
Analysing Input/Output-Capabilities of Mobile
Processes with a Generic Type System?

Barbara König (koenigb@in.tum.de)

Fakultät für Informatik, Technische Universität München

Abstract. We introduce a generic type system (based on Milner’s sort system)
for the synchronous polyadic π-calculus, allowing us to mechanise the analysis of
input/output capabilities of mobile processes. The parameter of the generic type
system is a lattice-ordered monoid, the elements of which are used to describe
the capabilities of channels with respect to their input/output-capabilities. The
type system can be instantiated in order to check process properties such as upper
and lower bounds on the number of active channels, confluence and absence of
blocked processes.

1 Introduction

For the analysis and verification of processes there are basically two approaches: meth-
ods that are complete, but cannot be fully mechanised, and fully automatic methods
which are consequently not complete, i.e. not all processes satisfying the property to be
checked are recognised.

One promising direction for the latter approach is to use type or sort systems and
type inference with rather complex types abstracting from process behaviour. In the last
few years there have been several papers presenting such type systems for the polyadic
π-calculus and other process calculi, checking e.g. input/output behaviour [15], absence
of deadlocks [7], security properties [1, 4], allocation of permissions to names [16] and
many others. Types are compositional and thus allow reuse of information obtained in
the analysis of smaller subsystems.

One drawback of the type systems mentioned above is the fact that they are spe-
cialised to check very specific properties. A much more general approach is a theory
of types by Honda [6] which is based on typed algebras and gives a classification of
type systems. This theory is very general and it is thus necessary to prove the subject
reduction property and the correctness of a type system for every instance. Our paper
attempts to fill the gap between the two extremes. We present a generic type system
where we can show the subject reduction property for the general case, and by instan-
tiating the type system we are able to analyse specific properties of processes. Despite
its generality, our type system can be used to generate existing type systems, or at least
subsets of them. With the introduction of residuation (explained below) we can even
type some processes which are not typable by comparable type systems.

We concentrate on properties connected to input/output capabilities of processes in
the synchronous polyadic π-calculus. In our examples (see section 5) we check prop-
erties such as upper and lower bounds on the number of active channels, confluence,

? Research supported by SFB 342 (subproject A3) of the DFG.

absence of blocked input or output prefixes. Determining these capabilities of a process
involves counting and we attempt to keep this concept as general as possible by basing
the generic type system on commutative monoids. Instantiating a type system mainly
involves choosing an appropriate monoid, and monoid elements associated with input
and output prefixes (e.g. for counting the number of prefixes with a certain subject).

Instead of giving the precise answer to every question, our type system uses over-
approximation (e.g. we can expect results of the form “there are at most two active
channels with subject x at any given time”). Hence plain monoids are not sufficient, but
we need ordered monoids (so-called lattice-ordered monoids or l-monoids), equipped
with a partial order compatible with summation.

There is a huge class of lattice-ordered monoids which are residuated, i.e. some
limited form of subtraction can be defined. Residuation can be put to good use in pro-
cess analysis. Consider, e.g. the process P = x̄.x.0. While P increases the number of
occurrences of the output prefix x̄ by one, it does not do so for the input prefix x, since
we are interested exclusively in the number of prefixes on the outer level (i.e. in pre-
fixes which are currently active) and x can only be reached by a communication with x̄
which decreases the number of input prefixes in the environment by one. This decrease
can be anticipated when typing P , and is taken into consideration by subtracting one
from the number of input prefixes.

The type of a process contains an assignment of names to sorts and a mapping of
sorts to strings of sorts (as in [13]), keeping track of channel arities, i.e. if channel x has
sort s, and n-ary tuples are communicated via x, then s will be mapped to a string of
sorts having length n, being the sorts of the respective channels. Thus, successful typing
also guarantees the absence of runtime errors produced by mismatching arities. Further-
more a monoid element is assigned to each sort s. The monoid element is expected to
be an upper bound for the capabilities of all channels having sort s.

