
Behavior Preservation in Model Refa
toringusing DPO Transformations with BorrowedContexts?Guilherme Rangel1, Leen Lambers1, Barbara K�onig2, Hartmut Ehrig1, andPaolo Baldan31 Institut f�ur Softwarete
hnik und Theoretis
he Informatik,Te
hnis
he Universit�at Berlin, Germanyfrangel,leen,ehrigg�
s.tu-berlin.de2 Abteilung f�ur Informatik und Angewandte Kognitionswissens
haft,Universit�at Duisburg-Essen, Germanybarbara koenig�uni-due.de3 Dipartimento di Matemati
a Pura e Appli
ata,Universit�a di Padova, Italybaldan�math.unipd.itAbstra
t. Behavior preservation, namely the fa
t that the behaviorof a model is not altered by the transformations, is a
ru
ial propertyin refa
toring. The most
ommon approa
hes to behavior preservationrely basi
ally on
he
king given models and their refa
tored versions. Inthis paper we introdu
e a more general te
hnique for
he
king behaviorpreservation of refa
torings de�ned by graph transformation rules. Weuse double pushout (DPO) rewriting with borrowed
ontexts, and, ex-ploiting the fa
t that observational equivalen
e is a
ongruen
e, we showhow to
he
k refa
toring rules for behavior preservation. When rulesare behavior-preserving, their appli
ation will never
hange behavior,i.e., every model and its refa
tored version will have the same behavior.However, often there are refa
toring rules des
ribing intermediate stepsof the transformation, whi
h are not behavior-preserving, although thefull refa
toring does preserve the behavior. For these
ases we presenta pro
edure to
ombine refa
toring rules to behavior-preserving
on
ur-rent produ
tions in order to ensure behavior preservation. An exampleof refa
toring for �nite automata is given to illustrate the theory.1 Introdu
tionModel transformation [1℄ is
on
erned with the automati
 generation of modelsfrom other models a

ording to a transformation pro
edure whi
h des
ribes howa model in the sour
e language
an be \translated" into a model in the targetlanguage. Model refa
toring is a spe
ial
ase of model transformation where the? Resear
h partially supported by DAAD (German A
ademi
 Ex
hange Servi
e), DFGproje
t Behavior-GT and MIUR proje
t ART.

sour
e and target are instan
es of the same metamodel. Software refa
toringis a modern software development a
tivity, aimed at improving system qualitywith internal modi�
ations of sour
e
ode whi
h do not
hange the observablebehavior. In obje
t-oriented programming usually the observable behavior of anobje
t is given by a list of publi
 (visible) properties and methods, while itsinternal behavior is given by its internal (non-visible) properties and methods.Graph transformation systems (GTS) are well-suited to model refa
toringand, more generally, model transformation (see [2℄ for the
orresponden
e be-tween refa
toring and GTS). Model refa
torings based on GTS
an be foundin [3{6℄. The left part of Fig. 1 des
ribes s
hemati
ally model refa
toring viagraph transformations. For a graph-based metamodel M , des
ribing, e.g., deter-ministi
 �nite automata or state
harts, the set Refa
toringM of graph produ
-tions des
ribes how to transform models whi
h are instan
es of the metamodelM . A start graph GM , whi
h is an instan
e of the metamodelM , is transformeda

ording to the produ
tions in Refa
toringM (using regular DPO transforma-tions), thus produ
ing a graph HM whi
h is the refa
tored version of GM .
Fig. 1. Model refa
toring via graph transformations and behavior preservation.A
ru
ial question that must be asked always is whether a given refa
toringis behavior-preserving, whi
h means that sour
e and target models have thesame observable behavior. In pra
ti
e, proving behavior-preservation is not aneasy task and therefore one normally relies on test suite exe
utions and informalarguments in order to improve
on�den
e that the behavior is preserved. On theother hand, formal approa
hes [7{10℄ have been also employed. A
ommon issueis that behavior preservation is
he
ked only for a
ertain number of models andtheir refa
tored versions. It is diÆ
ult though to foresee whi
h refa
toring stepsare behavior-preserving for all possible instan
es of the metamodel. Additionally,these approa
hes are usually tailored to spe
i�
 metamodels and the transfer toother metamodels would require re
onsidering several details. A more generalte
hnique is proposed in [11℄ for analyzing the behavior of a graph produ
tionin terms of CSP pro
esses and tra
e semanti
s whi
h guarantees that the tra
esof a model are a subset of the tra
es of its refa
tored version.In [3℄ we employed the general framework of borrowed
ontexts [12℄ to showthat models are bisimilar to their refa
tored
ounterparts, whi
h implies behav-ior preservation. The general idea is illustrated in the right-hand side of Fig. 1.

