , Hn〉 where H1, . . . , Hn are basic graphs, it fol-
lows with lemma 8.4.5 that there exist type graphs T1, . . . , Tn with Ti  Hi

and C〈T1, . . . , Tn〉
∼
<F T .

We have shown that for basic graphs Hi there exists a nice morphism

ψi : A(Hi)
J,≤
−→ Ti.

Lemma 8.2.11 implies that

C〈ψ1, . . . , ψn〉 : C〈H1, . . . , Hn〉
J,≤
−→ C〈T1, . . . , Tn〉

∼
<F T

2

Proposition 8.4.11 Let F, J be a pair of compatible type functors and let A
be a basic mapping.

Let P be a predicate on Spider expressions and let Q be a predicate on type
graphs. P,Q satisfy

Q(A(H)) ⇒ P (H) (8.18)

φ : T
J,≤
−→ T ′, Q(T ′) ⇒ Q(T ) (8.19)

i.e. Q is closed under inverse (J,≤)-morphisms.
Let H be a representative. Then TT ` H and Q(TT ) imply P (H ′) for all

H →∗ H ′.

Proof: The subject reduction property (proposition 8.4.9) implies TT ` H ′ for
every H →∗ H ′.

If TT ` H ′ then there exists a (J,≤)-morphism φ′ : A(H ′) → TT . Since
Q(TT ) and Q is closed under inverse morphisms it follows that Q(A(H ′)) which
implies P (H ′). 2

A type system for checking a predicate P thus consists of a pair of compatible
type functors (F, J), a linear mapping A and a predicates Q on type graphs as
defined above. That is TS = ((F, J), A, P,Q).

8.4.5 Composing Type Systems

We will now show that the conjunction and disjunction of predicates checked
by type systems can also be checked by a type system.

Let TSi := ((Fi, Ji), Ai, Qi, Pi), i = 1, 2 be two type systems. We define

F (T ) := F1(T ) × F2(T )

J(T ) := J1(T ) × J2(T )

A(H) := G[χ, (a1, a2)] if A1(H) ∼=F1 G[χ, a1] and A2(H) ∼=F2 G[χ, a2]
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That is we demand that the linear mappings map equivalent process graphs
onto type graphs of the same structure.

We define

Q∧(G[χ, (a1, a2)]) := Q1(G[χ, a1]) ∧Q2(G[χ, a2])

Q∨(G[χ, (a1, a2)]) := Q1(G[χ, a1]) ∨Q2(G[χ, a2])

It is easy to check that

TS∧ := ((F, J), A,Q∧, P1 ∧ P2) and

TS∨ := ((F, J), A,Q∨, P1 ∧ P2)

are also type systems, checking the conjunction respectively disjunction of P1

and P2.

8.4.6 Compatible Type Functors

We will now give an example for l-monoids and compatible type functors which
will be needed for our examples and which will be used in the rest of this section.

Let (I,+,≤) be an arbitrary residuated l-monoid with a smallest element ⊥
and let k ∈ lN. For any type graph T we define F (T ) as the set of all mappings
from V k

T into I.

Let a : V k
T → I, φ : T → T ′, s′ ∈ V k

T ′ . We define:

Fφ(a)(s
′) :=

∑

φ(s)=s′

a(s) (8.20)

Jφ(a)(s
′) :=

⊕

φ(s)=s′

a(s) (8.21)

where a⊕ b := (a+ b) ∨ a ∨ b.

We will now check that F, J satisfy the conditions of definition 8.4.1:

(8.15) For any set I with |I| ≤ 1 it follows that
∑

i∈I i ≥
⊕

i∈I i.

Since φ is injective there is at most one s ∈ V k
T for every s′ ∈ V k

T ′ such
that φ(s) = s′. Therefore

Fφ(a)(s
′) =

∑

φ(s)=s′

a(s) ≥
⊕

φ(s)=s′

a(s) = Jφ(a)(s
′)

(8.16) For any non-empty set I
∑

i∈I i ≤
⊕

i∈I i.

Since φ is surjective there is at least one s ∈ V k
T for every s′ ∈ V k

T ′ such
that φ(s) = s′. Therefore

Fφ(a)(s
′) =

∑

φ(s)=s′

a(s) ≤
⊕

φ(s)=s′

a(s) = Jφ(a)(s
′)
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(8.17) Let ψi : Ti
J,≤
→ T ′

i with Ti = Gi[χi, ai], T
′
i = G′

i[χ
′
i, a

′
i]. Furthermore let

C be a context and let ηi be the embedding of Ti into C〈T1, . . . , Tn〉.

Let ψ := C〈ψ1, . . . , ψn〉 and let η′i be the embedding of T ′
i into C〈T ′

1, . . . , T
′
n〉.

Let s′ ∈ V k
T ′ , S := ψ−1(s′), S′

i := (η′i)
−1(s′), Si := η−1

i (S) = ψ−1
i (S′

i).

• Let s′ ∈
(⋃

1≤i≤n η
′
i(EXTT ′

i
)
)k

. Since the ψi are nice morphisms it

follows that there is exactly one s0 ∈ VT such that ψ(s0) = s′. There-
fore S = {s0}. And since the ψi are nice morphisms the mapping
ψi|Si

: Si → S′
i is injective.

Therefore

Jψ(
∑

1≤i≤n

Fηi
(ai))(s

′) =
∑

1≤i≤n

∑

si∈Si

ai(si)

∑

1≤i≤n

Fη′i(Jψi
(ai))(s

′) =
∑

1≤i≤n

∑

η′i(s
′
i)=s

′

⊕

ψi(si)=s′i

ai(si)

=
∑

1≤i≤n

∑

(η′i◦ψ)(si)=s′

ai(si) =
∑

1≤i≤n

∑

si∈Si

ai(si)

• Let s′ ∈ (η′j(VT ′
j
\EXTTj

))k. Because of the properties of embeddings

and nice morphisms it follows that Si = ∅, S′
i = ∅ for j 6= i. It

also follows that ′
j has only one element and that (ηj)|Sj

, (η′j)|S′
j

are
injective.

Therefore

Jψ(
∑

1≤i≤n

Fηi
(ai))(s

′) = Jψ(Fηj
(ai))(s

′) =
⊕

si∈Si

ai(si)

∑

1≤i≤n

Fη′i(Jψi
(ai))(s

′) = Fη′j (Jψi
(ai))(s

′) =
⊕

si∈Si

ai(si)

• For any other s′ ∈ VT ′ we have Si = S′
i = ∅ for every i. If S = ∅ we

obtain

Jψ(
∑

1≤i≤n

Fηi
(ai)(s

′)) = ⊥ ≤ 0 =
∑

1≤i≤n

Fη′i(Jψi
(ai))(s

′)

If S 6= ∅ we get

Jψ(
∑

1≤i≤n

Fηi
(ai)(s

′)) =
⊕

s∈S

0 = 0 =
∑

1≤i≤n

Fη′i(Jψi
(ai))(s

′)

We will now show under which conditions the requirements for the existence
of principal types and for type construction given in section 8.4.3 are satisfied:
We assume that in both monoids (I,+,≤) and (I,⊕,≤) the sets {a′ | a′ ≥
a, a′ + a′ = a′} respectively {a′ | a′ ≥ a, a′ ⊕ a′ = a′} have a smallest element.
These smallest element are denoted by ā+ respectively ā⊕.
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That is we demand that every element has an upper bound which is idem-
potent. In the l-monoid of integers with ∞ and −∞ these upper bounds are as
follows:

ā+ =





−∞ if a = −∞
0 if −∞ < a ≤ 0
∞ if a > 0

ā⊕ =

{
a if a =≤ 0
∞ if a > 0

That is R(T ) and P (T ) of a type graph T can be defined as follows:

R(G[χ, a]) := G[χ, a′] where a′(s) :=

{
a(s)

+
if Set(s) ⊆ Set(χ)

a(s)
⊕

otherwise

P (G[χ, a]) := G[χ, a′] where a′(s) :=

{
a(s) ∨ 0 if Set(s) ⊆ Set(χ)
a(s) otherwise

8.4.7 Examples

We now present various type systems useful for the verification of mobile pro-
cesses. These type systems are of different quality, i.e. the percentage of correct
process which can be typed varies. While in the type system checking conflu-
ence there is hardly any loss of information, mapping a process graph into a
type in the type system checking the absence of vicious circles, may result in
the creation of circles not present in the original process graph.

In the following examples we will assume a linear mapping A with

A(procn(S)) := P [χP , aP ] where P [χP ] := procn

A(messn(0)) := M [χM , aM ] where M [χM ] := messn

and aP : V k
P → I and aM : V k

M → I.

That is the graph structure of A(H) is fixed. Only the monoid elements and
k ∈ lN will vary. Note that in contrast to the type system based on lattices we
do not demand content-edges since we dropped higher-order communication.

We will apply the type systems in this section to the following two examples,
(A) demonstrating mainly message reception and mobility of port adresses,
and (B) demonstrating unlimited replication of messages. We will type the
first process in either of the two reduction sequences.
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Example (A):

(1) (2)

λ1.

λ1.

(1)

(R-MR)

(R-MR)(3)(2)(1)

(1) (2)

(2)(1)λ1. (4)(3)(2)(1)

(2)

(3)

Example (B):

00

(R-REPL)

(R-REPL) (R-REPL)

00

0
0

(1)

0

(1)

(1)!

0

(1)!

0

...

(1)

(1)!

Avoiding Run-Time Errors

We set k := 0 and take the trivial monoid I = {0}. In this case the mapping
A is constant, i.e. aM = 0 and aP = 0 where A(procn(S)) := P [χP , aP ],
A(messn(0)) := M [χM , aM ]. We get a standard type system, that only types
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process graphs without runtime errors, i.e. no typed process contains a bad
redex (see definition 4.3.4).

For a detailed comparison between this type system and standard type
systems for the π-calculus see section 8.6.

If we type the examples (A) and (B) above, we obtain the following type
graphs (before folding)

(A)

(2)(1)

(B) (1)

and after folding

(A)

(2)(1) (B) (1)

Bounded Number of Processes/Messages

We want to check that there are at most K processes (messages) in a process
graph. We choose I as Int∞ (the integers with ∞ and −∞, see the examples of
l-monoids above) and set k := 0, i.e. every type graph is associated with only
one integer. We define

aP := 1

aM := 0

if we want to count processes and

aP := 0

aM := 1



150 8 Generating Type Systems

if we want to count messages. A(procn(S)) := P [χP , aP ], A(messn(0)) :=
M [χM , aM ].

Furthermore we define

Q(G[χ, a]) := (a ≤ K)

Since the number associated to a type graph can only become greater when a
(J,≤)-morphism is applied, it follows that Q is closed under (J,≤)-morphisms.

Applying this type system to the example process (A) yields the results 2
for the number of processes and 1 for the number of messages. The latter result
is quite interesting since it can only be obtained by the subtraction mechanism
in typing rule (TM-PA).

In the case of example (B) the results are 1 for the number of processes and
∞ for the number of messages.

Bounded Number of Messages at one Port

We want to check that there are at most K messages waiting at a certain
external port bχHcn, n ∈ lN i.e.

P (H) := (|{q ∈MH | sendH(q) = bχHcn}| ≤ K)

We choose I as Int∞ and set k := 1.

aP (bextP ci) := 0 for any i

aM (bextMci) :=

{
1 if i = n
0 otherwise

where A(procn(S)) := P [χP , aP ], A(messn(0)) := M [χM , aM ].
Furthermore we define

Q(G[χ, a]) := (a(bχcn) ≤ K)

It is left to show that Q is closed under inverse (J,≤)-morphisms: Let

φ : G[χ, a] → G′[χ′, a′]

such that Jφ(a) ≤ a′ and Q(G′[χ′, a′]). It follows that K ≥ a′(bχ′cn) =⊕
φ(v)=bχ′cn

a(v) ≥ a(bχcn).

Applying this type system to the examples yields the following results (we
will not present the typing process in detail):

1 (2)(1)

(A)
1 1 0

(B) (1)
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That is, in the case of example (A), the type graph correctly states that
there is at most one message attached to any port at any time. Furthermore no
message is ever sent to the first external port. In example (B) the precondition
of rule (TM-REPL) leads to the label ∞ at the external port, which is quite
true, since the process is able to generate infinitely many messages.

Minimum Number of Messages at one Port

This time we want to check

P (H) := (|{q | sendH(q) = (χH)n}| ≥ K)

We only have to change the underlying monoid (I,+,≤) from the previous
example to (I,+,≥). The basic mapping A stays the same and Q is modified
to

Q(G[χ, a]) := (a(bχcn) ≥ K)

Applying this type system to the examples yields the following results:

0 (2)(1)

(A)

0-1 0

1
(1)(B)

In the case of (A) there is no guaranteed number of message attached to any
port. The leftmost port is even labelled −1 which means that it can take away
messages without replacing them by new ones. In the other example (B) the
type system correctly states that there is always at least one message attached
to the port.

Starving Processes

In a process graph H a starving process listens out for a message on an internal
port. But all other hyperedges attached to that port are also processes waiting
for a message via the same port. It is clear that such a message will never
arrive.

We will present two versions of type systems preventing such a situation.
The first one is as follows: We will use as monoid a pair of integers from Int∞
and set k := 1. Furthermore we define our partial order to be (a1, a2) v
(b1, b2) ⇐⇒ (a1 ≤ b1) ∧ (a2 ≥ b2).

aP (bextP ci) :=

{
(1, 0) if S = λi.H
(0, 1) otherwise

aM (bextMci) := (0, 1) for any i
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where A(procn(S)) := P [χP , aP ], A(messn(0)) := M [χM , aM ].
Furthermore

Q(G[χ, a]) := (∀ v ∈ VG\Set(χ) : if (a1, a2) = a(v) then (a1 > 0 ⇒ a2 > 0))

That is we demand that if there is a process waiting at a certain port, there
is at least one other hyperedge attached to it, which seems to be a reasonable
approach. Because of the folding of type graphs information might get lost.

Applying this type system to the examples yields the following results:

(0,0)
(2)(1)

(A)
(1,0) (1,0) (0,0)

(0,2)
(1)(B)

In case (A) the type system fails for the two leftmost ports. No starving
processes can appear on any of these ports, but the type system cannot confirm
this fact. The predicate Q is satisfied for (B) which is not very surprising, since
there are no listening processes at all.

The second version of the type system also prohibits starving processes, but
this time our approach is less direct: we demand that the number of processes
waiting at one port is smaller or equal than the number of the rest of the
hyperedges.

We will use the Int∞ as monoid and set k := 1.

aP (bextP ci) :=

{
1 if S = λi.H
−1 otherwise

aM (bextMci) := −1 for any i

where A(procn(S)) := P [χP , aP ], A(messn(0)) := M [χM , aM ].
Furthermore

Q(G[χ, a]) := (∀ v ∈ VG\Set(χ) : a(v) ≤ 0)

Applying this type system to the examples yields the following results:

0 (2)(1)

(A)
0 0 0

-2
(1)(B)
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The first version of a type system checking for starving processes failed on
(A), but fortunately the second version works and Q is satisfied. The same is
true for example (B).

Since for both type systems there exist process which can be typed by it but
not by the other system, the best results can be obtained by the disjunction of
the two systems.

An even more convincing type system can be obtained by performing the
disjunction on the level of node labels and not on the level of entire predicates.

Blocked Messages

A blocked message is a message sent to an internal port where the rest of the
hyperedges attached to that port are only messages whose aim is the very same
port. Blocked message are never received by a process.

By using slightly different verions of the linear mapping A we can use the
same type systems as for starving processes, in order to avoid blocked messages.
The respective predicates Q stay the same.

In the first case we set:

aP (bextci) := (0, 1)

aM (bextci) :=

{
(1, 0) if i = n
(0, 1) otherwise

Applying this type system to the examples yields the following results:

(1,-1)
(2)(1)

(A)
(1,0) (0,0)(1,0)

(        , 1)
(1)(B)

Again in the case of (A) the result of the type system is not really satisfying:
the two leftmost ports never have blocked messages attached to them, their
labels, however, do not satisfy Q. The result is correct for the rightmost port
to which indeed a blocked message is attached at the end of reduction. (In this
case this is not grave since it is an external port.)

In example (B) there are no blocked messages by definition since there is
still a process attached to the same port. The type system confirms this fact.

And in the second case:

aP (bextci) := −1
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aM (bextci) :=

{
1 if i = n
−1 otherwise

Applying this type system to the examples yields the following results:

2 (2)(1)

(A)
0 0 0

(B) (1)

In the case of (A) the type system yields exactly the desired results: only
the rightmost port may have blocked messages attached to it. For example (B),
however, the type system gets the wrong result: it does not guarantee absence
of blocked message. Here the first variant of the type system succeeded and the
second did not.

8.4.8 Confluence

Our aim is to identify confluent processes with the help of a type system. As
already mentioned in section 7.2, Spider is not confluent. The reason for this
are overlapping redexes, i.e. several messages are sent to one port or several
processes are listening at one port.

We will now show how to avoid overlaps destroying the confluence of the
calculus:

Proposition 8.4.12 Let H be a Spider expression satisfying:

• If q1, q2 ∈MH and sendH(q1) = sendH(q2) then

– either q1 = q2

– or card(q1) = card(q2) = 1 and lH(q1) ≡ lH(q2)

• If p1, p2 ∈ PH , lH(p1) = λk1 .J1, lH(p2) = λk2 .J2 and bsH(p1)ck1 =
bsH(p2)ck2 then

– either p1 = p2

– or card(p1) = card(p2) = 1, k1 = k2 = 1 and J1 ≡ J2

If furthermore H → H1 and H → H2, then either H1 ≡ H2 or there exists an
expression H ′ with H1 → H ′ and H2 → H ′.

Proof: There are the following cases:

• the two redexes in H do not overlap, i.e. H ≡ C〈K1,K2,K3〉, K1 → K ′
1,

K2 → K ′
2 and

H1 ≡ C〈K ′
1,K2,K3〉

H2 ≡ C〈K1,K
′
2,K3〉

Then we define H ′ := C〈K ′
1,K

′
2,K3〉.
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• the redexes overlap. Since the messages and processes satisfy the con-
straints above it follows that H1 ≡ H2.

2

Now we will define a type system that ensures the property defined above.
As a monoid I we take the set of all mappings from (S/≡)× lN into Int∞ (with
pointwise summation and pointwise partial order).

Let H be a process graph and let f := a(v) ∈ {(S/ ≡) × lN → Int∞}.
f([messn(0)]≡, i) = m means intuitively that there are m messages q1, . . . , qm
withbsH(qi)ci = v. f([procn(S)]≡, i) = m means that there are m processes
p1, . . . , pm with lH(pi) ≡ S and bsH(pi)ci = v.

That is, we keep track of all hyperedges that can be attached to a port. The
linear mapping is more complex than the linear mappings defined above, but
since for every node v only a finite number of tuples are mapped by a(v) to a
value different from 0 it is still effectively computable.

The linear mapping A is defined as follows:

aP (bχP ci)([H]≡, j) :=

{
1 if H ≡ procn(S), i = j
0 otherwise

aM (bχMci)([H]≡, j) :=

{
1 if H ≡ messn(0), i = j
0 otherwise

where A(procn(S)) := P [χP , aP ], A(messn(0)) := M [χM , aM ]. Furthermore
we define

Q(G[χ, a]) := (∀ v ∈ VG :

(a(v)([procn1(λk1 .H1)]≡, k1) =: l1 ≥ 1 ∧

a(v)([procn2(λk2 .H2)]≡, k2) =: l2 ≥ 1

⇒ n1 = n2 ∧ k1 = k2 ∧ H1 ≡ H2 ∧

(l1 = l2 = 1 ∨ n1 = n2 = 1)

a(v)([messn1(0)]≡, n1) =: l1 ≥ 1 ∧

a(v)([messn2(0)]≡, n2) =: l2 ≥ 1

⇒ n1 = n2 ∧ (l1 = l2 = 1 ∨ n1 = n2 = 1))

It is straightforward to check that Q(A(H)) implies that H satisfies the con-
ditions of proposition 8.4.12. Furthermore Q is closed under inverse (J,≤)-
morphisms.

