
A—A T   A  G
T S ∗

Barbara König Vitali Kozioura
Universität Stuttgart

Institut für Formale Methoden der Informatik
{koenigba,koziouvi}@fmi.uni-stuttgart.de

Abstract

We describe the tool A for the verification of systems with dynam-
ically evolving structure specified by graph transformation. After giving a
short introduction to graph transformation systems (GTSs), we describe the
verification techniques used by the tool, namely the approximation of GTSs
by Petri nets. Instead of verifying properties directly in the original system,
they can be checked on the approximating Petri net. We explain the work-
ings of the different modules of the A tool using two small case studies
where we model reconfigurable networks and mobile processes.

1 Introduction

The idea behind A is to provide a tool to verify systems with dynamically
evolving structure using suitable approximation techniques. Systems of this kind
appear in many places: as pointer structures on a program heap or as reconfig-
urable networks with mobile processes. They are characterized by the creation
and deletion of objects and by changes in the system topology during runtime.

A takes as input language a simple yet expressive specification language:
graph transformation systems (GTS) [18, 10]. Graph transformation systems ex-
tend static graph structures with the possibility to describe dynamic changes using
transformation rules. They are well-suited to describe dynamic behavior, espe-
cially of concurrent and distributed systems.

GTSs are in general Turing-powerful and hence abstraction or over-approxi-
mation techniques are needed for the analysis of such systems. In our case we ap-
proximate GTSs by Petri nets, which are a conceptually simpler formalism and for

∗Research supported by DFG project SANDS.

1



which several verification techniques have already been developed. More specifi-
cally, the tool is based on an approximate unfolding technique for GTSs, presented
in [3].

We are currently mainly interested in verifying that all reachable graphs satisfy
certain structural properties. In the current implementation we support the spec-
ification of paths using regular expressions, where we check that such paths are
absent in every reachable graph. These properties can be translated to coverability
properties of the approximating Petri net. In order to check coverability for Petri
nets we use standard algorithms, such as coverability graphs [13] and backward
reachability [1].

If the obtained over-approximation is too coarse and does not allow to verify
the property, techniques for refining the approximation are available. One such
technique is counterexample-guided abstraction refinement which starts from a
concrete counterexample found by coverability checking. Another possibility is
to use depth-based refinement, which constructs an over-approximation exact up
to a pre-defined depth in the unfolding.

We have conducted successful case studies such as the verification of mutual
exclusion in an extending ring of processes [8] or the analysis of insertion of new
elements into red-black trees [2].

2 Graph Transformation Systems

A graph transformation system consists of an initial graph and a set of rewriting
rules. In order to obtain more flexibility we consider hypergraphs where an edge
(a hyperedge) is connected to a sequence of nodes (instead of a pair of nodes as
in a directed graph). The initial graph is a hypergraph describing the initial state
of the system. Rewriting rules consist of two hypergraphs (left-hand side and
right-hand side) and specify the possible dynamic transformations of the system.
If an instance of the left-hand side is found in the current state of the system, then
this rule can be applied and the instance of the left-hand side of the rule will be
replaced by its right-hand side. Embedding rules specify how this right-hand side
is connected to the rest of the graph.

One of the most common approaches to graph rewriting is the DPO (double-
pushout) approach, which derives its name from the fact that a rewriting step is
described by two pushouts modelling the gluing of graphs. We are currently sup-
porting restricted versions of DPO rules, where we only allow discrete interfaces,
i.e., we can not describe the preservation of edges, and merging as well as deletion
of nodes is forbidden. Edges, however, can be deleted. The extension to non-
discrete interfaces is not very difficult from a theoretical point of view, whereas
merging and deletion lead to more serious problems. Especially deletion means

2



that we would have to handle negative application conditions, which can only be
modelled using inhibitor arcs in Petri nets.

Other approaches to graph transformation (such as the single-pushout ap-
proach) could also be handled provided that the restrictions mentioned above are
satisfied. For more information on graph transformation systems see [18, 9, 10].
Below we give an example of a very simple GTS meant to illustrate the main
features of A.