We de�ne a set OpSemM of graph produ
tions des
ribing the operational se-manti
s of the metamodel M and use the borrowed
ontext te
hnique to
he
kwhether the models GM and HM have the same behavior w.r.t. OpSemM . In [3℄we also tailored Hirs
hko�'s up-to bisimulation
he
king algorithm [13℄ to theborrowed
ontext setting and thus equivalen
e
he
king
an in prin
iple be
ar-ried out automati
ally. The main advantage of this approa
h is that for everymetamodel whose operational semanti
s
an be spe
i�ed in terms of �nite graphtransformation produ
tions, the bisimulation
he
king algorithm
an be used toshow bisimilarity between models whi
h are instan
es of this metamodel. How-ever, this te
hnique is also limited to showing behavior preservation only for a�xed number of instan
es of a metamodel.In this paper we go a step further and employ the borrowed
ontext frame-work in order to
he
k refa
toring produ
tions for behavior preservation a

ord-ing to the operational semanti
s of the metamodel. We
all a rule behavior-preserving when its left- and right-hand sides are bisimilar. Thanks to the fa
tthat bisimilarity is a
ongruen
e, whenever all refa
toring produ
tions preservebehavior, so does every transformation via these rules. In this
ase, all modelinstan
es of the metamodel and their refa
tored versions exhibit the same be-havior. However, refa
torings very often involve non-behavior-preserving rulesdes
ribing intermediate steps of the whole transformation. Given a transfor-mation G p1) H via a non-behavior-preserving rule p1, the basi
 idea is thento
he
k for the existen
e of a larger transformation G)� H 0 via a sequen
eseq = p1; p2; : : : ; pi of rule appli
ations su
h that the
on
urrent produ
tion [14,15℄ indu
ed by seq is behavior-preserving. Sin
e the
on
urrent produ
tion p
performs exa
tly the same transformation G p
) H 0 we
an infer that G and H 0have the same behavior.This paper is stru
tured as follows. Se
tion 2 brie
y reviews how the DPOapproa
h with borrowed
ontexts
an be used to de�ne the operational seman-ti
s of a metamodel. Se
tion 3 de�nes the model refa
torings we deal with. Anexample in the setting of �nite automata is given in Se
tion 4. In Se
tion 5 wede�ne a te
hnique to
he
k refa
toring rules for behavior preservation and anextension to handle non-behavior-preserving rules in model refa
toring. Finally,these te
hniques are applied to the automata example. The proofs of the resultsin this paper, whi
h are omitted here be
ause of spa
e limitations,
an be foundin [16℄.2 Operational Semanti
s via Borrowed ContextsIn this se
tion we re
all the DPO approa
h with borrowed
ontexts [12, 17℄ andshow how it
an be used to de�ne the operational semanti
s of a metamodelM . In this paper we
onsider the
ategory of labeled graphs, but the resultswould also hold for the
ategory of typed graphs or, more generally, for adhesive
ategories. In standard DPO [18℄, produ
tions rewrite graphs with no intera
tionwith any other entity than the graph itself. In the DPO approa
h with borrowed
ontexts [17℄ graphs have interfa
es and may borrow missing parts of left-hand

sides from the environment via the interfa
e. This leads to open systems whi
htake into a

ount intera
tion with the outside world.De�nition 1 (Graphs with Interfa
es and Graph Contexts). A graph Gwith interfa
e J is a morphism J ! G and a
ontext
onsists of two morphismsJ ! E J . The embedding of a graph with interfa
e J ! G into a
ontextJ ! E J is a graph with interfa
e J ! G whi
h is obtained by
onstru
tingG as the pushout of J ! G and J ! E.J //�� PO E�� Joo��G // GObserve that the embedding is de�ned up to isomorphism sin
e the pushoutobje
t is unique up to isomorphism.De�nition 2 (Metamodel M and Model). A metamodel M spe
i�es a setof graphs with interfa
e of the form J ! G (as in De�nition 1). An element ofthis set is
alled an instan
e of the metamodel M , or simply model.For example, the metamodel DFA, introdu
ed in Se
tion 4, des
ribes de-terministi
 �nite automata. A model is an automaton J ! G, where G is theautomaton and J spe
i�es whi
h parts of G may intera
t with the environment.De�nition 3 (Set of Operational Semanti
s Rules). Given a metamodelM as in De�nition 2, its operational semanti
s is de�ned by a set OpSemM ofgraph produ
tions L l I r! R, where l; r are inje
tive morphisms.De�nition 4 (Rewriting with Borrowed Contexts). Let OpSemM be asin De�nition 3. Given a model J ! G and a produ
tion p : L I ! R (p 2OpSemM), we say that J ! G redu
es to K ! H with transition label J ! F K if there are graphs D, G+, C and additional morphisms su
h that the diagrambelow
ommutes and the squares are either pushouts (PO) or pullba
ks (PB) withinje
tive morphisms. In this
ase a rewriting step with borrowed
ontext (BCstep) is
alled feasible: (J ! G) J!F K������! (K ! H).D //�� PO L�� PO Ioo //�� PO R��G //POG+ PB Coo // HJOO // FOO Koo OO >>In the diagram above the upper left-hand square merges L and the graph Gto be rewritten a