Proposition 8.4.13 (Confluence) Let T ` H, H →∗ H1 and H →∗ H2.
Then there exists an expression H ′ such that H1 →∗ H ′ and H2 →∗ H ′.

Proof: By induction on the number of reduction steps. 2

Another type system ensuring confluence for the π-calculus is described in
[NS97].

Applying this type system to (A) yields the following labelling (see below for
which nodes v1, v2, v3, v4 stand). We assume that A1 is the process description
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of the leftmost process and that A2 is the process description of the rightmost
process.

a(v1)([proc1(A1)]≡, 1) = 1 a(v3)([proc1(A2)]≡, 3) = 1
a(v1)([proc3(A2)]≡, 2) = 1 a(v3)([mess3(0)]≡, 1) = 1
a(v1)([mess3(0)]≡, 3) = 1 a(v3)([mess2(0)]≡, 1) = 1

a(v2)([proc3(A2)]≡, 1) = 1 a(v4)([mess3(0)]≡, 2) = 1
a(v2)([mess2(0)]≡, 2) = 1 a(v4)([mess2(0)]≡, 1) = 1

a(v4)([mess2(0)]≡, 2) = 1

Note that the equivalence class [mess2(0)]≡ contains two elements. Q is
satisfied and thus the process in example (A) is confluent. This is not very
surprising, since, in fact, there is only one possible sequence of reductions.

In the case of example (B) we get the labelling

a(v)([proc1(!mess1(0))]≡, 1) = 1

a(v)([mess1(0)]≡, 1) = ∞

which also satisfies Q. The function value ∞ is compensated by the fact that
the corresponding message has cardinality 1.

4 (2)(1)

(A)
vv1 2 v3 v

v
(1)(B)

8.4.9 Avoiding Deadlocks

We will first investigate processes being incapable of performing any further
reductions. One of the reasons is good-natured, i.e. the process is merely
waiting for input or output operations. The other two cases can be considered
as a deadlock and we will propose a type system for avoiding such deadlocks.

Proposition 8.4.14 (Deadlock) Let H be a process graph with a non-empty
edge set such that there is no process graph H ′ with H → H ′. Then at least one
of the following conditions is satisfied:

(1) There is a message waiting or a process listening at an external port. This
case is good-natured.

(2) There is an internal port where all edges connected to it are either messages,
sent to this port, or processes listening at this port.

That is there is a port v ∈ VH with at most one hyperedge attached to it
such that either



8.4 A Type System Based on Monoids 157

• if there is an edge e ∈ EH with bsH(e)ci = v then zH(e) = mess and
i = card(e)

• if there is an edge e ∈ EH with bsH(e)ci = v then zH(e) = proc and
lH(e) = λi.J .

(3) There is a vicious circle, i.e. a sequence v0, . . . , vn = v0 ∈ VH such that
for every pair vi, vi+1 there is

• either a message q with sendH(q) = vi and bsH(q)cj = vi+1 for some
j ∈ {1, . . . , card(q)}

• or a process p with lH(p) = λk.Q, bsH(p)ck = vi and bsH(p)cj = vi+1

for some j ∈ {1, . . . , card(p)}

Proof: We will traverse the hypergraph H with the following algorithm and
show that either condition (1), (2) or (3) will occur. We start with D := ∅
and let e be an arbitrary edge of H.

3 D := D ∪ {e}

There are the following cases:

zH(e) = mess: Let v := sendH(e)

• v is an external port ⇒ (1)

• the only edges attached to v are messages sent to v ⇒ (2)

• there is a message q with bsH(q)cj = v, j < card(q). There are
two cases:

q ∈ D ⇒ (3)

q 6∈ D: take q as the new e and continue with 3

• there is a process p with bsH(p)cj = v. There are the following
cases

lH(p) =!J or lH(p) = λj .J : then reductions are possible (either
(R-REPL) or (R-MR)), which is a contradiction

lH(p) = λk.J , k 6= j, p ∈ D ⇒ (3)

lH(p) = λk.J , k 6= j, p 6∈ D: take p as the new e and continue
with 3

zH(e) = proc: If lH(e) =!J reductions would be possible which is a con-
tradiction. We can therefore conclude that lH(e) = λk.J . Let
v := bsH(e)ck

• v is an external port ⇒ (1)

• the only edges attached to v are processes listening on v → (2)

• there is a process p with bsH(p)cj = v, j 6= k. There are two
cases:

p ∈ D ⇒ (3)

p 6∈ D: take p as the new e and continue with 3

• there is a message q with bsH(q)cj = v. There are the following
cases:
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j = card(q) that is sendH(q) = v. This is a contradiction since
a reduction by rule (R-MR) is possible.

j 6= card(q), q ∈ D ⇒ (3)

j 6= card(q), q 6∈ D: take q as the new e and continue with 3

Since EH is finite and D increases in every step, the algorithm will always
terminate. 2

Condition (1) cannot be considered as a deadlock, the process is just blocked
since it is waiting for an external communication partner. Condition (2) cor-
responds to the existance of blocked messages or starving processes, while (3)
can be checked as follows:

Absence of Vicious Circles

We want to avoid circles as described in (3) in a process graph (this is the first
step to avoid deadlocks). We set k := 2 and I is again the integers with ∞ and
−∞ and the conventional ≤-relation.

We define:

aP (bextP ci, bextP cj) :=

{
1 if S = λi.H, j 6= i
0 otherwise

aM (bextMci, bextMcj) :=

{
1 if i = n, j 6= n
0 otherwise

where A(procn(S)) := P [χP , aP ], A(messn(0)) := M [χM , aM ].
Furthermore:

Q(G[χ, a]) := (6 ∃v0, . . . , vn = v0 ∈ VG : a(vi, vi+1) ≥ 1, 0 ≤ i < n)

Another type system ensuring deadlock freedom for the π-calculus is de-
scribed in [Kob97].

Applying this type system to the examples yields the following type graphs:

1
(2)(1)

(A)
1

1

1
1

1 (B) (1)

where in the case of example (A) an arrow labelled x from node v1 to node
v2 indicates that a(v1, v2) = x. On all other pairs, a has value 0. The arrows
created by processes have a black tip, while the arrows created by messages
have a white tip. Since there is no circle of arrows we can guarantee that the
expression will never generate a vicious circle.

Things are much less complicated for example (B): there are no arrows at
all and therefore there is no danger of a vicious circle
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8.5 Transformation of Type Systems

We will now show that both type systems presented in this work are equivalent
when they overlap. That is we will show that if a process without higher-order
messages can be typed in the first system it can be typed in the second system
as well. On the other hand if the monoid in the second system is, in fact, a
lattice, we can show that typings are equivalent for non-higher-order processes.

In this section we impose the following restrictions on the linear mapping
A:

G[χ, a] := A(procn(S)) ⇒ G[χ] ∼= procn

G[χ, a] := A(messn(H)) ⇒ G[χ] ∼= σ1,...,n(θn,n+k(messn ⊕ contk))

where n ∈ lN, H is a process graph and k := card(H).

All example type systems based on lattices satisfy this condition. And all
example type systems based on monoids can easily be converted in order to
satisfy it.

8.5.1 Conversion Lattice → Monoid

We now show that every type which can be assigned to an expression by the
rules of the type system based on monoids (TL-∗) can also be assigned to it
by the rules of the type system based on monoids (TM-∗). This is, of course,
only true for expressions satisfying the restraints imposed in section 8.4, i.e. for
process without higher-order communication belonging to the subcalculus Sn.

In the following proposition we will exploit the fact that a lattice is always a
lattice-ordered commutative monoid where summation of two elements is equal
to their least upper bound.

Proposition 8.5.1 (Lattice → Monoid) Let S be a process description or
process graph in Sn without variables whose messages are all labelled 0.

If E,G[χ, a] `LA,F S it follows that G[χ, a] `MA,F,F S.

Proof: See appendix A.2.3. 2

8.5.2 Conversion Monoid → Lattice

We now show that the conversion works also in the opposite direction, at least
under certain circumstances. We assume that the monoids F (G) in the type
system are, in reality lattices, i.e. the sum operation corresponds to the supre-
mum or least upper bound.

We will show that in this case, every expression having a type in the system
based on monoids has a type in the system based on lattices as well, even with
an arbitrary type environments E.

Proposition 8.5.2 (Monoid → Lattice) Let S be a process description or
process graph in Sn without variables whose messages are all labelled 0.
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We consider a type system where the linear mapping A satisfies the con-
straints of the type system based on lattices and where the monoid operations
in F (G) = (I,+,≤) coincide with the suprememum, i.e. + = ∨ = ⊕.

If Ĝ[χ̂, â] `MA,F,F S it follows that for any environment E for Ĝ:

E, Ĝ[χ̂, â] `LA,F S

Proof: See appendix A.2.3. 2

8.6 Comparison of Type Systems: Spider ↔ π-Calculus

In this section we assume that there is a fixed type functor F .
We will now show that simple types with recursion for the asynchronous π-

calculus (for the semantics of the π-calculus see section 7.5) can be translated
into a Spider type and vice versa. The following type system corresponds
more or less to the type system presented in [PS93] (without keeping track of
input/output capabilities).

In the π-calculus types or sorts are normally represented by terms with a
fixed-point operator µx. This representation is not suited for our translation
and we will therefore assume that a type in the π-calculus is a potentially
infinite tree with only finitely many subtrees (for conversion of a term into a
tree and vice versa see e.g. [PS93, Urz95]). The leaves of such an infinite tree
are labelled with variables from the set A.

We can compose n type trees tr1, . . . , trn to another type tree

t := [tr1, . . . , trn]

by creating a new root and and regarding the old root nodes as the sons
of the new root. α ∈ A is a variable representing a type tree. We define
card([tr1, . . . , trn]) := n.

In the following Γ is a set of type assignments of the form a : t where t is a
type tree and a is a name in the π-calculus. If a : t ∈ Γ then Γ(a) := t.

The typing rules are

(Tπ-NIL) Γ ` 0 (Tπ-PAR)
Γ ` p Γ ` q

Γ ` p|q

(Tπ-REPL)
Γ ` p
Γ `!p

(Tπ-RESTR)
Γ, a : tr ` p
Γ ` (νa)p

(Tπ-IN)
Γ(a) = [tr1, . . . , trm] Γ, x1 : tr1, . . . , xm : trm ` p

Γ ` a(x1, . . . , xm).p

(Tπ-OUT)
Γ(a) = [Γ(a1) . . . ,Γ(am)] Γ ` p

Γ ` āa1 . . . am.p
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We will also write Γ `π p if it is not clear which type system is under consider-
ation.

The type system for the π-calculus satisfies the following properties:

(1) Γ ` p, p ≡ p′ ⇒ Γ ` p′

(2) Γ ` p, p→ p′ ⇒ Γ ` p′

(Subject Reduction Property)

(3) a1 : tr1, . . . , an : trn ` p ⇒ b1 : tr1, . . . , bn : trn ` p[b1/a1, . . . , bn/an]
(Substitution Law)

(4) Γ ` p, z 6∈ Γ ⇒ Γ, a : tr ` p
(Weakening Law)

We will now show how to translate a type graph into a type tree:

Definition 8.6.1 (Type Graph → Type Tree) Let G be a true graph and
let σ be a function mapping the nodes in {v ∈ VG | @q ∈ EG : zG(q) =
mess, sendG(q) = v} (i.e. all nodes that are not in the range of sendG) onto
type trees.

Let v ∈ VG. We define:

TreeGσ (v) :=





[TreeGσ (v1), . . . , T ree
G
σ (vn)] if ∃ q ∈ EG : zG(q) = mess,

sG(q) = v1 . . . vnv
σ(v) otherwise

2

8.6.1 Spider → π-Calculus

We will now show that if the Spider version of a π-calculus expression is
typable, then the original expression is typable in the type system for the π-
calculus. For Spider we will use the type system based on lattices since it makes
the proof easier to handle. Note, however, that neither the type environment E
nor the lattice element a do have any influence on the construction of the type
of the π-calculus expression.

We need the encodings introduced in sections 7.4 and 7.5: ΘN transforms
a Spider expression in name-based notation into an ordinary Spider expres-
sion and ∆t

π transforms a Spider expression in name-based notation into a
π-calculus expression.

Proposition 8.6.2 Let E,G[χ, a] ` ΘN (h[t]) and n := |χ|. It follows that

buc1 : TreeGσ (bχc1), . . . , bucn : TreeGσ (bχcn) ` ∆u
π(S)

where u is a duplicate-free string with |u| = n and σ is an arbitrary substitution
as defined in definition 8.6.1.

Proof: See appendix A.2.4. 2
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8.6.2 π-Calculus → Spider

We will now show that if there exists a type for a π-calculus expression, there
exists a type environment and a type graph such that the encoding of the
expression into Spider can be typed as well.

We will assume that the linear mapping A satisfies the properties specified
at the beginning of section 8.5.

In the proof of proposition 8.6.4 we well construct the type graph of an
encoding of a π-calculus expression by forming quotient graphs. The following
lemma will tell us under what conditions these quotient graphs are defined and
how they relate to the set of type assignments Γ.

Lemma 8.6.3 Let G1, . . . , Gn be true graphs (where all content-edges have car-
dinality 0), let ∼ be an equivalence on the nodes of the type graphs and let the
σi be mappings satisfying

vi ∈ VGi
, vj ∈ VGj

, (vi, i) ∼ (vj , j) ⇒ TreeGi
σi

(vi) = Tree
Gj
σj (vj) (8.22)

Then there is a smallest consistent equivalence ≈ containing ∼ such that
G1 . . . Gn/≈ is a true graph.

Let pi : Gi → G1 . . . Gn/ ≈ be the i-th projection into the quotient graph.
We define σ(pi(vi)) := σi(vi). Then σ is well-defined and:

TreeG1...Gn/≈
σ (pi(vi)) = TreeGi

σ (vi)

for all vi ∈ VGi
.

Proof: See appendix A.2.4. 2

If a π-calculus expression can be typed, we can construct a corresponding
type graph and a type environment, which types the encoding of the π-calculus
expression into Spider.

Proposition 8.6.4 Let Γ ` p and let t be a duplicate-free string such that
fn(p) = Set(t) ⊆ Set(Γ).

Then there exists a true type graph G[χ, a], a type environment E and a
mapping σ such that

E,G[χ, a] ` ΘN (Θt
π(p))

and TreeGσ (bχci) = Γ(btci).

Proof: See appendix A.2.4. 2
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Conclusion

In this work we presented a specification method Spider for process calculi
based on hypergraphs and hypergraph rewriting. There are several approaches
to hypergraph construction: the set-based approach, the categorical or algebraic
approach, graph expressions and a name-based notation. We have shown that
these methods of graph construction are equivalent and can be converted into
one another. This enables us to choose a suitable representation for a process
graph for every problem.

We introduced barbed congruence for Spider and presented proof tech-
niques for facilitating proofs of barbed congruence. Furthermore we investi-
gated the connection between the λ- and the π-calculus and Spider, and we
demonstrated how to encode λ-expressions and π-calculus expressions into Spi-

der.

A central part of this work is the generation of type systems for our process
calculus. Types are also graphs and we attempt to conserve information about
the process in its type by labelling the type with lattice or monoid elements.
The type system is parametrized in the sense that the assignment of lattice or
monoid elements to type graphs is not fixed and can be instantiated according
to the property which is to be checked.

We presented two versions of the type system: one is based on lattices and
can type processes with higher-order communication, the other one is based on
monoids, of which lattices are only a special case, but excludes higher-order
communication. We have shown how to verify interesting properties such as
absence of deadlocks, confluence or data security with the help of the type
system.

When typing a process, information often gets lost, i.e. not all processes
without deadlocks are actually typable by the corresponding type system. Fu-
ture work could therefore involve the improvement of the type system, changing
it in order to type as many processes as possible. This might be achieved by
combining type systems and temporal logic.

Another area of research would be the closer combination of bisimulation
and type systems. There are type systems, e.g. checking privacy in process cal-
culi [Aba97], that yield results of bisimulation equivalence for processes. That
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is, proving the bisimilarity of processes can be achieved by finding a type in a
corresponding type system.

A related line of research is the definition of barbed congruence wrt. to a
type. That is, we demand that congruent processes have the same type. It
would be interesting to investigate how this combination of barbed congruence
and our system could contribute to the verification of processes.

It would also be desirable to expand Spider into a full-fledged program-
ming language and to test the type system in “real life”. Spider as a real
programming language would require additional syntactic constructs for easier
programming, a graphical user interface for “drawing” processes and an efficient
implementation. A distributed implementation could be achieved with the dis-
tributed graph rewriting system by Boris Reichel [Rei98]. This work describes
efficient execution of graph rewriting in a multi-processor environment.

The main contribution of this thesis is the supplying of graph rewriting
and graph construction techniques for the specification of the semantics of a
mobile process calculus, and the development of generic type systems for the
verification of processes.



Appendix A

Proofs

A.1 Methods of Hypergraph Construction

Proposition 2.2.11 (Graph Construction and Factorizations)
Let (φ, η′1, . . . , η

′
n) := limn

i=1(φi, ηi) with ηi : Gi[χi] � G[χ], φi : Gi[χi] →
G′
i[χ

′
i].

If the ηi are a factorization of G[χ] then the η′i : G′
i[χ

′
i] → G′[φ(χ)], i ∈

{1, . . . , n} are a factorization.

Proof: In the following we will assume that G′ is constructed as a quotient
graph with an equivalence ≈ as described in proposition 2.2.10.

• Let � be the smallest relation on G,G′
1, . . . , G

′
n satisfying:

for all vi ∈ VGi
: (φi(vi), i) � (ηi(vi), 0)

for all ei ∈ EGi
: (φi(ei), i) � (ηi(ei), 0)

Since ≈ is the reflexive, symmetric and transitive closure of � it follows
that

(v′i, i) ≈ (v′j , j) ⇐⇒ ∃ k : (v′i, i) (� ◦ �)k (v′j , j)

(v, 0) ≈ (v′, 0) ⇐⇒ ∃ k : (v, 0) (� ◦ �)k (v′, 0)

(v′i, i) ≈ (v, 0) ⇐⇒ ∃ k : (v′i, i) (� ◦ �)k ◦ � (v, 0)

• We will now show that η′i : G′
i[χ

′
i] � G′[φ(χ)] satisfies the four conditions

of definition 2.1.6:

(2.2) Let η′i(v
′
i) = η′j(v

′
j). This implies that there exists a natural number

k with (v′i, i) (� ◦ �)k (v′j , j). We proceed by induction on k:

k = 0: it follows immediately that i = j, v′i = v′j .

k → k + 1: Let

(v′i, i) (� ◦ �)k−1 (v′l, l) = (φl(vl), l)

� (ηl(vl), 0) = (ηj(vj), j)

� (φj(vj), j) = (v′j , j)

165
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With the induction hypothesis it follows that

i = l, v′i = v′l (Case A) or v′i ∈ Set(χ′
i), v

′
l ∈ Set(χ′

l) (Case B)

And since (ηi) is a factorization it follows that

l = j, vl = vj (Case C) or vl ∈ Set(χl), vj ∈ Set(χj) (Case D)

This leads to the following four cases:

A+C ⇒ i = j, v′i = v′l = φl(vl) = φj(vj) = v′j
A+D ⇒ v′i = φi(vi) = φkl(vl) = v′l ∈ Set(χ′

l) = Set(χ′
i) and

v′j = φj(vj) ∈ Set(χ′
j)

B+C ⇒ v′i ∈ Set(χ′
i), v

′
j = φj(vj) = φl(vl) = v′l ∈ Set(χ′

l) =
Set(χ′

j)

B+D ⇒ v′i ∈ Set(χ′
i), v

′
l = φl(vl) ∈ Set(χ′

l), v
′
j = φ(vj) ∈

Set(χ′
j)

(2.1) The proof for (2.1) is quite similar to the proof of (2.2) and there
is only the case A+C to consider.

(2.3) Let η′i(v
′
i) ∈ Set(φ(χ)). It follows that there exists a v ∈ Set(χ)

such that η′i(v
′
i) = φ(v). Since η′i and φ are projections into the

quotient graph, this implies that there exists a natural number k
such that (v′i, i) (� ◦ �)k ◦ � (v, 0).