21

21

21

2121

Private
Server

Initial Graph
ProcessProcess

Connection Connection

External Process Crosses Connection

External

External
Process

Connection

Connection

Internal

Connection

Create Connection

Connection Connection Connection
1 2

Connection

Process
External

Process
Internal

Process
InternalInternal Process Crosses Connection

Figure 1: Example graph transformation system

In this system external and internal processes may cross connections and new
connections can be created. This means we produce a tree-like structure of con-
nections—starting with two connections—and let the mobile processes move non-
deterministically along some branch of the tree. Transformations extending the
network and movement of processes can be interleaved. The initial graph consists
of a private server with an internal process connected to it. Separated by one
connection there is an external process.

In this example we plan to verify the following property: “An external pro-
cess will never reach a private server”, i.e., a hyperedge representing an external
process and a hyperedge representing a private server will never share the same
node.

3



3 Verification Techniques

We demonstrate the verification technique using the example of the previous sec-
tion. To analyze this GTS the tool constructs an over-approximation, which is a
so-called Petri graph (i.e., a hypergraph with a Petri net structure over it, see [3]).
The hyperedges are at the same time the places of the net. For instance Fig. 2
shows the 0-depth (i.e., the coarsest) over-approximation of the GTS in Fig. 1. In
Fig. 2 the small black rectangles and the arrows attached to them represent Petri
net transitions, black dots represent the initial marking and the remaining structure
depicts a hypergraph. Note that the places of the net coincide with the hyperedges
of the graph.

Internal
Process

Connection

Crosses Connection
Internal Process

1

Process
External

Private
Server

1

1 1

12

Create Connection

Crosses Connection
External Process

Figure 2: 0-depth approximation

This Petri graph is an over-approximation in the following sense: (i) every
reachable graph can be mapped to its hypergraph component via a (usually non-
injective) graph morphism and (ii) the multi-set image of its edges corresponds
to a reachable marking of the net. More generally there exists a simulation rela-
tion between the reachable graphs and the reachable markings of the net. For a
marking m we say that m represents a graph G whenever there is a mapping from
G to the underlying hypergraph such that the number of edges mapped to a place
agrees with the marking m.

Specifically, the initial marking represents the initial graph of the GTS (to-
gether with other graphs). Furthermore each transition is associated with a rule
and over-approximates the effect of this rule when applied to a graph.

We do not describe here how the Petri graph is computed, apart from saying
that the computation is based on an approximative unfolding algorithm. The al-
gorithm is designed in such a way that nice properties of the GTS model, such
as locality (state changes are only described locally) and concurrency (no unnec-
essary interleaving of events) are preserved in the approximating Petri net. More
details can be found in [3, 5].

4



In this case the over-approximation is rather coarse. Observe specifically that
every graph consisting of edges of the four types (“Private Server”, “Connection”,
etc.) can be mapped to the underlying graph since all nodes have been merged
into one. The only information we obtain via this approximation is the number of
edges of a certain type. For instance the initial marking reports that in the initial
graph there is one edge of type “Private Server”, two edges of type “Connection”,
etc.

Since the approximation is too coarse, it is not possible to see whether a pro-
cess has already crossed a certain connection and whether external processes may
visit private servers. In fact the initial marking represents (in the sense defined
above) graphs violating the property to be checked. It is also evident, that this
counterexample is spurious, i.e., it has no counterpart in the original system since
the “real” initial graph does not violate the property. In general there is a technique
implemented in A telling the user if a counterexample is spurious, where
a counterexample is a run of the Petri net producing a marking that represents
graphs violating the property to be analyzed.

If some spurious counterexample is found, the over-approximation can be re-
fined, which can be done in two different ways.

(i) One can change the level of accuracy (the depth) of the over-approximation.

(ii) One can construct a refined over-approximation by forbidding to merge cer-
tain nodes.

