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Abstract

We invite the reader to join our quest for the largest subsemigroup of
a transformation monoid on n elements generated by two transformations.
Some of the presented results were independently obtained by the authors [6,
7, 8] and Krawetz, Lawrence, and Shallit [12, 13]. In particular, we will see
how a surprising connection to graph colouring and chromatic polynomials
is very helpful to count the elements of the investigated subsemigroup of
transformations. At the end of our search, we will present some applications
of these results to state complexity problems for one- and two-way finite
automata.

1 Introduction

Our search started after a tutorial for a course on formal languages given by the
first author. The students learned about the concept of recognizability, which
says that a language L ⊆ Σ∗ is recognizable if and only if there exists a finite
monoid M, a morphism ϕ : Σ∗ → M, and a subset N ⊆ M such that L = ϕ−1(N),
which in turn is equivalent to the regularity (acceptance by a finite state machine)
of L. For the students it was surprising to see this unexpected relation between
the theory of formal languages and algebra. The idea is quite abstract, therefore
I used an exercise taken from Pin’s book [19] on varieties of formal languages:
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Let A = (Q,Σ, δ, q0, F) be a deterministic finite automaton where Q is the finite
set of states, Σ is a finite alphabet, δ : Q × Σ→ Q denotes the transition function,
q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. Its behaviour can
be described by a monoid, the so-called transformation monoid. As an example
we took the automaton depicted in Figure 1. One argues that each word w ∈ Σ∗

1 2 3
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a a

b

a, b

Figure 1: Deterministic finite automaton A.

naturally defines a function from Q into Q, and that the monoid M(A) generated
by all these functions, where w varies over Σ∗, is a sub-monoid of T (Q). Here
T (E), for a finite set E, denotes the monoid of functions from E into E together
with function composition, where we read composition from left to right, i.e., in
αβ first α is applied, then β. Because of this convention, it is natural to write
the argument i of a function to the left of a function, i.e., (i)αβ = ((i)α)β. In
particular, if E = {1, . . . , n}, we simply write Tn for the monoid T (E). It holds that
|T (E)| = |E||E|.

Back to the transformation monoid: I convinced the students that it is gener-
ated by the functions corresponding to the letters of the alphabet, that there is a
canonical morphism Σ∗ → M(A), and that the set N ⊆ M(A) should be equal to
all transformations that map the initial state q0 to some final state in F.

Thus, I successively calculated the functions that are defined by the words
of Σ∗. I started with the letters a and b, followed by all words of length two, where
it turns out that b2 describes the same function as b; one simply remembers the
relation b2 = b. This procedure continues with longer words and stops whenever
the inferred relations ensure that no new functions can appear. For the example
automaton A it turns out that every word of length three induces a function corre-
sponding to a shorter word. Thus, the calculation stops, and we can determine the
elements of the transformation monoid. The complete set of functions, together
with the computed relations, is shown in Table 1 and is taken from Pin’s book as
well. Thus, we ended up with the six element transformation monoid

M(A) = {1, a, b, a2, ab, ba},

where 1 is the neutral element, which is induced by the empty word λ ∈ Σ∗, and
composition is defined via the relations given above. Note, that a2 acts as a zero



Function table:

1 2 3

a 2 3 3
b 1 1 3

a2 3 3 3
ab 1 3 3
ba 2 2 3

Relations:

b2 = b

a3 = a

a2b = a

aba = a

ba2 = a

bab = b

Table 1: Function table and relations induced by the finite automaton A.

element on M(A). It was a tedious exercise since the calculation of the functions
took quite some time.

The tutorial finished with an exercise dealing with another important monoid,
the syntactic monoid, which is defined, for a given language L ⊆ Σ∗, by the syntac-
tic congruence ∼L over Σ∗ where v1 ∼L v2 if and only if uv1w ∈ L ⇐⇒ uv2w ∈ L
for every u,w ∈ Σ∗. Then the syntactic monoid is the quotient monoid M(L) =
Σ∗/ ∼L, where the concatenation of equivalence classes [u]∼L · [v]∼L = [uv]∼L

serves as the monoid operation. I repeated one of the theorems treated in the
course, which says that the syntactic monoid of a regular language L is the small-
est monoid recognizing the language under consideration (with respect to the di-
vision relation) and that it is isomorphic to the transformation monoid of the min-
imal finite automaton accepting L. Thus, since the automaton shown in Figure 1
is minimal, we had actually computed the syntactic monoid (up to isomorphism).
A good overview on the algebraic theory of formal languages was written by
Pin [20].

