
Unfolding Graph Transformation Systems:

Theory and Applications to Verification

Dedicated to Ugo Montanari on the occasion of his 65th brithday

Paolo Baldan1, Andrea Corradini2, and Barbara König3

1 Dipartimento di Matematica Pura e Applicata, Università di Padova, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy

3 Abt. für Informatik und Ang. Kognitionswissenschaft, Universität Duisburg-Essen,
Germany

baldan@math.unipd.it andrea@di.unipi.it barbara koenig@uni-due.de

Abstract. The unfolding of a system represents in a single branching
structure all its possible computations: it is the cornerstone both of se-
mantical constructions and of efficient partial order verification tech-
niques. In this paper we survey the contributions we elaborated in the
last decade with Ugo Montanari and other colleagues, concerning the
unfolding of graph transformation systems, and its use in the defini-
tion of a Winskel style functorial semantics and in the development of
methodologies for the verification of finite and infinite state systems.

1 Introduction

Graph transformation systems (gtss) [31] are recognized as an expressive speci-
fication formalism, especially suited for concurrent and distributed systems [16]:
the (topo)logical distribution of a system can be represented naturally by using
a graphical structure and the dynamics of the system, including the reconfig-
urations of its topology, can be modelled by means of graph rewriting rules.
Moreover gtss can be seen as a proper generalisation of a classical model of
concurrency, i.e., Petri nets [29], since the latter are essentially rewriting sys-
tems on (multi)sets, the rewriting rules being the transitions.

In a research activity started under the guidance of Ugo Montanari the con-
current behaviour of gtss has been thoroughly studied and a consolidated theory
of concurrency for such systems is now available, including the generalisation
of several semantics of Petri nets, like process and unfolding semantics (see,
e.g., [13, 30, 7]). The unfolding construction, presented in [30] for the single-
pushout approach and in [7] for the double-pushout approach, has been the basis
of a functorial semantics, recently presented in [9], that generalizes to gtss the
one developed by Winskel for safe Petri nets [33]. Furthermore, building on these
semantical foundations and in particular on the unfolding construction, a frame-
work has been developed where behavioural properties of gtss can be expressed

and verified. As witnessed, e.g., by the approaches in [25, 17] for Petri nets, truly
concurrent semantics are potentially useful in the verification of finite state sys-
tems, in that they help to avoid the combinatorial explosion arising when one
explores all possible interleavings of events. Such techniques have been general-
ized to a framework for the verification of finite state gtss in [5]. Interestingly,
several formalisms for concurrency and mobility can be encoded as gtss, in
a way that verification techniques developed for gtss potentially carry over to
such formalisms. Concurrent and mobile systems are often infinite state: in these
cases we can resort to approximation techniques in order to analyze them, as
proposed in [4, 10, 11].

In this paper we summarize a number of contributions published by the
authors in collaboration with Ugo Montanari and other colleagues, developing a
theory of concurrency for gtss and a framework for the verification of systems
modeled as gtss based on such semantical foundations. We start by presenting
the unfolding construction for gtss in Section 2. Next we describe, in a succinct
way due to size limitation, three frameworks where the unfolding construction
plays a crucial role, namely the functorial semantics of [9] in Section 3, the finite
prefix approach of [5] in Section 4, and the verification framework for infinite
state gtss based on finite over-approximations of the unfolding proposed in [4,
10, 11] in Section 5. Finally in Section 6 we draw some conclusions.

2 Unfolding semantics of graph transformation systems

In this section we first introduce the notion of graph rewriting used in the paper:
rewriting takes place on so-called typed graphs, namely graphs labelled over a
structure that is itself a graph [13], and it is defined according to the classical
algebraic, single-pushout approach (see, e.g., [15]). Next we review the notion of
nondeterministic occurrence grammar : this will be instrumental in presenting
the unfolding of a gts [7, 30] in Section 2.3.

2.1 Graph Transformation Systems

In the sequel, given a set A we denote by A∗ the set of finite strings of elements
of A. Given u ∈ A∗ we write |u| to indicate the length of u. If u = a1 . . . an and
1 ≤ i ≤ n, by [u]i we denote the i-th element ai of u. Furthermore, if f : A→ B

is a function then we denote by f∗ : A∗ → B∗ its extension to strings. When f

is partial, the extension is strict, i.e., f∗(u) is undefined if f is undefined on [u]i
for some i ∈ {1, . . . , |u|}.

Given a partial function f : A ⇀ B we will denote by dom(f) its domain,
i.e., the set {a ∈ A | f(a) is defined}. Let f, g : A ⇀ B be two partial functions.
We will write f ≤ g when dom(f) ⊆ dom(g) and f(x) = g(x) for all x ∈ dom(f).

Definition 1 (graphs and graph morphisms). A (hyper)graph G is a tuple
(VG, EG, cG), where VG is a set of nodes, EG is a set of edges and cG : EG → V ∗

G

is a connection function. A node v ∈ VG is called isolated if it is not connected

2

to any edge. Given two graphs G,G′, a partial graph morphism f : G ⇀ G′ is a
pair of partial functions f = 〈fV : VG ⇀ VH , fE : EG ⇀ EH〉 such that:

cH ◦ fE ≤ f∗V ◦ cG. (1)

We denote by PGraph the category of (unlabelled hyper-)graphs and partial
graph morphisms. A morphism is called total if both components are total, and
the corresponding subcategory of PGraph is denoted by Graph.

Notice that, according to condition (1), if f is defined over an edge then it must
be defined on all its connected nodes: this ensures that the domain of f is a
well-formed graph. We will write G1 ≃ G2 if G1 and G2 are isomorphic.

Definition 2 (typed graphs). Given a graph T , a typed graph G over T is
a pair 〈|G|, tG〉, where |G| is a graph and tG : |G| → T is a total morphism.
A partial morphism between T -typed graphs f : G1 ⇀ G2 is a partial graph
morphisms f : |G1| ⇀ |G2| consistent with the typing, i.e., such that tG1

≥
tG2

◦ f . The category of T -typed graphs and partial typed graph morphisms is
denoted by T -PGraph.

A typed graph G is called injective if the typing morphism tG is injective.
More generally, given n ∈ N, the graph is called n-injective if for any item x in
T it holds that |t−1

G (x)| ≤ n, namely if the number of “instances of resources” of
any type x is bounded by n.

Given a partial typed graph morphism f : G1 ⇀ G2, we denote by dom(f)
the domain of f typed in the obvious way.

Definition 3 (graph production and direct derivation). Given a graph
T of types, a (T -typed graph) production q is an injective partial typed graph

morphism Lq

rq

⇀ Rq. It is called consuming if the morphism is not total. A
production is node preserving if (i) rq is total on nodes, (ii) Lq does not contain
isolated nodes, and (iii) each isolated node in Rq belongs to rq(Lq). The typed
graphs Lq and Rq are called the left-hand side and the right-hand side of the
production, respectively.

A match of a production in a graph G is a total morphism g : Lq → G. A
match is valid when for any x, y ∈ |Lq|, if g(x) = g(y) then x, y ∈ dom(rq).