2 Preliminaries

2.1 The π-Calculus

The π-calculus [12, 13] is an influential paradigm describing communication and mo-
bility of processes. In this paper we will consider the synchronous polyadic π-calculus
without choice and matching, and replication is only defined for input prefixes. Its syn-
tax is as follows:

P ::= 0 | (νx : s)P | P1|P2 | x̄〈z̃〉.P | x(ỹ).P | !x(ỹ).P

where s is an element from a fixed set of sorts S and x is taken from a fixed set of names
N . ỹ = y1 . . . yn and z̃ = z1 . . . zn are abbreviations for sequences with elements from
N . We call x̄〈z̃〉 output prefix and x(ỹ) input prefix.

The set of all free names (i.e. names not bound by either ν or by an input prefix) of
a process P is denoted by fn(P). The process obtained by replacing the free names yi

by xi in P (and avoiding capture) is called P{x̃/ỹ}.
Structural congruence is the smallest congruence obeying the rules in the upper part

of table 1, and equating processes that can be converted into one another by consistent

renaming of bound names (α-conversion). We use a reduction semantics as for the
chemical abstract machine [2] instead of a labelled transition semantics.

St
ru

ct
ur

al
C

on
gr

ue
nc

e (C-COM) P1|P2 ≡ P2|P1 (C-0) P |0 ≡ P

(C-ASS) P1|(P2|P3) ≡ (P1|P2)|P3

(C-RESTR1) (νx : s)(νy : t)P ≡ (νy : t)(νx : s)P if x 6= y

(C-RESTR2) ((νx : s)P1)|P2 ≡ (νx : s)(P1|P2) if x 6∈ fn(P2)

R
ed

uc
ti

on
R

ul
es

(R-COMM) x̄〈z̃〉.Q | x(ỹ).P → Q | P{z̃/ỹ}

(R-REP) x̄〈z̃〉.Q | !x(ỹ).P → Q | P{z̃/ỹ} | !x(ỹ).P

(R-PAR)
P → P ′

P |Q → P ′|Q
(R-RESTR)

P → P ′

(νx : s)P → (νx : s)P ′

(R-EQU)
Q ≡ P, P → P ′, P ′ ≡ Q′

Q → Q′

Table 1. operational semantics of the π-calculus

Consider the following processes which we will use as an example in this paper (we
omit the final 0):

F = c(r).d̄〈r〉.d(a).c̄〈a〉 S = d(s).s(h1, h2).d̄〈h1〉 T = c̄〈h〉.c(x) H = h̄〈i1, i2〉

There is a forwarder F which receives requests on a channel c, forwards them on a
channel d to a server, receives the answer and sends it back on c. The server S receives
requests on d, and we assume that these requests come with a name s where the server
can get further information. The server obtains this information, processes it and sends
the answer back on d (in our example we keep the “processing part” very simple, the
server just sends back the first component). Furthermore T is a trigger process, starting
the execution of F and receiving the result in the end, and H delivers information to
the server.

We can combine the processes F , S, T , H to obtain P as the entire system. If we
want F and S to be persistent, we regard P ′.

P = T | H | (νd : sd)(F | S) P ′ = T | H | (νd : sd)(!F |!S)

A programmer analysing this piece of code might be interested in the following
properties: input/output behaviour, upper and lower bound on the number of channels
being active, confluence properties and absence of blocked prefixes that never find a
communication partner. E.g., examining P will reveal that at any given time every name
is used for input and output at most once and that P is therefore confluent.

2.2 Residuated Lattice-ordered Monoids

Lattice-ordered monoids are a well-developed mathematical concept (see e.g. [3]). We
are interested in commutative residuated l-monoids in order to represent input/output
capabilities.

Definition 1. (Lattice-ordered Monoid)
A commutative lattice-ordered monoid (l-monoid) is a tuple (I,+,≤) where I is a

set, + : I × I → I is a binary operation and ≤ is a partial order which satisfy:

– (I,+) is a commutative monoid, i.e. + is associative and commutative, and there
is a unit 0 with 0 + a = a for every monoid element a ∈ I .

– (I,≤) is a lattice, i.e. ≤ is a partial order, where two elements a, b ∈ I have a join
(or least upper bound) a ∨ b and a meet (or greatest lower bound) a ∧ b.