We will show that v′i ∈ Set(χ′
i) by induction on k:

k = 0: That is (v, 0) = (ηi(vi), 0)� (φi(vi), i) = (v′i, i). Since ηi is an
embedding and v ∈ Set(χ) it follows that vi ∈ Set(χi) and thus
v′i = φi(vi) ∈ Set(χ′

i).

k → k + 1: Let

(v, 0) (� ◦ �)k−1 ◦ � (v′i, i) = (φi(vi), i)

� (ηi(vi), 0) = (ηj(vj), 0)

� (φj(vj), j) = (v′j , j)

The induction hypothesis implies that v′i ∈ Set(χ′
i).

We will now assume that v′j 6∈ Set(χ′
j). It follows that vj 6∈

Set(χj) and since ηj(vj) = ηi(vi) and (ηi) is a factorization we
conclude that i = j, vi = vj . Thus v′j = φj(vj) = φi(vi) = v′i ∈
Set(χ′

i) = Set(χ′
j) which is a contradiction.

(2.4) EG′ =
⋃n
i=1 η

′
i(EG′

i
) ∪ φ(EG). We have to show that φ(EG) ⊆⋃n

i=1 η
′
i(EG′

i
).

Since the ηi form a factorization it follows that EG =
⋃n
i=1 ηi(EGi

)
and thus

φ(EG) =

n⋃

i=1

φ(ηi(EGi
)) =

n⋃

i=1

η′i(φi(EGi
)) ⊆

n⋃

i=1

η′i(EG′
i
)
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2

Proposition 2.2.12 (Combination of Co-Limits) Let ηi : Hi � H, φi :
Hi → H ′

i, η
′
i : H ′

i � H ′ and φ : H → H ′ with

(φ, η′1, . . . , η
′
n) = limn

i=1(φi, ηi)

(A) 1 , 2 co-limits ⇒ 1 + 2 co-limit:

Let φ′i : H ′
i → H ′′

i and let

(φ′, η′′1 . . . , η
′′
n) := limn

i=1(φ
′
i, η

′
i)

Then

(φ′ ◦ φ, η′′1 , . . . , η
′′
n)

∼= limn
i=1(φ

′
i ◦ φi, ηi)
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η
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i
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i

φ

i

φ

i

i

i

’

’

’’
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(B) 1 , 1 + 2 co-limits ⇒ 2 co-
limit:

Let φ′i : H ′
i → H ′′

i and let

(φ′′, η′′1 , . . . , η
′′
n) := limn

i=1(φ
′
i ◦ φi, ηi)

with φ′′ : H → H ′′, η′′i : H ′′
i � H ′′.

Then there exists a strong morphism
φ′ : H ′ → H ′′ such that φ′′ = φ′ ◦ φ
and

(φ′, η′′1 , . . . , η
′′
n)

∼= limn
i=1(φ

′
i, η

′
i)

H’

H
η

H

η
H’

H’’ H’’
η

φ

i

i

’’
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φ

i

i
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φ

i
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i

i

i

’

’
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Now let ηij : Hij � Hi, φij : Hij → H ′
ij, η

′
ij : H ′

ij � H ′
i and φi : Hi → H ′

i

with (φi, η
′
i1, . . . , η

′
ini

) = limni

j=1(φij , ηij) (i ∈ {1, . . . ,m}, j ∈ {1, . . . , ni}). (Note

that in this case 1 consists of m co-limits.)

(C) 1 , 2 co-limits ⇒ 1 + 2 co-limit:

Let ηi : Hi � H, i ∈ {1, . . . ,m} and let

(φ, η′1, . . . , η
′
m) := limm

i=1(φi, ηi)

Then

(φ, η′i ◦ η
′
11, . . . , η

′
i ◦ η

′
mnm

) ∼= limi∈{1,...,m},j∈{1,...,ni}(φij , ηi ◦ ηij)
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(D) 1 , 1 + 2 co-limits ⇒ 2 co-limit:

Let ηi : Hi � H and let

(φ, η11, . . . , ηmnm) := limi∈{1,...,m},1≤j≤ni
(φij , ηi ◦ ηij)

with ηij : H ′
ij → H ′ and φ : H → H ′. Then there exist embeddings

η′i : H ′
i � H ′ such that ηij = η′i ◦ η

′
ij and

(φ, η′1, . . . , η
′
n) := limm

i=1(φi, ηi)

H’

HH

H’ H’

η η

η η

H

21φ φ φ
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’ ’
ij
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ij
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Proof: Let H = G[χ], H ′ = G′[χ′], Hi = Gi[χi] and so on. We will now give
proofs for the four cases above.

(A) We assume that there are morphisms ψ : G → Ĝ, ψi : G′′
i → Ĝ such that

ψ ◦ ηi = ψi ◦ (φ′i ◦ φi) = (ψi ◦ φ′i) ◦ φi.

It follows with co-limit 1 that there ex-

ists a unique morphism ψ′ : G′ → Ĝ such
that ψ = ψ′ ◦ φ, ψ′ ◦ η′i = ψi ◦ φ

′
i.

And it follows with co-limit 2 that there

exists a unique morphism ψ′′ : G′′ → Ĝ
such that ψ′ = ψ′′ ◦φ′, ψi = ψ′′ ◦ η′′i which
implies that ψ′′ ◦ φ′ ◦ φ = ψ′ ◦ φ = ψ.
It is left to show that ψ′′ is in fact unique:
let ψ̄ : G′′ → Ĝ such that ψ̄ ◦ φ′ ◦ φ = ψ,
ψ̄ ◦ η′′i = ψi. This implies that ψ = (ψ̄ ◦
φ′) ◦ φ, (ψ̄ ◦ φ′) ◦ η′i = ψ̄ ◦ η′′i ◦ φ

′
i = ψi ◦ φ

′
i.
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Since ψ′ is unique (co-limit 1 ), it follows that ψ̄ ◦ φ′ = ψ′. And since

furthermore ψ̄ ◦ η′′i = ψi and ψ′′ is unique (co-limit 2 ), it follows that
ψ̄ = ψ′′. That is ψ′′ is unique.

(B) We define (φ̄, η̄i) := limn
i=1(φ

′
i, η

′
i) where φ̄ : G′ → Ḡ, η̄i : G′′

i → Ḡ.

It follows with the proof above that

(φ̄ ◦ φ, η̄i) ∼= limn
i=1(φ

′
i ◦ φi, η

′
i) = (φ′′, η′′i )

This implies that there is an isomorphism ψ : Ḡ→ G′′ such that ψ◦φ̄◦φ =
φ′′, ψ ◦ η̄i = η′′i .

We define φ′ := ψ ◦ φ̄ : G′ → G′′ and (φ′, η′′i )
∼= limn

i=1(φ
′
i, η

′
i).

(C) We assume that there are morphisms ψ̂ : G→ Ĝ, ψij : G′
ij → Ĝ such that

ψ̂ ◦ (ηi ◦ ηij) = ψij ◦ φij . This implies that (ψ̂ ◦ ηi) ◦ ηij = ψij ◦ φij .

η

ηη

η
G’ G’

G G G
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’ ’
ij

i

i

i
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ij
ij

ij i

i
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^
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It follows with co-limit 1 that there exist unique morphisms ψi : G′
i → Ĝ

such that ψi ◦ φi = ψ̂ ◦ ηi, ψi ◦ η
′
ij = ψij .

And it follows with co-limit 2 that there exists a unique morphism ψ :

G′ → Ĝ such that ψ ◦ φ = ψ̂, ψ ◦ η′i = ψi which implies that ψ ◦ η′i ◦ η
′
ij =

ψi ◦ η
′
ij = ψij .

It is left to show that ψ is unique: let ψ̄ : G′ → Ĝ be a morphism such
that ψ̄ ◦ η′i ◦ η

′
ij = ψij , ψ̄ ◦ φ = ψ̂.

It follows that (ψ̄ ◦ η′i) ◦ η
′
ij = ψij , (ψ̄ ◦ η′i) ◦ φi = ψ̄ ◦ (φ ◦ ηi) = ψ̂ ◦ ηi.

Since the ψi are unique (co-limit 1 ) it follows that ψ̄ ◦ η′i = ψi. And

since furthermore ψ̄ ◦ φ = ψ̂ and ψ is unique (co-limit 2 ) it follows that
ψ̄ = ψ.

(D) We define (φ̄, η̄i) := limn
i=1(φi, ηi) where φ̄ : G→ Ḡ, η̄i → Ḡ.

It follows with the proof above that

(φ̄, η̄i ◦ η
′
ij)

∼= limi∈{1,...,m},j∈{1...,ni
(φij , ηi ◦ ηij) = (φ, ηij)

This implies that there is an isomorphism ψ : Ḡ→ G′ such that ψ◦ φ̄ = φ,
ψ ◦ η̄ij ◦ η

′
ij = ηij .

We define η′i := ψ ◦ η̄i. and (φ, η′i)
∼= limn

i=1(φi, ηi).
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2

Proposition 2.2.18 (Co-Limit ↔ Factorization)
Let ζi : mi � D, i ∈ {1, . . . , n} be a discrete factorization and let H1, . . . , Hn

be hypergraphs with mi := card(Hi). We define:

(φ, η1, . . . , ηn) := limn
i=1(Hi, ζi)

Then (ηi)i∈{1,...,n} with ηi : Hi � H is a factorization of H.

If ηi : Hi � H, i ∈ {1, . . . , n} is a factorization of H it follows that there
exists a discrete factorization ζi : mi � D and a strong morphism φ : D → H
such that

(φ, η1, . . . , ηn) ∼= limn
i=1(Hi, ζi)

If the χHi
are duplicate-free, the discrete factorization (ζi)i∈{1,...,n} is unique up

to isomorphism.

Proof:

• If (φ, η1, . . . , ηn) := limn
i=1(Hi, ζi) then (ηi) is a factorization according to

proposition 2.2.11.

• Let ηi : Hi � H be a factorization, we will now construct the correspond-
ing discrete factorization ζi : mi � D where mi := Hi:

Let D be a discrete hypergraph with

VD := VH\
n⋃

i=1

ηi(VHi
\EXTHi

) and χD := χH

We define
ζi(χmi

) := ηi(χHi
)

Since (ηi) is a factorization it follows that χD, ηi(χHi
) ∈ V ∗

D.

•

Let ι : D → H (where ι(v) := v for v ∈
VD) be the canonical morphism of D into
H.
We now show that (ι, η1, . . . , ηn) ∼=
limn

i=1(Hi, ζi).
Let η′i : Hi � H ′, φ : D → H ′ be mor-
phisms with η′i ◦ φi = φ′ ◦ ζi.
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We define a strong morphism ψ : H → H ′ with

v ∈ VH , ψ(v) :=

{
φ(v) if v ∈ VD
η′i(vi) if ηi(vi) = v

e ∈ EH , ψ(e) := η′i(ei) if ηi(ei) = e
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ψ clearly satisfies ψ ◦ ι = φ and ψ ◦ ηi = η′i. We now show that

ψ is well-defined: there may be a conflict in the definition of ψ(v) if
ηi(vi) = v ∈ VD. In this case it follows with the definition of VD that
vi ∈ EXTHi

. Let wi ∈ Vmi
such that φi(wi) = vi. It follows that

η′i(vi) = η′i(φi(wi)) = φ′(ζi(wi)) = φ′(ι(ζi(wi)))

= φ′(ηi(ζi(wi))) = φ(v)

ψ is unique: Let ψ̄ : H → H ′ be another morphism with ψ̄ ◦ ι = φ and
ψ̄ ◦ ηi = η′i and let v ∈ VH .

If v ∈ VD then ψ̄(v) = ψ̄(ι(v)) = φ(v) = ψ(ι(v)) = ψ(v). And if
v = ηi(vi) then ψ̄(v) = ψ̄(ηi(vi)) = η′i(vi) = ψ(ηi(vi)) = ψ(v). An
analogous argument can be applied to the edge set.

Therefore ι, η1, . . . , ηn is the co-limit.

• Let ηi : Hi � H be a factorization of H where the χHi
are without

duplicates.

Let ζi : mi � D be a discrete factorization constructed as described
above, and let ζ ′i : mi � D be another discrete factorization such that
there exists a strong morphisms φ′ : D′ → H ′ satisfying

(φ′, η1, . . . , ηn) ∼= limn
i=1(Hi, ζ

′
i)

We show that (ζ ′i)
∼= (ζi).

First we prove that VD = φ′(VD′) and that φ′|D : D′ → D (the restriction
of the range of φ′ to D) is an isomorphism:

– Let ≈ be the equivalence for the construction of
⊗n

i=1(Hi, ζ
′
i) defined

in proposition 2.2.10. Because of the special form of the morphism
φi (φi : mi → Hi and χHi

is without duplicates) it follows that

(v, 0) ≈ (vi, i) ⇐⇒ ∃wi ∈ Vmi
: ζ ′i(wi) = vi, φi(wi) = v

(v, 0) ≈ (v′, 0) ⇐⇒ v = v′

– Since φ′(v) := [(v, 0)]≈ it follows immediately that φ′V is injective.

– φ′(VD′) ⊆ V ′
D: We assume that φ′(VD′) 6⊆ VD, i.e. that there exists

a vi ∈ VHi
\EXTHi

such that φ′(v) = ηi(vi). This implies that
(v, 0) ≈ (vi, i). It follows that there exists a wi ∈ Vmi

such that
vi = ζ ′i(wi) ∈ EXTHi

which is a contradiction.

– φ′(VD′) ⊇ VD: Let v ∈ VD ⊆ VH , i.e. either v′ ∈ φ′(VD′) or v ∈
ηi(EXTHi

).

In the second case it follows that there is a vi ∈ EXTHi
such that v =

ηi(vi) because of the definition of D′ and since (ηi) is a factorization.
Thus there exists a wi ∈ Vmi

such that vi = φi(wi) and therefore

v = ηi(vi) = ηi(φi(wi)) = φ′(ζ ′i(wi)) ∈ φ′(VD′)
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– φ′(χD′) = χH = χD

It follows that (φ′ ◦ ζ ′i)(χmi
) = (ηi ◦φi)(χmi

) = ηi(χHi
) = ζi(χmi

) because
of the definition of the ζi.

Since φ′ ◦ ζ ′i = ζi and φ′|D : D′ → D is an isomorphism it follows that
(ζi) ∼= (ζ ′i).

2

Proposition 2.2.21 (Co-Limit ↔ Context) Let ζi : mi � D, i ∈ {1, . . . , n}
be a discrete factorization and let

C〈x1, . . . , xn〉 :=

n⊗

i=1

(varmi
(xi), ζi)

For all hypergraphs H1, . . . , Hn with mi = card(Hi) it follows that

C〈H1, . . . , Hn〉 ∼=

n⊗

i=1

(Hi, ζi) (2.9)

Let C〈x1, . . . , xn〉, C
′〈x1, . . . , xn〉 be contexts with holes of cardinality m1, . . .,

mn. If both satisfy (2.9) for all H1, . . . , Hn with mi = card(Hi) it follows that

C〈x1, . . . , xn〉 ∼= C ′〈x1, . . . , xn〉

And for all contexts C〈x1, . . . , xn〉 with holes of cardinality m1, . . . ,mn there
is a discrete factorization ζi : mi � D, i ∈ {1, . . . ,m} such that

C〈x1, . . . , xn〉 ∼=

n⊗

i=1

(varmi
(xi), ζi)

Proof:

• We first define a transformation Θ that maps every n-ary context
C〈x1, . . . , xn〉 with holes of cardinality m1, . . . ,mn onto a discrete fac-
torization ζ ′i : mi � D.

LetD be a discrete hypergraph with VD := VC and χD := χC . Let ei ∈ EC
be the edge labelled xi. We define a factorization (ζ ′i) := Θ(C〈x1, . . . , xn〉)
where ηi(χmi

) := sC(ei).

According to definition 2.1.10 C〈H1, . . . , Hn〉 is defined as DH1 . . . Hn/≈
where ≈ is the smallest equivalence such that

(bχHi
cl, i) ≈ (bsC(ei)cl, 0)

where lH(ei) = xi. This is equivalent to

(bφi(χmi
)cl, i) ≈ (bζ ′i(χmi

)cl, 0)
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which corresponds to the equivalence generated by

(φi(vi), i) ≈ (ζ ′i(vi), 0)

for every vi ∈ Vmi
.

Since this is the equivalence used in the proof of proposition 2.2.10 it
follows that

C〈H1, . . . , Hn〉 ∼=

n⊗

i=1

(Hi, ζ
′
i)

• Now let ζi : mi � D, i ∈ {1, . . . , n} be a given discrete factorization and
let

C〈x1, . . . , xn〉 :=
n⊗

i=1

(varmi
(xi), ζi)

We define (ζ ′i) := Θ(C〈x1, . . . , xn〉) and it follows that

n⊗

i=1

(varmi
(xi), ζi) ∼= C〈x1, . . . , xn〉 ∼=

n⊗

i=1

(Hi, ζ
′
i)

It follows with proposition 2.2.20 that (ζi) ∼= (ζ ′i) and therefore

C〈H1, . . . , Hn〉 ∼=

n⊗

i=1

(Hi, ζi)

for hypergraphs H1, . . . , Hn with card(Hi) = sort(xi) = mi.

• We assume that C〈x1, . . . , xn〉, C ′〈x1, . . . , xn〉 are contexts with holes of
cardinality m1, . . . ,mn. Both satisfy (2.9) for all H1, . . . , Hn with mi =
card(Hi). Then

C〈x1, . . . , xn〉 ∼= C〈varm1(x1), . . . , varmn(xn)〉 ∼=

n⊗

i=1

(varmi
(xi), ζi)

∼= C ′〈varm1(x1), . . . , varmn(xn)〉 ∼= C ′〈x1, . . . , xn〉

• For every context C〈x1, . . . , xn〉, (ζi) := Θ(C〈x1, . . . , xn〉) is a a discrete
factorization satisfying:

C〈x1, . . . , xn〉 ∼=

n⊗

i=1

(varmi
(xi), ζi)

2

Proposition 2.4.3 (Construction of Name-based Graph Terms) Let H
be a hypergraph, where χH contains no duplicates, i.e. χH ∈ (VH)∗df . Then
there exists a closed name-based graph term h[t] such that H ∼= valn(h[t]).



174 A Proofs

Proof: According to proposition 2.2.20 there is a discrete factorization ζi :
mi � D, i ∈ {1, . . . , n} such that

H ∼=

n⊗

i=1

((zi)mi
(li), ζi)

where z1, . . . , zn ∈ Z, l1, . . . , ln ∈ L.
Let v1, . . . , vr be the string of all nodes of D which are not contained in⋃

i∈{1,...,n} ζi(Vmi
). Furthermore let µ : VD → N be any injective mapping. We

define:

h[t] := ((ν µ(VD\EXTD))

((z1, l1)[µ(ζ1(χm1
))] | . . . | (zn, ln)[µ(ζ1(χmn))]

| dµ(v1)e | . . . | dµ(vr)e))

[µ(χD)]

Let m := card(D) and we assume that VD = {w1, . . . , wk} where χD =
w1 . . . wm.

We can show with proposition 2.2.13 and with definition 2.4.2 that

vala(((ν µ(VD\EXTD)h))[µ(w1 . . . wm)]) ∼= ⊗(vala(h[µ(w1 . . . wk)]), ζ)

where ζ : k → D, ζ(bχkci) := wi, t
′ := µ(w1 . . . wk).