Given a production Lq

rq

⇀ Rq, a typed graph G and a
match g : Lq → G, we say that there is a direct deriva-
tion G ⇒q H, if the diagram to the right is a pushout
square in category T -PGraph.

Lq

g
��

rq � Rq

h�

G
d

�
H

Roughly speaking, the effect of the pushout construction in T -PGraph is the
following: graph H is obtained by first deleting from the graph G the image
of the items of the left-hand side which are not in the domain of rq, namely
g(Lq − dom(rq)), as well as all edges that would remain dangling, and then
adding the items of the right-hand side which are not in the image of rq, namely
Rq − rq(dom(rq)). The items in the image of dom(rq) are “preserved” by the
rewriting step (intuitively, they are accessed in a “read-only” manner).

3

3:w

4:w

:P

[engage]

[release]

1:CM 1:CM

:P

:P

:PE

:PE

:P

:P

2:v 2:v :w

1:v 1:v

:PE

:PE

2:w 2:w

3:w

4:w

Type graph

Start graph

c1

c2
CM

P

PE

:P

:P:CM

:v

v

w

c1

c2

:w

:w

:w

:w

:w

Fig. 1. The finite state gts CP.

Definition 4 (typed gts and derivation). A (T -typed) spo gts G (some-
times also referred to as a (graph) grammar) is a tuple 〈T,Gs, P, π〉, where Gs

is the (typed) start graph, P is a set of production names, and π is a function
which associates a T -typed production to each name in P . We denote by Elem(G)
the set VT ∪ ET ∪ P .

A derivation in G is a sequence of direct derivations beginning from the start
graph ρ = {Gi−1 ⇒qi−1

Gi}i∈{1,...,n}, with G0 = Gs: in this case we write
Gs ⇒∗

G Gn. A T -typed graph G is reachable in G if Gs ⇒∗
G G.

We will consider only gtss where all productions are consuming, and derivations
where matches are valid. The restriction to consuming productions is standard
in the framework of semantics combining concurrency and nondeterminism (see,
e.g., [19, 33]). On the other hand, considering valid matches only is needed to
have a computational interpretation which is resource-conscious, i.e., where a
resource can be consumed only once. In Sections 4 and 5 we shall further restrict
to node-preserving productions, for the reasons explained there.

Example 5. Consider the gts CP (a variation of the running example of [5]),
modeling a system where three processes of type P are connected to a com-
munication manager of type CM (see the start graph in Fig. 1, where edges
are represented as rectangles and nodes as small circles). Two processes may
establish a new connection with each other via the communication manager,
becoming processes engaged in communication (typed PE). This transformation
is modelled by the production [engage] in Fig. 1: observe that a new node con-
necting the two processes is created. The second production [release] terminates
the communication between two partners. A typed graph G over TCP is drawn
by labeling each edge or node x of G with “: tG(x)”. Only when the same graph-
ical item x belongs to both the left- and the right-hand side of a production we
include its identity in the label (which becomes “x : tG(x)”): in this case we also
shade the item, to stress that it is preserved by the production.

4

2.2 Nondeterministic occurrence grammars

Conceptually, a nondeterministic occurrence grammar O is a structure that can
be used to provide a static description of the computations of a given gts G: each
production of O represents an event, i.e., a specific application of a production
of G, while the items of the type graph of O represent items of graphs reachable
in derivations of G. Analogously to what happens for Petri nets, occurrence
grammars are “safe” gtss, where the dependency relations between productions
satisfy suitable acyclicity and well-foundedness requirements. The notion of safe
gts [13] generalizes the one for P/T nets which requires that each place contains
at most one token in any reachable marking.

Definition 6 (safe gts). A gts G = 〈T,Gs, P, π〉 is safe if, for all H such
that Gs ⇒∗ H, H is injective.

In a safe gts, each graph G reachable from the start graph is injectively
typed, and thus we can identify it with the corresponding subgraph tG(|G|) of
the type graph. With this identification, a production can be applied in G only
to the subgraph of the type graph which is the image via the typing morphism
of its left-hand side. Thus, according to its typing, we can safely think that a
production produces, preserves or consumes items of the type graph. Using a net-
like language, we speak of pre-set •q, context q and post-set q• of a production
q, defined in the obvious way. Clearly, the items of the type graph which are
used by more productions may induce certain dependencies among them: this is
formalized by the causality and asymmetric conflict relations introduced next,
which are pivotal for the definition of occurrence grammars.

Definition 7 (causal relation). The causal relation of a grammar G is the
binary relation < over Elem(G) defined as the least transitive relation satisfying:
for any node or edge x in the type graph T , and for productions q, q′ ∈ P

1. if x ∈ •q then x < q;
2. if x ∈ q• then q < x;
3. if q• ∩ q′ 6= ∅ then q < q′.

As usual ≤ is the reflexive closure of <. Moreover, for x ∈ Elem(G) we denote
by ⌊x⌋ the set of causes of x in P , namely {q ∈ P : q ≤ x}.

Note that the fact that an item is preserved by q and consumed by q′, i.e.,
q ∩ •q′ 6= ∅, does not imply q < q′. Instead, such productions are in asymmetric
conflict (see [8, 28, 23]): The application of q′ prevents q from being applied, so
that when both q and q′ occur in a derivation, then q must precede q′.

Definition 8 (asymmetric conflict). The asymmetric conflict relation of a
grammar G is the binary relation ր over the set of productions, defined by:

1. if q ∩ •q′ 6= ∅ then q ր q′;
2. if •q ∩ •q′ 6= ∅ and q 6= q′ then q ր q′;
3. if q < q′ then q ր q′.

5

Condition 1 is justified by the discussion above. Condition 2 essentially expresses
the fact that the ordinary symmetric conflict is encoded, in this setting, as an
asymmetric conflict in both directions. Finally, since < represents a global order
of execution, while ր determines an order of execution only locally to each
computation, it is natural to impose ր to be an extension of < (condition 3).

Definition 9 ((nondeterministic) occurrence grammar). A (nondeter-
ministic) occurrence grammar is a grammar O = 〈T,Gs, P, π〉 such that

1. its causal relation ≤ is a partial order, and, for any q ∈ P , the set ⌊q⌋ is
finite and the asymmetric conflict ր is acyclic on ⌊q⌋;

2. the start graph Gs is the set Min(O) of minimal elements of 〈Elem(O),≤〉
(with the graphical structure inherited from T and typed by the inclusion);

3. any item x in T is created by at most one production in P , namely | •x| ≤ 1;
4. for each q ∈ P , the typing tLq

is injective on the “consumed part” |Lq| −
|dom(rq)|, and tRq

is injective on the “produced part” |Rq| − rq(|dom(rq)|).

Since the start graph of an occurrence grammar O is determined by Min(O),
we often do not mention it explicitly. It is possible to show that, by the defining
conditions, each occurrence grammar is safe. Intuitively, conditions 1–3 recast
in the framework of graph grammars the analogous conditions of occurrence
nets (actually of occurrence contextual nets [8]). In particular, in condition 1,
the acyclicity of asymmetric conflict on ⌊q⌋ corresponds to the requirement of
irreflexivity for the conflict relation in occurrence nets. Condition 4, instead,
is closely related to safety and requires that each production consumes and
produces items with multiplicity one.