On my way back to my office I reflected on the tutorial, and suddenly I real-
ized, that my knowledge concerning the relation between the size of a finite au-
tomaton and the size of the syntactic monoid for the accepted language was quite
limited. Sure, there is the trivial upper bound given by the size of Tn, and I knew
some basic facts about generators of Tn and S n, where S n denotes the symmetric
group of all permutations on n elements. But what else was known, about this
question? So that day I discussed this issue with my colleague Barbara, and sud-
denly we found ourselves on the journey through “algebra land” discovering the
secrets behind the largest monoid generated by a finite number of generators. But
first we tried to figure out, whether this straightforward question had already been
answered by someone else, which, surprisingly, was not the case. After having fin-
ished most of our research on that topic, we discovered, that Krawetz, Lawrence,
and Shallit [12, 13] had independently conducted research on that question.

So, for the moment we stop thinking about syntactic monoids and concentrate



on transformation semigroups. The question to answer is the following: If you
are able to choose a fixed finite number of generators and you should generate as
many transformations as possible, which generators would you choose?

How large is the maximal subsemigroup of Tn, which is generated by
a fixed number of transformations?

The next section recalls some basic known facts about generators for S n and Tn.
These results show that the question for S n instead of Tn is already answered, and
that for Tn only the case of two generators lacks an answer. In Section 3 we de-
scribe what can be done with two generators. We consider two subcases: Either
one of the generators is a single cycle permutation or a permutation with two (or
more) cycles. In the penultimate section we present some applications to state
complexity problems for one- and two-way finite automata. Finally, we summa-
rize the work on this topic and state some open problems for future research.

2 The Easy Cases. Some Results for the Literature

It is well known that the symmetric group S n of size n! can be generated by any
cyclic permutation on n elements together with an arbitrary transposition, i.e., for
instance

α =

(

1 2 . . . n − 1 n
2 3 . . . n 1

)

and β =

(

1 2 3 4 . . . n
2 1 3 4 . . . n

)

generate all of S n—we write S n = 〈α, β〉, where the semigroup 〈α, β〉 consists of
all elements that can be expressed as finite products of elements using α and β.
This answers our question, when restricting to the maximal subsemigroup of S n,
in case of two or more generators. We found the following nice and useful result,
stating how to find a complete basis for the symmetric group S n. The theorem
given below was shown by Piccard [18].

Theorem 1 (Piccard). Given a non-identical element α in S n, then there exists
an element β of S n such that both generate the symmetric group S n, provided that
it is not the case that n = 4 and α is one of the three permutations (1 2)(3 4),
(1 3)(2 4), and (1 4)(2 3).

But what about a single generator? Here it is quite clear, that one should split n
into (preferably coprime) addends in order to find a maximal subsemigroup. This
immediately leads us to Landau’s function [14], which is given by

g(n) = max{ lcm{i1, . . . , ik} | i1 + · · · + ik = n },



and in turn is equivalent to max{ ord(α) | α ∈ S n }, where ord(α) denotes the order
of α. The function g(n) is well studied and one of the earliest significant results
about it is that

lim
n→∞

log g(n)
√

n log n
= 1.

A more elaborate bound was given by Szalay [26], who determines the size of the
largest submonoid of S n generated by a single element. This bound also holds
in case of the largest submonoid or subsemigroup of Tn generated by a single
transformation.

In order to generate all of Tn it suffices to use the following transformations

α =

(

1 2 . . . n − 1 n
2 3 . . . n 1

)

, β =

(

1 2 3 4 . . . n
2 1 3 4 . . . n

)

,

and γ =

(

1 2 . . . n − 1 n
1 2 . . . n − 1 1

)

.

