
The Theory of Finite-State Adventures

Wilfried Brauer1, Markus Holzer1, Barbara König1, and Stefan Schwoon2

1 Institut für Informatik, Technische Universität München, Germany
2 Institutsverbund Informatik, Universität Stuttgart, Germany

{brauer,holzer,koenigb}@in.tum.de schwoosn@informatik.uni-stuttgart.de

Abstract. The study of finite-state adventures, abbreviated by FSA, is
a topic that has, despite its origins that can be traced back to medieval
times, been neglected in the relevant literature. We attempt to close
this gap and give a full account of a five-level hierarchy of finite-state
adventures.

1 Introduction

In this paper we treat the theory of finite-state adventures, abbreviated by FSA.
This suite of excercises was designed for a second-year undergraduate course in
theoretical computer science held by Wilfried Brauer at the Technische Univer-
sität München in the summer of 2001. The course covered, among other topics,
the theories of automata, formal languages and computability.

In order to motivate the students and in order to encourage active learning
[MAB93,GK93], it was our aim to devise examples that are both funny and illus-
trative for the structure of the Chomsky hierarchy. Furthermore we introduced
the tool Grail (http://www.csd.uwo.ca/research/grail/) which can be used
to manipulate finite automata and regular languages, and furthermore to solve
puzzles similar to the ones given below.

In the following we will present these exercises as a five level adventure and
shortly sketch the solutions. In the conclusion we will give a short summary of
the reception of these exercises by students.

2 A fairy tale

In a university in the town there lived a professor. His students had loathed
formal language theory for time out of mind, and you could tell their opinion
on the subject without the bother of asking them. This is the story of how the
students had an adventure, and found themselves doing and enjoying things
altogether unexpected.

This paper is a tale of high adventure, undertaken by a company of lectur-
ers in search of dragon-guarded gold. Their reluctant partners in this perilous
quest were the students, comfort-loving unambitious creatures, who surprised

even themselves by their resourcefulness and skill. Encounters with finite au-
tomata, Petri nets, and flow diagrams, and a rather unwilling presence at the
final examination, are just some of the adventures that befell them.

Our fairy tale takes place in a landscape through which the Great River
meanders and where one can find enchanted doors, magic archways and useful
keys aplenty. However, there also lurks a dangerous breed of dragons, which can
be defeated only with a legendary sword.

Certainly, our brave adventurers do not set out without a map, an example
of which can be seen in Figure 1, its symbols representing dragons (D), swords

(S), arches (A), rivers (R), gates (G), treasures (T) or keys (K). We draw maps
as finite automata where the possible paths correspond to words accepted by the
automaton. The symbols form the alphabet Σ and we will either draw them or
denote them by the letters given in brackets above. The aim is to find treasures,
to pass any dragon unharmed and not to be hindered by a gate or arch.

42

3

1

5 6

9

8

7

11

10

12

13

14 15 16

Fig. 1. An example FSA.

Adventures come in several variants which are now listed from the easiest
task to the most difficult.

3 Finding a path (Level 0)

The zeroth level of the adventure consists of finding a path from an initial state
to a final state. This is easy. Everybody can do this with breadth-first search or
depth-first search.

4 Finding treasures (Level 1)

The main point of an adventure—of course—is to get treasures. But naturally it
would be too easy without any challenges and dangers that our bold adventurer

2

has to face. So we demand that on a valid path from the initial state to a final
state

(G) we can pass a gate only after we have found a key (a key can be used
arbitrarily often and opens every gate);

(D) we have to jump into a river immediately after we have met a dragon, because
the dragon will set us on fire; however, once we have found a sword, we can
kill the dragon before it burns us and need not jump into the river;

(T) we must find at least two treasures.3

Looking at the adventure in Figure 1, it is not very difficult to figure out a
solution. By following the state sequence 1, 2, 3, 1, 2, 4, 10, 4, 5, 6, 4, 5, 6, 4, 11, 12
(length 16) one obtains a word of the language which is a solution. The question
is of course: How can we solve problems of this kind in general?

The answer is to represent the conditions as finite automata G, D and T (see
Figure 2) and to take the intersection (cross-product) with the automaton M

describing the map. The adventure has a solution if and only if the language
accepted by the resulting automaton is non-empty.

1 21 2 1 2 3

G D

3

Σ

Σ\{ , } Σ Σ\{ , }

T

Σ Σ Σ

Fig. 2. Conditions represented by finite automata.