– I contains a bottom element ⊥, the smallest element in I , and a top element >, the
greatest element in I .

– For a, b, c ∈ I: a + (b∨ c) = (a + b)∨ (a + c) and a + (b∧ c) = (a + b)∧ (a + c)

Any l-monoid (I,+,≤) is associated with an l-monoid (I,⊕,≤) where a ⊕ b =
(a + b) ∨ a ∨ b and ⊥ is the unit. The significance of ⊕ can be made clear with the
following consideration: monoid elements will be used to label sorts, being an upper
bound for the capabilities of channels having this sort. E.g., we assume that a free name
x and a bound name y have sort s, indicating that, during reduction, x might replace y.
The capabilities of x and y are a respectively b. What capability should be associated
with s? In the presence of positive monoid elements only, a + b is the correct answer.
If, however, a is negative, a + b is actually smaller than b and if x has not yet replaced
y, the monoid element associated with s underestimates the capabilities of y. Since we
use over-approximation the correct sort label is a ⊕ b.

Definition 2. (Residuated l-monoid) Let (I,+,≤) be an l-monoid and let a, b ∈ I .
The residual a − b is the smallest x (if it exists) such that a ≤ x + b. I is called
residuated if all residuals a − b exist in I for a, b ∈ I .

Example: one residuated l-monoid which we will later use for the analysis of pro-
cesses is IO = ({none, I, O, both},∨,≤) where none ≤ I ≤ both, none ≤ O ≤ both
and the monoid operation is the join, i.e. the l-monoid degenerates to a lattice. A chan-
nel name has for example capability O if it is used at most for output and capability
both if it may be used for both output and input.

In order to count the number of inputs or outputs we use the residuated l-monoid
Z
∞ = (Z ∪ {∞,−∞},+,≤) with all integers including ∞ and −∞ (∞ + (−∞) =

−∞). Residuation is subtraction for all monoid elements different from ∞ and −∞.
The cartesian product of two l-monoids, e.g. Z

∞ × Z
∞, is also an l-monoid.

We use the following inequations concerning residuated l-monoids: for all elements
a, b, c of a residuated l-monoid it holds that

a ≤ (a − b) + b (a + b) − b ≤ a (a + b) − c ≤ (a − c) + b
(a + b) ∨ 0 ≤ (a ∨ 0) + (b ∨ 0) a + b ≤ a ⊕ b ⊥ + ⊥ = ⊥ > + > = >

And we define: sig(a) =

{

⊥ if a < 0 0 if a = 0
> if a > 0 undefined otherwise

3 The Type System and its Properties

We define the notion of types and type assignments which have already been informally
introduced in section 1.

Definition 3. (Type Assignment) Let S be a fixed set of sorts and let (I,+,≤) be a
fixed l-monoid. A type assignment Γ = obΓ ;mΓ ;x1 : 〈s1/a1〉, . . . , xn : 〈sn/an〉 (ab-
breviated by obΓ ;mΓ ; x̃ : 〈s̃/ã〉) consists of a sort mapping obΓ : S → S∗ (mapping
sorts to object sorts), a mapping mΓ : S → I (assigning a monoid element to every
sort) and an assignment of channel names xi to tuples consisting of a sort si and a
monoid element ai.

We define sortΓ (xi) = si and Γ, y : 〈t/b〉 denotes obΓ ;mΓ ; x̃ : 〈s̃/ã〉, y : 〈t/b〉.

Sorts are used to control the mobility of names. That is if obΓ (s) = s1 . . . sn, we
know that only n-tuples of channel names with sorts si are sent or received via a channel
with sort s. If a free name x and a bound name y have the same sort, we have to take into
account that x may replace y during the reduction. We also use sorts as an intermediate
level between names and monoid elements, since with α-conversion it is problematic to
assign monoid elements directly to names.