ording to a partial mat
h G D ! L. The resulting graphG+
ontains a total mat
h of L and
an be rewritten as in the standard DPOapproa
h, produ
ing the two remaining squares in the upper row. The pushoutin the lower row gives us the borrowed (or minimal)
ontext F , along with amorphism J ! F indi
ating how F should be pasted to G. Finally, we need an

interfa
e for the resulting graph H , whi
h
an be obtained by \interse
ting" theborrowed
ontext F and the graph C via a pullba
k. Note that the two pushout
omplements that are needed in De�nition 4, namely C and F , may not exist.In this
ase, the rewriting step is not feasible. Furthermore, observe that for agiven partial mat
h G D ! L the graphs G+ and C are uniquely determined.A bisimulation is an equivalen
e relation between states of transition systems,asso
iating states whi
h
an simulate ea
h other.De�nition 5 (Bisimulation and Bisimilarity). Let OpSemM be as in Def-inition 3 and let R be a symmetri
 relation
ontaining pairs of models (J !G; J ! G0). The relation R is
alled a bisimulation if, whenever we have(J ! G)R (J ! G0) and a transition (J ! G) J!F K������! (K ! H), thenthere exists a model K ! H 0 and a transition (J ! G0) J!F K������! (K ! H 0)su
h that (K ! H)R (K ! H 0).We write (J ! G) �OpSemM (J ! G0) (or (J ! G) � (J ! G0) ifthe operational semanti
s is obvious from the
ontext) whenever there exists abisimulation R that relates the two instan
es of the metamodel M . The relation�OpSemM is
alled bisimilarity.When de�ning the operational semanti
s using the borrowed
ontext frame-work, it should be kept in mind that rewriting is based on intera
tions with theenvironment, i.e., the environment should provide some information via F tothe graph G in order to trigger the rewriting step. For instan
e, in our �niteautomata example in Se
tion 4 the environment provides a letter to trigger the
orresponding transition of the automaton.An advantage of the borrowed
ontext te
hnique is that the derived bisimi-larity is automati
ally a
ongruen
e, whi
h means that whenever a graph withinterfa
e is bisimilar to another, one
an ex
hange them in a larger graph with-out e�e
t on the observable behavior. This is very useful for model refa
toringsin
e we
an repla
e one part of the model by another bisimilar one, withoutaltering its observable behavior.Theorem 1 (Bisimilarity is a Congruen
e [12℄). Bisimilarity � is a
on-gruen
e, i.e., it is preserved by embedding into
ontexts as given in De�nition 1.In [17℄ a te
hnique is de�ned to speed up bisimulation
he
king, whi
h allowsus to take into a

ount only
ertain labels. A label is
onsidered super
uous and
alled independent if we
an add two morphisms D ! J and D ! I to the dia-gram in De�nition 4 su
h thatD ! I ! L = D ! L andD ! J ! G = D ! G.That is, intuitively, the graph G to be rewritten and the left-hand side L overlaponly in their interfa
es. Transitions with independent labels
an be ignored inthe bisimulation game, sin
e a mat
hing transition always exists.3 Refa
toring TransformationsHere we de�ne refa
toring transformations using DPO rules with negative ap-pli
ation
onditions (NAC).