By using the finite-automaton tool Grail, students were able to compute the
intersection of the languages, to test whether it was non-empty and to list pos-
sible solutions. For example, the Grail file g.aut representing the automaton G

in Figure 2 looks as follows:

(START) |- 1

1 K 2

1 D 1

1 S 1

1 T 1

1 A 1

1 R 1

2 D 2

2 G 2

2 K 2

2 S 2

2 T 2

2 A 2

2 R 2

1 -| (FINAL)

2 -| (FINAL)

Using the Grail commands fmcross (for cross-product) and fmenum (for lan-
guage enumeration) we obtain:

3 In our universe, treasures will be replaced as soon as we leave the corresponding
node, and the same is true for keys and killed dragons.

3

> fmcross m.aut < t.aut | fmcross g.aut | fmcross d.aut | fmenum

DRSDSKDGTGGTGAR

DRSDSKDGTGGTSKAR

DRSDSKDGTSKGTGAR

DRSDSKDGTGGTGKDAR

DRSDSKDGTGKDGTGAR

[...]

The first (and shortest) word accepted by the resulting automaton is the
solution given above.

5 Counting keys (Level 2)

In the next level of difficulty we have magic keys which disappear as soon as
we have opened a gate with them. Gates close again immediately after we have
stepped through them. We can collect and possess as many keys as we like. This
new condition is denoted by (G’). The other two conditions (D) and (T) remain
unchanged.

By using the Pumping Lemma we first show that the language of all solutions
of an adventure on this level is, in general, not regular. We consider the adventure
depicted in Figure 3. Obviously the language of all possible solutions is L =
{KmGnT 2 | m ≥ n ≥ 1 }. It is easy to show with the Pumping Lemma for
regular languages (uvw-Theorem) that L is not regular.

1 2 3 4 5M

Fig. 3. An adventure generating a non-regular language in level 2.

It is not hard to argue that the language of the adventure is context-free.
Obviously L(M) ∩ L(D) ∩ L(T) is regular and can be represented by a finite
automaton. The language L(G′) of all paths satisfying condition (G′) is context-
free since it is accepted by a pushdown automaton counting the available keys.
By transforming this pushdown automaton we can also obtain a context-free
grammar generating L(G′).

The intersection of the regular language L(M)∩L(D)∩L(T) and the context-
free language L(G′) is again context-free and can be computed and tested for
emptiness. We supplied students with a Perl script which takes as input a finite
automaton in Grail notation and a context-free grammar and tests whether the

4

intersection of their languages is empty. This algorithm was described in an
earlier EATCS bulletin [ERS00].

> fmcross m.aut < t.aut | fmcross d.aut > mtd.aut

> isempty-fa-cfg mtd.aut g.gram

The intersection is not empty.

This procedure does not produce an explicit solution, but it is not hard to
see that the shortest solution for our example adventure can be obtained by
following the state sequence 1, 2, 3, 1, 2, 4, 10, 4, 7, 8, 9, 4, 7, 8, 9, 4, 11, 12
(length 18).

6 Counting keys and swords (Level 3)

For this level, we extend level 2 with the following rule: If we have a sword and
meet a dragon, we can kill the dragon with the sword, but the sword will be
spoilt from dragon blood and will be unusable thereafter. An alternative is of
course to keep the sword and jump into a river in the next step.

It is not hard to show that the language of solutions is, in general, not
context-free. We consider the automaton in Figure 4. The language of all possible
solutions is L = {KkS`GmDnT 2 | k ≥ m ≥ 1, ` ≥ n ≥ 1 }. The Pumping
Lemma for context-free languages (uvwxy-Theorem) can be conveniently used
to show that L is not context-free.

5 6 71 2 3 4

M

Fig. 4. An adventure generating a non-context-free language in level 3.

In order to show the decidability of this level, we can model the adventure
with Petri nets. We first take the intersection of the map M with the finite
automaton T representing the treasure condition; the resulting automaton is
denoted by AMT . We then construct a Petri net that corresponds to AMT .
Every state in this automaton is represented by a place and every edge by a
Petri net transition, labelled by the same symbol. We add two more places to
count the keys and swords we have collected. These are connected to the rest of
the Petri net as depicted in Figure 5. Special care has to be taken with transitions
representing encounters with dragons, since we still have the option of jumping
into a river. So whenever a river follows right after a dragon, we also insert a

5

special dragon-river transition which does not consume a sword. Figure 5 shows
schematically how a given adventure like the one in Figure 1 can transformed
into a Petri net according to the rules of level 3. Note that all places apart from
the ones counting keys and swords are 1-safe.

