
Case Study: Verification of a Leader Election
Protocol using Augur?

Barbara König1 and Vitaly Kozyura2

1 Abteilung für Informatik und Angewandte Kognitionswissenschaft,
Universität Duisburg-Essen, Germany
2 SAP Research, Darmstadt, Germany

Abstract. We consider a case study of a leader election protocol and
verify it using the tool Augur, which is based on unfolding techniques for
graph transformation systems. We first investigate a finite-state variant
of the leader election protocol and show how to verify it using McMillan-
style unfoldings, avoiding an exponential explosion of the state space.
Then, in a next step, we consider a parametric version based on at-
tributed graph transformation. This variant is verified via approximated
unfoldings in combination with counterexample-guided abstraction re-
finement.

1 Introduction

We solve a case study concerning a leader election protocol that one of the
authors proposed for the GraBaTs tool contest in 2009, to be held at the Fifth
International Workshop on Graph-Based Tools in Zurich, Switzerland.

A simple leader election protocol (according to Chang und Roberts [5]) works
as follows: there is a set of processes arranged in a ring, i.e., every process has
a unique predecessor and a unique successor. Furthermore each process has a
unique Id and there exists a total order on the Ids (assume that Ids are natural
numbers).

The leader will be the process with the smallest Id, however no process knows
what is the smallest Id at the start of the protocol. Hence every process generates
a message with its own Id and sends it to its successor. A received message with
content MId is treated as follows by a process with Id PId :

– if MId < PId , then forward the message to the next successor
– if MId = PId , then the process declares itself the leader
– If MId > PId , then do not pass on the message (or alternatively discard it)

The description of the case study called for the verification of this protocol,
specified as a graph transformation system. The property to verify is that there
will never be two processes declaring themselves as leaders. It was left open
whether to consider a finite or an infinite state version.
? Supported by DFG project SANDS.



2 Finite-State Version

We now show how to apply unfolding techniques in the style of Winskel [13]
and McMillan [12] to verify the protocol. We consider a finite-state variant by
slightly modifying the rules given in the case study description (since those are
infinite-state). Specifically we make sure that each process generates at most one
message.

Note that we work with hypergraphs containing 0-ary, unary and binary
edges. The rules are given in Figure 1 where preservation of items (only nodes
so far) is indicated by small numbers. The start graph presented here is only
an example graph for n = 3 processes. In the following we describe how to
verify systems with a ring of fixed, but arbitrary size, which does not extend or
shrink during runtime (such a behaviour is treated in Section 3). Furthermore
the system is modelled in such a way that there are many messages left after
having elected the leader, which however does not compromise the correctness
of the protocol.

S(1) S(2)

S(3)

(a) Start graph

1 2 1 2

S(i) i

M(i)

⇒
(b) Send message (send i)

11 22

j j

M(i) M(i)

⇒
i < j

(c) Forward (forward i,j)

11 22

i L

M(i)

⇒
(d) Declare Leader (leader i)

1

3

2

4

1 2

3 4

Error
L

L
⇒

(e) Error (error)

Fig. 1: Leader election (start graph and rewriting rules, finite-state version).

We also add an additional rule that signals an error, i.e., there are two leaders
in the ring. Note that in our tool matches of left-hand sides may be non-injective
on nodes, but are always injective on edges, hence this last rule correctly indicates
an error.

2



Now, the system as it is specified here suffers from an exponential explosion
in the state space. Assume that we have n processes located in ascending order
on the ring and each has sent its message. Then, during runtime, the message
M(1) might be located at any of the n nodes, message M(2) can be at n − 1
nodes (it is never at the node between 1 and 2), . . . , in general message M(i)
can be at one of n−i+1 different nodes. This gives us at least n! different states.

We now fix the parameter n and consider the unfolding of the graph transfor-
mation system in order to come to terms with the state explosion. The unfolding
of a system fully describes its concurrent behaviour in a single branching struc-
ture, representing all the possible computation steps and their mutual depen-
dencies, as well as all reachable states; the effectiveness of the approach lies in
the use of partially ordered runs, rather than interleavings, to store and handle
explanations extracted from the system model.