De�nition 6 (NAC, Rule with NAC and Transformation). A negativeappli
ation
ondition NAC (n) on L is an inje
tive morphism n : L ! NAC.An inje
tive mat
h m : L! G satis�es NAC (n) on L if and only if there is noinje
tive morphism q : NAC ! G with q Æ n = m.NACq ##GGGGG Lm��noo = G NAC Loo m �� IPO POoo //�� R��G0 C0oo // G1A negative appli
ation
ondition NAC (n) is
alled satis�able if n is not anisomorphism.A rule L l I r! R (l; r inje
tive) with NACs is equipped with a �nite set ofnegative appli
ation
onditions NACL = fNAC (ni) j i 2 Ig. A dire
t transfor-mation G0 p;m=) G1 via a rule p with NACs and an inje
tive mat
h m : L ! G0
onsists of the double pushout diagram above, where m satis�es all NACs of p.Note that if NAC (n) is satis�able then the identity mat
h id : L ! L satis�esNAC (n). We will assume that for any rule with NACs, the
orresponding nega-tive appli
ation
onditions are all satis�able, so that the rule is appli
able to atleast one mat
h (the identity mat
h on its left-hand side).De�nition 7 (Layered Refa
toring System and Refa
toring Rule). Letmetamodel M be as in De�nition 2. A refa
toring rule is a graph rule as inDe�nition 6. A layered refa
toring system Refa
toringM for the metamodel M
onsists of k sets Refa
toringMi (0 � i � k � 1) of refa
toring rules. Ea
h setRefa
toringMi de�nes a transformation layer.De�nition 8 (Refa
toring Transformation). Let Refa
toringM be as in Def-inition 7. A refa
toring transformation t : (J ! G0))� (J ! Gn) is a sequen
e(J ! G0) p1) (J ! G1) p2) � � � pn) (J ! Gn) of dire
t transformations (asin De�nition 6) su
h that pi 2 Refa
toringM and t preserves the interfa
e J ,i.e., for ea
h i (0 � i < n) there exists an inje
tive morphism J ! Ci withJ ! Gi = J ! Ci ! Gi (see diagram below). Moreover, in t ea
h layer ap-plies its rules as long as possible before the rules of the next layer
ome into play.NAC Loo �� Ioo //��PO PO R��Gi Cioo // Gi+1JOO JJ BB=Note that refa
toring transformations operate only on the internal stru
tureof Gi while keeping the original interfa
e J .4 Example: Deleting Unrea
hable States in DFAIn this se
tion we present an example of refa
toring in the setting of deter-ministi
 �nite automata (DFA). The metamodel DFA des
ribes �nite automata

represented as graphs with interfa
e as J! DFA1 and J! DFA2 in Fig. 2, whereunlabeled nodes are states and dire
ted labeled edges are transitions. An FS-loopmarks a state as �nal. A W-node has an edge pointing to the
urrent state andthis edge points initially to the start state. The W-node is the interfa
e, i.e., theonly
onne
tion to the environment.
Fig. 2. Examples of DFA as graphs with interfa
e.The operational semanti
s for DFA is given by a set OpSemDFA of rules
on-taining Jump(a), Loop(a) and A

ept depi
ted in Fig. 3. The rules Jump(a),Loop(a) must be de�ned for ea
h symbol a 2 �, where � is a �xed alphabet.A

ording to OpSemDFA a DFA may
hange its state. The W-node re
eives asymbol (e.g. `b') from the environment in form of a b-labeled edge
onne
tingW-nodes, e.g., the string `b
' is ?>=<89:;w ?>=<89:;wboo ?>=<89:;w
oo . An a
pt-edge between W-nodes marks the end of a string. When su
h an edge is
onsumed by a DFA, thestring previously pro
essed is a

epted.A layered refa
toring system for the deletion of unrea
hable states of anautomaton is given in Fig. 3 on the right. To the left of ea
h rule we depi
t theNAC (if it exists). The rules are spread over three layers. Rule1 marks the initialstate as rea
hable with an R-loop. Rule2(a) identi�es all other states that
anbe rea
hed from the start state via a-transitions. Layer 1 deletes the loops andthe edges of the unrea
hable states and �nally the unrea
hable states. Layer 2removes the R-loops.Applying the refa
toring rules above to the automaton J! DFA1 we obtainJ! DFA2, where the rightmost state was deleted. By using the bisimulation
he
king algorithm of [3℄ we
on
lude that J! DFA1 and J! DFA2 are bisimilarw.r.t. OpSemDFA. In our setting bisimilarity via the borrowed
ontext te
hnique
orresponds to bisimilarity on automata seen as transition systems, whi
h inturn implies language equivalen
e.5 Behavior Preservation in Model Refa
toringHere we introdu
e a notion of behavior preservation for refa
toring rules and,building on this, we provide some te
hniques for ensuring behavior preservationin model refa
toring.5.1 Refa
toring via Behavior-Preserving RulesFor a metamodelM as in De�nition 2 we de�ne behavior preservation as follows.