The finite computations of an occurrence grammar are characterized by spe-
cific subsets of productions.

Definition 10 (configuration). Let O = 〈T, P, π〉 be an occurrence grammar.
A configuration of O is a finite subset of productions C ⊆ P such that ր is
acyclic on C, and for any q ∈ C, ⌊q⌋ ⊆ C. Given two configurations C and C ′

we write C ⊑ C ′ if C ⊆ C ′ and for any q ∈ C, q′ ∈ C ′, if q′ ր q then q′ ∈ C.
The set of all configurations of O, ordered by ⊑, is denoted by Conf (O).

The intuition that a configuration represents a computation from the start
state is formalised by the next result (see Proposition 6.11 of [1]), which also
provides a “static” characterisation of the graph reached by such a derivation.

Proposition 11 (reachability of graphs generated by configurations).
Let O be an occurrence grammar, let C ∈ Conf (O) be a configuration and let

gr(C) = (Min(O) ∪
⋃

q∈C q
•) −

⋃
q∈C

•q.

Then gr(C) is reachable in O by applying all the productions of C in any order
compatible with ր.

As in the case of Petri nets, reachable states can be characterized in terms
of a concurrency relation: this is an easy consequence of Proposition 11.

6

Definition 12 (concurrent graph). Let O = 〈T, P, π〉 be an occurrence gram-
mar. A subgraph G of T is called concurrent if (1) the asymmetric conflict ր
restricted to

⋃
x∈G⌊x⌋ is acyclic and finitary; and (2) ¬(x < y) for all x, y ∈ G.

Proposition 13 (concurrency vs. reachability). Let O = 〈T, P, π〉 be an
occurrence grammar and G be a subgraph of T . Then G is concurrent iff it is a
subgraph of a graph reachable in O by applying all the productions in

⋃
x∈G⌊x⌋

in any order compatible with ր.

2.3 Unfolding construction

This section presents the unfolding construction which, applied to an spo gts G,
produces a nondeterministic occurrence grammar Us(G) describing its behaviour.
The idea is to begin with the start graph of the gts, and to apply in all possible
ways its productions to concurrent subgraphs, recording in the unfolding each
occurrence of a production and each new graph item generated.

A basic ingredient of the construction is the gluing operation. It can be seen
as a “partial application” of a production to a given match, in the sense that it
generates the new items as specified by the production, but items that should
have been deleted are not affected: intuitively, this is because such items may
still be used by another production in the nondeterministic unfolding.

Definition 14 (gluing). Let q = rq : Lq ⇀ Rq be a production, G a graph and
m : Lq → G a graph morphism. For any symbol z, we denote by gluez(q,m,G)
the graph 〈V,E, s, t〉, where V = VG ∪ mz(VRq

), E = EG ∪ mz(ERq
), and mz

is defined by: mz(x) = m(x) if x ∈ dom(rq) and mz(x) = 〈x, z〉 otherwise. The
connection function and the typing are inherited from G and Rq.

Therefore the gluing operation keeps unchanged the identity of the items already
in G, and records in each newly added item from Rq the given symbol z.

The unfolding of a gts is obtained as the union of a chain of occurrence
grammars, each approximating the unfolding up to a certain causal depth.

Definition 15 (unfolding). Let G = 〈T,Gs, P, π〉 be a gts. We inductively

define, for each n, an occurrence grammar Us(G)
[n]

= 〈T [n], P [n], π[n]〉 and a pair
of mappings ϕ[n] = 〈ϕT

[n] : T [n] → T, ϕP
[n] : P [n] → P 〉. Then the unfolding

Us(G) and the folding morphism ϕG : Us(G) → G are the occurrence grammar

and the morphism defined as the componentwise unions of Us(G)
[n]

and ϕ[n].

(n = 0) The components of the grammar Us(G)
[0]

are T [0] = |Gs|, P
[0] = π[0] =

∅. Morphism ϕ[0] : Us(G)
[0] → G is defined by ϕT

[0] = tGs
, ϕP

[0] = ∅.

(n → n + 1) The occurrence grammar Us(G)
[n+1]

is obtained by extending

Us(G)
[n]

with all the possible production applications to concurrent subgraphs of
its type graph. More precisely, let M [n] be the set of pairs 〈q,m〉 such that q ∈ P

is a production in G, m : Lq → 〈T [n], ϕT
[n]〉 is an injective match and m(|Lq|)

is a concurrent subgraph of T [n]. Then Us(G)
[n+1]

is the occurrence grammar
resulting after performing the following steps for each 〈q,m〉 ∈M [n].

7

– Add to P [n] the pair 〈q,m〉 as a new production name and extend ϕP
[n]

so that ϕP
[n](〈q,m〉) = q. Intuitively, 〈q,m〉 represents an occurrence of q,

where the match m is needed to record the “history”.

– Extend the type graph T [n] by adding to it a copy of each item generated by
the application q, marked by 〈q,m〉 (in order to keep trace of the history).
The morphism ϕT

[n] is extended consequently. Formally, the T -typed graph
〈T [n], ϕT

[n]〉 is replaced by glue〈q,m〉(q,m, 〈T
[n], ϕT

[n]〉).

– The production π[n](〈q,m〉) has the same untyped components as π(q). The
typing of the left-hand side is determined by m, and each item x in |Rq| −
rq(|dom(rq)|) is typed over the new item 〈x, 〈q,m〉〉 of the type graph.

The most relevant property of the unfolding is the fact that it provides a
compact representation of the behaviour of G, and in particular it represents
all the graphs reachable in G, in the following sense. If T ′ is the type graph of
the unfolding of G, ϕT : T ′ → T is the type graph component of the folding
morphism, and G is a subgraph of T ′, let us denote by ϕT (G) the same graph,
but typed over T by the restriction of the folding morphism, i.e., ϕT (G) =
〈G,ϕT |G〉. Then the next result is an easy consequence of the characterization
of the unfolding as a right adjoint, shown in [9].

Theorem 16 (completeness of the unfolding). Let G = 〈T,Gs, P, π〉 be a
gts. A T -typed graph G is reachable in G iff there exists a configuration C in
Conf (U(G)) such that G ≃ ϕT (gr(C)).

3 Functorial semantics: from nets to spo grammars

In this section we discuss the role played by the unfolding construction in the
development of a functorial semantics, first for Petri nets and then for gtss.

3.1 A coreflective semantics for Petri nets

In the theory of Petri Nets, the unfolding construction, whose generalization to
spo grammars has been presented in the previous section, is the cornerstone
of a functorial semantics which has been developed by Winskel in [33], based
on previous works with Nielsen and Plotkin [27]. Winskel shows that there is a
chain of categorical coreflections (a special kind of adjunction), leading from the
category S-N, having safe (marked) P/T nets as objects and suitably defined
morphisms, to the category Dom of finitary prime algebraic domains, through
the categories O-N of occurrence nets and PES of prime event structures (pess).