As in the case of the symmetric group, the generators of the transformation
monoid Tn are nicely characterizable. For n ≥ 3 the following completeness
theorem for functions of one argument given by Salomaa [23], shows that at least
three transformations are needed for Tn. The completeness result reads as follows.
Note that the kernel of a transformation α is the equivalence relation ≡, which is
induced by i ≡ j if and only if (i)α = ( j)α.

Theorem 2 (Salomaa). Assume n ≥ 3. Then three elements of Tn generate all
transformations of Tn if and only if two of them generate the symmetric group S n

and the third has kernel size n−1. Moreover, no less than three elements generate
all transformations from Tn.

It is worth mentioning that the above given theorem was re-discovered several
times during the years; for instance see Dénes [3]. This gives us the result, that the
largest subsemigroup generated by three or more elements has full size nn. Thus,
it remains to consider the case of two generators in more detail.

Finally, let us remark that there is a gap of at least
(

n
2

)

between the size of Tn

and the largest proper subsemigroup of Tn. It is quite straightforward to prove that
for n ≥ 1, if M ⊆ Tn is a subsemigroup such that |M| > nn−

(

n
2

)

, then M = Tn. This
bound was recently shown by Krawetz [12]. It is independent on the number of
generators, and therefore it is almost certainly not tight. In the application section
we will come back to this bound.



3 What Can You do With Two Generators? The
Search for a Maximal Subsemigroup

3.1 The Single Cycle Case

In order to get a better grasp of the problem, we first study a special case where
one of the generators is a permutation α consisting of a single cycle only. Such
a permutation is often written as follows: α = (1 2 . . . n). As it turns out, one
can not generate very many elements with two non-bijective transformations, so
one of the two generators should be a permutation. Now, the second generator β
should certainly be a non-bijective transformation, since two permutations can
generate at most n! elements, which is far below the maximum. So there are at
least two indices i, j with i , j and (i)β = ( j)β (we say that β merges i and j). It
seems intuitive that β should not merge too many indices, so we assume that there
is only one pair of such indices and that furthermore i = 1 and j = 2.

In order to get some intuition about the semigroup 〈α, β〉, we state two condi-
tions such that one of them is satisfied by every transformation γ in this semigroup:

(1) The transformation γ is either a multiple of α or

(2) there is an index i such that (i)γ = (i+1)γ. Note that we consider summation
modulo n in the set {1, . . . , n}, i.e., in this case n + 1 = 1.

The second condition can be explained as follows: Every transformation γ that
is not a multiple of α is of the form γ = αkβγ′, which means that Condition (2)
holds for i = n + 1 − k. Using Theorem 1 we can show that β can be chosen in
such a way that all permutations satisfying either Condition (1) or Condition (2)
can be generated. This subsemigroup of Tn is denoted by V1

n and can be generated
by two transformations only.

However, we still have to count all those transformations. Here we find that
a surprising connection to graph colouring and chromatic polynomials is very
helpful. Imagine a cyclic graph, i.e., a ring, consisting of n nodes, which should
be coloured using up to n colours. Then the number of all invalid colourings of
this graph, i.e., all colourings where two neighbouring nodes are assigned equal
colours is equal to the number of all transformations satisfying Condition (2). This
is easy to see, just regard a transformation γ as a colouring function, assigning
colours to nodes.

The chromatic polynomial χ(G, λ) of a graph G is a polynomial in λ giving
the number of possibilities to colour G with λ colours (not all colours have to be
used). If G is a cyclic graph with n nodes, its chromatic polynomial is known to
be χ(G, λ) = (λ − 1)n + (−1)n(λ − 1)—see [21]. Using this fact we can easily



compute the number of invalid colourings with n colours. Furthermore there is an
interesting asymptotic result, involving Euler’s number e.

Theorem 3. With two generators, where α = (1 2 . . . n) is a single cycle per-
mutation and the other is a transformation β with (i)β = (i + 1)β, for some index
1 ≤ i ≤ n, one can generate at most

|V1
n | = n + nn − (n − 1)n − (−1)n(n − 1)

transformations. This bound is tight. Furthermore

lim
n→∞

|V1
n |

nn
=

1
e
.