Fig. 3. Operational semanti
s and a refa
toring for DFA.De�nition 9 (Behavior-Preserving Transformation). Let OpSemM be asin De�nition 3. A refa
toring transformation t : (J ! G))� (J ! H) (as inDe�nition 8) is
alled behavior-preserving when (J ! G) �OpSemM (J ! H).In order to
he
k t for behavior preservation we
an use De�nition 4 to derivetransition labels from J ! G and J ! H w.r.t. the rules in OpSemM .Observe that behavior preservation in the sense of De�nition 9 is limited to
he
king spe
i�
 models. This pro
ess is fairly ineÆ
ient and
an never be ex-haustive as behavior-preservation must be
he
ked for ea
h spe
i�
 transforma-tion. A more eÆ
ient strategy
onsists in fo
ussing on the behavior-preservationproperty at the level of refa
toring rules. The general idea is to
he
k for everyp 2 Refa
toringM whether its left and right-hand sides, seen as graphs with inter-fa
es, are bisimilar, i.e., (I ! L) � (I ! R) w.r.t. OpSemM . Whenever this hap-pens, sin
e bisimilarity is a
ongruen
e, any transformation (J ! G) p) (J ! H)via p will preserve the behavior, i.e., J ! G and J ! H have the same behavior.De�nition 10 (Behavior-Preserving Refa
toring Rule). Let OpSemM beas in De�nition 3. A refa
toring produ
tion p : L I ! R with NACL isbehavior-preserving whenever (I ! L) � (I ! R) w.r.t. OpSemM .Now we
an show a simple but important result that says that a rule isbehavior-preserving if and only if every refa
toring transformation generated bythis rule is behavior-preserving.

Proposition 1. Let OpSemM be as in De�nition 3. Then it holds: p : L I ! R (with NACL) is behavior-preserving w.r.t. OpSemM if and only if anyrefa
toring transformation (J ! G) p) (J ! H) (as in De�nition 8) is behavior-preserving, i.e., (J ! G) �OpSemM (J ! H).Remark 1. The fa
t that the previous proposition also holds for rules withNACs, even though De�nition 10 does not take NACs into a

ount for behavior-preservation purposes, does of
ourse not imply that negative appli
ation
on-ditions for refa
toring rules are unne
essary in general. They are needed in or-der to
onstrain the appli
ability of rules, espe
ially of those rules that are notbehavior-preserving, or rather, are only behavior-preserving when applied in
er-tain
ontexts. As a dire
tion of future work, we plan to study
ongruen
e resultsfor restri
ted
lasses of
ontexts. This will help to better handle refa
toring ruleswith NACs.Theorem 2 (Refa
toring via Behavior-Preserving Rules). Let OpSemMand Refa
toringM be as in De�nitions 3 and 7. If ea
h rule in Refa
toringM isbehavior-preserving w.r.t. OpSemM then any refa
toring transformation (J !G0))� (J ! Gn) via these rules is behavior-preserving.Example 1. We
he
k the rules in Refa
toringDFAi (i = 0; 1; 2) from Se
tion 4for behavior preservation. We begin with Refa
toringDFA0 (Layer 0). For RULE1 :NAC L I! R we derive the transition labels from I! L and I! R w.r.t.OpSemDFA. On the left-hand side of Fig. 4 we s
hemati
ally depi
t the �rst stepsin their respe
tive labeled transition systems (LTS), where ea
h partner has three
hoi
es. Independent labels exist in both LTSs but are not illustrated below.The derivation of label L1 for I! R is shown on the right. Sin
e I! L andI! R (and their su

essors)
an properly mimi
 ea
h other via a bisimulationwe
an
on
lude that (I! L) �OpSemDFA (I! R). The intuitive reason for this isthat the R-loop, whi
h is added by this rule, does not have any meaning in theoperational semanti
s and is hen
e \ignored" by OpSemDFA.Analogously, RULE2(a) and the rule in Layer 2 are behavior-preserving aswell. Hen
e, we
an infer that every transformation via the rules of Layer 0and Layer 2 preserves the behavior. On the other hand, all rules in Layer 1, ex-
ept for RULE6, are not behavior-preserving. Note that RULE6 is only behavior-preserving be
ause of the dangling
ondition. Thus, when a transformation is
ar-ried out via non-behavior-preserving rules of Layer 1 we
annot be sure whetherthe behavior has been preserved.5.2 Handling Non-Behavior-Preserving RulesFor refa
toring transformations based on non-behavior-preserving rules the te
h-nique of Se
tion 5.1 does not allow to establish if the behavior is preserved.Very often there are refa
toring rules representing intermediate transforma-tions that indeed are not behavior-preserving. Still, when
onsidered togetherwith neighboring rules, they
ould indu
e a
on
urrent produ
tion [14, 15℄ p
,