The unfolding procedure begins with the start graph, looks for left-hand
sides and attaches right-hand sides, however without deleting the left-hand sides.
Furthermore it introduces (Petri net) transitions recording which left-hand sides
can be consumed in order to produce the corresponding right-hand sides. In
further steps one looks only for concurrent left-hand sides, i.e., those that can
be covered by (Petri net) tokens. This results in a Petri graph, i.e., a Petri net
where the places of the net are interpreted as edges of a graph.

Since this system is terminating, it is sufficient to unfold until no more un-
folding steps are possible. In finite-state but nonterminating systems it is neces-
sary to look for so-called cut-off transitions in order to keep the unfolding finite
(see [1]).

The resulting unfolding contains all reachable graphs, represented by reach-
able markings in the Petri nets, and instances of all rules which can be applied,
represented by transitions. This means specifically that if the error rule is not
present in the unfolding, it can never be applied in the original system.

However, taking the rules of Figure 1 above, the exponential blowup is
present, despite unfoldings being a partial order technique.3 The reason for this
is that due to the deletion and recreation of process j in rule (c) (Forward) there
is a large amount of conflict and branching in the unfolding. Hence, we again
slightly modify the rules by adding the edge labelled j in rule (c) to the rule
interface, i.e., it is preserved by the rule instead of being deleted and recreated.
(One way to represent this in Figure 1 would be to add numbers also to hyper-
edges.) This also means that instead of ordinary Petri nets we have to employ
contextual nets, i.e., nets with read arcs [1].

The modification has the effect that the different paths taken by the messages
are recorded independently of each other, where the path of message M(i) has
length O(n − i + 1). Or, to say it in other words, each “forwarding situation”
(M(i) is forwarded by j) is only recorded once. So, asymptotically, the size of
the unfolding is O(n2) instead of O(n!).

3 Note that this blowup might be avoided be using more sophisticated cutoff conditions
than the ones we have implemented.

3



Figure 2 shows the unfolding for n = 4. Note that this is only the Petri-net
component of the unfolding, we omit the nodes still attached to the hyperedges.
The boxes represent transitions where a transition is labelled by the rule name
and a unique id. The circles represent places/edges, marked with the edge labels
and again a unique id. The dashed lines are the read arcs of the Petri net,
recording what is preserved by the transitions. Note also that no transition
corresponding to rule (e) (Error) is present and that the system is hence correct.

Fig. 2: The unfolding of the leader election protocol for n = 4.

The start graph and the rule set for n processes are generated by a C program.
The rule set contains O(n2) rules, i.e., it has approximately the same size than
the unfolding itself. Note that here we do not use attributed graphs, hence we
can not work with rule schemata.

4



We then employ a stand-alone extension of Augur that produces McMillan-
style unfoldings of graph transformation systems. It was developed by Julian
Bart in [4] and it is currently being properly integrated into Augur 2 with its
graphical user interface. The tool can also handle read arcs, but the combination
with cut-offs is only correct for read-persistent graph grammars [1, 3].

We let the tool run on several instances of the leader election protocol and
obtained the runtimes and sizes of the unfolding recorded in Table 1. While the
size of the unfolding is quadratic in n, the runtime does not seem to be quadratic,
which is probably due to the overhead caused by the data structures which are
needed to produce the unfolding.

n run time (sec) places transitions

4 0.01 19 11
10 0.04 76 56
25 0.94 376 326
50 25.37 1376 1276
75 158.23 3001 2851

100 555.08 5251 5051

Table 1: Runtime results for the finite-state case.

The runtime in this paper have been measured on a machine with 2×Xeon
2.4 GHz and 2GB RAM.

3 Parametric Version

We now treat the parametric case, i.e., we will verify the protocol for all values
of n using an approximated unfolding technique [2]. That is, in addition to
unfolding steps we add folding steps, which merge parts of the Petri graph in
order to obtain a finite over-approximating Petri net.

In order to handle this with a finite rule set we will use an attributed graph
transformation system, where specifically the message and process Ids are stored
as attributes. Furthermore we introduce several rules for generating a ring of
arbitrary size, that is created before the protocol starts. This case study is also
considered in [11] and shortly discussed in [10].