Is it possible to do better if we fix α but choose a different β? In fact, we can
do better for some n. For instance, for n = 6, the formula above yields |V 1

n | =
31032, but we can in fact generate more elements. Using the Groups, Algorithms
and Programming (GAP) system1, a very useful tool for computational discrete
algebra, we can for example compute the number of transformations generated by
our usual α and

β =

(

1 2 3 4 5 6
1 4 1 5 6 2

)

.

Now we obtain 32262 transformations! So, maybe the secret is mapping two
indices with difference 2 (in this case 1 and 3) to the same number? But this
cannot be turned into a general result. For instance if n = 4 we can generate up to
176 transformations by merging indices 1 and 2, but only 116 transformations by
merging 1 and 3.

Again, the connection to graph colouring is very helpful. Let d be a divisor
of n (in the example above we chose d = 2 and n = 6). Now if we choose a
transformation βwith (1)β = (1+d)β (again summation is taken modulo n) we can
generate all transformations γ satisfying Condition (1) above and Condition (3)
below. This subsemigroup is called Vd

n .

(3) There is an index i such that (i)γ = (i + d)γ.

What kind of graph do we have to choose such that the number of its in-
valid colourings corresponds to the number of all transformations satisfying Con-
dition (3)? The answer is: d disjoint cycles, each of length n

d . For instance in the
case n = 6, d = 2, the transformation β above can be represented as the invalid
colouring a system of two cycles, both of length three—see Figure 2. Note that
the colours are written inside the circles, whereas the number of a node is written
beside it.

1http://www.math.rwth-aachen.de/˜GAP/
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Figure 2: A invalid colouring of two disjoint cycles.

If a graph G is the disjoint union of two graphs G1 and G2, it can be easily
seen that χ(G, λ) = χ(G1, λ) · χ(G2, λ). So the chromatic polynomial of a system
of d cycles, each of length n

d corresponds to

χ(G, λ) =
(

(λ − 1)
n
d + (−1)

n
d (λ − 1)

)d
.

This can be used to give a closed formula for the maximal size of a subsemi-
group generated by a single cycle and a second non-bijective transformation. Note
that above we have only considered divisors of n for a good reason: All other cases
can be reduced to that case.

Theorem 4. Let α = (1 2 . . . n) and let β be a transformation such that (i)β =
(i + d′)β. Let d = gcd{d′, n}.

(1) Then α and β can generate at most

|Vd
n | = n + nn −

(

(n − 1)
n
d + (−1)

n
d (n − 1)

)d

transformations. This bound is tight.

(2) If n is fixed, we can maximize |Vd
n | by choosing for d the largest divisor of n

for which n
d is odd. If n

d′ is even for all divisors d′ of n we choose d = 1. In
this case we set Vn = Vd

n .

The second part of the theorem explains why d = 2 is a good choice if n = 6
but not if n = 4. From an asymptotic point of view nothing has changed. The
fraction |Vn |

nn still converges to 1
e when n goes to infinity.



3.2 The Two Cycle Case

So maybe now we have found the most reproductive pair of generators? No, not
yet. For instance if n = 7 we can generate at most |V1

7 | = 543620 transformations
with the method described above. But setting

α =

(

1 2 3 4 5 6 7
2 1 4 5 6 7 3

)

and β =

(

1 2 3 4 5 6 7
1 3 4 5 6 2 1

)

and letting GAP compute (this takes quite a long time) gives us even 610871
transformations!