Connection
1

Server
PrivateInternal

Process

ConnectionInternal
Process

1

External
Process

Crosses Connection
Internal Process 1

1

Create Connection

Internal Process
Crosses Connection Crosses Connection

External Process

1 11 11 2

Create Connection

Figure 3: 1-depth approximation

5



In our example we choose the second possibility, which usually leads to smaller
Petri graphs. We take the counterexample obtained above and construct the re-
fined over-approximation (see Fig.3). The edges representing the private server
and the external process are now separated (since the corresponding nodes have
been separated) and the spurious counterexample found above is eliminated. It is
also evident that no marking is coverable which represents a “bad” graph, i.e. a
graph where an external process is connected to the private server . This can be
shown using A, which means that the property can be successful verified in
an automatic way.

4 System Description

In this section we look at A in more detail. We briefly describe the follow-
ing modules of A: A, S, B and A (see Fig. 4 for an
overview of A).

transformation
system

Level of accuracy

in GXL

Approximation
(Petri net with graph
structure) in GXL

Graph

(Approximated

AUNFOLD

SPONGE
(Encoder)

Graph property
specified as regular
path expression

A*B*

Petri net

coverability algorithm)

ABSTREF

Counter−example
is real

Counter−Example

Iterate by applying the results
of abstraction refinement

GRAPHVIZ

Property
holds

Unfolding
Algorithm)

(Abstraction Refinement
Algorithm)

(Petri Net

BWRA
markings

Visualization of GTXL/GXL files

Figure 4: Overview of A

A is a module constructing the k-depth approximated unfolding (k-
covering) for the given graph transformation system. As input and output format
two XML-based standards are used (GTXL for describing graph transformation
systems and the GXL for describing the over-approximating Petri graph obtained
by the construction described in Section 3). For more details on GXL (Graph eX-
change Language) and GTXL (Graph Transformation eXchange Language) see

6



also [23, 21, 12]. The approximation is constructed according to the algorithms
proposed in [3, 5].

Given a hypergraph and a regular expression r (describing “forbidden” paths),
the module S generates a set M of markings with the following property: a
marking m represents a graph containing a path corresponding to r if and only if m
covers at least one marking of M. This information can be used in order to show
that no graphs containing undesirable paths can be reached.

This task is performed by B, which is a module using the backward reach-
ability algorithm from [1] in order to determine the coverability of a marking. If
the markings are not coverable, then the property to be verified is true, otherwise
B generates a counterexample.

Finally, module A checks first if the counterexample found by B
is real. If this is the case, then the property to be verified is false. Otherwise
refinement conditions will be computed and the approximation procedure starts
again taking into account all refinement conditions obtained earlier.

The procedure can be iterated in this way until either the property is verified,
a counterexample is found or the pre-defined timeout is reached.

A also contains a visualization module, based on the G package.
It can produce postscript files depicting graph transformation systems specified in
GTXL and over-approximating Petri graphs represented as GXL files (see Fig.5).

A can be obtained via http://www.fmi.uni-stuttgart.de/szs/tools/augur/.
We would like to encourage people who download and try the tool to report their
problems and experiences.

5 An Extended Example

In this section we describe the verification of a more complex example and give
some more details concerning the usage of A. We consider the system “Pub-
lic/Private Servers” in Fig. 6 (see also example file pub_priv_serv.xml in the
A distribution), which is an extension of the previous example. This system
consists of public and private servers linked by network connections. Generators
produce an unlimited number of public servers and one private server. The servers
in turn produce mobile processes (internal processes by the private and external by
the public servers). New connections can be created between the servers, where
however no connection is allowed from a private to a public server. Processes may
cross these connections. Furthermore at some point in time the private server may
decide to become a public server. The property we want to verify here is (as in the
previous example): “No external process will ever reach a private server”.