S-N
U

⊥
// O-N

E

⊥
//

? _
IOcc

oo

PES
L

∼
//

N
oo

Dom
P

oo

The first step is the construction unwinding a safe net N ∈ S-N into its
unfolding U(N) which, as in the case of grammars, records in its branching

8

and acyclic structure all the possible computations of the original net N . Every
possible transition occurrence (event) is identified uniquely in the unfolding by
its history, i.e., by the finite set of events which caused it, and events are related
by the causality and symmetric conflict relations induced by the intersections
of the pre- and post-sets: differently from the case of gtss, in a (safe) Petri net
all conflicts are symmetric because transitions do not have a context. Functor
U(N) : S-N → O-N is the right adjoint to the inclusion functor O-N →֒ S-N.

The subsequent step abstracts an occurrence net O to a pes E(O), which is
obtained from the unfolding simply by forgetting the places, and remembering
only the events and the causality and conflict relations among them. From a
prime event structure E it is possible to generate freely an occurrence net N (E)
which is the “most general” among those having E as underlying pes. Such a
net is obtained by considering the events of E as transition occurrences, and
introducing, among others, one fresh place for every pair of events related by
causality or conflict in E, in order to enforce the same relationships in N (E).
This construction defines a left adjoint to functor E : PES → O-N. The last
step, which establishes an equivalence between the categories PES and Dom,
maps any event structure to its domain of configurations.

3.2 Coreflective semantics: From nets to spo grammars

During several years the first two authors cooperated with Ugo Montanari in a
project aimed at generalizing the coreflective semantics of nets to graph gram-
mars. At the beginning, most of the efforts were concentrated on the double-
pushout approach to graph transformation, and partial results were reported
in [1, 7]. Only quite recently, however, a complete Winskel’s style coreflective se-
mantics has been developed successfully for the spo approach, as reported in [9],
and summarized by the following chain of adjunctions:

SPO-GG
Us

⊥
// SPO-OG

Es

⊥
//

? _oo

AES
La

⊥
//

N
oo

Dom

Pa
oo

Without delving into technical details, we summarize here the most challenging
problems we had to address during our project, and the way we faced them.

Obviously, the starting point is Definition 15, describing the unfolding con-
struction at the level of objects. To extend it to a functor Us providing a right
adjoint to the inclusion of the category SPO-OG of occurrence grammars into
the category SPO-GG of general grammars, we first had to identify a sen-
sible definition of grammar morphism. The chosen notion, discussed in [1], is
more general than others proposed in the literature, and, unlike others, it coin-
cides with the Petri net morphisms of [33] when restricted to graph grammars
which represent Petri nets. Furthermore, inspired by corresponding results for
nets in [26], we considered semi-weighted grammars, a class that strictly includes
safe grammars, with the additional advantage of being characterized by a “static
condition”, not involving the behaviour but just the structure of the grammar.

Concerning the next adjunction in the chain, it is worth stressing here the
presence of the category of asymmetric event structures (AES) in place of PES.

9

The point is that prime event structures, which only include the causality and
symmetric conflict relations, are not sufficient to capture properly the dependen-
cies among events of systems where productions may have a context, modeling
the read-only access to resources. In these cases, which include spo grammars
and contextual Petri nets, asymmetric conflicts (see Definition 8) arise as a prim-
itive concept. This motivated the introduction of asymmetric event structures
(which are equipped with causality and asymmetric conflict), and the study of
their category AES, which is shown to contain PES as a coreflective subcate-
gory (see [8]). It is worth mentioning that, with the goal of providing an event
structure semantics for nominal calculi, in [12] a simpler functorial semantics is
presented for a restricted class of persistent grammars, for which category PES
turns out to be sufficient, because asymmetric conflicts cannot arise.

Given an occurrence grammar O, the aes Es(O) is obtained by considering
the productions as events, equipped with causality and asymmetric conflict as for
Definitions 7 and 8. Moreover, a construction inspired by the work on contextual
nets [8] allows one to build a canonical occurrence spo graph grammar N (A)
from a given asymmetric event structure A, providing a left-adjoint to functor
Es (technically, this works when dealing with injective matches only).

The chain of coreflection is completed by using the fact that the equivalence
between PES and Dom generalizes to a coreflection between AES and Dom [8].

4 Verification of finite state gtss

In the approach originally proposed by McMillan for the analysis of Petri
nets [25] and further developed by many authors (see, e.g., [17, 18, 32]) the idea
is that given a finite state net, it is possible to identify a finite fragment of its un-
folding which is complete, i.e., which provides full information about the system
as far as reachability properties are concerned: this fragment can be character-
ized as the maximal prefix of the unfolding not including cut-off events, i.e.,
transitions which do not contribute to generating new markings.

In this section we summarize [5], where by exploiting the unfolding construc-
tion of Section 2.3, we have generalized McMillan’s approach to spo gtss by
introducing an original notion of “strong cut-off” (which takes into account the
fact that a production can have several different histories), and we have shown
how a finite complete prefix of the unfolding can be used to verify interesting
properties of the graphs reachable in the gts.

4.1 Rewriting up to isolated nodes

In the work on verification of graph transformation systems summarized in this
and in the next section, we consider only systems consisting of node-preserving
productions, as introduced in Definition 3, and rewriting up to isolated nodes
(graphs which are isomorphic after deleting all isolated nodes are considered
indistinguishable). As far as the expressive power is concerned, this is a mild
restriction, since the deletion of a node can usually be modelled by leaving it

10

isolated: Conditions (ii) and (iii) of Definition 3 guarantee that isolated nodes do
not take part to the rewriting. Also, this is consistent with the fact that the logic
we shall use for verification purposes (see Definition 22) is not able to distinguish
graphs which are isomorphic up to isolated nodes.

In the rest of the paper, we will assume that all productions are node pre-
serving. Moreover, given any graph G and any subset of edges X ⊆ EG, we
denote by graph(X) the smallest subgraph of G having X as set of edges, and
we say that G and G′ are isomorphic up to isolated nodes, denoted G

...
≃G′, if

graph(EG) ≃ graph(EG′). Finally, for a fixed n ∈ N, we say that a gts G is
n-bounded if for each graph H reachable in G there is an n-injective graph H ′

such that H ′ ...
≃H, and a gts is bounded or finite state if it is n-bounded for

some n ∈ N.

4.2 Finite complete prefix of bounded gtss

A history of a production in a computation is the set of all the events which
must precede its application. Due to the presence of asymmetric conflicts, a
production q does not have a unique history in general, because depending on
the specific computation we consider, some of the productions in asymmetric
conflict with q might have been applied or not before q.

Definition 17 (history). Let O be an occurrence grammar, let C ∈ Conf (O)
be a configuration and let q ∈ C. The history of q in C is the set of events
C[[q]] = {q′ ∈ C : q′ ր∗

C q}, where րC is the restriction of ր to C. We denote
by Hist(q) the set of histories of q, i.e., Hist(q) = {C[[q]] : C ∈ Conf (O)}.

Now, let G = 〈T,Gs, P, π〉 denote a gts, fixed throughout the section, and let
Us(G) = 〈T ′, P ′, π′〉 be its unfolding with ϕ : Us(G) → G the folding morphism, as
in Definition 15. In order to identify a finite and complete prefix of the unfolding
of a bounded gts, the idea is to avoid useless productions in the unfolding, i.e.,
productions which do not contribute to generating new graphs. The definition of
“cut-off event” introduced by McMillan for Petri nets in order to formalize such
a notion has to be adapted to this context since, as explained above, for graph
grammars a production may have different histories.