We define

µi := µ(ζi(χmi
)) t′i := t′\(

n⋃

j=1,j 6=i

fn(hj)\fn(hi))

It follows with definitions 2.4.2 and 2.4.4 that

valn(h[t]) ∼= ⊗((
n⊗

i=1

(⊗(valn((zi, li)[µi]), ζµi�t′i
), ζt′i�t′) ⊗

r⊗

i=1

(1, ζµ(vi)�t′)), ζ)

Corollary 2.2.14 and lemma 2.2.16 then imply that:

valn(h[t]) ∼=

n⊗

i=1

(valn((zi, li)[µi]), ζ ◦ ζµi�t′) ∼=

n⊗

i=1

((zi)mi
(li), ζ ◦ ζµi�t′)

It is left to show that ζi = ζ ◦ ζµi�t: We assume that ζi(bχmi
cl) = wj . This

implies that bµicl = µ(wj) = bt′cj . Thus

ζ(ζµi�t′(bχmi
cl)) = ζ(bχkcj) = wj = ζi(bχmi

cl)

2

Proposition 2.4.6 (Normal Form of Name-based Notation)
A name-based graph term is in normal form if it has the form

((νb1) . . . (νbn)((z1, l1)[a11 . . . a1n1 ] | . . . | (zm, lm)[am1 . . . amnm ] |
dc1e | . . . | dcke))[d1 . . . dl] (2.34)
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and it follows that

A ∩ C = ∅, B ∩D = ∅, A ∪ C = B ∪D, |B| = n, |C| = k

where

A := {aij | i ∈ {1, . . . ,m}, j ∈ {1, . . . , ni}}

B := {bi | i ∈ {1, . . . , n}}

C := {ci | i ∈ {1, . . . , k}}

D := {di | i ∈ {1, . . . , l}}

For every graph term h[t] there is a graph term h′[t′] in normal form such that
h[t] '= h′[t′].

Proof: We will first show that

(νa)h 'R h if a 6∈ fn(h) (A.1)

This holds because (νa)h
(2.26)
'R (νa)(h|0)

(2.29)
'R h|(νa)0

(2.27)
'R h|0

(2.26)
'R h

Now let h[t] be an arbitrary name-based graph term. We will transform it
into a term in normal form in the following steps:

• First move all hiding operators of the form (νa) to the very left with
(2.29). It might be necessary to change a into some other name with
(2.30) first.

This leads to an expression of the form (2.34). We will now ensure that
the rest of the conditions is also satisfied.

• B ∩D = ∅ is true in any case since D is the set of free names in h and all
names in B are hidden.

• Then eliminate all bi 6∈ A ∪ C with (2.28) and (A.1). It follows that
A ∪ C = B ∪D.

• Now eliminate all duplicates in the bi with (2.28) and (νa)(νa)h 'R (νa)h
(because of (A.1)). This leads to |B| = n.

• Then eliminate all cr with cr = aij with (2.32) (and of course (2.24),
(2.25), i.e. commutativity and associativity of |). This implies A∩C = ∅.

• Now eliminate all duplicates in the ci with (2.31) (and (2.24), (2.25)) and
it follows that |C| = k.

2

Proposition 2.4.5 (Equations for Name-based Graph Terms) The fol-
lowing equation schemes generate the equivalence on name-based graph terms.
Two closed terms h[t], h′[t′] are equivalent wrt. to the following equations if and
only if valn(h[t]) ∼=R valn(h

′[t′]).
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Let h, h1, h2, h3 be name-based graph terms.

(z, l)[t] ' (z, l′)[t] if l R l′ (2.23)
h1|h2 'R h2|h1 (2.24)

h1|(h2|h3) 'R (h1|h2)|h3 (2.25)
h|0 'R h (2.26)

(νa)0 'R 0 (2.27)
(νa)(νb)h 'R (νb)(νa)h (2.28)

((νa)h1)|h2 'R (νa)(h1|h2) if a 6∈ fn(h2) (2.29)
(νa)h 'R (νb)(h[b/x]) if b 6∈ fn(h) (2.30)

dae|dae 'R dae (2.31)
(z, l)[a1 . . . an]|daie 'R (z, l)[a1 . . . an] (2.32)

and for closed terms:

h[s] 'R (h[s′/s])[s′] if |s| = |s′|, s′ is duplicate-free (2.33)

Proof:

Correctness: In order to show correctness we have to prove that h[t] 'R h
′[t′]

implies valn(h[t]) ∼=R valn(h
′[t′]) by induction on the equation rules.

Completeness:

• We will now show that the proposition holds for graph terms in
normal form.

Since every graph term can be converted into normal form (propo-
sition 2.4.6) this implies completeness for arbitrary graph terms. In
detail: Let valn(h[t]) ∼=R valn(h

′[t′]) and let hn[tn] respectively h′n[t
′
n]

be the normal forms of h[t] and h′[t′]. Since valn is correct it follows
that

valn(hn[tn]) ∼=R valn(h[t]) ∼=R valn(h
′[t′]) ∼=R valn(h

′
n[t

′
n])

Since the proposition holds for terms in normal form it follows that
hn[tn] 'R h

′
n[t

′
n] and thus h[t] 'R h

′[t′].

• We will now assume that h[t] and h′[t′] are in normal form (see
proposition 2.4.6). That is they have the form

h[t] = ((νb1) . . . (νbn)(

(z1, l1)[a11 . . . a1n1 ] | . . . | (zm, lm)[am1 . . . amnm ] |

dc1e | . . . | dcke))[d1 . . . dl]

h′[t′] = ((νb′1) . . . (νb
′
n′)(

(z′1, l
′
1)[a

′
11 . . . a

′
1n′

1
] | . . . | (l′m′ , z′m′)[a′m′1 . . . a

′
m′n′

m′
] |

dc′1e | . . . | dc
′
k′e))[d

′
1 . . . d

′
l′ ]

Since l is the cardinality of valn(h[t]) and l′ is the cardinality of
valn(h

′[t′]) and both are isomorphic it follows immediately that l =
l′.
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• With definition 2.4.2 and corollary 2.2.14 (compare also with the
proof of proposition 2.4.7) we can show that

valn(h[t]) ∼=R

m⊗

i=1

((zi)ni
(li), ζ ◦ ζi) ⊗ (k, ζ ◦ ζ0)

∼=R

m⊗

i=1

((zi)ni
(li), ζ ◦ ζi) lemma (2.2.16)

valn(h
′[t′]) ∼=R

m′⊗

i=1

((z′i)n′
i
(l′i), ζ

′ ◦ ζ ′i) ⊗ (k′, ζ ′ ◦ ζ ′0)

∼=R

m′⊗

i=1

((z′i)n′
i
(l′i), ζ

′ ◦ ζ ′i) lemma (2.2.16)

where

ζi := ζai1...aimi
�d1...dlb1...bk

ζ ′i := ζa′i1...a′im′
i

�d′1...d
′
l
b′1...b

′
k

ζ0 := ζc1...ck�d1...dlb1...bk

ζ ′0 := ζ ′c′1...c′k�d′1...d
′
l
b′1...b

′
k

ζ is the projection of l + n into σ1...l(l + n) =: D and ζ ′ is the pro-
jection of l′ + n′ into σ1...l′(l

′ + n′) =: D′.

• Since both co-limits above describe factorizations of isomorphic graphs
it follows with proposition 2.2.20 that m = m′ and there exists a per-
mutation α : {1, . . . ,m} → {1, . . . ,m′} such that

(ζ ◦ ζi)i∈{1,...,m}
∼= (ζ ′ ◦ ζ ′α(i))i∈{1,...,m}

This implies that there is an isomorphism φ : D → D′ such that
φ ◦ ζ ◦ ζi = ζ ′ ◦ ζ ′α(i).

Since φ is an isomorphism and l = l′ it follows that also n = n′.

Furthermore it follows that (zi)ni
(li) ∼=R (z′α(i))n′

α(i)
(l′α(i)) which im-

plies that zi = z′α(i), liR l
′
α(i) and ni = n′α(i).

• We define

µ : VD → N such that µ(ζ(bχl+nci)) :=

{
di if i ∈ {1, . . . , l}
bi−l otherwise

µ′ : VD′ → N such that µ′(ζ ′(bχl′+n′ci)) :=

{
d′i if i ∈ {1, . . . , l′}
b′i−l′ otherwise

We define u := µ′◦φ◦µ−1 which is a bijection from {d1, . . . , dl, b1, . . . , bn}
into {d′1, . . . , d

′
l′ , b

′
1, . . . , b

′
n′}.

• Furthermore let

β(i) = j ⇐⇒ φ(ζ(bχl+ncl+i)) = ζ ′(bχl′+n′cl′+j) (A.2)
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Since φ is an isomorphism a non-external node ζ(bχl+ncl+i) of D is
mapped onto a non-external node ζ ′(bχl′+n′cl′+j) of D′. Thus β is
well-defined and bijective.

• Now we will show that u(di) = d′i and that u(bi) = b′β(i).

u(di) = µ′(φ(ζ(bχl+nci))) = µ′(φ(bχDci)) = µ′(bχD′ci)

= µ′(ζ ′(bχl′+n′)) = d′i

u(bi) = µ′(φ(ζ(bχl+ncl+i))) = µ′(ζ ′(bχl′+n′cl+β(i))) = b′β(i)

• Furthermore we can show that

aij = dr ⇐⇒ a′α(i)j = d′r

aij = br ⇐⇒ a′α(i)j = b′β(r)

We will show this for the first case only. The proofs for the other
cases are rather similar.

aij = dr ⇐⇒ ζi(bχmi
cj) = bχl+ncr

ζ inj.
⇐⇒ ζ(ζi(bχmi

cj)) = ζ(bχl+ncr)

φ bij.
⇐⇒ ζ ′(ζ ′α(i)(bχmα(i)

cj)) = ζ ′(bχl+ncr)

ζ ′ inj.
⇐⇒ ζ ′α(i)(bχmα(i)

cj) = bχl+ncr ⇐⇒ a′α(i)j = dr

• Now we will show that u(aij) = a′α(i)j .

aij is either dr or br for some index r. It follows that

u(aij) =

{
u(dr) = d′r
u(br) = b′β(r)

}
= a′α(i)j (A.3)

It follows that u is a bijection of the set A := {aij | i ∈ {1, . . . ,m}, j ∈
{1, . . . , ni}} into the set A′ := {a′ij | i ∈ {1, . . . ,m′}, j ∈ {1, . . . , n′i}}.

• With definition 2.4.6 it follows that

|A| + k = n+ l = n′ + l′ = |A′| + k′

And since |A| = |A′| it follows that k = k′.

u is a also bijection from A ∪ {c1, . . . , ck} into A′ ∪ {c′1, . . . , c
′
k′}.

And since u(A) = A′ it follows that there exists a permutation γ :
{1, . . . , k} → {1, . . . , k′} with u(ci) = c′γ(i).

• That is we have functions mappings the names of h[t] bijectively
into the names of h′[t′]. With (2.24), (2.25), (2.28) and (2.33) we
can show that h[t] 'R h

′[t′].

2
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A.2 Generating Type Systems

A.2.1 A Type System Based on Lattices

Lemma 8.3.7 Let E,G[χ, a] `
⊗n

i=1(Hi, ζi) where ζi : mi � D.

It follows that there is a strong morphism ψ : D → G[χ] such that

E,G[ψ(ηi(χmi
)), a] ` Hi

Proof: We will first concentrate on the case where all graphs Hi are basic
graphs, i.e. either of the form procn(S) or messn(H). We will proceed by
induction of the typing rules and assume that all graphs denoted by the letters
Bi or Bij are basic graphs.

(TL-PROC), (TL-MESS) If E,G[χ, a] `
⊗n

i=1(Bi, ζi) follows with typing
rules (TL-PROC) or (TL-MESS), we can conclude that n = 1, ζ1 : m1 →
m1 and therefore E,G[χ, a] ` B1. Furthermore ψ : m1 → G[χ] is the
canonical strong morphism.

(TL-CON) We assume that E,G[χ, a] `
⊗n

i=1(Bi, ςi) =: H with ςi : ki � D̂.

The typing of H was done with rule (TL-CON) as follows:

H ∼=
⊗m

i=1(Hi, ζi) with

ζi : mi � D, φ : D → G[χ], E,G[φ(ζi(χmi
)), ai] ` Hi

We assume that Hi
∼=

⊗ni

i=1(Bij , ζij) where the Bij are basic graphs and
ζij : mij � Di. With the induction hypothesis it follows that there are
strong morphisms ψi : Di → G[φ(ζi(χmi

))] such that

E,G[ψi(ζij(χmij
)), a] ` Bij

With proposition 2.2.20 it follows that there exists a one-to-one correspon-
dence between the Bi and the Bij , i.e. there are mappings α1, α2 : lN → lN
with

Bi ∼= Bα1(i)α2(i)

ki = mα1(i)α2(i)

(ςi)i∈{1,...,n} ∼= (ξα1(i) ◦ ζα1(i)α2(i))i∈{1,...,n}

where the ξi are generated by the co-limit 1 in figure A.1 (see also

proposition 2.2.13). There exists an isomorphism φ̂ : D̂ → D′ such that
φ̂ ◦ ςi = ξα1(i) ◦ ζα1(i)α2(i).

Now we regard the situation in figure A.1, 2 : Since

φ(ζi(χmi
)) = φi(ψi(χmi

))
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Figure A.1: Co-limit constructing the embeddings ξi

it follows that there exists a strong morphism ψ : D′ → G[χ].

And

ψ(φ̂(ςi(χki
))) = ψ(ξα1(i)(ζα1(i)α2(i)(χmα1(i)α2(i)

)))

= φα1(i)(ζα1(i)α2(i)(χmα1(i)α2(i)
))

And it follows that E,G[(ψ ◦ φ̂)(ςi(χki
)), a] ` Bi.

We will now prove the proposition for decomposition into arbitrary graphs
(which are not necessarily basic).

We assume that E,G[χ, a] `
⊗m

i=1(Hi, ζi) := H where ζi : mi � D
and the Hi can be decomposed into basic graphs in the following way: Hi

∼=⊗ni

i=1(Bij , ζij), i.e.

H ∼=
⊗

i∈{1,...,m},j∈{1,...,ni}

(Bij , ξi ◦ ζij)

where ξi ◦ ζij : mij → D′. The ξi is computed as described in proposition 2.2.13

(see also figure A.1, 1 ).

It follows now that there exists a strong morphism ψ′ : D′ → G[χ] such that

E,G[ψ′(ξi(ζij(χmij
))), a] ` Bij

This implies with (TL-CON) that E,G[ψ′(ξi(χDi
)), a] ` Hi.

We define ψ := ψ′ ◦ φ̃. Then it follows that ψ(ζi(χmi
)) = ψ′(φ̃(ζi(χmi

))) =
ψ′(ξi(φi(χmi

))) = ψ′(ξi(χDi
)) and thus

E,G[φ(ζi(χmi
)), a] ` Hi

2

Proposition 8.3.11 (Subject Reduction Property)

Let E, T ` H and H →∗ H ′. Then E, T ` H ′. Furthermore H contains no
bad redexes.



A.2 Generating Type Systems 181

Proof: According to proposition 4.3.5 there are process graphs H1, H2 and
embeddings ξ1, ξ2 such that:

H ∼= (H1, ξ1) ⊗ (H2, ξ2)

H ′ ∼= (H ′
1, ξ1) ⊗ (H2, ξ2)

and H1
(R−REPL)

→ H ′
1 or H1

(R−MR)
→ H ′

1.

Because of proposition 8.3.10 and lemma 8.3.7 it is sufficient to show that
E,G[χ, a] ` H1 implies E,G[χ, a] ` H ′

1.

(R-REPL) In this case we assume that H1 = procn(!J), H ′
1 = procn(!J)2J

and

E,G[χ, a] ` procn(!J)

By unravelling the typing of procn(!J) we find out that

E,G[χ, a] ` J

Furthermore there is a strong (F,≤)-morphism from A(procn(!J)) into
G[χ, a]. This implies with lemma 8.3.3 that n = |χ| = card(J), i.e.
replication is defined.

Let ζ1, ζ2 : n → n and φ : n → G[χ] be the canonical strong morphisms,
i.e. φ(ζ1(χn)) = φ(ζ2(χn)) = χ. It follows with (TL-CON) that

E,G[χ, a ∨ a] ` (procn(!J), ζ1) ⊗ (J, ζ2) ∼= procn(!J)2J

where a ∨ a = a.

(R-MR) In this case we assume that H1 = Red := Redk,m,n(λkx.J1, J2), H
′
1 =

J1[J2/x] and

E,G[χ, a] ` Red

We have

Red ∼= (procm(λkx.J1), ζ1) ⊗ (messn+1(J2), ζ2)

where ζ1 : m → m + n and ζ2 : n + 1 → m + n with ζ1(χm) = bχm+nc1...m
and ζ2(χn+1) = bχm+ncm+1...m+nk.

It follows with lemma 8.3.7 that there are strings χM , χP ∈ V ∗
G, a1, a2 ∈

F (G) and φ : m + n → G[χ] such that:

E,G[χP , a1] ` procm(λkx.J1)

E,G[χM , a2] ` messn+1(J2)

χP := φ(ζ1(χm))

χM := φ(ζ2(χn+1))

ar = a1 ∨ a2

This implies that χ = χP ◦ bχMc1...n, bχMcn+1 = bχP ck.
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By further unravelling the typing of the redex we obtain:

E\x ∪ {x : ηx}, G[χ1, a1] ` J1

E,G[bχ1c1...m, a1] ` λkx.J1

E,G[bχ1c1...m, a1] ` procm(λkx.J1)

where bχ1c1...m = χP .

Furthermore there is a strong morphism φp : A(procm(λkx.J1))
F,≤
−→

G[χp, a1] and there are hyperedges q ∈ MG, C ∈ CoG, p ∈ PG with
sG(q) = bχ1cm+1...m+nk, sG(c) = ηx(χmx) ◦ bχ1ck, sG(p) = bχ1c1...m.

And it follows that

E,G[χ2, a2] ` J2

E,G[χM , a2] ` messn+1(J2)

where φM : A(messn+1(J2))
F,≤
−→ G[χM , a2] is a strong morphism and

there exists a c′ ∈ CoG such that sG(c′) = χ2 ◦ bχMcn+1.

We will now show that

E\x ∪ {x : ηx}, G[χ, a] ` J1 (A.4)

E,G[ηx(χmx), a] ` J2 (A.5)

In this case it follows with proposition 8.3.9 that

E,G[χ, a] ` J1[J2/x]

• We will first show that χ = χ1. Since it is clear that bχc1...m = χP =
bχ1c1...m it is left to show that bχcm+1...m+n = bχ1cm+1...m+n.

Let q′ be the one message in messn+1(J2).

sG(φM (q′)) = φM (χmessn+1(J2)) = χM

Furthermore bsG(φM (q′))cn+1 = bχMcn+1 = bχP ck = bχ1ck =
bsG(q)cn+1. This implies that sendG(φM (q′)) = sendG(q) and there-
fore φM (q′) = q since G is a true graph. And it follows that

bχcm+1...m+n = bχMc1...n = bsG(φM (q′))c1...n

= bsG(q)c1...n = bχ1cm+1...m+n

• We will now show that ηx(χmx) = χ2.

This is straightforward since χ2 = bsG(c′)c1...n, ηx(χmx) = bsG(c)c1...n
and bsG(c′)cn+1 = bχMcn+1 = bχP ck = bχ1ck = bsG(c)cn+1. Since
G is a true graph it follows that c = c′ and also χ2 = bsG(c′)c1...n =
bsG(c)c1...n = ηx(χmx).

• And we have shown that card(J2) = |χ2| = card(mx) = sort(x).

• Furthermore card(J1) = |χ1| = |χ| = m+ n. Since a = a1 ∨ a2 it is
obvious that a1 ≤ a, a2 ≤ a and thus (A.4) and (A.5) follow with
lemma 8.3.4.
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2

Proposition 8.3.13 (Folding Type Graphs) Let T = G[χ, a] be a type
graph. Folding a type graph works as follows: let ≈ be the smallest equivalence
such that:

p1, p2 ∈ PG, sG(p1) = sG(p2) ⇒ p1 ≈ p2

m1,m2 ∈MG, sendG(m1) = sendG(m2) ⇒ m1 ≈ m2

c1, c2 ∈ CoG, sendG(c1) = sendG(c2) ⇒ c1 ≈ c2

If ≈ is consistent we define

FOLDF (T ) := (G/≈)[FOLDT (χ), FFOLDT (a)]

where FOLDT = FOLDG : G→ G/≈ is the projection of G into G/≈.