The corresponding graph transformation systems consists of an initial graph
containing only two generators and a set of rules describing the transformations

7



Figure 5: Screenshot of A at work

8



Public
Server

Public
Server

Public
Server

External

ExternalExternal

Process

ProcessProcess

Process

Process
External

Process

Server
Private

Process

Connection

Connection

ConnectionGENERATOR
PUBLIC

Internal

Create

Create

Create

Connection
Cross 

Cross 
Connection

Cross 
Connection

Public
Server

Internal
Process

Turn to
Public

Internal

Internal

Create

Create

Create

Figure 6: Example “Public/Private Servers”

schematically depicted in Fig. 6. The entire GTS is too large to be depicted in this
paper.

In order to verify it, we first construct the approximated unfolding using A-
. Now we can call S with the regular expression “Private Server”
“External Process” in order to obtain a set of markings M with the following
meaning: all markings which cover any marking of M are exactly the markings
representing “bad” graphs, i.e., graphs which violate the property to be verified.

As in the previous example the 0-depth approximation is too coarse and B
tells us that indeed some markings contained in M are coverable in over-approxi-
mation and gives a counterexample. After checking the obtained counterexample
with A we see that this counterexample is spurious. Using A one can
now construct the refined over-approximation as described earlier, which leads to
successful verification.

Regular expression may also be more complex, for example “Private
Server” “Connection”* “External Process” represents the property that
no connection will ever be created from a public to private server. This property
can also be verified after one refinement step.

Fig. 5 shows a screenshot of A during the verification of the “Public/Private
Servers” system. The small window in the upper left corner shows the hypergraph

9



underlying the approximation, whereas the large windows shows a part of the Petri
net component. A step-by-step tutorial for A that shows how to verify this
example is contained in [11].

6 Conclusion

In order to conclude we would like to mention and classify related work on the
verification of graph transformation systems. While some research groups [22, 7]
pursue the idea of translating graph transformation systems into the input language
of a model checker, others attempt to develop new specialized methods for graph
rewriting. Work from our side goes in this latter direction, as well as [15, 14,
16], which led to the tool GROOVE for verifying finite-state GTS. Although it is
tempting to use existing optimized model checking tools, there is good reason for
developing new techniques, even for finite state spaces. Existing tools usually do
not directly support the creation (and deletion) of an arbitrary number of objects
while still maintaining a finite state space, making entirely non-trivial their use for
checking finite-state GTSs. A nice overview comparing these two fundamentally
different approaches can be found in [17].

Further related work is on shape analysis [19], i.e., techniques which address
directly the problem of verifying pointer structures. We have recently started to
address the problem of encoding simple pointer-manipulating programs into graph
rewriting, which will enable us to directly apply our techniques to a given piece
of code.

Analysis techniques for GTSs are not restricted to reachability analysis and
model checking. Other properties (such as termination and confluence via critical
pair analysis) can be analyzed using the AGG tool [20].

Let us also mention that structural properties of graphs can not only be speci-
fied using regular expressions, but also using a monadic second-order graph logic.
While the theory for this logic has already been established [6], we have not yet
implemented the encoding of graph logic into properties of Petri net markings.

Finally, while the techniques presented in this paper are in principle also appli-
cable to finite-state systems, it will usually be better to use specialized methods,
such as finite complete prefixes of unfoldings, a partial order representation for
finite-state GTSs [4]. We have already started to extend our implementation in
this direction.

Acknowledgements: We would like to thank Paolo Baldan, Andrea Corradini
and Tobias Heindel for many interesting discussions.

10



References

[1] Parosh Aziz Abdulla, Bengt Jonsson, Mats Kindahl, and Doron Peled. A general
approach to partial order reductions in symbolic verification. In Proc. of CAV ’98,
pages 379–390. Springer, 1998. LNCS 1427.

[2] Paolo Baldan, Andrea Corradini, Javier Esparza, Tobias Heindel, Barbara König,
and Vitali Kozioura. Verifying red-black trees. In Proc. of COSMICAH ’05, 2005.
Proceedings available as report RR-05-04 (Queen Mary, University of London).

[3] Paolo Baldan, Andrea Corradini, and Barbara König. A static analysis technique for
graph transformation systems. In Proc. of CONCUR ’01, pages 381–395. Springer-
Verlag, 2001. LNCS 2154.