Monoid elements appear in two places: in the range of mΓ and in the tuples x : 〈s/a〉.
The idea is to sum up the capabilities of x with + in a while x is still free and add a to
mΓ (s) with ⊕ as soon as x is hidden. We have to use ⊕ according to the explanation
given in section 2.2. The other possibility would be to immediately add the capabili-
ties to mΓ (s) with ⊕ (without storing them in a first), but since a + b ≤ a ⊕ b, this
would lead to looser bounds. (It would, however, be possible in the case where we only
consider monoid elements greater than or equal to 0, since in this case + and ⊕ always
coincide.)

In the rest of this paper we use the operations on type assignments given in ta-
ble 2 (all operations on sequences are conducted pointwise): in (ADD-MON) we add a
monoid element a to a type assignment Γ by adding a to mΓ (s) (with ⊕) and leaving
everything else unchanged. And Γ 〈s̃,ã〉 denotes (. . . (Γ 〈s1,a1〉)〈s2,a2〉 . . .)〈sn,an〉.

(ADD-MON) (ob; m; x̃ : 〈s̃/ã〉)〈s,a〉 = ob; m′; x̃ : 〈s̃/ã〉

where m′(s′) =

m(s) ⊕ a if s = s′

m(s) otherwise

(SUM) (ob; m; x̃ : 〈s̃/ã〉) ~ (ob; m′; x̃ : 〈s̃/b̃〉) = ob; m ⊕ m′; x̃ : 〈s̃/ã + b̃〉

(JOIN) (ob; m; x̃ : 〈s̃/ã〉) ∨ b = ob; m; x̃ : 〈s̃/ã ∨ b〉

(ORD) (ob; m; x̃ : 〈s̃/ã〉) ≤ (ob; m′; x̃ : 〈s̃/b̃〉) ⇐⇒ m ≤ m′ and ã ≤ b̃

(REMOVE) If Γ = ∆, x : 〈s/a〉, then Γ\{x} = ∆

Table 2. Operations on type assignments

Summation Γ ~ Γ ′ (SUM) is defined for type assignments which contain the same
names (having identical sorts) and which satisfy obΓ = obΓ ′ (i.e. they have the same
sort structure). In this case m ⊕ m′ and ã + b̃ denote the pointwise summation. The
summation on type assignments has a counterpart (denoted by the same symbol) in
Honda’s work [6].

In (JOIN) a pointwise join with every monoid element assigned to a channel name
and the monoid element b is defined. And finally we need a partial order on type as-
signments (ORD) and an operation removing an assumption on a name x from a type
assignment (REMOVE).

We are now ready to define the rules of the type system (see table 3). out and in are
fixed monoid elements (where in must be comparable to 0) representing the capabilities
of output respectively input prefixes.

Γ ` P, Γ ≤ ∆

∆ ` P
(T-≤) Γ ∨ 0 ` 0 (T-NIL)

Γ1 ` P1, Γ2 ` P2

Γ1 ~ Γ2 ` P1 | P2

(T-PAR)

Γ, x : 〈s/a〉, z̃ : 〈t̃, b̃〉 ` P

(Γ, z̃ : 〈t̃, b̃〉) ∨ 0, x : 〈s/(a − in) ∨ 0 + out〉 ` x̄〈z̃〉.P
(T-OUT) if obΓ (s) = t̃

Γ, x : 〈s/a〉, ỹ : 〈t̃/b̃〉 ` P

(Γ ∨ 0, x : 〈s/(a − out) ∨ 0 + in〉)〈t̃,b̃〉 ` x(ỹ).P
(T-IN) if obΓ (s) = t̃

Γ\{x}, x : 〈s/a〉 ` P

Γ 〈x,a〉 ` (νx : s)P
(T-RESTR)

Γ ` x(ỹ).P

∆, x : 〈s/a + sig(in)〉 ` !x(ỹ).P
(T-REP)

if Γ ~ Γ ≤ Γ and Γ = ∆, x : 〈t/a〉

Table 3. Rules of the type system

The intuitive meaning of the rules is as follows:

(T-≤) We can always over-approximate the capabilities of a process.
(T-NIL) The nil process can have an arbitrary type assignment, provided the monoid

elements of the free names are greater than 0.
(T-PAR) The parallel composition of two processes can be typed by adding their re-

spective type assignments.
(T-OUT) First we subtract in from the monoid element a associated with the subject

x of the output prefix, since the emergence of P means the removal of an input
prefix with subject x somewhere else in the environment. We then take the join of
all monoid elements and 0, since we only consider capabilities on the outer level of
processes and thus we only consider future influence by positive capabilities, but
not by negative ones (since we are doing over-approximation). In the end out is
added to the monoid element associated with x.
Furthermore we have to check that the sort structure is correct, i.e. since z1, . . . , zn

are communicated via x, the string of their sorts must be the object sort of the sort
of x.