Definition 18 (cut-off). A production q ∈ P ′ of the unfolding Us(G) is a cut-
off if there exists q′ ∈ P ′ such that ϕT (gr(⌊q⌋))

...
≃ϕT (gr(⌊q′⌋)) and |⌊q′⌋| < |⌊q⌋|.

A production q is a strong cut-off if for all Cq ∈ Hist(q) there exist q′ ∈ P ′

and Cq′ ∈ Hist(q′) such that ϕT (gr(Cq))
...
≃ϕT (gr(Cq′)) and |Cq′ | < |Cq|. The

truncation of G is the greatest prefix T (G) of Us(G) not including strong cut-offs.

Theorem 19 (completeness and finiteness of the truncation). The trun-
cation T (G) is a complete prefix of the unfolding, i.e., for any reachable graph
G of G there is a configuration C in Conf (T (G)) such that ϕT (gr(C))

...
≃G. Fur-

thermore, if G is bounded then the truncation T (G) is finite.

11

Unfortunately, neither the statement of the above theorem nor its proof (see
Appendix B of the full version of [5]) suggest a way to modify the unfolding
construction of Definition 15 in order to obtain the truncation of a bounded
gts: this is because the notion of strong cut-off refers to the set of histories
of a production, that in general could be infinite. Only recently the authors
proposed an algorithm (see [6]) which solves a similar problem in the simpler
case of contextual Petri nets: we are confident that this algorithm can be adapted
to gtss, but space constraints do not allow us to elaborate on that here.

Instead, a class of gtss can be identified for which an obvious adaptation
of the unfolding construction does produce a finite complete prefix. It is char-
acterized by a property called “read-persistence”, since it appears as the graph
grammar theoretical version of the notion introduced for contextual nets in [32].

Definition 20 (read-persistence). An occurrence grammar O = 〈T, P, π〉 is
called read-persistent if for any q1, q2 ∈ P , if q1 ր q2 then either q1 is a cause
of q2, or q1 and q2 are in conflict, i.e., they cannot fire in the same derivation.
A gts G is called read-persistent if its unfolding U(G) is read-persistent.

An adaptation of the algorithm originally proposed in [25] for ordinary nets
and extended in [32] to read-persistent contextual nets, works for read-persistent
gtss as well, because in this case every production has a single history, and thus
the notions of cut-off and of strong cut-off of Definition 18 coincide. Roughly,
for such gtss a complete finite prefix can be obtained by slightly modifying the
inductive step of the construction of Definition 15 as follows: the production
occurrences in the set M [n] have to be handled in increasing order according
to the size of the corresponding history, and a production occurrence has to be
added to the unfolding only if it is not a cut-off in the prefix computed so-far.

An obvious class of read-persistent systems consists of those gtss where any
edge preserved by productions is never consumed. For instance, the gts CP in
our running example is read-persistent, since CM , the only edge preserved by
productions, is never consumed. Its truncation is the grammar T (CP) depicted in
Fig. 2. Denote by TT its type graph. Note that applying the production [release]
to any subgraph of TT matching its left-hand side would result in a cut-off: this
is the reason why T (CP) does not include any instance of production [release].
The start graph of the truncation is isomorphic to the start graph of gts CP
and it is mapped injectively to the graph of types TT in the obvious way.

4.3 Checking properties of reachable graphs

Given a finite state gts G, a complete prefix can be used to check whether
there exists at least one reachable graph satisfying a certain property F , or if a
property F is an “invariant” of G, i.e., it is satisfied by all reachable graphs. The
graph properties of interest will be expressed as formulae of a quite expressive
logic called L2 (introduced below), whose induced logical equivalence on finite
graphs is “isomorphism up to isolated nodes”. That is, two finite graphs G and
G′ satisfy exactly the same formulae of L2 if and only if G

...
≃G′.

12

3:12 :w

4:14 :w

3:13 :w

4:14 :w

3:12 :w

4:13 :w

3:12 :w

4:14 :w

3:13 :w

4:14 :w

3:12 :w

4:13 :w

1:CM

12:w

Type graph

2:P

3:P

4:P

5:PE

7:PE

8:PE

10:PE

9:PE

11:v

15:w

16:w

17:w

6:PE

13:w

14:w

:2 :P

:3 :P

:2 :P

:4 :P

:3 :P

:4 :P

:5 :PE

:6 :PE

:8 :PE

:9 :PE

:10 :PE

1:1 :CM

1:1 :CM

1:1 :CM 1:1 :CM

[engage 1]

[engage 2]

[engage 3]

2:11 :v

2:11 :v

1:1 :CM

1:1 :CM

2:11 :v

2:11 :v

2:11 :v

2:11 :v

:16 :w

:17 :w

:7 :PE

:15 :w

Fig. 2. The truncation T (CP) of the gts in Fig. 1.

Now, the usefulness of the truncation (or of any other finite complete pre-
fix) resides in the fact that since for each graph G reachable in G there is a G′

reachable in T (G) such that ϕT (G′)
...
≃G, it is sufficient to consider the graphs

reachable in T (G), retyped over T via ϕT (·). But we know that T (G) is an occur-
rence grammar, and thus the reachable graphs can be identified with subgraphs
of its type graph, which in turn are uniquely identified by their sets of edges,
because we rewrite up to isolated nodes.

Therefore, we can verify if F holds for all (some) reachable graphs by checking
that ϕT (graph(m)) |= F for all (some) sets of edges m reachable in T (G). This
fact can be formalized in a convenient way by introducing a (safe) Petri net
“underlying” the truncation, and seeing a set of edges of T (G) as a marking of
such net. Furthermore, since this net is fixed and finite, it is possible to translate
every formula F ∈ L2 into a propositional formula over markings M [F] such
that, for any reachable marking m,

ϕT (graph(m)) |= F iff m |= M [F].

In this way the original problem is reduced to a verification problem of a formula
over a Petri net, for which existing tools could be used.

Given an occurrence grammar O, the underlying Petri net is an occurrence
contextual net (i.e., a Petri net with read arcs, see, e.g., [8, 32]).

Definition 21 (Petri net underlying an occurrence grammar). The con-
textual Petri net underlying an occurrence grammar O = 〈T ′, P ′, π′〉, denoted
by Net(O), is the safe Petri net having the set of edges ET ′ as places and a
transition for every production q ∈ P ′, with pre-set •q ∩ ET ′ , post-set q• ∩ ET ′

and context q ∩ ET ′ .

For instance, the Petri net Net(T (CP)) underlying the truncation of CP (see
Fig. 2) is depicted in Fig. 3. Read arcs are represented as undirected lines.

13

engage2 engage3engage1

5 : PE 6 : PE 7 : PE 8 : PE 9 : PE 10 : PE

1 : CM

4 : P

3 : P

2 : P

Fig. 3. The Petri net underlying the truncation T (CP) in Fig. 2

Next we define the monadic second-order logic L2 used for specifying prop-
erties of graphs typed over a fixed graph T . Quantification is allowed over edges,
but not over nodes (as in [14]).