The rules of our attributed graph transformation system are given in Fig. 3.
We start with a single unary hyperedge representing a counter, which at the
beginning has value 1. The counter is increased, subsequently extending the ring
(rules “Create First Station” and “Create Station”). Note that stations will be
inserted in arbitrary order on the ring (not necessarily in ascending order). Then,
at some point we non-deterministically decide that the loop is ready (rule “Loop
Ready”) and set the counter to 0.

Now the protocol itself starts, as described earlier in this paper (see rules
“Send Message” and “Forward”). Note that messages are only being created if

5



Station Station

2 3

Counter

1

Counter

Counter Counter Station

Counter

2

Station

31

Counter Counter

Counter Station Counter Station

1 2 3 1 2 3

Message
Station Station

Message

1 2 1 2

Message
Counter

Message
Counter

Message
Station

1 2

Station

1 2

Ready

Ready Station
Error

Message

Create First Station

Create Station

Loop Ready

Change Message State

Error

Start Graph

Leader

Send Message

Forward

id: j id: i

c: i + 1

c: 1

i = 1
c: i c: i + 1 id: i

c: i id: j
i > 1

c: i
i > 0

c: 0

c: i id: j
i = 0

c: i id: j

id: i
i < jid: j id: j

id: i

state: s state: s

id: i id: i

state: 1state: s s = 0 AND j = 0
c: j c: j

id: i

state: s
id: j id: jleader: j

i = j AND s = 1

leader: i id: j
j < i

state: 0

id: j

Fig. 3: Leader election (start graph and rewriting rules, parametric version).

6



the counter is set to 0. Similary to before, a process declares itself the leader
(rule “Leader”), by adding an edge labelled “Ready”, and there is an error rule
that is applied whenever there is a leader, but there is a station with a smaller
Id in the ring. (Instead of using this error rule we could also have used an error
rule analogous to the one in Section 2).

Now, it remains to explain rule “Change Message State”, which is actually
a small trick. We use this rule which is quite trivial from the protocol’s point
of view, but helps us a lot with verification. We mark one chosen place in the
ring (in our case we consider the edge “Counter” as being such a marker) and
we regard a message as having passed through the whole ring if it comes back
to the station which has sent it and in addition has visited the marked place
in between. A process only declares itself as leader if it receives a message of
this kind containig its own Id. Rule “Change Message State” helps us with the
analysis of the over-approximations, where stations can be merged. Without it,
it is not directly possible to verify the protocol.

Now we want to show that no error edge is ever created, by using approxi-
mated unfoldings. Approximated unfoldings are obtained by not only unfolding
the system, but folding back at some points in order to obtain a finite over-
approximating Petri net with hypergraph structure, also called a Petri graph.
Due to the folding steps we merge (potentially unrelated) components and the
resulting Petri nets may have more runs than the original system [2]. However,
whenever a rule can be applied in the original system, it will also be present in
the over-approximation.

During unfolding, we do not treat the attributes in any special way, but
as soon as the approximated unfolding is ready, we treat the resulting net as a
coloured Petri net [7], where tokens are associated with attributes. Since integers
have an infinite domain, we use some predefined abstractions. Here we first take
interval abstraction with the interval [0, 0] (i.e., using the abstract values “zero”
and “many”).

After producing the coarsest unfolding of the attributed graph transforma-
tion system and analysing it using coverability graphs we obtain a counterex-
ample of seven steps leading to the edge “Error” and signalling the application
of the error rule. Considering this counterexample we see that the approxima-
tion is structurally too coarse and can be refined using counterexample-guided
abstraction refinement techniques [9, 10]. Afterwards four iterations of abstrac-
tion refinement are automatically applied: two with structural refinement and
two which refine the attribute abstraction to the interval [0, 2] (using the ab-
stract values “zero”, “one”, “two” and and “many”). The coverability check of
the resulting approximated unfolding tells us, that the edge “Error” is no more
coverable. This means that we have successfully verified the protocol.

The verification has been performed by using4 Augur 2 with its graphical
user interface. The whole procedure took 48.15 seconds.

Figure 4 shows the hypergraph component of the approximated unfolding
(the Petri graph component is too large and is not shown here). The approxi-

4 The tool is available from http://www.ti.inf.uni-due.de/research/augur/.

7



Fig. 4: Hypergraph component of the approximated unfolding.

mated unfolding contains several error edges, but none of them can be covered
in the net. Furthermore the ring has been reduced to two nodes, with “station
loops” on both of them. Note however that the counter is only attached to one
of those nodes, which allows us to record the passage of a message.