(T-IN) As described for (T-OUT), we subtract out, take the join with 0 and then add
in. Furthermore we check the correctness of the sort structure as above.
Since, in this case, y1, . . . , yn are bound by the input prefix, all assumptions on
these names are removed from the type assignment, and their monoid elements are
added to the rest of the type assignment with ⊕.

(T-RESTR) If a name is hidden, we remove the assumption on it, but retain information
on its capabilities by adding its monoid element to the type assignment and by
keeping the sort.

(T-REP) In this rule we have to make sure that a replicated process has a type assign-
ment which is either idempotent or gets smaller when added to itself. This can be
achieved if Γ contains only negative or idempotent monoid elements.
And furthermore, since we know that infinitely many copies of the input prefix with
subject x are available, we add ⊥, > or 0, according to the value of in.

The type system satisfies the following substitution lemma, which is central for
proving the subject reduction property:

Lemma 1. (Substitution) Let x 6= y be two names.
If Γ, x : 〈s/a〉, y : 〈s/b〉 ` P , then Γ, x : 〈s/a + b〉 ` P{x/y}.

Remark: the proofs can be found in the extended version of this paper [11].

The types defined in table 3 are not yet invariant under reduction: rather than Γ , a
modified type assignment Γ satisfies the subject reduction property.

Let Γ = ob;m; x̃ : 〈s̃/ã〉 and define Γ = (ob;m; x̃ : 〈s̃/0̃〉)〈s̃,ã〉. That is we add
all monoid elements of the remaining free names to m with ⊕. Constructing Γ directly
during the typing process does not seem to be possible, since we first have to sum up
monoid elements with + and then add them to the type tree with ⊕ the moment they
are hidden.

Proposition 1. (Subject Reduction Property) If P ≡ Q and Γ ` P , then it holds
also that Γ ` Q. And if P → P ′ and Γ ` P then there exists a type assignment Γ ′

such that Γ ′ ` P ′ and Γ ′ ≤ Γ .

4 Using the Type System for Process Analysis

As in other type systems for mobile processes, a type guarantees absence of runtime
errors which may appear in the form of arity mismatches in the communication rules
(R-COMM) and (R-REP), but it also enables us to perform more detailed process anal-
ysis.

4.1 Process Capabilities

The aim of this paper is to construct type systems yielding useful results for the analysis
and verification of parallel processes. In our case the generic type system gives infor-
mation concerning structural properties of a process, especially concerning its input and

output capabilities. We will now formally define the connection between the type of a
process and its capabilities.

Let P be a process and let x be a free name occurring in P . We define P ’s capability
wrt. x by adding the following monoid elements: for every use of x as an output port
we add out and for every use of x as an input port we add in. Notice that we do not
continue summation after prefixes (see table 4).

Cx(0) = 0 Cx(P | Q) = Cx(P) + Cx(Q)

Cx(z̄〈ỹ〉.P) =

out if x = z
0 otherwise

Cx(z(ỹ).P) =

in if x = z
0 otherwise

Cx(!z(z̃).P) =

sig(in) if x = z
0 otherwise

Cx((νy : s)P) =

Cx(P) if x 6= y
0 otherwise

Table 4. Determining the capabilities of a process

Proposition 2. If Γ ` P , P → P ′ and x is a free name of P it follows that Cx(P ′) ≤
mΓ (sortΓ (x)), i.e. we determine the sort of x and look up the corresponding monoid el-
ement in Γ . And if P contains a subexpression (νy : s′)Q it follows that the capabilities
of y will never exceed mΓ (s′).