(1) FOLDF (T ) is the “smallest” true type graph into which exists a
morphism from T . That is, FOLDF (T ) is a true type graph and for

every true type graph T ′ with a strong morphism ψ : T
F,≤
−→ T ′ it follows

that FOLDF (T ) is defined and there exists a unique strong morphism

φ : FOLDF (T )
F,≤
−→ T ′ such that

φ ◦ FOLDT = ψ

(2) Let T = G[χ, a] be a type graph and let ≈ be the equivalence defined
as above. Furthermore let ≈′⊆≈. Let p : G → G/≈′ be the projection of
G into G/≈′. It follows that

FOLDG ∼= FOLDG/≈′
◦ p

(3) Let T ∼=F C〈T1, . . . , Tn〉F be a type graph and let i ∈ {1 . . . , n}. Fur-
thermore let T ′ ∼=F C〈T1, . . . , Ti−1, FOLDF (Ti), Ti+1, . . . , Tn〉F . It fol-
lows that

FOLDF (T ) ∼=F FOLDF (T ′)

FOLDT ∼= FOLDT ′
◦ C〈idT1 , . . . , idTi−1 , FOLD

Ti , idTi+1 , . . . , idTn〉F

Proof:

(1) It follows immediately with the definition of ≈ that FOLDF (T ) is a type

graph. Now let ψ : T
F,≤
→ T ′ be a strong morphism such that T ′ is a true

type graph.

We define φ : FOLDF (T ) → T ′ such that

φ([v]≈) := ψ(v) if v ∈ VT

φ([e]≈) := ψ(e) if e ∈ ET
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It is straightforward to show that φ is well-defined and unique. And it
follows immediately from the definition of φ that φ ◦ FOLDT = ψ.

It is left to show that φ is a (F,≤)-morphism: let T = G[χ, a], T ′ =
G′[χ′, a′] and FOLDF (T ) = (G/≈)[FOLDT (χ), FFOLDT (a)]

Fφ(FFOLDT (a)) = Fφ◦FOLDT (a) = Fψ(a) ≤ a′

(2) Let ≈′⊆≈, G′ := G/ ≈′ and let ∼ be the equivalence used to construct
FOLDG′

.

• ∼ can be constructed in the following way: ∼0 is the equivalence on
VG′ and EG′ and

v1 ∼i+1 v2 ⇐⇒ v1 ∼i v2

∨ (∃q1, q2 : bsG′(q1)cj = bsG′(q2)cj ∧ q1 ∼i q2)

∨ ∃c1, c2 : bsG′(c1)cj = bsG′(c2)cj ∧ c1 ∼i c2)

p1 ∼i+1 p2 ⇐⇒ p1 ∼i+1 p2 ∨ ∀ i : bsG′(p1)ci ∼i bsG′(q2)ci

q1 ∼i+1 q2 ⇐⇒ q1 ∼i+1 q2 ∨ sendG′(q1) ∼i sendG′(q2)

c1 ∼i+1 c2 ⇐⇒ c1 ∼i+1 c2 ∨ sendG′(c1) ∼i sendG′(c2)

where v1, v2 ∈ VG′ , p1, p2 ∈ PG′ , q1, q2 ∈MG′ , c1, c2 ∈ CoG′ .

And ∼=
⋃∞
i=0 ∼i.

In the same way we can define a sequence ≈0,≈1, . . . of equivalences
with ≈=

⋃∞
i=0 ≈i.

• Let p1, p2 ∈ PG, q1, q2 ∈MG, c1, c2 ∈ CoG. We will now show that

p(p1) ∼ p(p2) ⇐⇒ p1 ≈ p2 (A.6)

p(q1) ∼ p(q2) ⇐⇒ q1 ≈ q2 (A.7)

p(c1) ∼ p(c2) ⇐⇒ c1 ≈ c2 (A.8)

⇒ Induction on ∼i:
If p(q1) ∼0 p(q2) it follows that p(q1) = p(q2) and therefore q1 ≈′

q2 which implies q1 ≈ q2. The same is true for p(p1) ∼0 p(p2)
and p(c1) ∼0 p(c2).

If p(q1) ∼i+1 p(q2) it follows that either p(q1) ∼i p(q2) (induction
hypothesis!) or there exist x′1, x

′
2 ∈MG′∪CoG′ such that x′1 ∼i−1

x′2 and there is a j such that bsG′(x′i)cj = sendG′(p(qi)), i ∈
{1, 2}.
Since p is surjective, there exist x1, x2 ∈ MG ∪ CoG such that
p(xi) = x′i, i ∈ {1, 2}. It follows with the induction hypothesis
that x1 ≈ x2.
Furthermore

p(bsG(xi)cj) = lfsG′(x′i)cj = sendG′(p(qi)) = p(sendG(qi))

and thus bsG(xi)cj ≈′ sendG(qi) where ≈′⊆≈. This implies
q1 ≈ q2 with the definition of ≈
The other cases can be handled in a similar way.
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⇐ Induction on ≈i:
If q1 ≈0 q2 it follows that q1 = q2 and therefore p(q1) = p(q2)
which implies p(q1)sim(q2). The same is true for p1 ≈0 p2 and
c1 ≈0 c2.

If q1 ≈i+1 q2 it follows that either q1 ≈i q2 (induction hypothe-
sis!) or there exist x1, x2 ∈MG ∪CoG such that x1 ≈i−1 x2 and
there is a j such that bsG(x1)cj = sendG(qi), i ∈ {1, 2}.
It follows with the induction hypothesis that p(x1) ∼ p(x2).
Furthermore bsG′(p(xi))cj = sendG′(p(qi)), i ∈ {1, 2}. This
implies p(q1) ∼ p(q2) with the definition of ∼.
The other cases can be handled in a similar way.

• We will now define a morphism φ : (G/≈′)/∼→ G/≈: let v ∈ VG,
e ∈ EG

φ([p(v)]∼) := [v]≈ φ([p(e)]∼) := [e]≈

With (A.6), (A.7) and (A.8) it follows that φ is well-defined and
bijective. Therefore FOLDG ∼= FOLDG′

◦ p.

(3) Follows immediately with (2).

2

Proposition 8.3.16 (Correctness of the Type Inference Algorithm) Let
(φ̂, χ̂, â) := W (S,m,E, a) where φ̂ : G→ Ĝ and let

φ̂′ : Ĝ[χ̂, â]
F,≤
−→ Ĝ′[χ̂′, â′]

Then

(φ̂′ ◦ φ̂)(E), Ĝ′[χ̂′, â′] ` S

Proof: By induction on S. We will use the notation of algorithm 8.3.14.

Variable: straightforward

Replication: straightforward with the induction hypothesis

Process: (φ̂, χ̂, â) := W (procn(S
′), n, E, a) where

φ̂ = FOLDG̃ ◦ pG′ ◦ φ : G→ Ĝ

χ̂ = (FOLDG̃ ◦ pP )(χP ) = (FOLDG̃ ◦ pG′)(χ′)

â = F
FOLDG̃(FpP

(aP ) ∨ FpG′ (a
′))

Let

φ̂′ : Ĝ[χ̂, â]
F,≤
−→ Ĝ′[χ̂′, â′]
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Since F
φ̂′◦FOLDG̃◦pG′

(a′) ≤ F
φ̂′◦FOLDG̃(FpP

(aP ) ∨ FpG′ (a
′)) = Fφ̂(â) ≤ â′

it follows that

φ̂′ ◦ FOLDG̃ ◦ pG′ : G′[χ′, a′]
F,≤
−→ Ĝ′[χ̂′, â′]

And the induction hypothesis implies that

(φ̂′ ◦ FOLDG̃ ◦ pG′ ◦ φ)(E), Ĝ′[χ̂′, â′] ` S′

Since (φ̂′ ◦FOLDG̃ ◦ pP )(χP ) = χ̂′ and F
φ̂′◦FOLDG̃◦pP

(aP ) ≤ â′ it follows
that

φ̂′ ◦ FOLDG̃ ◦ pP : A(procn(S))
F,≤
−→ Ĝ′[χ̂′, â′]

That is φ̂′ ◦FOLDG̃ ◦pP is the morphism φ in rule (TL-PROC), and thus

(φ̂′ ◦ φ̂)(E), Ĝ′[χ̂′, â′] ` procn(S
′)

Message: (φ̂, χ̂, â) := W (messn+1(H), n+ 1, E, a), m := card(H) where

φ̂ = FOLDG̃ ◦ pG′ ◦ φ : G→ Ĝ

χ̂ = (FOLDG̃ ◦ pM )(χM )

â = F
FOLDG̃(FpM

(aM ) ∨ FpG′ (a
′))

Let
φ̂′ : Ĝ[χ̂, â]

F,≤
−→ Ĝ′[χ̂′, â′]

We define χ̂′
G′ := (φ̂′ ◦ FOLDG̃ ◦ pG′)(χ′). Since F

φ̂′◦FOLDG̃◦pG′
(a′) ≤

F
φ̂′◦FOLDG̃(FpM

(aM ) ∨ FpG′ (a
′)) = Fφ̂(â) ≤ â′ it follows that

φ̂′ ◦ FOLDG̃ ◦ pG′ : G′[χ′, a′]
F,≤
−→ Ĝ′[χ̂′G′, â′]

And it follows with the induction hypothesis that

(φ̂′ ◦ FOLDG̃ ◦ pG′ ◦ φ)(E), Ĝ′[χ̂′
G′ , â′] ` H

Since (φ̂′◦FOLDG̃◦pM )(χM ) = χ̂′ and F
φ̂′◦FOLDG̃◦pM

(aM ) ≤ â′ it follows
that

φ̂′ ◦ FOLDG̃ ◦ pM : A(messn+1(H))
F,≤
−→ G̃[χ̃, ã]

And it follows with the properties of ≈ that

bsĜ′(contĜ′(bχ̂
′cn+1))c1...m

= (φ̂′ ◦ FOLDG̃ ◦ pM )(bsM (contM (bχMcn+1))c1...m)

= (φ̂′ ◦ FOLDG̃ ◦ pG′)(χ′) = φ̂′(χ̂G′)

If we take φ̂′ ◦ FOLDG̃ ◦ pM as the morphism in typing rule (TL-MESS)
and contĜ′(bχ̂′cn+1) as the element of CoĜ′ it follows that

(φ̂′ ◦ φ̂)(E)), Ĝ′[χ̂′, â′] ` messn+1(H)
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Process Graph: (φ̂, χ̂, â) := W (H, card(H), E, a) where

φ̂ = FOLDG̃ ◦ pGn ◦ φn ◦ . . . φ1 : G0 → Ĝ

χ̂ = (FOLDG̃ ◦ pC)(χC)

â = F
FOLDG̃◦pGn

(an)

Let

φ̂′ : Ĝ[χ̂, â]
F,≤
−→ Ĝ′[χ̂′, â′]

We define ψi := φ̂′ ◦FOLDG̃ ◦ pGn ◦ φn ◦ . . . φi+1, χ̂
′
i := ψi(χi). And with

lemma 8.3.15 it follows that Fψi
(ai) ≤ â′, i ∈ {1, . . . , n}. Thus it follows

that

ψi : Gi[χi, ai]
F,≤
−→ Ĝ′[χ̂′

i, â
′]

it follows with the induction hypothesis that

(ψi ◦ φi)(Ei), Ĝ
′[χ̂′

i, â
′] ` Hi

where (ψi ◦ φi)(Ei) = (φ̂′ ◦ φ̂)(E).

We will now show that φ̂′ ◦ FOLDGn ◦ pC can be used as morphism in
typing rule (TL-CON). It follows with the properties of ≈ that:

(φ̂′ ◦ FOLDGn ◦ pC ◦ ζi)(χmi
) = (φ̂′ ◦ FOLDGn ◦ pGn)(χ′

i)

= Fψi
(χi) = χ̂′

i

(φ̂′ ◦ FOLDGn ◦ pC)(χC) = φ̂′(χ̂) = χ̂′

(TL-CON) implies that

(φ̂′ ◦ φ̂)(E), Ĝ′[χ̂′, â′] ` H

Process Abstraction: (φ̂, χ̂, â) := W (λkx.H,m,E, a) where

φ̂ = FOLDG̃ ◦ pG′ ◦ φ ◦ pG : G→ Ĝ

χ̂ = b(FOLDG̃ ◦ pG′)(χ′)c1...m

â = F
FOLDG̃◦pG′

(a′)

Let

φ̂′ : Ĝ[χ̂, â]
F,≤
−→ Ĝ′[χ̂′, â′]

We define χ̂′
G′ := (φ̂′ ◦FOLDG̃ ◦pG′)(χ′). And since F

φ̂′◦FOLDG̃◦pG′
(a′) ≤

â′ it follows that

φ̂′ ◦ FOLDG̃ ◦ pG′ : G′[χ′, a′]
F,≤
−→ Ĝ′[χ̂G′ , â′]

It follows with the induction hypothesis that

(φ̂′ ◦ FOLDG̃ ◦ pG′ ◦ φ)(pG(E)\x ∪ {x : pmx}), Ĝ
′[χ̂′

G′ , â′] ` H
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and therefore

(φ̂′ ◦ φ̂)(E)\x ∪ {x : φ̂′ ◦ FOLDG̃ ◦ pG′ ◦ φ ◦ pmx}), Ĝ
′[χ̂′

G′ , â′] ` H

Furthermore there are projections pP : P → G̃, pM : M → G̃, pCo : Co→
G̃. Let p be the only process in P , q the only message in M and c the
only content-edge in Co. It follows with the properties of the quotient
graph that

sĜ′((φ̂
′ ◦ FOLDG̃ ◦ pP )(p)) = φ̂′ ◦ FOLDG̃ ◦ pP )(χP )

= (φ̂′ ◦ FOLDG̃ ◦ pG′)(bχ′c1...m) = χ̂′
G′ = χ̂′

sĜ′((φ̂
′ ◦ FOLDG̃ ◦ pM )(q)) = (φ̂′ ◦ FOLDG̃ ◦ pM )(χM )

= (φ̂′ ◦ FOLDG̃ ◦ pG′)(bχ′cm+1...m+nk) = bχ̂′
G′cm+1...m+nk

sĜ′((φ̂
′ ◦ FOLDG̃ ◦ pC)(c)) = φ̂′ ◦ FOLDG̃ ◦ pC)(χCo)

= (φ̂′ ◦ FOLDG̃ ◦ pG′ ◦ φ ◦ pmx)(χmx) ◦ bχ̂′
G′ck

If we take φ̂′ ◦FOLDG̃ ◦pG′ as the morphism in typing rule (TL-PA) and

use (φ̂′◦FOLDG̃◦pP )(p), (φ̂′◦FOLDG̃◦pM )(q) and (φ̂′◦FOLDG̃◦pCo)(c)
as the respective hyperedges it follows that

(φ̂′ ◦ φ̂)(E), Ĝ′[χ̂′, â′] ` λkx.H

2

Proposition 8.3.17 (Soundness of the Type Inference Algorithm)

Let Ê, Ĝ[χ̂, â] ` S and let φ̂ : G
F,≤
−→ Ĝ with Ê = φ̂(E) and Fφ̂(a) ≤ â then

(φ, χ′, a′) := W (S, |χ̂|, E, a)

(where φ : G→ G′) is defined and there exists a morphism

ψ : G′[χ′, a′]
F,≤
−→ Ĝ[χ̂, â]

such that φ̂ = ψ ◦ φ.

Proof: We will proceed by induction on S:

Variable: W (x, sort(x), E, a) is always defined and we set ψ := φ̂.

Replication: Let Ê, Ĝ[χ̂, â] `!H. It follows that Ê, Ĝ[χ̂, â] ` H and the induc-
tion hypothesis implies that (φ, χ′, a′) := W (H, card(H), E, a) is defined

and that there exists a morphism ψ : G′[χ′, a′]
F,≤
−→ Ĝ[χ̂, â] such that

φ̂ = ψ ◦ φ.

Process: Let Ê, Ĝ[χ̂, â] ` procn(S
′). It follows with (TL-PROC) that

Ê, Ĝ[χ̂, â] ` S′ and the induction hypothesis implies that (φ, χ′, a′) :=
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W (S′, n, E, a) is defined and that there exists a morphism ψ : G′[χ′, a′]
F,≤
−→

Ĝ[χ̂, â] such that φ̂ = ψ ◦ φ.

It is obvious from the algorithm that n = |χ′| and therefore G̃ := (PG′)/≈
is defined.

Since (TL-PROC) implies the existence of a morphism φP : [χP , aP ]
F,≤
−→

Ĝ[χ̂, â] where P [χP , aP ] := A(procn(S
′)), it follows with proposition 2.2.7

that there is a morphism
ψ1 : G̃→ Ĝ

with ψ = ψ1 ◦ pG′ and φP = ψ1 ◦ pP .

And 1 implies that FOLDF (G̃) is defined and that there exists a mor-
phism

ψ2 : FOLD(G̃) → Ĝ

with ψ1 = ψ2 ◦ FOLD
G̃.

p FOLDφ

ψ
φ

G’

^

^ ψ
ψ

1
2

G G’
~
G

G

It is left to show that

ψ2 : FOLD(G̃)[FOLDG̃(pP (χP )), F
FOLDG̃(FpP

(aP ) ∨ FpG′ (a
′))]

F,≤
→ Ĝ[χ̂, â]

This is true since

ψ2(FOLD
G̃(pP (χP ))) = ψ1(pP (χP )) = φP (χP ) = χ̂

Fψ2(FFOLDG̃(FpP
(aP ) ∨ FpG′ (a

′))) = Fψ1(FpP
(aP ) ∨ FpG′ (a

′))

= FφP
(aP ) ∨ Fψ(a′) ≤ â ∨ â = â

Message: Let Ê, Ĝ[χ̂, â] ` messn+1(H) and let m := card(H). It follows with
(TL-MESS) that Ê, Ĝ[χ̂′, â] ` H and the induction hypothesis implies
that (φ, χ′, a′) := W (H, card(H), E, a) where φ : G → G′ is defined and

that there exists a morphism ψ : G′[χ′, a′]
F,≤
−→ Ĝ[χ̂′, â] such that φ̂ = ψ◦φ.

Furthermore (TL-MESS) implies that there is a morphism

φM : M [χM , aM ]
F,≤
−→ Ĝ[χ̂, â]

where M [χM , aM ] := A(messn+1(H)), and that there exists a c ∈ CoĜ
such that sĜ(c) = χ̂′ ◦ bχ̂cn+1. That is

φM (bsM (contM (bχMcn+1))c1...m)

= bsĜ(contĜ(bχ̂cn+1))c1...m) = bsĜ(c)c1...m = χ̂′
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Let G̃ := MG′/≈ be the quotient graph. It follows with proposition 2.2.7
and the existence of ψ, φM that there is a morphism

ψ1 : G̃→ Ĝ

with ψ = ψ1 ◦ pG′ , φM = ψ1 ◦ pM .

And (1) implies that FOLD(G̃) is defined and that there exists a mor-
phism

ψ2 : FOLD(G̃) → Ĝ

with ψ1 = ψ2 ◦ FOLD
G̃ (see figure above). It is left to show that

ψ2 : FOLD(G̃)[FOLDG̃(pM (χM )), F
FOLDG̃(FpM

(aM ) ∨ FpG′ (a
′))]

F,≤
−→ Ĝ[χ̂, â]

This is true since

ψ2(FOLD
G̃(pM (χM ))) = χ̂ = ψ1(pM (χM ))

= φM (χM ) = χ̂

Fψ2(FFOLDG̃(FpM
(aM ) ∨ FpG′ (a

′))) = Fψ1(FpM
(aM ) ∨ FpG′ (a

′))

= FφM
(aM ) ∨ Fψ(a′) ≤ â ∨ â = â

Process Graph: Let Ê, Ĝ[χ̂, â] `
⊗n

i=1(Hi, ζi) where ζi : mi → D and let

φD : D → Ĝ[χ̂]. It follows that Ê, Ĝ[φD(ζi(χmi
)), â] ` Hi.