... ...

swords keys

Fig. 5. Transforming a level 3 adventure into a Petri net.

Now, the adventure is solvable if and only if one of the places associated
with a final state of the automaton can be covered by a marking. This problem
is decidable and can be solved with the help of coverability graphs [Rei85].

The shortest solution to the adventure in Figure 1 is given by the state
sequence 1, 2, 3, 1, 2, 4, 10, 4, 7, 8, 9, 4, 7, 8, 9, 4, 11, 12 (length 18).

7 Forbidden rivers and arches (Level 4)

In level 4 everything is as in level 3 with the added complication that we cannot
cross a river if we possess a sword, because swords are too heavy and we would
drown. Moreover, there is a magic arch, which does not allow us to pass whenever
we possess a key. (No, sorry, throwing away of items is not allowed.)

Because of these two tests for emptiness, level 4 adventures can simulate
a two-counter-machine [HU79]. In the course, students were not introduced to
counter machines, but learned about LOOP, WHILE and GOTO programs [Wei87]

6

and their place in the computational hierarchy. GOTO programs with two vari-
ables x1, x2, which correspond to two-counter-machines, can be expressed in the
following syntax:

P ::= L:S;P | L:HALT

where L is a label and S is a statement of one of the following forms:

S ::= xi := 0 | xi := xi + 1 | xi := xi − 1 | GOTO L

| IF (xi = 0) THEN GOTO L | HALT

Note that variables hold only non-negative integers and that 0 − 1 is defined to
be 0. Initially all variables are set to 0. One can easily see that GOTO programs
can be represented by flow diagrams [Wei87] with the boxes as depicted on the
left-hand side of Figure 6 and connected by directed arcs.

Figure 6 also shows how these boxes can be translated into adventures. Boxes
can be connected by transitions with treasures as their labels. In order to satisfy
condition (T), two treasures can be collected immediately before reaching a final
state.

x1 := 0

x1 := x1 + 1

x2 := x2 − 1

x2 := x2 + 1

x2 := 0

x2 = 0x1 = 0

HALT

x1 := x1 − 1

yesyes no no

Fig. 6. Translation of flow diagrams into adventures.

7

It can be shown that a GOTO program with two variables terminates if and
only if its translation into an adventure has a solution, and we have therefore
reduced the halting problem of two-variable GOTO programs to the adventure
problem (level 4). Since the halting problem is undecidable, so is the adventure
problem.

Nonetheless, we have designed our example adventure in Figure 1 in such
a way that it actually has a solution, we could, for example, follow the state
sequence 1, 2, 3, 1, 2, 4, 10, 4, 7, 8, 9, 4, 10, 4, 5, 6, 4, 11, 12 (length 19).

8 Conclusion

The student reaction, given by personal feedback and in the lecture evaluation,
was very positive. Students strongly approved of the use of Grail and the illus-
trative nature of the adventure example. Level 3 was not treated in the lecture,
since Petri nets were not part of the course, but was included in this article since
it adds a nice additional hierarchy level, even if it is not entirely compatible with
the Chomsky hierarchy. All in all, the authors were also having quite a lot of fun
in designing and solving these exercises.

Acknowledgements: We would like to express our thanks to the developers of
Grail who provided us with a great tool. And we would like to acknowledge
Javier Esparza who was the first person to solve level 3.

References

[ERS00] J. Esparza, P. Rossmanith, and S. Schwoon. A uniform framework for prob-
lems on context-free grammars. EATCS Bulletin, 72:169–177, October 2000.

[GK93] L. Gow and D. Kember. Conceptions of teaching and their relationship to
student learning. British journal of educational psychology, 63:20–33, 1993.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to automata theory, languages

and computation. Addison Wesley, Reading, Massachusetts, 1979.
[MAB93] F. Marton, G. Dall Alba, and E. Beaty. Conceptions of learning. Interna-

tional Journal of Educational Research, 19(3):277–300, 1993.
[Rei85] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical

Computer Science. Springer-Verlag, Berlin, Germany, 1985.
[Wei87] Klaus Weihrauch. Computability. Springer-Verlag, 1987.

8