4.2 Type Inference

In order to support our claim that the type system is useful for the automated analysis
of processes, we roughly sketch a type inference algorithm, determining the smallest
type (in the ≤ relation defined in section 3) of a process P , provided P has a type. In
order to make sure that a smallest type exists, we impose the following condition on
the l-monoid: for every monoid element a ∈ I there is a smallest element a′ such that
a ≤ a′ and a′ + a′ ≤ a′ (the same must be true for the operation ⊕)1.

The algorithm proceeds in two steps:

– In the first step we determine the assignment of sorts to names and the mapping
obΓ . This may be done by representing ob as a graph and refining ob step by step by
collapsing graph nodes every time we encounter a constraint of the form ob(s) = s̃.
Or we can use the sort inference algorithm by Simon Gay [5].

– In the second step we compute the monoid elements by induction on the structure of
P . In this case the typing rules are already very constructive, the main complication
arises from typing rule (T-REP). Here we require that the monoid I satisfies the
condition stated above. So (because of rule (T-≤)) we may replace every monoid
element a with its corresponding a′ in the type assignment that we have derived so
far.

A straightforward implementation of the algorithm has a runtime complexity quadra-
tic in the size of P . Ameliorations are certainly possible by using efficient algorithms for
unification and by finding an intelligent strategy for computing the monoid elements.

1 Every l-monoid useful for process analysis that we have come across so far satisfies this con-
dition. In the case of Z

∞, a′ is ∞ for positive a and a itself for all other elements.

5 Examples

We now get back to the two example processes P and P ′ introduced in section 2.1
and type them with several instantiations of our type system, and thereby show how to
mechanise process analysis in these cases.

s2

ob1 ob2

ob1ob1

c sd

s1

s
We use the algorithm presented in section 4.2 to derive a type
assignment Γ for P and P ′ and in the first step obtain a sort
structure obΓ as shown in the figure to the left (obΓ is the
same for P and P ′). If there is an arrow labelled obi from
sort s to sort t, then t is the i-th element of the sequence
obΓ (s). The assignment of names (in brackets we give the
bound names) to sorts is:

c : sc (d : sd) h, i1(, r, a, s, h1) : s1 i2(, h2) : s2

In the second step the monoid elements mΓ (s) are computed (see below) in order
to give an upper bound for all names having sort s.

5.1 Input/Output Behaviour of Channels

One simple application of our type system is to check whether channels are used for
input, output or for both. We use the monoid IO (with elements none, O–“output only”,
I–“input only” and both) introduced in section 2.2. We set in = I, out = O.

For both processes P and P ′ we obtain the same type assignments with monoid
elements shown in table 5 (row 1), i.e. i2, h2 are used neither for input nor output while
all other names may be used for both. Note that, because of residuation, typing F alone
yields capability I for name c, but no output capability. c acquires output capability only
if communication with the environment is taking place.

This type system is similar to the one in [15] (apart from the fact that we consider
types as a representation of process capabilities, rather than constraints on the environ-
ment), our type system however lacks a concept of co- and contravariance and thus our
bounds are less tight.

5.2 Upper Bounds on the Number of Active Channels

We attempt to define a type system, similar to the one presented in [8] for our frame-
work, i.e. we want to check how often a channel is used either for input or output.

We use the l-monoid Z
∞×Z

∞ (cartesian product of the set of integers with ∞ and
−∞) introduced in section 2.2. The first component represents the number of active
output prefixes (with a fixed subject) and the second component represents the number
of active input prefixes.

We set out = (1, 0), in = (0, 1), and typing the processes P and P ′ yields the
results given in table 5 (rows 2 & 3). Since for P the upper bound is always (1, 1) or
smaller we can conclude that there is at most one active input port and one active output
port for any given subject at a time. For P ′ we can guarantee that, e.g. c̄ always occurs
at most once as an output prefix, although it occurs under a replication (see monoid
element mΓ (sc)).