Fig. 4. Labeled transition systems for rule1 and a label derivation.
orresponding to a larger transformation, whi
h preserves the behavior. For atransformation t : (J ! G))� (J ! H 0) via a sequen
e seq = p1; p2; : : : ; pithe
on
urrent produ
tion p
 : L
 I
 ! R
 with
on
urrent NACL
 indu
edby t performs exa
tly the same transformation (J ! G) p
) (J ! H 0) in onestep. Moreover, p

an only be applied to (J ! G) if the
on
urrent NACL
 issatis�ed. This is the
ase if and only if every NAC of the rules in t is satis�ed.The basi
 idea is now to
he
k for a transformation (J ! G) p1) (J ! H) basedon a non-behavior-preserving rule p1 whether there exists su
h a larger trans-formation t : (J ! G))� (J ! H 0) via a sequen
e seq = p1; p2; : : : ; pi of rulessu
h that the
on
urrent produ
tion indu
ed by t is behavior preserving. Thenwe
an infer that J ! G and J ! H 0 have the same behavior.This is made formal by the notion of safe transformation and the theorembelow.De�nition 11 (Safe Transformation). Let OpSemM be as in De�nition 3. Arefa
toring transformation t : (J ! G))� (J ! H) (as in De�nition 8) is
alledsafe if it indu
es a behavior-preserving
on
urrent produ
tion w.r.t. OpSemM .Theorem 3 (Safe Transformations preserve Behavior). Let OpSemMand Refa
toringM be as in De�nitions 3 and 7, and let t : (J ! G))� (J ! H)be a refa
toring transformation. If t is safe, then t is behavior-preserving, i.e.,(J ! G) � (J ! H).In order to prove that a refa
toring transformation t : (J ! G))� (J ! H)is safe (and thus behavior-preserving), we
an look for a split tsp : G)� H1)�� � �)� Hn)� H (interfa
es are omitted) of t where ea
h step ()�) indu
es abehavior-preserving
on
urrent produ
tion (see De�nition 12). In fa
t, as shownbelow, if and only if su
h split exists we
an guarantee that t preserves behavior(Theorem 4).De�nition 12 (Safe Transformation Split). Let OpSemM be as in De�ni-tion 3 and let t : (J ! G))� (J ! H) be a refa
toring transformation (as in

De�nition 8). A split of t is obtained by
utting t into a sequen
e of non-emptysubtransformations tsp : (J ! G))� (J ! H1))� � � �)� (J ! Hn))� (J !H). A transformation split tsp is safe if ea
h step ()�) is safe.In Se
tion 5.3 we present a simple sear
h strategy for safe splits. More elab-orate ones are part of future work.Theorem 4. Let t : (J ! G))� (J ! H) be a refa
toring transformation.Then t is safe if and only if it admits a safe split.Observe that, instead, the following does not hold in general: if t : (J !G))� (J ! H) and (J ! G) �OpSemM (J ! H) then t is safe. Consider for in-stan
e RULE5(a) in Fig. 3. As remarked, it is in general not behavior-preserving,but when, by
oin
iden
e, it removes a transition that is unrea
hable from thestart state, the original automaton and its refa
tored version are behaviorallyequivalent.5.3 Ensuring Behavior PreservationIn this se
tion we des
ribe how the theory presented in this paper
an be applied.Note that our results would allow us to automati
ally prove behavior preserva-tion only in spe
ial
ases, while, in general, su
h me
hanized proofs will be verydiÆ
ult. Hen
e here we will suggest a \mixed strategy", whi
h
ombines ele-ments of automati
 veri�
ation and the sear
h for behavior-preserving rules, inorder to properly guide refa
torings.More spe
i�
ally, a given model J ! G
an be refa
tored by applying therules in Refa
toringM in an automati
 way, where the ma
hine
hooses non-deterministi
ally the rules to be applied, or in a user-driven way, where forea
h transformation the ma
hine provides the user with a list of all appli
ablerules together with their respe
tive mat
hes and ultimately the user pi
ks one ofthem. The main goal is then to tell the user whether the refa
toring is behavior-preserving.The straightforward strategy to a