Definition 22 (graph logic). Let X1 = {x, y, . . .} be a set of (first-order) edge
variables and let X2 = {X,Y, . . .} be a set of (second-order) variables represent-
ing edge sets. The set of graph formulae of the logic L2 is defined as follows,
where ℓ ∈ ET , i, j ∈ N:

F ::= x = y | ci(x) = cj(y) | type(x) = ℓ | x ∈ X (Predicates)

F ∨ F | ¬F | ∃x.F | ∃X.F (Connectives / Quantifiers)

We denote by free(F) and Free(F) the sets of first-order and second-order vari-
ables, respectively, occurring free in F , defined in the obvious way.

Given a T -typed graph G, a formula F in L2, and two valuations σ : free(F) →
E|G| and Σ : Free(F) → P(E|G|), the satisfaction relation G |=σ,Σ F is defined
inductively in the usual way; for instance G |=σ,Σ x = y iff σ(x) = σ(y), G |=σ,Σ

type(x) = ℓ iff tG(σ(x)) = ℓ, and G |=σ,Σ x ∈ X iff σ(x) ∈ Σ(X).
Interesting graph properties can be expressed in L2, such as the existence

or adjacency of edges with specific typing, and the absence of certain paths
or of certain cycles. Such properties may be used to represent in the graph
transformation model relevant properties of the system at hand, such as security
properties or deadlock-freedom.

Recall that a marking of a safe net is simply a subset of its places. The syntax
of the formulae over markings is

Q ::= e | ¬Q | Q ∧Q | Q ∨Q | true | false,

where e ∈ ET ′ . These formulae are interpreted over markings of Net(T (G)):
m |= e if e ∈ m, and logical connectives are treated as usual.

As mentioned above, given a gts G and the truncation T (G) (or any other
a finite complete prefix), any formula F ∈ L2 can be effectively translated to
a marking formula M [F] such that G satisfies F iff the Petri net Net(T (G))
underlying the prefix satisfies M [F]. We omit the details of the translation,

14

which can be found in [5], and we focus on the running example CP. Suppose,
e.g., that we want to check that all graphs reachable in our sample gts CP satisfy
Φ, where Φ is a L2 formula specifying that every engaged process is connected
through connection c2 to exactly one other engaged process, i.e.,

Φ ≡ ∀x.(type(x) = PE ⇒ ∃y.(x 6= y ∧ type(y) = PE ∧ c2(x) = c2(y)

∧ ∀z.(type(z) = PE ∧ x 6= z ∧ c2(x) = c2(z) ⇒ y = z))).

The encoding procedure leads to the formula Q = M [Φ]

Q ≡ (5 : PE ⇐⇒ 6: PE) ∧ (7 : PE ⇐⇒ 8: PE) ∧ (9 : PE ⇐⇒ 10: PE)

which has to be checked for all reachable markings of the net of Fig. 3. An
efficient algorithm for checking if a marking formula is satisfied by at least one
reachable marking of an (occurrence) net Net(T (G)) is presented in [5]: it exploits
the mutual relationships between items expressed by the causality, (asymmetric)
conflict and concurrency relations.

5 Verification of infinite state gtss

If a gts is not finite state, obviously no finite prefix of the unfolding can be
complete in the sense of Theorem 19. In this section we describe a framework,
developed in [4, 10, 11], where behavioural properties of systems described as
(possibly infinite state) gtss can be specified and verified. Here we consider
rewriting up to isolated nodes (see Section 4.1), and further we require matches
to be injective on edges.

Following the guidelines of the verification technique presented in the previ-
ous section, the framework is based on finite approximations of the unfolding of
a given gts which have an underlying Petri net structure. On these structures,
formulae of a suitable temporal logic interpreted over derivations of a gts can
be verified, by first translating them to a simpler logic describing computations
of a fixed Petri net.

5.1 Approximating the behaviour of gtss.

A basic ingredient of our verification framework is a technique, proposed in [4,
10], for approximating the behaviour of gtss by means of finite Petri net-like
structures. More precisely, an approximated unfolding construction allows to gen-
erate from a given gts G (which can be infinite state) suitable finite structures,
called coverings, which provide (over-)approximations of the behaviour of G.

The coverings of a gts G are Petri graphs over G, i.e., (contextual) Petri nets
equipped with an additional graphical structure where the places play the role
of edges, while the transitions represent applications of the productions of G.

In the following, given a set A we denote by A⊕ the free commutative monoid
generated by A, whose elements are finite multisets of elements of A. If f : A→ B

is a function, then we denote by f⊕ : A⊕ → B⊕ its extension to multisets.

15

Definition 23 (Petri graph). Let G = 〈T,G0, P, π〉 be a gts. A Petri graph
K (over G) is a tuple 〈G,N,m0〉 where G is a T -typed graph and

– N = 〈EG, TN ,
•(), ()•, (), pN 〉 is a place/transition Petri net, where the

set of places EG is the set of edges of G, TN is the set of transitions,
•(), ()•, () : TN → E⊕

G specify the pre-set, post-set and context of each tran-
sition and pN : TN → P is the labelling function, mapping each transition to
a corresponding production;

– m0 ∈ E⊕
G is the initial marking of the Petri graph, satisfying m0 = ι⊕(EG0

)
for a suitable graph morphism ι : G0 → G (i.e., m0 must properly correspond
to the initial state of G).

We will write m [q〉m′ if a transition labelled by q ∈ P is enabled at marking m
and its firing produces m′. A marking is called reachable (coverable) in K if it
is reachable (coverable) from the initial marking in the Petri net underlying K.

As an example, let Us(G) = 〈T ′, P ′, π′〉 be the unfolding of a gts G =
〈T,Gs, P, π〉, and let 〈ϕT : T ′ → T, ϕP : P ′ → P 〉 be the folding morphism,
as presented in Definition 15. Then it is possible to see the unfolding as a Petri
graph 〈G,N,m0〉 for G: the net component N is as for Definition 21, the labeling
of transitions is given by ϕP , G is the T -typed graph 〈T ′, ϕT 〉, and m0 is the set
of minimal edges, with respect to causality, of G.

The coverings of a gts G can approximate its behaviour at different levels of
accuracy. For each k ∈ N, the k-covering of G, denoted Ck(G), over-approximates
the behaviour of G in the sense that every derivation sequence of G is mapped to
a valid firing sequence of (the Petri net component of) Ck(G), and every graph
reachable from the start graph of G can be mapped homomorphically to (the
graphical component of) Ck(G), and its image is reachable in the Petri graph.
Furthermore, this over-approximation is exact up to causal depth k, in the sense
that each graph reachable in G in at most k derivation steps can be mapped
injectively to Ck(G) (see Section 5.2).

The algorithm for the construction of the k-covering of a gts G works induc-
tively like the unfolding construction, but the classical unfolding steps, where
the application of a production to a given match is recorded by adding to the
type graph the newly generated items and to the set of productions the new
production occurrence, are interleaved with suitably defined folding steps, which
merge in the graphical part of the current Petri graph two occurrences of the
left-hand side of a production, if one causally depends on the other. The ter-
mination of the algorithm is ensured by giving higher priority to folding steps,
and the exactness of the approximation up to causal depth k by forbidding the
application of folding steps to items of smaller depth.