Property to be checked mΓ (sd) mΓ (sc) mΓ (s1) mΓ (s2)

1 Input/Output behaviour of P and P ′ both both both none
2 Upper bounds on active channels in P (1, 1) (1, 1) (1, 1) (0, 0)

3 Upper bounds on active channels in P ′ (∞,∞) (1,∞) (1,∞) (0, 0)

4 Lower bounds on active channels in P (−1, 0) (−1, 0) (−1,−1) (0, 0)

5 Lower bounds on active channels in P ′ (−∞,∞) (−∞,∞) (−∞,−1) (0, 0)

6 Avoiding blocked output prefixes in P′ (∞,∞) (1,∞) (1,−1) (0, 0)

Table 5. Resulting monoid elements for different instantiations of the generic type system

5.3 Confluence

As in [8] we can use upper bounds on the number of active channels to guarantee
confluence for π-calculus processes (see also [14]). Let Q be a process, and for every
name x in Q which is either free or bound by the scope operator ν it holds that its
capabilities never exceed (1, 1). Then we can guarantee that every channel (also bound
channels) occurs at most once at any given time as active input and output prefix, and we
have non-overlapping redexes in (R-COMM). Thus we can conclude that if Q →∗ Q′,
Q′ → Q1 and Q′ → Q2, then either Q1 ≡ Q2 or there is a process Q3 such that
Q1 → Q3 and Q2 → Q3.

Row 2 in table 5 provides upper bound (1, 1) for all capabilities in P . So we can
state that P is confluent. Note that the same process would not be recognised as conflu-
ent by the type system in [8].

5.4 Lower Bounds on the Number of Active Channels

The type system is not limited to statements of the form: “there at most n active chan-
nels”, we can also guarantee that there are at least m active channels. In order to achieve
this, we use the type system above and just invert the partial order, i.e. we take ≥ instead
of ≤, out and in remain unchanged. This means also that the join ∨ in the new partial
order is now the meet ∧ of the original partial order. Typing P does not give us much
information, since we cannot guarantee that there are at least m > 0 prefixes active at
any given time (see table 5, row 4) for any channel. In fact, some lower bounds are even
(−1) stating that the respective channel removes input (or output) prefixes instead of
making them available. In this case P →∗

0 which means that no lower bounds can be
guaranteed.

Typing P ′ yields the monoid elements given in table 5 (row 5) which states that
input prefixes with subjects c, d are available infinitely often.

5.5 Avoiding Blocked Prefixes

Another interesting feature is to avoid blocked prefixes, i.e. prefixes which are wait-
ing for a non-existing communication partner. We will first define—with the help of a
lattice-ordered monoid—what it means for an output prefix to be blocked.

We take Z
∞×Z

∞ as an l-monoid and define a new partial order: (i, j) v (i′, j′) iff
i ≤ i′ and j ≥ j′. The first component represents the number of output prefixes and the

second the number of input prefixes of the same subject. out = (1, 0) and in = (0, 1).
We say a name x is blocking in P , if P →∗ P ′, Cx(P ′) w (1, 0) (i.e. there is at least
one output prefix with subject x and no corresponding input prefixes) and for all P ′′

with P ′ →∗ P ′′ it follows that Cx(P ′′) w (1, 0) (no communication with x will ever
take place).

We can, e.g., avoid this situation, by demanding that it is always the case that
Cx(P ′) = (a, b) and either a ≤ 0 or b ≥ 1 (i.e. (a, b) 6w (1, 0)). We take the l-
monoid and out, in introduced above. This type system can be obtained by composing
a type system establishing upper bounds for input prefixes and one establishing lower
bounds for output prefixes. In this way we find out that all output prefixes with subjects
c and d are non-blocking in P ′.

6 Conclusion and Future Work

This work has a similar aim as that of Honda [6], in that it attempts to describe a gen-
eral framework for process analysis using type systems. We concentrate on a more
specialised but still generic type system, which enables us to prove the subject reduc-
tion property for the general case. We have shown that, despite its generality, the type
system can be instantiated in order to yield type systems related to existing ones. We
have also shown how to parameterise type systems and what kind of parameters are
feasible (in our case an l-monoid).