The unfolding automatically works in such a way that stations numbered 1820
and 1828 have always Id 1 (i.e., the smallest Id) as attribute value, whereas the
stations number 1833 and 1838 have larger Ids.5 Now the “trick” is that a mes-
sage sent by one of the latter two stations has to pass the counter and come
back before it is received. On this path however it will for sure pass station
number 1828 and is not forwarded.

4 Conclusion

We have shown how to verify a leader election protocol using unfolding tech-
niques; more specifically we have shown that we will never obtain two leaders.
To show that a leader is eventually chosen is more complex, since this is a live-
ness property instead of a safety property. In the finite-state case there is a single
transition signaling leader election which is not in conflict to any of the other
transitions. Hence we can be sure that this event will eventually take place. How-
ever, in the parametric case where we use over-approximation it is not directly
possible to show successful termination.

5 Note that in the unfolding edges with the same Id might occur in different branches
and are hence all present in the underlying graph structure.

8



Future work will consist in trying to verify a more complex version of the
leader election protocol, introduced in [6] that lowers the number of messages
being exchanged.

Note furthermore that we have also addressed the leader election protocol in
[8], where we used a backwards analysis procedure whose termination is based on
the graph minor theorem. This backwards technique gives us a decision procedure
for certain classes of graph transformation systems.

Acknowledgements: We would like to thank the students who worked with
us on the project and especially Julian Bart who implemented the McMillan-
style unfolding of graph transformation systems.

References

1. Paolo Baldan, Andrea Corradini, and Barbara König. Verifying finite-state graph
grammars: an unfolding-based approach. In Proc. of CONCUR ’04, pages 83–98.
Springer-Verlag, 2004. LNCS 3170.

2. Paolo Baldan, Andrea Corradini, and Barbara König. A framework for the verifica-
tion of infinite-state graph transformation systems. Information and Computation,
206:869–907, 2008.

3. Paolo Baldan, Andrea Corradini, Barbara König, and Stefan Schwoon. McMillan’s
complete prefix for contextual nets. LNCS Transactions on Petri Nets and Other
Models of Concurrency (ToPNoC), 5100:199–220, 2008.

4. Julian Bart. Effiziente Entfaltungsalgorithmen für Graphersetzungssysteme. Mas-
ter’s thesis, Universität Stuttgart, June 2005. No. 2290.

5. E.J.H. Chang and R. Roberts. An improved algorithm for decentralized extrema-
finding in circular configurations of processes. Communication of the ACM,
22(5):281–283, 1979.

6. A. Itai and M. Rodeh. Symmetry breaking in distributed networks. In Proceedings
of the 22nd IEEE Symposium on Science, pages 150–158. IEEE Press, 1981.

7. K. Jensen. An introduction to the practical use of coloured Petri nets. In W. Reisig
and G. Rozenberg, editors, Lectures on Petri Nets II: Applications, pages 237–292.
Springer, 1998. LNCS 1492.

8. Salil Joshi and Barbara König. Applying the graph minor theorem to the veri-
fication of graph transformation systems. In Proc. of CAV ’08, pages 214–226.
Springer, 2008. LNCS 5123.

9. Barbara König and Vitali Kozioura. Counterexample-guided abstraction refine-
ment for the analysis of graph transformation systems. In Proc. of TACAS ’06,
pages 197–211. Springer, 2006. LNCS 3920.

10. Barbara König and Vitali Kozioura. Towards the verification of attributed graph
transformation systems. In Proc. of ICGT ’08 (International Conference on Graph
Transformation), pages 305–320. Springer, 2008. LNCS 5214.

11. Vitaly Kozyura. Abstraction and Abstraction Refinement in the Verification of
Graph Transformation Systems. PhD thesis, Universität Duisburg-Essen, forth-
coming.

12. K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
13. Glynn Winskel. Event structures. In Petri Nets: Applications and Relationships

to Other Models of Concurrency, pages 325–392. Springer, 1987. LNCS 255.

9