We define ψ−1 := φ̂ and φ0 := idG and will now show by induction on i
that (φi, si, ai) := W (Hi, card(Hi), Ei−1, ai−1) is defined and that there
exist morphisms

ψi : Gi[χi, ai]
F,≤
−→ Ĝ[φD(ζi(χmi

)), â]

such that ψi−1 = ψi ◦ φi for 1 ≤ i ≤ n.

i = 0: Define ψ0 := φ̂

i→ i+ 1: Because of the existence of ψi−1 and since

ψi−1(Ei−1) = ψi−1(φi−1 ◦ . . . ◦ φ0)(E) = φ̂(E) = Ê

it follows with the outer induction hypothesis that (φi, χi, ai) is de-
fined and that there exists a morphism

ψi : Gi[χi, ai]
F,≤
−→ Ĝ[φD(ζi(χmi

)), â]

such that ψi−1 = ψi ◦ φi.

Furthermore ψn(χ
′
i) = (ψn ◦ φn ◦ . . . ◦ φi+1)(χi) = ψi(χi) = φD(ζi(χmi

)).
This implies with 2.2.7 that G̃[χ̃, ã] := (D0Gn)/ ≈ is defined and that
there exists a morphism ψ′ : G̃→ Ĝ such that ψ′◦pGn = ψn and ψ′◦pD =
φD.
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And (1) implies that FOLD(G̃) is defined and that there exists a mor-
phism

ψ′′ : FOLD(G̃) → Ĝ

with ψ′ = ψ′′ ◦ FOLDG̃. It is left to show that

ψ′′ : FOLD(G̃)[FOLDG̃(pD(χD)), F
FOLDG̃(FpGn

(an))]
F,≤
−→ Ĝ[χ̂, â]

This is true since

ψ′′(FOLDG̃(pD(χD))) = ψ′(pD(χD)) = φD(χD) = χ̂

Fψ′′(F
FOLDG̃(FpGn

(an))) = Fψ′(FpGn
(an))

= Fψn
(an) ≤ â

Process Abstraction: Let Ê, Ĝ[χ̂, â] ` λkx.H. It follows that Ê\x ∪ {x :
ηx}, Ĝ[χ̂ ◦ χ̂0, â] ` H.

Furthermore there are q ∈ MĜ, c ∈ CoĜ, p ∈ PĜ such that sĜ(q) =
χ̂0 ◦ bχ̂ck, sĜ(c) = ηx(χmx) ◦ bχ̂ck, sĜ(p) = χ̂.

We can show with the properties of graph construction (proposition 2.2.7)
that there exists a morphism ψ̄ : Ḡ → Ĝ such that ψ̄ ◦ pG = φ̂ and
ψ̄ ◦ pmx = ηx.

Since ψ̄(pG(E)\x ∪ {x : pmx}) = Ê\x ∪ {x : ηx}, it follows with the
induction hypothesis that (φ, χ′, a′) := W (H, card(H), pG(E)\x ∪ {x :
pmx}, FpG

(a)) is defined and that there exists a morphism

ψ : G′[χ′, a′]
F,≤
−→ Ĝ[χ̂ ◦ χ̂0, â]

Let G̃ be the quotient graph. It follows with the the existence of the hy-
peredges q, c, p above and with proposition 2.2.7 that there is a morphism

ψ′ : G̃→ Ĝ

with ψ = ψ′ ◦ pG′ , sĜ(p) = ψ′(χP ), sĜ(q) = ψ′(χM ) and sĜ(c) = ψ′(χCo).

FOLDφ

ψ
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ψ
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ψ
ψ
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192 A Proofs

And (1) implies that FOLD(G̃) is defined and that there exists a mor-
phism

ψ′′ : FOLD(G̃) → Ĝ

with ψ′ = ψ′′ ◦ FOLDG̃.

It is left to show that

ψ′′ : FOLD(G̃[bFOLDG̃(pG′(χ′))c1...m, FFOLDG̃(FpG′ (a
′))])

F,≤
−→ Ĝ[χ̂χ̂0, â]

This is true since

ψ′′(bFOLDG̃(pG′(χ′))c1...m) = ψ′′(FOLDG̃(χP )) = ψ′(χP )

= sĜ(p) = χ̂

Fψ′′(F
FOLDG̃(FpG′ (a

′))) = Fψ′(FpG′ (a
′)) = Fψ(a′) ≤ â

2

Proposition 8.3.19 Let E, T ` H. This implies that there is a morphism

ψ : A(H)
F,≤
−→ T

Proof: We will proceed by induction on the typing of H:

(TL-PROC), (TL-MESS) immediate

(TL-CON) Let

E,G[χ, a] `
n⊗

i=1

(Hi, ζi)

such that there exists a strong morphism φ : D → G[χ] and

E,G[φ(ζi(χmi
)), ai] ` Hi

It follows with the induction hypothesis that there are strong morphisms

ψi : A(Hi)
F,≤
−→ G[φ(ζi(χmi

)), ai]

Ĝ[χ̂, â] := A(H) ∼=
⊗n

i=1(A(Hi), ζi) (see figure). Because of the existence
of the ψi and φ it follows with the properties of the co-limit that there
exists a strong morphism ψ : Ĝ[χ̂] → G[χ] with ψ ◦ ηi = ψi and ψ ◦ φ̃ = φ.

η

m D

A(H)

ζ

A(H

G[ χ

φ

i ,a]

i

i
i

φφ
i

)

ψ

i
ψ
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Let Ĝi[χ̂i, âi] := A(Hi). It follows that

Fψ(â) = Fψ(
n∨

i=1

Fηi
(âi)) =

n∨

i=1

Fψi
(âi) ≤

n∨

i=1

a = a

and therefore
ψ : A(H) ∼=F Ĝ[χ̂, â]

F,≤
→ G[χ, a]

2

A.2.2 A Type System Based on Monoids

Proposition 8.4.6 (Equivalence) Let H1, H2 ∈ S with H1 ≡ H2.
T  H1 ⇐⇒ T  H2 for any type graph T .
This implies immediately TT ` H1 ⇐⇒ TT ` H2 for any true type graph

TT .

Proof: We proceed by induction on the rules of structural equivalence. We
have to take into account application of rule (TL-≤).

(C-PROC) Let Hi := procn(Si), i = 1, 2 and let H1 ≡ H2. Furthermore let

T  H1 where A(H1)2FT
′
∼
< T and T ′

 S1. Since S1 ≡ S2 it follows
with the induction hypothesis that T ′

 S2.

According to condition (1) of the linear mapping it follows that A(H1) ∼=

A(H2). And lemma 8.2.12 implies that A(H2)2T
′ ∼= A(H1)2T

′
∼
<F T .

And therefore T  H2

(C-MESS) Let Hi := messn(0), i = 1, 2 and let T  H1 where A(H1)
∼
< T .

Since H1
∼= H2 it follows that A(H1) ∼= A(H2) and typing rule (TM-≤)

implies T  H2.

(C-PA) Let λk.H1 ≡ λk.H2 and let T  λk.H1. It follows that

T
∼
>F σ1...m(T ′

2A(Redk,m,n(λk.H1))
−)

with T ′
 H1. Since H1 ≡ H2 it follows with the induction hypothesis

that T ′
 H2.

Since Redk,m,n(λk.H1) ≡ Redk,m,n(λk.H2) it follows that

A(Redk,m,n(λk.H1)) ∼=F A(Redk,m,n(λk.H2))

It follows with lemma 8.2.12 that

σ1...m(T ′
2A(Redk,m,n(λk.H2))

−)

∼=F σ1...m(T ′
2A(Redk,m,n(λk.H1)

−)
∼
<F T

and therefore T  λk.H2.
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(C-REPL) Let !H1 ≡!H2 with T !H1 where T2FT
J,≤
−→ T . Typing rules

(TM-REPL), (TM-≤) imply that T ′
 H1 where T ′

∼
<F T . The induction

hypothesis implies that T ′
 H2 and therefore T !H2.

(C-CON) Let Hi ≡ Ji, i ∈ {1, . . . , n} and let C be a context with holes of
cardinality card(H1), . . . , card(Hn). Let T  C〈H1, . . . , Hn〉.

With lemma 8.4.5 it follows that Ti  Hi and C〈T1, . . . , Tn〉F
∼
<F T . The

induction hypothesis implies that Ti  Ji and therefore

C〈T1, . . . , Tn〉F  C〈J1, . . . , Jn〉

With (TL-≤) it follows that T  C〈J1, . . . , Jn〉.

Rule (C-α) can be omitted since it has no meaning in the restricted calculus.
2

Proposition 8.4.8 (Message Reception) Let TT ` H. If H contains a
redex

Red := Redk,m,n(λkx.K)

then message-reception is defined, i.e. m+ n = card(K).

Let H
(R-MR)
−→ H ′. It follows that H ′ has the same type as H, i.e. TT ` H ′.

Proof: Let T  H such that there is a (J,≤)-morphism φ : T → TT .

If H contains a subgraph of the form Red := Redk,m,n(λk.K) then H has

the form C〈Red, Ĥ〉 where C is a discrete context.

Thus H ′ ∼=F C〈K, Ĥ〉.

• By unravelling the typing of H it follows with lemma 8.4.5 that T
∼
>F

C〈TR, T̂ 〉F where TR  Red and T̂  H̃.

By further unravelling the typing it follows that

TR
∼
> R〈A(procm(λk.K))2Fσ1...m(TK2FA(Red)−), A(messn+1(0))〉F

where TK  K and

1 x1 x2x

(m)

R< , x2 >  :=

... ... ...(k) (m+n)(m+1)(1)

• It follows that C〈TK , T̂ 〉F  H ′. In the rest of this proof we will show

that there exists a morphism C〈TK , T̂ 〉F
J,≤
−→ TT .
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• After some transformations (see proposition 2.2.13) it follows that

TR
∼
>F E

′〈TK , A(Red)−, A(Red)〉F =: T ′
R

where

1

x1 x2

... ...

x3

x3

x2x

>

(1)

,

...(m) (m+1) (m+n)

E’< ,

• We will now show that there exists a (F,≥)-morphism (!)

ψ : TR → TK2FA(Red)[0]

It is sufficient to show that there is a (F,≥)-morphism from T ′
R into

TK2FA(Red)[⊥].

Let

T ′
R = GR[χ′

R, a
′
R]

TK = GK [χK , aK ]

A(Red) = GRed[χRed, aRed]

TI = GI [χI , aI ] := TK2FA(Red)[0]

Let ζi : m + n � m + n + n̄ =: D be the embeddings corresponding to
the context E ′ such that

T ′
R
∼=F (TK , ζ1) ⊗ (A(Red)−, ζ2) ⊗ (A(Red), ζ3)

That is VD := {v1, . . . , vm+n, w1, . . . , wn}, χD := v1 . . . vm+n, ζ1(χK) =
ζ2(χRed) = v1 . . . vmw1 . . . wn, ζ3(χRed) := χD.

Let

η1 : GK [χK ] � GR[χ′
R]

η2 : GRed[χRed] � GR[χ′
R]

η3 : GRed[χRed] � GR[χ′
R]

be the corresponding embeddings into GR[χ′
R], let φi be the canonical

strong morphisms and let φ : D → GR[χR].

We will now show that there exists a strong morphism

ψ : G′
R[χ′

R] → GK [χK ]2FGRed[χRed]

such that Fψ(a′R) ≥ aI .

There are obviously embeddings η′1 : GK [χK ] � GI [χI ] and η′2 = η′3 :
GRed[χRed] � GI [χI ]. Furthermore there is a strong morphism φ′ : D →
GI [χI ] with φ′(v1 . . . vm+n) := χI , φ

′(w1 . . . wn) := bχIcm+1...m+n.
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... ...(1) (m+n)

G
Red

G
Red

m+n m+n m+n
D

G
R

G
I

K ψ

φ

ζ
ζ ζ

η

η η η

ηη

1
2 3

1
2 3’
’ ’

φ ’

2 3
1

φ1 φ φ2 3

G

Since η′i ◦ φi = φ′ ◦ ζi it follows with the properties of a co-limit that
there exists a strong morphism ψ : GR[χR] → GI [χI ] with ψ ◦ φ = φ′ and
ψ ◦ ηi = η′i.

Furthermore

Fψ(aR) = Fψ(Fη1(aK) + Fη2(0 − aR) + Fη3(aR))

= Fη′1(aK) + Fη′2(0 − aR) + Fη′2(aR)

= Fη′1(aK) + Fη′2((0 − aR) + aR)
(8.4)

≥ Fη′1(aK) + Fη′2(0) = aI

Since ψ is a (F,≥)-morphisms it follows immediately with lemma 8.2.11
that C〈ψ, id〉F is also a (F,≥)-morphisms.

Since C〈ψ, id〉F is surjective and therefore JC〈ψ,id〉F ≥ FC〈ψ,id〉F , it is also
a (J,≥)-morphism.

• η1 : TK → TK2FA(Red)[0] =: TI is a (F,=)-morphism. It follows with
lemma 8.2.11 that C〈η1, id〉F is also a (F,=)-morphism.

And since C〈η1, id〉F is injective and therefore GC〈η1,id〉F ≤ FC〈η1,id〉F it
is also a (J,≤)-morphism.

• We now have the following situation:

T
R

T>

C<ψ ,id>

C< , T>T
F

C< , T>T
F

K
T

T

T TI F

C< , T>T

C<T
I
,

C<η ,id>
1

IC< FOLD ,id>T

K

FOLD
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where TF := FOLDJ(TI).

Let ≈ be the equivalence used to construct FOLDTR . The surjective
morphism ψ : TR → TI can be characterized by the equivalence ≈′

and it follows with conditions (4) and (4) of the linear mapping that
≈′⊆≈. It follows with condition (2) in proposition 8.3.13 that FOLDTR =
FOLDTI ◦ ψ.

And it follows with condition (3) in proposition 8.3.13 that

FOLDC〈TR,T̂ 〉F = FOLDC〈TF ,T̂ 〉F ◦ C〈FOLDTR , id〉F

= FOLDC〈TF ,T̂ 〉F ◦ C〈FOLDTI , id〉F ◦ C〈ψ, id〉F

• It is left to show that

ρ := FOLDC〈TF ,T̂ 〉F ◦ C〈FOLDTI , id〉F : C〈TI , T̂ 〉F → FOLDJ(T )

is a (J,≤)-morphism.

Let T = G[χ, a] and C〈TI , T̂ 〉F = G′
I [χ

′
I , a

′
I ]. Since C〈ψ, id〉F is a (J,≥)

morphism it follows that

Jρ(a
′
I) ≤ Jρ(JC〈ψ,id〉F (a)) = J

FOLDC〈TR,T̂ 〉F
(a) = JFOLDT (a)

And ρ ◦ C〈η1, id〉 is the morphism folding C〈TK , T̂ 〉F into the true type graph
FOLDJ(T ). And since there is a (J,≤)-morphism from FOLDJ(T ) into TT
(proposition 8.3.13, condition (1)) it follows that TT ` C〈K, Ĥ〉. 2

A.2.3 Transformation of Type Systems

Proposition 8.5.1 (Lattice → Monoid) Let S be a process description or
process graph in Sn without variables whose messages are all labelled 0.

If E,G[χ, a] `LA,F S it follows that G[χ, a] `MA,F,F S.

Proof: Let E,G[χ, a] `LA,F S. We will show by induction on S that there exists

a type graph Ĝ[χ̂, â] such that Ĝ[χ̂, â] 
M
F,F,A S and there exists a morphism

φ̂ : Ĝ[χ̂, â]
F,≤
−→ G[χ, a]

Replication: If E,G[χ, a] `LA,F !H it follows with (TL-REPL) that

E,G[χ, a] `LA,F H. And the induction hypothesis implies that there exists

a type graph Ĝ[χ̂, â] such that Ĝ[χ̂, â] 
M
A,F,F H and a morphism

φ̂ : Ĝ[χ̂, â]
F,≤
−→ G[χ, a]

Let T̂ := Ĝ[χ̂, â]. We will now show that there is a (F,≤)-morphism
φ : T̂2T̂ → T̂ : Let ζ : n → n be a strong morphism. Since T̂2T̂ :=
(T̂ , ζ) ⊗ (T̂ , ζ) we obtain the following commutative diagram:
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n

T

n n

idid
φ

ζ ζ

1 2T T T T
η η

It follows that

Fφ(Fη1(â) ∨ Fη2(â)) = Fφ◦η1(â) ∨ Fφ◦η2(â)

= Fid(â) ∨ Fid(â) = â

And it follows with (TM-REPL) that

Ĝ[χ̂, â] 
M
A,F,F !H

Process: If E,G[χ, a] `LA,F procn(S) it follows with (TL-PROC) that

E,G[χ, a] `LA,F S. And the induction hypothesis implies that there exists

a type graph Ĝ[χ̂, â] such that Ĝ[χ̂, â] 
M
A,F,F S and a morphism

φ̂ : Ĝ[χ̂, â]
F,≤
−→ G[χ, a]

(TM-PROC) implies that

G̃[χ̃, ã] := A(procn(S))2F Ĝ[χ̂, â] 
M
A,F,F procn(S)

We define P [χP , ap] := A(procn(S)). Let pP : P [χP ] → G̃[χ̃] and pĜ :

Ĝ[χ̂] → G̃[χ̃] be the projections into G̃.

Since E,G[χ, a] `LA,F,F procn(S) it follows that there is a morphism

φP : A(procn(S))
F,≤
−→ G[χ, a]

The existence of φ̂ and φP implies with proposition 2.2.7 that there exists
a morphism ψ : G̃[χ̃] → G[χ] such that φ̂ = ψ ◦ pĜ and φP = ψ ◦ pP .

It is left to show that ψ is a (F,≤)-morphism:

Fψ(ã) = Fψ(FpP
(aP ) ∨ Fp

Ĝ
(â)) = FφP

(aP ) ∨ Fφ̂(â) ≤ a ∨ a = a

Message: If E,G[χ, a] `LA,F messn(0) it follows with (TL-MESS) that there
exists a morphism

φ : A(messn+1(0)
F,≤
−→ G[χ, a]

And (TM-MESS) implies that A(messn+1(0)) `MA,F,F messn+1(0) :
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Process Graph: If E,G[χ, a] `LA,F
⊗n

i=1(Hi, ζi) where ζi : mi � C.

It follows with lemma 8.3.7 that there exists a morphism φC : C → G[χ]
such that E,G[φC(ηi(χmi

)), a] `LA,F Hi and χ = φC(χC).

The induction hypothesis implies that Ĝi[χ̂i, âi] 
M
A,F,F Hi and there exist

morphisms

φi : Ĝi[χ̂i, âi]
F,≤
−→ G[φC(ηi(χmi

)), a]

(TM-CON) implies that

G̃[χ̃, ã] :=
n⊗

i=1

(Ĝi[χ̂i, âi], ζi) 
M
A,F,F

n⊗

i=1

(Hi, ζi)

It is now left to show that there
exists a morphism from G̃[χ̃] into
G[χ]: Let φ : C → G̃[χ̃] and let
ηi : Ĝi[χ̂i] → G̃[χ̃] be the embed-
dings into G̃[χ̃]. Furthermore let
ψi : mi → Ĝi[χ̂i] be the canonical
strong morphism. It follows that

i

φi

i

C

φ

i

i^ ~

ψ
m

[    ]

i

G G ~
C

φ

ψ

ζ

η^ χ

χ

[  ]

G[  ]

iχ

φi(ψi(χmi
)) = φi(χ̂i) = φC(ζi(χmi

))

Thus φi ◦ψi = φC ◦ ζi and it follows with the definition of graph construc-
tion (definition 2.2.9) that there exists a morphism

ψ : G̃[χ̃] → G[χ]

with ψ ◦ ηi = φi, ψ ◦ φ = φC .

Furthermore Fψ(ã) = Fψ(
∨n
i=1 Fηi

(ai)) =
∨n
i=1 Fφi

(âi) ≤
∨n
i=1 a = a, i.e.