[4] Paolo Baldan, Andrea Corradini, and Barbara König. Verifying finite-state graph
grammars: an unfolding-based approach. In Proc. of CONCUR ’04, pages 83–98.
Springer-Verlag, 2004. LNCS 3170.

[5] Paolo Baldan and Barbara König. Approximating the behaviour of graph transfor-
mation systems. In Proc. of ICGT ’02 (International Conference on Graph Trans-
formation), pages 14–29. Springer-Verlag, 2002. LNCS 2505.

[6] Paolo Baldan, Barbara König, and Bernhard König. A logic for analyzing abstrac-
tions of graph transformation systems. In Proc. of SAS ’03 (International Static
Analysis Symposium), pages 255–272. Springer-Verlag, 2003. LNCS 2694.

[7] Fernando Luís Dotti, Luciana Foss, Leila Ribeiro, and Osmar Marchi Santos. Veri-
fication of distributed object-based systems. In Proc. of FMOODS ’03, pages 261–
275. Springer, 2003. LNCS 2884.

[8] Fernando Luís Dotti, Barbara König, Osmar Marchi dos Santos, and Leila Ribeiro.
A case study: Verifying a mutual exclusion protocol with process creation using
graph transformation systems. Technical Report 08/2004, Universität Stuttgart,
2004.

[9] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Vol.2: Applications,
Languages and Tools. World Scientific, 1999.

[10] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Vol.3: Concurrency,
Parallellism, and Distribution. World Scientific, 1999.

[11] Barbara König and Vitali Kozioura. A—a tool for the analysis of graph transfor-
mation systems using approximative unfolding techniques, January 2005. Available
from http://www.fmi.uni-stuttgart.de/szs/tools/augur/documentation.ps.

[12] Leen Lambers. A new version of GTXL: An exchange format for graph transforma-
tion systems. In Proc. Workshop on Graph-Based Tools (GraBaTs’04), 2004.

[13] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science. Springer-Verlag, Berlin, Germany, 1985.

11



[14] Arend Rensink. Model checking graph grammars. In Proc. of AVOCS ’03 (Workshop
on Automated Verification of Critical Systems), 2003.

[15] Arend Rensink. Canonical graph shapes. In Proc. of ESOP ’04, pages 401–415.
Springer, 2004. LNCS 2986.

[16] Arend Rensink. State space abstraction using shape graphs. In Proc. of AVIS ’04
(Third International Workshop on Automatic Verification of Infinite-State Systems),
ENTCS, 2004. to appear.

[17] Arend Rensink and Dániel Varró. Model checking graph transformations: A com-
parison of two approaches. In Proc. of ICGT ’04, pages 226–241. Springer, 2004.
LNCS 3256.

[18] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol.1: Foundations, volume 1. World Scientific, 1997.

[19] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via
3-valued logic. TOPLAS (ACM Transactions on Programming Languages and Sys-
tems), 24(3):217–298, 2002.

[20] Gabriele Taentzer. AGG: A tool environment for algebraic graph transformation.
In Proc. of AGTIVE ’99 (Applications of Graph Transformations with Industrial
Relevance, International Workshop), pages 481–488. Springer, 1999. LNCS 1779.

[21] Gabriele Taentzer. Towards common exchange formats for graphs and graph trans-
formation systems. In Proc. of UniGra ’01 (Uniform Approaches to Graphical Pro-
cess Specification Techniques), volume 44.4 of ENTCS, 2001.

[22] Dániel Varró. Towards symbolic analysis of visual modeling languages. In Work-
shop on Graph Transformation and Visual Modeling Techniques ’02, volume 72 of
ENTCS. Elsevier, 2002.

[23] A. Winter. GXL—overview and current status. In Proc. of GraBaTs ’02 (Workshop
on Graph-Based Tools), volume 72.2 of ENTCS, 2002.

12


	Introduction
	Graph Transformation Systems
	Verification Techniques
	System Description
	An Extended Example
	Conclusion