omplish the goal above is to transformJ ! G applying only behavior-preserving rules. This obviously guarantees thatthe refa
toring preserves behavior. However if a non-behavior-preserving rule pis applied we
an no longer guarantee behavior preservation. Still, by pro
eedingwith the refa
toring, namely by performing further transformations, we
an dothe following: for ea
h new transformation added to the refa
toring we
omputethe indu
ed
on
urrent produ
tion for the transformation whi
h involves the�rst non-behavior-preserving rule p and the subsequent ones. If this
on
urrentprodu
tion is behavior-preserving we
an again guarantee behavior preservationfor the refa
toring sin
e the refa
toring admits a safe split (see Theorem 4).The strategy above is not
omplete sin
e behaviour preservation
ould beensured by the existen
e of
omplex safe splits whi
h the illustrated pro
edureis not able to �nd. We already have preliminary ideas for more sophisti
atedsear
h strategies, but they are part of future work. Note however, that this

strategy
an redu
e the proof obligations, sin
e we do not have to show behaviorpreservation between the start and end graph of the refa
toring sequen
e (whi
hmay be huge), but we only have to investigate lo
al updates of the model.Example 2. Consider the automaton J! DFA1 of Se
tion 4. By applying thebehavior-preserving rules of Refa
toringDFA0 (Layer 0) we obtain J! DFA01 de-pi
ted in Fig. 5 (the interfa
e J is omitted). Sin
e Refa
toringDFA0
ontains onlybehavior-preserving rules by Theorem 2 it holds that (J! DFA1))� (J! DFA01)preserves the behavior. No more rules in Refa
toringDFA0
an be applied, i.e., the
omputation of Layer 0 terminates.Now the rules of Refa
toringDFA1 (Layer 1)
ome into play. Re
all that all rulesin Refa
toringDFA1 are non-behavior-preserving, ex
ept for RULE6. This set
on-tains RULE4(0) and RULE4(1) whi
h are appropriate instantiations of RULE4(a).After the transformation (J! DFA01) RULE4(0)=) (J! DFA11) we
an no longer guar-antee behavior-preservation sin
e RULE4(0) has been applied. From now on wefollow the strategy previously des
ribed to look for a behavior-preserving
on-
urrent produ
tion. We perform the step (J! DFA11) RULE4(1)=) (J! DFA21), builda
on
urrent produ
tion p
 indu
ed by (J! DFA01) RULE4(0)=) (J! DFA11) RULE4(1)=)(J! DFA21) and, by
he
king p
 for behavior-preservation, we �nd out that it isnot behavior-preserving. We then
ontinue with (J! DFA21) RULE6=) (J! DFA31),build p0
 (Fig. 6), indu
ed by the transformation beginning at J! DFA01 and
he
k it for behavior-preservation. Now p0
 is behavior-preserving and so we
anon
e again guarantee behavior preservation (Theorem 3).
Fig. 5. Refa
toring transformation.Finally, no more rules of Refa
toringDFA1 are appli
able to J! DFA31. Thebehavior-preserving rule in Refa
toringDFA2 (Layer 2)
omes into play and per-forms a transformation (J! DFA31) RULE6=)2 (J! DFA2), where the �nal automa-ton is depi
ted in Se
tion 4 (DFA2). Con
luding, sin
e we have found a safesplit for the transformation via non-behavior-preserving rules we
an infer thatJ! DFA1 and J! DFA2 have the same behavior.Intuitively, the
on
urrent produ
tion is behavior-preserving, sin
e it deletesan entire
onne
ted
omponent that is not linked to the rest of the automaton.Note that due to the size of the
omponents involved it
an be mu
h simpler to
he
k su
h transformation units rather than the entire refa
toring sequen
e.In addition, it would be useful if the pro
edure above
ould store the in-du
ed
on
urrent produ
tions whi
h are behavior-preserving into Refa
toringM