We define the depth of a transition t (an element of N ∪ {∞}) to be the
length of the longest sequence t0 < t1 < . . . < tn < t. The depth of an edge is
the maximum among the depths of transitions which contain the edge in their
post-set. The k-covering Ck(G) of a gts G = 〈T,G0, P, π〉 is produced by the
last step of the following (terminating) algorithm which generates a sequence
Ki = 〈Gi, Ni,mi〉 of Petri graphs over G.

16

1. K0 = 〈G0, N0,m0〉, where the net N0 contains no transitions and m0 = EG0
.

2. As long as one of the following steps is applicable, transform Ki into Ki+1,
giving precedence to folding steps.

Unfolding. Find a production q ∈ P with π(q) : Lq ⇀ Rq and a match
n : Lq → Gi such that n⊕(ELq

) is coverable in Ki. Then extend Ki by
gluing Rq to Gi (as described in Definition 14) and add a new transition,
labelled by q, representing the application of production q.

Folding. Find a production q ∈ P with π(q) : Lq ⇀ Rq and two matches
n, n′ : Lq → Gi, at depth greater than or equal to k, such that

– n⊕(EL) and n′
⊕

(EL) are coverable in Ni and
– the first match has been unfolded with the introduction of a transition
t and the second match causally depends on t.

Then merge the two matches, by setting n(e) ≡ n′(e) for each e ∈ ELq
, and

factoring all components of Ki through the equivalence relation induced by
≡ on edges, nodes and transitions.

For example, if we extend the gts CP of Example 5 with production [fork]
(see Fig. 4) that models the forking of a non-engaged process, we obtain an
infinite state system: in fact graphs with an unbounded number of processes
are reachable. If we compute the coarsest approximation, i.e., the 0-covering, we
obtain the Petri graph shown in Fig. 4 (edge and node identities are omitted):

2:w1:v

:P

:P

:P

1:v

2:w

[fork]

:w

:w

CM

P

PE

2

2

2

2

2

Fig. 4. Additional rule [fork] (left) and Petri graph over-approximating the gts (right)

Several structures have been merged, for instance all engaged and all non-
engaged processes. This happens because all three initial processes will be the
cause of another future process, causing the fusion of all of them.

Despite the fact that the graph underlying the Petri graph is not very different
from the type graph of the gts, there are still some interesting properties of the
system that can be proved by exploiting the 0-covering, using the techniques
described in the next section:

– There is always exactly one communication manager.
– There will always be at least three processes (engaged or non-engaged).
– The number of engaged processes is always even.

17

– No engaged process is ever connected to a non-engaged process.

Due to the simplicity of the running example, these properties could easily be
proved also as invariants of the transformation rules. For more complex examples
we refer the reader to [4, 2].

5.2 Verifying behavioural properties of gtss

As mentioned above, the k-covering Ck(G) over-approximates the behaviour of
the original gts G. In order to formalize this fact, we will first generalize the
notion of a subgraph generated by a set of edges (introduced at the end of
Section 4.1) to a graph generated by a marking: Let 〈G,N,m0〉 be a Petri graph
and let m ∈ E⊕

G be a marking of N . The graph generated by m, denoted by
graph(m), is the T -typed graph H without isolated nodes (which is unique up
to isomorphism) such that there exists a T -typed morphism ψ : H → G injective
on nodes with ψ⊕(EH) = m.

Proposition 24 (simulation). Let G be the set of graphs reachable from G0

in G and let M be the set of reachable markings in Ck(G) = 〈G,N,m0〉. Then
there exists a simulation S ⊆ G × M with the following properties:

– (G0,m0) ∈ S;
– whenever (G′,m′) ∈ S and G′ ⇒q G

′′, then there exists a marking m′′ with
m′ [q〉m′′ and (G′′,m′′) ∈ S;

– for every (G′,m′) ∈ S there exists an edge-bijective graph morphism
ϕ : G′ → graph(m′).

The simulation relation just described, whose existence can be proved fairly
easily by construction, allows one to exploit the finite k-covering Ck(G) to verify
certain properties of the reachable graphs of gts G. In fact, if a given property
over graphs F ∈ L2 is reflected by edge-bijective graph morphisms (i.e., if f :
G → G′ is edge-bijective and G′ |= F then G |= F), then if F is satisfied by
graph graph(m) for all markings m reachable in Ck(G), it is also satisfied by all
graphs reachable in G.

A couple of considerations are in order here. First, unfortunately it is undecid-
able if a formula of L2 is reflected by edge-bijective morphisms, but a syntactic,
sufficient criterion based on a simple type system is presented in [11]. Second,
the Petri net underlying the k-covering is finite, but in general it is not finite
state. Nevertheless, several verification techniques and tools have been developed
for the analysis of nets, and thus the possibility of reducing the verification of
a property from reachable graphs of a gts to reachable markings of a net is of
high pragmatic value.

To this aim, following the guidelines we have described in Section 4.3 for
finite state gtss, first we introduced multiset formulae which are evaluated on
markings of the k-coverings: their syntax is obtained by extending the one pre-
sented in Section 4.3 with the atomic formula #e ≤ c for e ∈ EG and c ∈ N,
meaning the number of tokens in e is smaller than or equal to c. Next we

18

have provided an encoding M2 of L2-formulae into multiset formulae, such that
graph(m) |= F ⇐⇒ m |= M2[F] for every reachable marking of Ck(G). This
translation is a kind of quantifier elimination procedure, which is possible be-
cause the graph underlying Ck(G) is finite.

Finally, we enriched the verification framework with a temporal logic called
µL2, which is a propositional µ-calculus where atomic propositions are formulae
of L2. The formulae of µL2 are interpreted over a graph transition system, i.e., a
transition system where the states are graphs, and their syntax is the following:

M ::= F | X | 3M | 2M | ¬M |M1 ∨M2 |M1 ∧M2 | µX.M | νX.M

where F ranges over closed formulae in L2 and X ∈ X are proposition variables.
Intuitively, an atomic proposition F ∈ L2 holds in any state (graph) satisfying F
according to the discussion after Definition 22. A formula 3M / 2M holds in a
state if some / any single step leads to a state where M holds. The connectives
¬,∨, ∧ are interpreted in the usual way, and the formulae µX.M and νX.M

represent the least and greatest fixed point over X, respectively.
Now, for suitable fragments of logic µL2, e.g., the fragment 2µL2 without

negation and the “possibility operator” 3, by Proposition 24 and exploiting
general results in [24], we can translate a temporal formula M over G where
the atomic propositions are reflected by edge-bijective morphisms to a temporal
formula M2[M] over markings (using for atomic propositions the encoding men-
tioned above), ensuring that if Ck(G) |= M2[M] then G |= M , i.e., M is valid
for the original gts. We conclude by recalling that temporal state-based logics
over Petri nets, i.e., logics where basic predicates have the form #s ≤ c, are not
decidable in general, but important fragments of such logics are [20].