ψ : G̃[χ̃, ã]
(F,≤)
−→ G[χ, a]

Process Abstraction: If E,G[χ, a] ` λkx.H, it follows with (TL-PA) that

E\x ∪ {x : ηx}, G[χ ◦ χ0, a] `
L
A,F H

Let n := |χ|, m := |χ0|. Since (TL-PA) demands the existence of a
message, a process, a content-edge and because of the restrictions on A
in this section it follows that there exists a morphism

φR : R[χR] → G[χ ◦ χ0]

where R[χR, aR] := A(Redk,m,n(λk.H)) and sG(contG(bχck)) = ηx(χmx).
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The induction hypothesis implies that Ĝ[χ̂, â] 
M
A,F,F H and that there

exists a morphism

φ̂ : Ĝ[χ̂, â]
F,≤
−→ G[χ ◦ χ0, a]

It follows with (TM-PA) that

G̃[χ̃, ã] := σ1,...,m(Ĝ[χ̂, â]2(R[χR, aR])−) 
M
A,F,F λk.H

Let η1 : Ĝ[χ̂] � G̃[χ̃], η2 : R[χR] � G̃[χ̃] be the canonical embeddings
into G̃[χ̃]. It follows with the definition of graph construction (defini-
tion 2.2.9) that there exists a morphism

ψ : G̃[χ̃] → G[χ]

with ψ ◦ η1 = φ̂, ψ ◦ η2 = φR. It is now left to show that ψ is a (F,≤)-
morphism:

Fψ(ã) = Fψ(Fη1(â)∨Fη1(⊥−aR)) = Fφ1(â)∨Fφ2(⊥−aR) = Fφ1(â)∨⊥ ≤ a

In a lattice, it holds that ⊥− x := min{y | x ∨ y ≥ ⊥} = ⊥.

2

Proposition 8.5.2 (Monoid → Lattice) Let S be a process description or
process graph in Sn without variables whose messages are all labelled 0.

We consider a type system where the linear mapping A satisfies the con-
straints of the type system based on lattices and where the monoid operations
in F (G) = (I,+,≤) coincide with the suprememum, i.e. + = ∨ = ⊕.

If Ĝ[χ̂, â] `MA,F,F S it follows that for any environment E for Ĝ:

E, Ĝ[χ̂, â] `LA,F S

Proof: Because of + = ∨ = ⊕ for every F (G) = (I,+,≤) it follows that F is
compatible with itself.

We will show by induction on S that if G[χ, a] 
M
A,F,F S and there is a

morphism

φ̂ : G[χ, a]
F,≤
−→ Ĝ[χ̂, â]

where Ĝ is a true type graph it follows that there exists an environment E for
Ĝ with

E, Ĝ[χ̂, â] `LA,F S

Replication: If T 
M
A,F,F !H it followswith (TM-REPL) that G[χ, a] 

M
A,F,F !H

where G[χ, a]
∼
< T . If there exists a morphism φ̂ : T

F,≤
−→ Ĝ[χ̂, â] such

that Ĝ is a true type graph, φ̂ is also a (F,≤)-morphism from G[χ, a] into
Ĝ[χ̂, â].

The induction hypothesis implies that E, Ĝ[χ̂, â] `LA,F H and thus (TL-
REPL) implies that

E, Ĝ[χ̂, â] `LA,F !H
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Process: If G[χ, a] 
M
A,F,F procn(S) it follows with (TM-PROC) that

G′[χ′, a′] 
M
A,F,F S with

T ∼= A(procn(S))2G′[χ′, a′] and T
∼
< G[χ, a]

Let pP : A(procn(S))
F,≤
−→ G[χ, a] and pG′ : G′[χ′, a′]

F,≤
−→ G[χ, a] be the

corresponding projections.

If there is a morphism φ̂ : G[χ, a]
F,≤
−→ Ĝ[χ̂, â] such that Ĝ is a true type

graph, it follows that φ̂ ◦ pG′ : G′[χ′, a′]
F,≤
−→ Ĝ[χ̂, â].

Then the induction hypothesis implies that E, Ĝ[χ̂, â] `LA,F S. And with
(TL-PROC) and the existence of pP it follows that

E, Ĝ[χ̂, â] `LA,F procn(S)

Message: Let A(messn+1(0)) 
M
A,F,F messn+1(0) and there is a morphism

φ̂ : A(messn+1(0))
F,≤
−→ Ĝ[χ̂, â]

such that Ĝ is a true type graph and whereM [χM , aM ] := A(messn+1(0)).

It follows that sĜ(contĜ(bχ̂cn+1)) = φ̂(sM (contM (bχMcn+1))) = φ̂(ε) =
ε.

Since E, Ĝ[ε, â] `LA,F,F 0 (see (TL-CON)) it follows with (TL-MESS) that

E, Ĝ[χ̂, â] ` messn+1(0)

Process Graph: If G[χ, a] 
M
A,F,F

⊗n
i=1(Hi, ζi) where ζi : mi → C and

φC : C → G[χ] it follows with lemma 8.4.5 that there exist type graphs

Gi[χi, ai] with Gi[χi, ai] 
M
A,F,F Hi and

⊗n
i=1(Gi[χi, ai], ζi)

∼
< G[χ, a].

Let φi : Gi[χi, ai]
F,≤
−→ G[χ′

i, a] where χ′
i := φi(χi) be the projections into

G[χ, a] and let ψi : mi → Gi[χi] the canonical strong morphism.

Furthermore let φ̂ : G[χ, a]
F,≤
−→ Ĝ[χ̂, â]. It follows that φ̂◦φi : Gi[χi, ai]

F,≤
−→

Ĝ[χ̂i, â] where χ̂i := φ̂(φi(χi)). The induction hypothesis implies that
E, Ĝ[χ̂i, â] `

L
A,F Hi.

We conclude that

φ̂(φC(χC)) = φ̂(χ) = χ̂

φ̂(φC(ζi(χmi
))) = φ̂(φi(ψi(χmi

))) = φ̂(φi(χi)) = χ̂i

With rule (TL-CON) and the morphism φ̂◦φC : C → Ĝ[χ̂] it follows that

E, Ĝ[χ̂, â] `LA,F

n⊗

i=1

(Hi, ζi)
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Process Abstraction: If G[χ, a] 
M
A,F λkx.H it follows that G′[χ′, a′] 

M
A,F H

such that

σ1,...,m(G′[χ′, a′]2A(Redk,m,n(λk.H))−)
∼
< G[χ, a]

where R[χR, aR] := A(Redk,m,n(λk.H)). Let

φP : G′[χ′, a′]
F,≤
−→ G[χ ◦ χ0, a]

φR : R[χR]
F,≤
−→ G[χ ◦ χ0]

Let φ̂ : G[χ, a]
F,≤
−→ Ĝ[χ̂, â]. It follows that φ̂◦φP : G′[χ′, a′]

F,≤
−→ Ĝ[χ̂◦χ̂0, â]

where χ̂0 := φ̂(χ0). It follows with the induction hypothesis that

E\x ∪ {x : ηx}, Ĝ[χ̂ ◦ χ̂0, â] ` H

where ηx : 0 � Ĝ.

There is a morphism

φ̂ ◦ φR : R[χR]
F,≤
−→ Ĝ[χ̂ ◦ χ̂0]

The properties of A ensure that R contains a process p′ ∈ PR, a message
q′ ∈MR and a content c′ ∈ CoR such that

sR(p′) = bχRc1...m

sR(q′) = bχRcm+1...m+nk

sR(c′) = contR(bχck) ◦ bsRck = ε ◦ bχRck

We will now set p := φ̂(φR(p′)), q := φ̂(φR(q′)), c := φ̂(φR(c′)) and show
that these hyperedges of Ĝ satisfy the conditions of typing rule (TL-PA):

sĜ(p) = sĜ(φ̂(φR(p′))) = φ̂(φR(bχRc1...m)) = χ̂

sĜ(q) = sĜ(φ̂(φR(q′))) = φ̂(φR(bχRcm+1...m+nk)) = χ̂0 ◦ bχ̂ck

sĜ(c) = sĜ(φ̂(φR(c′))) = φ̂(φR(ε ◦ bχRck)) = ε ◦ bχ̂ck = ηx(χmx) ◦ bχ̂ck

This implies that
E, Ĝ[χ̂, â] `LA,F H

2

A.2.4 Comparison of Type Systems: Spider ↔ π-Calculus

Lemma A.2.1

E,G[χ, a] ` ΘN ((((S)x[t])[t]))

⇒ btc1 : TreeGσ (bχc1), . . . , btcn : TreeGσ (bχcn) ` ∆′
π((S)x[t])

implies

E,G[χ′, a′] ` ΘN (((S)x[t])[t
′])

⇒ bt′c1 : TreeGσ (bχ′c1), . . . , bt
′cn : TreeGσ (bχ′cn) ` ∆′

π((S)x[t])

if n := |t| = |t′|, Set(t) = Set(t′).
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Proof: Let E,G[χ′, a′] ` ΘN (((S)x[t])[t
′]).

We have
ΘN (((Sx)[t])[t

′]) ≡ ⊗(ΘN (((Sx)[t])[t]), ζt�t′)

And lemma 8.3.7 implies that there exist χ ∈ V ∗
G, a ∈ F (G) such that

E,G[χ, a] ` ΘN (((Sx)[t])[t])

Furthermore there exists a strong morphism φ : n → G[χ′] such that χ =
φ(ζt�t′(χm)). It follows that bχci = bχ′cj ⇐⇒ btci = bt′cj .

The precondition implies that

btc1 : TreeGσ (bχc1), . . . , btcm : TreeGσ (bχcm) ` ∆′
π((S)x[t])

and by reordering the type assignments it follows that

bt′c1 : TreeGσ (bχ′c1), . . . , bt
′cn : TreeGσ (bχ′cn) ` ∆′

π((S)x[t])

2

Proposition 8.6.2 Let E,G[χ, a] ` ΘN (h[t]) and n := |χ|. It follows that

buc1 : TreeGσ (bχc1), . . . , bucn : TreeGσ (bχcn) ` ∆u
π(S)

where u is a duplicate-free string with |u| = n.

Proof: We will now show by induction on h that

E,G[χ, a] ` ΘN (h[t])

⇒ btc1 : TreeGσ (bχc1), . . . , btcn : TreeGσ (bχcn) ` ∆′
π(h) (A.9)

If we can show this, the proposition follows immediately with ∆u
π(h[t]) =

∆′
π(h)[u/t]:

• If E,G[χ, a] ` h[t] it follows that

btc1 : TreeGσ (bχc1), . . . , btcn : TreeGσ (bχcn) ` ∆′
π(h)

And with the substitution law (3) it follows that

buc1 : TreeGσ (bχc1), . . . , bucn : TreeGσ (bχcn) ` ∆′
π(h)[u/t]

We will now prove (A.9) by induction on h:

Empty Graph: Let h := 0. Then ∆′
π(h) := 0, ΘN (0[ε]) ≡ 0.

Let E,G[ε, a] ` 0. And it follows with (Tπ-NIL) that

Γ ` 0

where Γ is the empty type assignment set, since 0 is always typable.
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Node: Let h := dae. Then ∆′
π(h) := 0, ΘN (dae[a]) ≡ 1.

Let E,G[χ, a] ` 1 with |s| = 1. And it follows with (Tπ-NIL) that

a : TreeGσ (bχc1) ` 0

since 0 is always typable.

Message: Let h = (0)M [a1 . . . an+1]. Then

∆′
π(h) := an+1(a1, . . . , an)

ΘN (h[a1 . . . an+1]) ≡ messn+1(0)

Let E,G[χ, a] ` messn+1(0). (TL-MeSS) implies that there exists a mor-
phism

A(messn+1(0))
F,≤
−→ G[χ, a]

We will now show that TreeGσ (bχcn+1) = [TreeGσ (bsc1), . . . T ree
G
σ (bχcn)]:

Since M [χM , aM ] := A(messn+1(0)) contains a message q with sM (q) =
χM it follows that sT (φ(q)) = χ which implies

TreeGσ (bχcn+1) = [TreeGσ (bχc1), . . . , T ree
G
σ (bχcn)]

If we define Γ := a1 : TreeGσ (bχc1), . . . , an+1 : TreeGσ (bχcn+1) it follows
that Γ(an+1) = [Γ(a1), . . . ,Γ(an)] and with (Tπ-OUT) we conclude that

Γ ` an+1a1 . . . an

The rest follows with lemma A.2.1

Replication: Let h = (!h′[t′])[a1 . . . am]. Then

∆′
π(h) :=!∆a1...am

π (h′[t′])

ΘN (h[a1 . . . am]) ≡ procm(!ΘN (h′[t′]))

Let E,G[χ, a] ` procm(!ΘN (h′[t′])). It follows with typing rules (TL-
PROC) and (TL-REPL) that E,G[χ, a] ` ΘN (h′[t′]).

Now the induction hypothesis implies that

a1 : TreeGσ (bχc1), . . . , am : TreeGσ (bχcm) ` ∆a1...am
π (h′[t′])

And with (Tπ-REPL) it follows that

a1 : TreeGσ (bχc1), . . . , am : TreeGσ (bχcm) `!∆a1...am
π (h′[t′])

The rest follows with lemma A.2.1
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Process Abstraction: Let h = (λk.h
′[t′])P [a1 . . . am]. Then

∆′
π(h) := ak(x1 . . . xn).∆

a1...amx1...xn
π .(h(t))

where n := |t| −m

ΘN (h[a1 . . . am]) ≡ procm(λk.ΘN (h′[t′]))

Let
E,G[χ, a] ` procm(λk.ΘN (h′[t′]))

It follows with typing rules (TL-PROC) and (TL-PA) that

E\x ∪ {x : ηx}, G[χ ◦ χ0, a] ` ΘN (h′[t′])

and there exists a message q ∈MG with sG(q) = χ0 ◦ bχck.

Now the induction hypothesis implies that

a1 : TreeGσ (bχc1), . . . , am : TreeGσ (bχcm),

x1 : TreeGσ (bχ0c1), . . . , xn : TreeGσ (bχ0cn) ` ∆a1...amx1...xn
π (h′[t′])

Let

Γ := a1 : TreeGσ (bχc1), . . . , am : TreeGσ (bscm),

x1 : TreeGσ (bχ0c1), . . . , xn : TreeGσ (bχ0cn)

And since sG(q) = χ0 ◦ bχck it follows that

TreeGσ (bχck) = [TreeGσ (bχ0c1), . . . , T ree
G
σ (bχ0cn)]

and therefore Γ(ak) = [Γ(x1), . . .Γ(xn)].

It follows with (Tπ-IN) that

a1 : TreeGσ (bχc1), . . . , am : TreeGσ (bχcm)

` ak(x1, . . . , xn).∆
a1...amx1...xn
π (h′[t′]))

The rest follows with lemma A.2.1

Parallel Composition: Let h = h1|h2. Then

∆′
π(h) := ∆′

π(h1)|∆
′
π(h2)

ΘN (h[t]) ≡ (ΘN (h1[t1]), ζt1�t) ⊗ (ΘN (h2[t2]), ζt2�t) =: H

where t1 := t\(Set(t2)\Set(t1)) and t2 := t\(Set(t1)\Set(t2)).

Let n := |t|, ni := |ti|.

Let E,G[χ, a] ` H. It follows with lemma 8.3.7 that E,G[χi, ai] `
ΘN (h1[t1]) where φ : n → G[χ] is a strong morphism such that χi =
φ(ζti�t(χn)).
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The induction hypothesis implies that

btic1 : TreeGσ (bχic1), . . . , bticni
: TreeGσ (bχicni

) ` ∆′
π(hi)

Furthermore

bχicj = bχck ⇐⇒ bφ(ζti�t(χni
))cj = bφ(χn)ck

φ inj.
⇐⇒ bζti�t(χni

)cj = bχnck ⇐⇒ bticj = btck

And with the weakening law (4) it follows that

btc1 : TreeGσ (bχc1), . . . , btcn : TreeGσ (bχcn) ` ∆′
π(hi)

And (Tπ-PAR) implies that

btc1 : TreeGσ (bχc1), . . . , btcn : TreeGσ (bχcn) ` ∆′
π(h1)|∆

′
π(h2) = ∆′

π(h1|h2)

Hiding: Let h = (νb)h′. Then

∆′
π(h) := (νb)∆′

π(h)

ΘN (h[t]) ≡

{
⊗(valn(h

′[t ◦ b]), ζt�t◦b) if b ∈ fn(h′)
valn(h

′[t]) otherwise

Let E,G[χ, a] ` ΘN (h[t]). We will now distinguish the following two
cases:

• b ∈ fn(h′), n := |t|.

In this case ΘN (h[t]) ≡ ⊗(ΘN (h′[t ◦ b]), ζ) where ζ is the projection
of n + 1 into σ1...n(n + 1).

It follows with lemma 8.3.7 that E,G[χ′, a′] ` ΘN (h′[t ◦ b]) where
φ : n → G[χ] is a strong morphism such that χ′ = φ(ζ(χn+1)) which
implies bχci = bχ′ci if i ∈ {1, . . . , n}.

The induction hypothesis implies that

btc1 : TreeGσ (bχc1), . . . , btcn : TreeTσ (bχcn), b : TreeGσ (bχ′cn+1)

` ∆′
π(h

′)

It follows with (Tπ-RESTR) that

btc1 : TreeGσ (bχc1), . . . , btcn : TreeGσ (bχcn) ` (νb)∆′
π(h

′)

• b 6∈ fn(h′), n := |t|.

In this case ΘN (h[t]) ≡ ΘN (h′[t]) and therefore E,G[χ, a] ` ΘN (h′[t]).

The induction hypothesis implies that

btc1 : TreeGσ (bχc1), . . . , btcn : TreeGσ (bχcn) ` ∆′
π(h

′)

With the weakening law (4) it follows that

btc1 : TreeGσ (bχc1), . . . , btcn : TreeGσ (bχcn), b : β ` ∆′
π(h

′)

where β is a new variable.

And it follows with (Tπ-RESTR) that

btc1 : TreeGσ (bχc1), . . . , btcn : TreeGσ (bχcn) ` (νb)∆′
π(h

′)
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2

Lemma 8.6.3 Let G1, . . . , Gn be true graphs (where all content-edges have
cardinality 0), let ∼ be an equivalence on the nodes of the type graphs and let
the σi be mappings satisfying

vi ∈ VGi
, vj ∈ VGj

, (vi, i) ∼ (vj , j) ⇒ TreeGi
σi

(vi) = Tree
Gj
σj (vj) (8.22)

Then there is a smallest consistent equivalence ≈ containing ∼ such that
G1 . . . Gn/≈ is a true graph.

Let pi : Gi → G1 . . . Gn/ ≈ be the i-th projection into the quotient graph.
We define σ(pi(vi)) := σi(vi). Then σ is well-defined and:

TreeG1...Gn/≈
σ (pi(vi)) = TreeGi

σ (vi)

for all vi ∈ VGi
.

Proof:

• We will first show that (vi, i) ≈ (vj , j) implies TreeGi
σi

(vi) = Tree
Gj
σj (vj):

Let ≈0:=∼ and let ≈k+1⊇≈k be the smallest equivalence satisfying

∀ k ∈ {1, . . . , card(pi)} :

(bsGi
(pi)ck, i) ≈k (bsGj

(pj)ck, j) ⇒ (pi, i) ≈k+1 (pj , j)

(sendGi
(qi), i) ≈k (sendGj

(qj), j) ⇒ (qi, i) ≈k+1 (qj , j)

(sendGi
(ci), i) ≈k (sendGj

(cj), j) ⇒ (ci, i) ≈k+1 (cj , j)

(qi, i) ≈k (qj , j) ⇒ (bsGi
(qi)cl, i) ≈k+1 (bsGj

(qj)cl, j)

where pi, qi, ci ∈ EGi
, zGi

(pi) = proc, zGi
(qi) = mess, zGi

(ci) = cont.

It follows that ≈=
⋃∞
i=0 ≈i.

We can easily show by induction on k that (vi, i) ≈k (vj , j) implies

TreeGi
σi

(vi) = Tree
Gj
σj (vj).

Furthermore if (qi, i) ≈k (qj , j) it follows that

card(qi) = card(TreeGi
σi

(sendGi
(qi)))

= card(Tree
Gj
σj (sendGj

(qj))) = card(qj)

• We will now define the operation cutk where k ∈ lN.

cut0(tr) := []

cutk+1([tr1, . . . , trn]) := [cutk(tr1), . . . , cutk(trn)]

cutk+1(α) := α

That is cutk reduces a type tree to its upper k levels.