Another type system that has close connections to ours is the linear type system
by Kobayashi, Pierce and Turner [8], since it also involves the typing of input/output
capabilities of processes. Apart from the more general approach, one new feature of our
type system is the introduction of residuation which allows us to recognise the process
P in section 5 as confluent, in contrast to the type system in [8]. In some other cases
however, our bounds are less tight. The central aim of [8] is to introduce a new notion of
barbed congruence by reducing the possible contexts of a process. This question has not
been addressed in this paper, it is an interesting direction for future work. For a more
detailed discussion of the relation between the two type systems see the full version of
this paper [11].

Our type system was derived from a type system for a graph-based process calculus
with graphs as types, which make it easier to add additional behaviour information and
which have a clear correspondence to associated monoid elements (via morphisms and
categorical functors) [9]. A graph-based type system with lattices instead of monoids
was presented in [10]. For lattices or positive cones of l-monoids, generic type systems
are much easier to present. The main complication arises from non-positive elements
and residuation.

Inspiration for this work came from papers deriving information on the behaviour
of a process by inspecting its input/output capabilities, such as [15, 14, 8]. In order to
conduct process analysis concerning more complex properties (as was done e.g. in [7,
4]) it is necessary to use type systems assigning behaviour information (i.e. monoid
elements in our case) not only to single channels, but rather to tuples of channels or
other more complex structures. This normally results in a semi-additive type system, in
the terminology of Honda [6], while our present type system is strictly additive. In order

to extend this type system, a first solution would be to allow monoid labels for n-ary
tuples of names. Another idea is to integrate it into the categorical framework presented
in [10], which would allow us to specify very general behaviour descriptions.

We believe that generic type systems can be developed into tools suitable for fast
debugging and the analysis of concurrent programs. The next step is to apply the type
system presented here to “real-life examples” and to more realistic programming lan-
guages.

Acknowledgements: I would like to thank the anonymous referees for their helpful
comments, especially for the suggestion to use a sort system instead of type trees.

References

1. Martı́n Abadi. Secrecy by typing in security protocols. In Theoretical Aspects of Computer
Software, pages 611–638. Springer-Verlag, 1997.

2. Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical Computer
Science, 96:217–248, 1992.

3. G. Birkhoff. Lattice Theory. American Mathematical Society, third edition, 1967.
4. Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson. Control flow

analysis for the pi-calculus. In Proc. of CONCUR ’98, pages 84–98. Springer-Verlag, 1998.
LNCS 1466.

5. Simon J. Gay. A sort inference algorithm for the polyadic π-calculus. In Proc. of POPL ‘93.
ACM, 1993.

6. Kohei Honda. Composing processes. In Proc. of POPL’96, pages 344–357. ACM, 1996.
7. Naoki Kobayashi. A partially deadlock-free typed process calculus. In Proc. of LICS ’97,

pages 128–139. IEEE, Computer Society Press, 1997.
8. Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus.

In Proc. of POPL’96, pages 358–371. ACM, 1996.
9. Barbara König. Description and Verification of Mobile Processes with Graph Rewriting

Techniques. PhD thesis, Technische Universität München, 1999.
10. Barbara König. Generating type systems for process graphs. In Proc. of CONCUR ’99,

pages 352–367. Springer-Verlag, 1999. LNCS 1664.
11. Barbara König. Analysing input/output-capabilities of mobile processes with a generic type

system (extended version). Technical Report TUM-I0009, Technische Universität München,
2000.

12. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information and
Computation, 100(1):1–77, 1992.

13. Robin Milner. The polyadic π-calculus: a tutorial. In F. L. Hamer, W. Brauer, and
H. Schwichtenberg, editors, Logic and Algebra of Specification. Springer-Verlag, Heidel-
berg, 1993.

14. Uwe Nestmann and Martin Steffen. Typing confluence. In Second International ERCIM
Workshop on Formal Methods in Industrial Critical Systems (Cesena, Italy, July 4–5, 1997),
pages 77–101, 1997.

15. Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. In Proc.
of LICS ‘93, pages 376–385, 1993.

16. James Riely and Matthew Hennessy. Distributed processes and location failures. In Proc. of
ICALP’97, pages 471–481. Springer-Verlag, 1997. LNCS 1256.