What is the secret of this new pair of generators? The first transformation α
is a permutation that can be written as α = (1 2)(3 4 5 6 7). The lengths of the
two cycles are coprime, which means that they can be turned “independently,”
i.e., for every pair of numbers q1 and q2 one can find a number q such that αq =

(1 2)q1(3 4 5 6 7)q2 . So, if we let α do some preprocessing and then merge indices 1
and 7 (as the transformation β above does), we can in fact merge every index of
the first cycle of α (choose 1 or 2) with every index of the second cycle (choose 3,
4, 5, 6 or 7). This gives us a total of 2 · 5 = 10 pairs of indices to merge, which
looks better than the 7 pairs in the case of V1

7 .
However, it is not possible to generate every transformation merging an index

of the first and an index of the second cycle. Consider for instance

γ =

(

1 2 3 4 5 6 7
1 3 4 5 6 7 1

)

,

a transformation which contains all elements of the second cycle of α (which are 3,
4, 5, 6, 7) in its image. This transformation cannot be of the form γ′β, since the
index 7 is missing in the image of β. Similarly, it cannot be of the form γ′βα,
since 3 is missing in the image of βα. Continuing, one can argue that at least one
index of the second cycle has to be missing from the image of γ′βαq.

So, all elements generated by a permutation

α = (1 2 . . . k)(k + 1 k + 2 . . . k + `),

where gcd{k, `} = 1 and n = k + `, and a non-bijective transformation β merging
elements of different cycles such that at least one element of the second cycle
is missing from the image of β, satisfy one of the two conditions below. Let
img(α) = { (i)α | 1 ≤ i ≤ n}, if α ∈ Tn.

(4) The transformation γ is either a multiple of α or

(5) there are indices i ∈ {1, 2, . . . , k}, j ∈ {k + 1, k + 2, . . . , k + `} such that
(i)γ = ( j)γ and furthermore there is an index h ∈ {k + 1, k + 2, . . . , k + `}
such that h < img(γ).



Without loss of generality we assume that k < `. Note that it is always better
to choose h from the larger cycle since in this case there are more possibilities
to choose from and we obtain more transformations. Again, by using Theorem 1
we can show that whenever k and ` are coprime, transformation β can be chosen
in such a way that we can actually generate all transformations satisfying either
Condition (4) or Condition (5). Thus, the described semigroup can be defined by
two generators only. We call this subsemigroup Uk,` in the following.

Since the correspondence to graph colouring has led to good results for earlier
cases, we can try again to find a connection. In this case it turns out that the num-
ber of transformations satisfying Condition (5) is equal to the number of invalid
colourings of the complete bipartite graph Kk,`, where the first set contains k nodes
and the second set contains ` nodes. We may use up to n colours, but at least one
colour from the set {k+ 1, k+ 2, . . . , k+ `} has to stay unused. Figure 3 shows that
transformation β ∈ T7 given above is indeed an invalid colouring of the complete
bipartite graph K2,5.
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1
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3

4
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7

Figure 3: An invalid colouring of a complete bipartite graph.

This second requirement as well as the fact that the chromatic polynomials of
complete bipartite graphs are nowhere near as nice as the ones of cycles compli-
cates the computation of the number of elements of Uk,`. Before we proceed with
the computation, we first state the following central result.

Theorem 5. If n is a prime greater than or equal to 7, a subsemigroup of the form
Uk,` with n = k+ ` is maximal in size among all semigroups that can be generated
by two generators.

The theorem says, among other things, that using a permutation with more
than two cycles does not help in generating more elements—observe, that the



cases where (i) two arbitrary permutations or (ii) two non-bijective transforma-
tions are used as generators cannot do better than the single cycle subsemigroup Vn

from the previous subsection. So far we were only able to prove Theorem 5 for
prime n. This case is simpler, since k and ` are then automatically coprime. For n
smaller than 7, one of the semigroups of the form V d

n is the winner.
We still have to describe how to compute the size of Uk,` and give a result

concerning asymptotics. In order to do so we regard the following formula for a
chromatic polynomial of a graph G.