6 Conclusions

We presented an overview of the work on the unfolding semantics of gtss, dis-
cussing its role for the development of a functorial concurrent semantics for gtss
and its possible applications to the verification of (infinite and finite state) sys-
tems modelled as gtss. We used the spo approach since due to the absence of
the dangling condition it provides us with a more elegant unfolding semantics,
but a large part of the theory can be equally developed for the dpo approach.
For the approaches to verification, which deal with node-preserving grammars,
the choice between spo and dpo is immaterial.

The framework can appear fairly abstract and theoretical in nature. However,
a prototype tool called Augur [21] has been implemented for computing the k-
covering of a given graph transformation system. The current implementation
is restricted to rules with discrete contexts. The tool can be downloaded at
http://www.ti.inf.uni-due.de/research/augur 1/. The input and output
of Augur is in GXL and GTXL, an XML standard for the exchange of graphs
and graph transformation systems. Suitable converters have been added in order
to visualize rules and Petri graphs and to extract the Petri net component of a
Petri graph, which can then be analyzed with standard algorithms for nets.

19

Concerning the verification of finite state systems, the approach based on the
construction of a finite complete prefix of the unfolding currently only applies
to a special class of gtss (read persistent gtss). The problem of generalising
the technique to the full class of gtss is still open. An algorithm solving a
similar problem in the simpler case of contextual Petri nets has been proposed
recently [6] and we are confident that this can be adapted to gtss.

A very stimulating direction of further research is the extension of the work
on unfolding to the setting of rewriting systems over adhesive categories. Adhe-
sive categories [22] have been recently introduced as an elegant and extremely
general framework where the algebraic approaches to rewriting can be devel-
oped, encompassing rewriting on (several brands of) graphs and more general
graphical structures like bigraphs or uml models. An unfolding theory for adhe-
sive rewriting systems would thus apply uniformly to all these structures. Some
promising steps have been taken in [3], which develops a concurrent semantics
for adhesive rewriting systems based on deterministic processes.

References

1. P. Baldan. Modelling concurrent computations: from contextual Petri nets to graph
grammars. PhD thesis, Department of Computer Science, University of Pisa, 2000.
Available as technical report n. TD-1/00.

2. P. Baldan, A. Corradini, J. Esparza, T. Heindel, B. König, and V. Kozioura. Ver-
ifying Red-Black Trees. In Proc. of COSMICAH 2005, volume RR-05-04, pages
1–15. Queen Mary University, Dept. of Computer Science, 2005.

3. P. Baldan, A. Corradini, T. Heindel, B. König, and P. Sobociński. Processes for
adhesive rewriting systems. In W. Aceto and A. Ingólfsdóttir, editors, Proceedings
of FoSSaCS ’06, volume 3921 of LNCS, pages 202–216. Springer, 2006.

4. P. Baldan, A. Corradini, and B. König. A static analysis technique for graph
transformation systems. In K.G. Larsen and M. Nielsen, editors, Proceedings of
CONCUR 2001, volume 2154 of LNCS, pages 381–395. Springer, 2001.

5. P. Baldan, A. Corradini, and B. König. Verifying finite-state graph grammars: an
unfolding-based approach. In P. Gardner and N. Yoshida, editors, Proceedings of
CONCUR 2004, volume 3170 of LNCS, pages 83–98. Springer, 2004. Full version
as Tech. Rep. CS-2004-10, Dept. of Comp. Sci., University Ca’ Foscari of Venice.

6. P. Baldan, A. Corradini, B. König, and S. Schwoon. McMillan’s Complete Prefix
for Contextual Nets. ToPNoC - Trans. on Petri Nets and Other Models of Con-
currency, 2008. Special Issue from PN 2007 Workshops and Tutorials, to appear.

7. P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Structure Se-
mantics for Graph Grammars. In Proc. of FoSSaCS ’99, volume 1578 of LNCS,
pages 73–89. Springer, 1999.

8. P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asymmetric
event structures and processes. Information and Computation, 171(1):1–49, 2001.

9. P. Baldan, A. Corradini, U. Montanari, and L. Ribeiro. Unfolding Semantics of
Graph Transformation. Information and Computation, 205:733–782, 2007.

10. P. Baldan and B. König. Approximating the behaviour of graph transformation
systems. In Proc. of ICGT’02, volume 2505 of LNCS, pages 14–29. Springer, 2002.

11. P. Baldan, B. König, and B. König. A logic for analyzing abstractions of graph
transformation systems. In R. Cousot, editor, Proceedings of SAS’03, volume 2694
of LNCS, pages 255–272. Springer, 2003.

20

12. R. Bruni, H.C. Melgratti, and U. Montanari. Event structure semantics for nominal
calculi. In C. Baier and H. Hermanns, editors, Proceedings of CONCUR 2006,
volume 4137 of LNCS, pages 295–309. Springer, 2006.

13. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26:241–265, 1996.

14. B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In Rozenberg [31].

15. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic Approaches to Graph Transformation II: Single Pushout Approach and
comparison with Double Pushout Approach. In Rozenberg [31].

16. H. Ehrig, J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Vol. 3: Concurrency,
Parallelism and Distribution. World Scientific, 1999.

17. J. Esparza. Model checking using net unfoldings. Science of Computer Program-
ming, 23(2–3):151–195, 1994.

18. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design, 20(20):285–310, 2002.

19. U. Goltz and W. Reisig. The non-sequential behaviour of Petri nets. Information
and Control, 57:125–147, 1983.

20. R.R. Howell, L.E. Rosier, and H. Yen. A taxonomy of fairness and temporal logic
problems for Petri nets. Theoretical Computer Science, 82:341–372, 1991.

21. B. König and V. Kozioura. Augur 2—a new version of a tool for the analysis
of graph transformation systems. In R. Bruni and D. Varró, editors, Proceedings
of GT-VMT ’06 (Workshop on Graph Transformation and Visual Modeling Tech-
niques), ENTCS. Elsevier, 2006. To appear.

22. S. Lack and P. Sobociński. Adhesive categories. In I. Walukiewicz, editor, Pro-
ceedings of FoSSaCS’04, volume 2987 of LNCS, pages 273–288. Springer, 2004.

23. R. Langerak. Transformation and Semantics for LOTOS. PhD thesis, Department
of Computer Science, University of Twente, 1992.

24. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6:1–35, 1995.

25. K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
26. J. Meseguer, U. Montanari, and V. Sassone. On the semantics of Petri nets. In

Proceedings of CONCUR ’92, volume 630 of LNCS, pages 286–301. Springer, 1992.
27. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,

Part 1. Theoretical Computer Science, 13:85–108, 1981.
28. G.M. Pinna and A. Poigné. On the nature of events: another perspective in con-

currency. Theoretical Computer Science, 138(2):425–454, 1995.
29. W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theoretical

Computer Science. Springer, 1985.
30. L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.

PhD thesis, Technische Universität Berlin, 1996.
31. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph

Transformation, Vol. 1: Foundations. World Scientific, 1997.
32. W. Vogler, A. Semenov, and A. Yakovlev. Unfolding and finite prefix for nets with

read arcs. In Proceedings of CONCUR’98, volume 1466 of LNCS, pages 501–516.
Springer, 1998.

33. G. Winskel. Event Structures. In Petri Nets: Applications and Relationships to
Other Models of Concurrency, volume 255 of LNCS, pages 325–392. Springer, 1987.

21