By induction on k we will show that

cutk(Tree
G
σ (pi(vi))) = cutk(Tree

Gi
σi

(vi))

Then the equality holds also for entire type trees.
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k = 0: obvious

k → k + 1: there are two cases:

– If TreeGσ (pi(vi)) = α it follows that σ(pi(vi)) = α which implies
that σi(vi) = α. And thus TreeGi

σi
(vi) = α.

– If cutk(Tree
G
σ (pi(vi))) = [tr1, . . . , trn] it follows that there exists

a message q in G with sG(q) = s◦pi(vi). This implies that there
exists a message qj in Gj with sGj

= sj ◦vj , pj(sj ◦vj) = s◦pi(vi)
and pj(qj) = q. |sj | = |s| =: n.
Since pi(vi) = pj(vj) and therefore (vi, i) ≈ (vj , j) and

TreeGσ (pi(vi)) = TreeGσ (pj(vj))

= [TreeGσ (pj(bsjc1)), . . . , T ree
G
σ (pj(bsjcn))]

it follows that

cutk(Tree
G
σ (pi(vi)))

= [cutk−1(Tree
G
σ (pj(bsjc1))), . . . , cutk−1(Tree

G
σ (pj(bsjcn)))]

Ind.hyp
= [cutk−1(Tree

Gj
σj (bsjc1)), . . . , cutk−1(Tree

Gj
σj (bsjcn))]

= cutk(Tree
Gj
σj (vj)) = cutk(Tree

Gi
σi

(vi))

2

Lemma A.2.2 Let Γ ` p where Θπ(p) = (S)x[t] with n := |t|. Let t′ be a
duplicate-free string such that Set(t′) = Set(t) ⊆ Set(Γ).

E,G[χ, a] ` ΘN (Θt
π(p)) ∧ ∀ i ∈ {1, . . . , n} : TreeGσ (bχci) = Γ(btci)

implies that there exists a type graph G′[χ′, a′] and a type environment E ′ with

E′, G′[χ′, a′] ` ΘN (Θt′

π (p)) ∧ ∀ i ∈ {1, . . . , n} : TreeG
′

σ (bχ′ci) = Γ(bt′ci)

Proof: We can show by induction on p that ΘN (Θt′
π (p)) ≡ ⊗(ΘN (Θt

π(p)), ζt�t′).
We define G′ := G, a′ := a and χ′ is defined such that

bχ′ci = bχcj ⇐⇒ bt′ci = btcj

Since φ : n → G[χ′] and φ(ζt�t′(χn)) = χ it follows with (TL-CON) that

E,G′[χ′, a′] ` ΘN (Θt′

π (p))

Let i be a fixed natural number. Then there exists a natural number j with
bt′ci = btcj . Therefore

TreeG
′

σ (bχ′ci) = TreeGσ (bχcj) = Γ(btcj) = Γ(bt′ci)

2
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Proposition 8.6.4 Let Γ ` p and let t be a duplicate-free string such that
fn(p) = Set(t) ⊆ Set(Γ).

Then there exists a true type graph G[χ, a], a type environment E and a
mapping σ such that

E,G[χ, a] ` ΘN (Θt
π(p))

and TreeGσ (bχci) = Γ(btci).

Proof: The environment E will contain only embeddings of the form ηx : 0 �

G and all content-edges in G have cardinality 0. We proceed by induction on
p:

Dead Process: Γ ` 0. Then t = ε and ΘN (Θε
π(p)) = 0.

We define G[χ, a] := 0[⊥], E := ∅.

It follows with (TL-CON) that E,G[χ, a] ` 0.

Parallel Composition: Γ ` p1|p2 which implies that Γ ` pi.

ΘN (Θt
π(p1|p2)) ≡ (Θt1

π (p1), ζt1�t) ⊗ (Θt2
π (p2), ζt2�t)

where t1 := t\(Set(t2)\Set(t1)), t2 := t\(Set(t1)\Set(t2)), ni := |ti|, n :=
|t|.

It follows with the induction hypothesis that there exist Ei, Gi[χi, ai] such
that

Ei, Gi[χi, ai] ` ΘN (Θti
π (pi))

and TreeGi
σi

(bχicj) = Γ(bticj).

We will define an equivalence ∼ on G1, G2 with

(bχ1ci, 0) ∼ (bχ2cj , 1) ⇐⇒ bt1ci = bt2cj

⇐⇒ ζt1�t(bχn1
ci) = ζt2�t(bχn2

cj))

Since bt1ci = bt2cj implies Γ(bt1ci) = Γ(bt2cj) it follows that bχ1ci ∼ bs2cj
implies TreeG1

σ1
(bχ1ci) = Γ(bt1ci) = Γ(bt2cj) = TreeG2

σ2
(bχ2cj).

It follows with lemma 8.6.3 that G := G1G2/≈ is defined and G is a true
graph. Let pi : Gi → G be the projections into the quotient graph.

Let χ ∈ V ∗
G with |χ| = n and bχcj = pi(bχick) ⇐⇒ btcj = btick.

It follows that

TreeGσ (bχcj) = TreeGσ (pi(bχick)) = TreeGi
σi

(bχick) = Γ(btick) = Γ(btcj)

It follows with proposition 8.3.18 that

pi(Ei), G[pi(χi), Fpi
(ai)] ` ΘN (Θt

π(pi))

Because of the special form of the embeddings in Ei (only embeddings of
the form px : 0 � G) E := p1(E1) ∪ ζ2(E2) is always defined.
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If φ : n → G[χ] is the canonical strong morphism it follows that
φ(ζti�t(χni

)) = χi. With the weakening law (lemma 8.3.5) and (TL-
CON) it follows that

E,G[χ,
2∨

i=1

Fζti�t
(ai)] ` ΘN (Θt

π(p1|p2))

Since G1, G2 contain only content edges of cardinality 0, the same is true
for G.

Replication: Γ `!p which implies Γ ` p.

ΘN (Θ
fnp
π (!p)) ≡ procn(!ΘN (Θ

fnp
π (p)))

With the induction hypothesis it follows that

E,G[χ, a] ` ΘN (Θ
fnp
π (p))

where TreeGσ (bχci) = Γ(bfnpci). (TL-REP) implies that

E,G[χ, a] `!ΘN (Θfnp
(p))

Let P [χP , aP ] := A(procn(!ΘN (Θfnp
(p)))). Let ∼ be the smallest equiv-

alence with (bχcj , 0) ∼ (bχP cj , 1) for j ∈ {1, . . . , |χ|}.

P [χP ] is equivalent to procn and we define σP (bχP ci) := TreeGσ (bχci).
Therefore the preconditions of lemma 8.6.3 are satisfied and it follows
that G′ := GP/≈ is defined and that G′ is a true graph. Furthermore let
σ′ be the resulting function.

Let pG : G → G′ and pP : P → G′ be the projections into the quotient
graph. We define χ′ := pG(χ) = pP (χP ).

And

TreeG
′

σ′ (bχ′ci) = TreeG
′

σ′ (pG(bχci)) = TreeGσ (bχci) = Γ(bfnpci)

It follows with proposition 8.3.18 that

pG(E), G′[χ′, FpG
(a)] `!ΘN (Θ

fnp
π (p))

And because of the existence of pP it follows with (TL-PROC) that

pG(E), G′[χ′, FpG
(a) ∨ FpP

(aP )] ` procn(!ΘN (Θ
fnp
π (p)))

The rest follows with lemma A.2.2.

Restriction: Let Γ ` (νb)p which implies Γ, b : tr ` p. We will now distinguish
the following two cases:
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• b ∈ fn(p). Then

ΘN (Θt
π((νb)p)) ≡ ⊗(ΘN (Θt◦b

π (p)), ζ)

where ζ is the projection of n + 1 into σ1...n(n + 1) and n := |t|.

With the induction hypothesis it follows that

E,G[χ, a] ` ΘN (Θt◦b
π (p)

where TreeGσ (bχci) = Γ(btci) for i ∈ {1, . . . , n} and TreeGσ (bχcn+1) =
Γ(b).

We define G′[χ′, a′] := ⊗(G[χ, a], ζ) and let p : G[χ] � G′[χ′] be the
embedding of G into G′ and let φ : σ1...n(n + 1) → G′[χ′] be the
strong morphism created by the co-limit.

It follows with proposition 8.3.18 that

p(E), G′[p(χ), Fp(a)] ` ΘN (Θt◦b
π (p)

Since p(χ) = φ(ζ(χn+1)) it follows with (TL-CON) that

p(E), G′[χ′, Fp(a)] ` ⊗(ΘN (Θt◦b
π (p)), ζ)

and TreeG
′

σ (bχ′ci) = TreeGσ (bχci) = Γ(btci)

• b 6∈ fn(p). Then

ΘN (Θt
π((νb)p)) ≡ ΘN (Θt

π(p))

And with the induction hypothesis it follows that

E,G[χ, a] ` ΘN (Θt
π(p))

where TreeGσ (bχci) = Γ(btci) for i ∈ {1, . . . , n}.

Input Prefix: Let Γ ` b(x1 . . . xn).p which implies that

Γ, x1 : tr1, . . . , xn : trn ` p

and Γ(b) = [tr1, . . . , trn]

Let m := |fnp|. And let k be a natural number such that bfnpck = b.

ΘN (Θ
fnp
π (b(x1 . . . xn).p)) ≡ procm(λk.ΘN (Θ

fnpx1...xn
π (p)))

It follows with the induction hypothesis that

E,G[χ ◦ χ0, a] ` ΘN (Θ
fnpx1...xn
π (p))

where |χ| = m, |χ0| = n, TreeGσ (bχci) = Γ(bfnpci) for i ∈ {1, . . . ,m} and
TreeGσ (bχ0ci) = tri for i ∈ {1, . . . , n}.
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We define

P [χP , aP ] := procm[⊥]

M [χM , aM ] := messn+1[⊥]

Co[χCo, aCo] := cont1[⊥]

Let ∼ be the smallest equivalence on G,P,M,Co satisfying

(bχci, 0) ∼ (bχP ci, 1) i ∈ {1, . . . ,m}

(bχ0ci, 0) ∼ (bχMci, 2) i ∈ {1, . . . , n}

(bχck, 0) ∼ (bχMcn+1, 2)

(bχck, 0) ∼ (bχCoc1, 3)

and let

σP (bχP ci) := TreeGσ (bχci) if i ∈ {1, . . . ,m}

σM (bχMci) := tri if i ∈ {1, . . . , n}

The preconditions of lemma 8.6.3 are satisfied and it follows that G′ :=
GPMCo/≈ is defined and that G′ is a true graph. Furthermore let σ′ be
the resulting function.

Let pG : G → G′, pP : P → G, pM : M → G, pCo : Co → G be the
projections into the quotient graph. We define χ′ := pG(χ), χ′

0 := pG(χ0).

It follows with proposition 8.3.18 that

pG(E), G′[χ′ ◦ χ′
0, FpG

(a)] ` ΘN (Θ
fnpx1...xn
π (p))

The projections of the process, message and content-edge in P , M respec-
tively Co satisfy the conditions of rule (TL-PA). Therefore

pG(E), G′[χ′, FpG
(a) ∨ FpP

(aP )] ` λk.ΘN (Θ
fnpx1...xn
π (p))

And because of pP it follows with (TL-PROC) that

pG(E), G′[χ′, FpG
(a)] ` procm(λk.ΘN (Θ

fnpx1...xn
π (p)))

Furthermore lemma 8.6.3 implies that

TreeG
′

σ′ (bχ′ci) = TreeGσ (bχci) = TreeGσ (bχci) = Γ(bfnpci)

The rest follows with lemma A.2.2.

Output Prefix: Let Γ ` b̄a1 . . . an which implies that Γ(b) = [Γ(a1), . . . ,Γ(an)].

ΘN (Θa1...anb
π (b̄a1 . . . an)) ≡ messn+1(0)

We define
G[χ, a] := A(messn+1(0))
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Let ∼ be the identity on G, i.e. (v, 0) ∼ (v′, 0) ⇐⇒ v = v′.

σ(bχci) := Γ(ai) if i ∈ {1, . . . , n}

The the preconditions of lemma 8.6.3 are satisfied and it follows that
G′ := G/≈ is defined and that G′ is a true graph. Furthermore let σ′ be
the resulting function.

Let pG : G → G, be the projection into the quotient graph. We define
χ′ := pG(χ). It follows with (TL-MESS) that

E,G′[χ′, FpG
(a)] ` messn+1(0)

for any type environment E.

Furthermore lemma 8.6.3 implies that

TreeG
′

σ′ (bχ′ci) = TreeGσ (bχci)

=

{
Γ(ai) if i ∈ {1, . . . , n}
[Γ(a1), . . . ,Γ(an)] = Γ(b) if i = n+ 1

The rest follows with lemma A.2.2.

2
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Maranget, and Didier Rémy. A calculus of mobile agents. In Ugo
Montanari and Vladimiro Sassone, editors, CONCUR ’96: Concur-
rency Theory, pages 406–421. Springer-Verlag, 1996. LNCS 1119.

[Gay93] Simon J. Gay. A sort inference algorithm for the polyadic π-
calculus. In ACM Symposium on Principles of Programming Lan-
guages ‘93, 1993.

[Hab92] Annegret Habel. Hyperedge Replacement: Grammars and Lan-
guages. Springer-Verlag, 1992. LNCS 643.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.



216

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combina-
tors and λ-Calculus. London Mathematical Society, 1986. Student
Texts 1.

[JR90] D. Janssens and G. Rozenberg. Graph grammar-based description
of object-based systems. In J.W. de Bakker, W.P. de Roever, and
G. Rozenberg, editors, Foundations of Object-Oriented Languages,
pages 341–404. Springer-Verlag, 1990. LNCS 489.

[KLG93] Simon M. Kaplan, Joseph P. Loyall, and Steven K. Goering. Spec-
ifying concurrent languages and systems with ∆-grammars. In Gul
Agha, Peter Wegner, and Akinori Yonezawa, editors, Research Di-
rections in Concurrent Object-Oriented Programming, chapter 9.
MIT Press, Cambridge, Massachusetts, 1993.

[Kob97] Naoki Kobayashi. A partially deadlock-free typed process calcu-
lus. In Twelfth Annual Symposium on Logic in Computer Science
(LICS) (Warsaw, Poland), pages 128–139. IEEE, Computer Soci-
ety Press, 1997. Full version as as Technical Report 97-02, Univer-
sity of Tokyo.

[Laf90] Yves Lafont. Interaction nets. In POPL ’90, pages 95–108. ACM
Press, 1990.

[Laf97] Yves Lafont. Interaction combinators. Information and Computa-
tion, 1997. Accepted for publication in Information and Computa-
tion. Final manuscript received for publication March 26, 1997.

[Loy92] Joseph Patrick Loyall. Specification of Concurrent Systems Using
Graph Grammars. PhD thesis, University of Illinois at Urbana-
Champaign, Department of Computer Science, May 1992. Report
No. UIUCDCS-R-92-1752.

[Mil80] Robin Milner. A Calculus of Communicating Systems. Springer-
Verlag, 1980. LNCS 92.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall,
1989.

[Mil90] Robin Milner. Operational and algebraic semantics of concurrent
processes. In Jan van Leeuwen, editor, Formal Models and Seman-
tics, Handbook of Theoretical Computer Science, volume B, pages
1201–1242. Elsevier, 1990.

[Mil91] Robin Milner. The polyadic π-calculus: a tutorial. Tech. Rep. ECS-
LFCS-91-180, University of Edinburgh, Laboratory for Foundations
of Computer Science, 1991.

[Mil92] Robin Milner. Functions as processes. Mathematical Structures in
Computer Science, 2:119–141, 1992.



217

[Mil93] Robin Milner. Higher-order action calculi. In Computer Science
Logic, pages 238–260. Springer-Verlag, 1993. LNCS 832.

[Mil94] Robin Milner. Pi-nets: a graphical form of pi-calculus. In European
Symposium on Programming, pages 26–42. Springer-Verlag, 1994.
LNCS 788.

[Mil96] Robin Milner. Calculi for interaction. Acta Informatica, 33(8):707–
737, 1996.

[MPW89a] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
Part I. Tech. Rep. ECS-LFCS-89-85, University of Edinburgh, Lab-
oratory for Foundations of Computer Science, 1989.

[MPW89b] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
Part II. Tech. Rep. ECS-LFCS-89-86, University of Edinburgh,
Laboratory for Foundations of Computer Science, 1989.

[MS92a] R. Milner and D. Sangiorgi. Techniques of weak bisimulation up-
to. In CONCUR ’92. Springer-Verlag, 1992. LNCS 630, (Revised
Version).

[MS92b] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In Proc.
of 19-the International Colloquium on Automata, Languages and
Programming (ICALP ’92). Springer Verlag, 1992. LNCS 623.

[NS97] Uwe Nestmann and Martin Steffen. Typing confluence. In Second
International ERCIM Workshop on Formal Methods in Industrial
Critical Systems (Cesena, Italy, July 4–5, 1997), pages 77–101,
1997. Also available as report ERCIM-10/97-R052, European Re-
search Consortium for Informatics and Mathematics, 1997.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[Plo81] G. Plotkin. A structural approach to operational semantics. Tech-
nical Report DAIMI FN-19, University of Aarhus, 1981.

[PS93] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for
mobile processes. In Proceedings of Logics in Computer Science,
LICS ‘93, pages 376–385, 1993.

[PV98] Joachim Parrow and Björn Victor. The fusion calculus: Expres-
siveness and symmetry in mobile processes. In Proceedings of LICS
’98, 1998.

[Rei80] W. Reisig. A graph grammar representation of nonsequential pro-
cesses. In H. Noltemeier, editor, Graphtheoretic Concepts in Com-
puter Science, pages 318–325. Springer-Verlag, 1980. LNCS 100.



218

[Rei85] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on
Theoretical Computer Science. Springer-Verlag, Berlin, Germany,
1985.

[Rei98] Boris Reichel. Verteilte Auswertung attributierter Grapherset-
zungssysteme zur Verarbeitung massiver, graphartig strukturierter
Daten. PhD thesis, Technische Universität München, 1998.

[RH97] James Riely and Matthew Hennessy. Distributed processes and
location failures. In Annual International Colloquium on Automata,
Languages and Programming, all, volume 24, 1997.

[RH98] James Riely and Matthew Hennessy. A typed language for dis-
tributed mobile processes. In 25th Annual Symposium on Princi-
ples of Programming Languages (POPL) (San Diego, CA). ACM,
1998.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Com-
putability. McGraw-Hill, New York, 1967.

[RV97] Antonio Ravara and Vasco T. Vasconcelos. Behavioural types for
a calculus of concurrent objects. In Euro-Par ’97. Springer-Verlag,
1997.

[San92] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-
Order and Higher-Order Paradigms. PhD thesis, University of Ed-
inburgh, 1992. CST-99-93.

[San96] Davide Sangiorgi. Bisimulation for higher-order process calculi.
Information and Computation, 131(2):141–178, 1996.

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Language Theory. MIT Press, Cambridge,
Massachusetts, 1977.

[SW98] Davide Sangiorgi and David Walker. Interpreting functions as pi-
calculus processes: a tutorial. Technical Report RR-3470, INRIA,
1998.

[Tae96] Gabriele Taentzer. Parallel and Distributed Graph Transformation:
Formal Description and Application to Communication-Based Sys-
tems. PhD thesis, Technische Universität Berlin, 1996.

[Tho89a] Bent Thomsen. A calculus of higher order communicating systems.
Proceedings 16th Annual Symposium on Principles of Programming
Languages, pages 143–154, 1989.

[Tho89b] Bent Thomsen. Plain CHOCS. Tech. Rep. DOC 89/4, Department
of Computing, Imperial College London, 1989.

[Tho95] Bent Thomsen. A theory of higher order communicating systems.
Information and Computation, 116:38–57, 1995.



219

[Tur95] David Turner. The Polymorphic Pi-Calculus: Theory and Imple-
mentation. PhD thesis, University of Edinburgh, 1995. ECS-LFCS-
96-345.

[Urz95] P. Urzyczyn. Positive recursive type assignment. In J. Wiedermann
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