χ(G, λ) =
λ

∑

i=1

(

n
i

)

p(G, i)i!,

where p(G, i) is the number of possibilities to partition the set of nodes of G into i
non-empty independent sets. After having partitioned the nodes, one chooses i
colours—

(

n
i

)

possibilities—and assigns them to the i node sets—i! possibilities.
For a complete bipartite graph, p(Kk,`, i) can be determined using Stirling num-

bers of the second kind. A Stirling number of the second kind is written
{

n
i

}

and
denotes the number of possibilities to partition an n-element set into i non-empty
subsets. It holds that

p(Kk,`, i) =
i

∑

r=1

{

k
r

}{

`

i − r

}

(for every r, first partition the nodes of the first set into r subsets, then partition
the nodes of the second set into i−r subsets). So, in analogy to the formula above,
when we attempt to produce an invalid coloring of Kk,` using exactly i colours,
such that at least one colour from the set {k + 1, k + 2, . . . , k + `} is missing, we
first choose i colours—

(

n
i

)

possibilities, but have to take into account that we must

not use all colours between k + 1 and k + `—subtract
(

k
i−`

)

. Then we choose a
partitioning of the nodes which contains at most one non-independent set—there
are

{

n
i

}

− p(Kk,`, i) possibilities. Everything combined we obtain the following
theorem.

Theorem 6. Let k > 1 and let gcd{k, `} = 1.

(1) It holds that

|Uk,`| = k` +
n

∑

i=1

((

n
i

)

−
(

k
i − `

))















{

n
i

}

−
i

∑

r=1

{

k
r

}{

`

i − r

}















i!.

(2) If we choose, for every n, indices k(n) and `(n) close to n
2 , it holds that

lim
n→∞

|Uk(n),`(n)|
nn

= 1.



The second part of the theorem can be shown by doing an under-estimation of
the size of Uk,` and using Stirling’s approximation of the factorial [5, 22], which
says that

n! =
√

2πn
(n
e

)n
(

1 + Θ

(

1
n

))

,

in order to approximate binomial coefficients. This shows that, in an asymptotic
sense, one can generate “almost all” transformations using only two generators.

4 Applications

It’s now time to give some applications, but let us first summarize the results so
far. The original motivation of our journey was to gain more knowledge on the
size of syntactic monoids for regular languages. Combining the results stated in
the previous two subsections we find the following theorem.

Theorem 7. Let A be a n-state deterministic finite automaton with input alpha-
bet Σ.

(1) If Σ is a singleton set, then a monoid of size n is sufficient to recognize the
language L(A). This bound is tight.

(2) If |Σ| = 2 and n ≥ 3, then a monoid of size nn − n! + g(n) is sufficient to
recognize the language L(A) and a monoid of size at least nn(1 − 2√

n
) is

necessary in the worst case to recognize the language L(A).

(3) In all other cases a monoid of size nn is sufficient to recognize the lan-
guage L(A). This bound is tight.

Observe, that in the first case above, the linear bound on the monoid size stems
from the fact that a transition graph of a deterministic finite automaton with unary
input alphabet consists of a path, which starts at the initial state, followed by a
cycle of one or more states. Therefore, the upper bound of Landau’s function is not
reachable in this case. The upper bound of the second statement is trivial, while
the lower bound nn(1 − 2√

n
) can be obtained from Theorem 6. A slightly better

lower bound of nn(1 − 4
n ) for odd n ≥ 70 was presented by Krawetz, Lawrence,

and Shallit [13], by using a more elaborate counting argument for the number of
proper vertex colourings of a bipartite graph, which is due to Lazebnik [15].

The following two applications concern state complexity results for one- and
two-way finite automata and were obtained by Krawetz, Lawrence, and Shal-
lit [12, 13]. Since regular languages have many representations in the world



of finite automata, it is natural to investigate the succinctness of their represen-
tation by different types of automata. For conversion results we refer to, e.g.,
[1, 16, 17, 24, 25]. We come back to this issue in the remainder of this section.

Related to these questions are the costs (in terms of states) of operations on
regular languages with regard to their representing devices. For example, com-
plementing a language accepted by a given nondeterministic finite automaton can
result in an exponential blowup of states. In this case, conversion to an equiv-
alent deterministic automaton and subsequent complementation gives an upper
bound. In recent years, results for many operations have been obtained; we re-
fer to, e.g, [2, 4, 9, 10, 27, 28]. Krawetz, Lawrence, and Shallit have studied the
deterministic state complexity of the root operation, which is defined by

root(L) = {w ∈ Σ∗ | there is an n ≥ 1 such that wn ∈ L }

for any language L ⊆ Σ∗. Observe, that this operation is not the same as the opera-
tion studied by Horváth, Leupold, and Lischke [11], since in their case the root of
a language contains only primitive words (a word is primitive if it is not the power
of any other word). The idea is to use the close relationship between the root of a
regular language and the transformation monoid, which can be stated as follows:
If L is accepted by a minimal deterministic finite automaton A, then root(L) is
accepted by a deterministic finite automaton with at most |M(A)| states—this can
be easily seen by using a similar technique by Zhang [29], who characterized reg-
ularity preserving operations. As the following theorem shows, this bound is not
tight in general.

Theorem 8 (Krawetz, Lawrence, and Shallit). Let L ⊆ Σ∗ be a regular language
accepted by a minimal deterministic finite automaton with n states.

(1) If Σ is a singleton set, then n states are sufficient to accept the language
root(L).

(2) If |Σ| = 2 and n ≥ 7 a prime number, then there exist integers k and ` with
k + ` = n, such that |Uk,`| −

(

n
2

)

states are sufficient to accept the language
root(L).

(3) If |Σ| ≥ 3, then nn −
(

n
2

)

states are sufficient to accept the language root(L).

All the above given bounds are tight.

The problem with the automaton, that accepts the root of the language and
which is based on the transformation monoid, is that some of the transformation
monoid elements turn out to be equivalent. To be more precise, it turns out, that
only certain transformations of kernel size two are equivalent. For a more detailed
discussion we refer to Krawetz, Lawrence, and Shallit [12, 13].



Our favourite application comes next. Krawetz, Lawrence, and Shallit applied
their result concerning the state complexity of the root operation to the problem
of converting a two-way deterministic finite automaton into a one-way determin-
istic finite automaton; let’s call this problem the 2DFA-DFA problem. Birget [1]
improved Sheperdson’s [25] upper bound from n(n + 1)n to nn, and previous re-
sults giving a bound nΘ(n) for 2DFA-DFA have been obtained by Meyer and Fis-
cher [16], and Moore [17]. Since, for a regular language accepted by an n-state
deterministic automaton, it is possible to accept root(L) by a two-way determinis-
tic finite automaton with end-markers, having 2n states, the above theorem gives
yet another example of a language with an nΘ(n) blowup in the number of states.

Theorem 9 (Krawetz, Lawrence, and Shallit). For sufficiently large n, there
exists an n-state two-way deterministic finite automaton with end-markers such
that the equivalent one-way deterministic finite automaton has at least

(n
2

)
n
2

− 4 ·
(n
2

)
n
2−1

− 1
8

n2

states.

For the proof of this theorem the lower bound nn(1 − 4
n ) mentioned in the

previous section comes into play. Nevertheless, a closer look reveals that this
lower bound provides a significant improvement of

Θ
(

n
5
2

)

and Θ

















(

25
32

)
1
10 n

n
3

10 n

















over the results by Moore respectively Meyer and Fisher. Finally, note that one
cannot use root(L) to prove that the upper bound of nn on the 2DFA-DFA-problem
is tight.

5 Conclusions

We hope that you have enjoyed our journey through all the topics mentioned in
the title of this paper. Although our quest for the maximal subsemigroup of Tn

generated by two transformations was quite successful, it still lacks a complete
answer. First of all, what about the case when n ≥ 7 is not a prime number? We
conjecture that Theorem 5 holds in this case as well, but we have no proof yet.
Also, the question of how to best choose k and ` remains unanswered. In order
to maximize the size of Uk,` one has to minimize the number of valid colourings,
which is minimal if k and ` are close to n

2 . This clashes with the observation that
the cycle α from which an element in the image of β is missing should be as large



as possible. Nevertheless, to maximize the size of Uk,` we conjecture that for large
enough n both k and ` should be as close to n

2 as permitted by the condition that k
and ` have to be coprime. Again a proof of this statement is still missing. The
very nature of the question is relevant to more than just formal language theory,
in fact it applies to semigroup in general.
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