Fig. 6. Indu
ed
on
urrent produ
tion p0
.for later use. By doing so the user knows whi
h
ombination of rules leads tobehavior-preserving
on
urrent produ
tions. Similarly, the user
ould also wantto know whi
h
ombination of rules leads to non-behavior-preserving
on
ur-rent produ
tions. Of
ourse, in the latter
ase the
on
urrent produ
tions arejust stored but do not engage in any refa
toring transformation. It is importantto observe that we store into Refa
toringM only
on
urrent produ
tions whi
hare built with rules within the same layer (as in Example 2). For more
om-plex refa
torings, su
h as the
attening of hierar
hi
al state
harts (see [19℄), abehavior-preserving
on
urrent produ
tion p
 exists only when it is built from atransformation involving several layers. In this latter
ase, p
 is built and
he
kedfor behavior preservation but not stored for later use.For the
ases where a layer Refa
toringMi of Refa
toringM is terminating and
on
uent it is then important to guarantee that adding
on
urrent produ
tionsto the refa
toring layer does not a�e
t these properties.Theorem 5. Let Refa
toringMi be as in De�nition 7 and Rp
i be a set
ontaining
on
urrent produ
tions p
 built from p; q 2 Refa
toringMi [Rp
i . Then wheneverRefa
toringMi is
on
uent and terminating it holds that Refa
toringMi [Rp
i isalso terminating and
on
uent.For the
ase where layer Refa
toringMi is terminating and
on
uent anotherinteresting and useful fa
t holds: assume that we �x a start graph G0 and we
an show that some (terminating) transformation, beginning with G0 allows abehavior-preserving split. Then
learly all transformations starting from G0 arebehavior-preserving sin
e they result in the same �nal graph H .6 Con
lusions and Future WorkWe have shown how the borrowed
ontext te
hnique
an be used to reason aboutbehavior-preservation of refa
toring rules and refa
toring transformations. Inthis way we shift the perspe
tive from
he
king spe
i�
 models to the investiga-tion of the properties of the refa
toring rules.The formal te
hniques in related work [7{10℄ address behavior preservationin model refa
toring, but are in general tailored to a spe
i�
 metamodel andlimited to
he
king the behavior of a �xed number of models. Therefore, thetransfer to di�erent metamodels is, in general, quite diÆ
ult.Hen
e, with this paper we propose to use the borrowed
ontext te
hniquein order to
onsider any metamodel whose operational semanti
s
an be givenby graph produ
tions. Furthermore, the bisimulation
he
king algorithm [3℄ for

borrowed
ontexts provides the means for automati
ally
he
king models forbehavior preservation. This
an be done not only for a spe
i�
 model and itsrefa
tored version, but also for the left-hand and right-hand sides of refa
tor-ing rules. On
e we have shown that a given rule is behavior-preserving, i.e., itsleft- and right-hand sides are equivalent, we know that its appli
ation will al-ways preserve the behavior, due to the
ongruen
e result. When rules are notbehavior-preserving, they still
an be
ombined into behavior-preserving
on
ur-rent produ
tions. We believe that su
h a method will help the user to gain abetter understanding of the refa
toring rules sin
e he or she
an be told exa
tlywhi
h rules may modify the behavior during a transformation. An advantage ofour te
hnique over the one in [11℄ is that we work dire
tly with graph transforma-tions and do not need any auxiliary en
oding. Furthermore, with our te
hniquewe
an guarantee that a model and its refa
tored version have exa
tly the sameobservable behavior, while in [11℄ the refa
tored model \
ontains" the originalmodel but may add extra behavior.This work opens up several possible dire
tions for future investigations. First,in some refa
torings when non-behavior-preserving rules are applied, the sear
hstrategies for safe splits
an be
ome very
omplex. Here we de�ned only a simplesear
h strategy, but it should be possible to
ome up with more elaborate ones.Se
ond, although we are working with refa
toring rules with negative appli-
ation
onditions, these NACs do not play a prominent role in our automati
veri�
ation te
hniques, but of
ourse they are a key to limiting the number of
on
urrent produ
tions whi
h
an be built. In [20℄ the borrowed
ontext frame-work and the
ongruen
e result has been extended to handle rules with NACs.However, this applies only to negative appli
ation
onditions in the operationalsemanti
s. It is, nevertheless, also important to have similar results for refa
tor-ing rules with NACs, whi
h would lead to a \restri
ted"
ongruen
e result, wherebisimilarity would only be preserved by
ertain
ontexts (see also the dis
ussionin Remark 1). Sin
e model refa
torings often use graphs with attributes it isuseful to
he
k whether the
ongruen
e results in [12, 20℄ also hold for adhesiveHLR
ategories (the
ategory of attributed graphs is an instan
e thereof).A
knowledgements: We would like to thank Gabi Taentzer and ReikoHe
kel for helpful dis
ussions on this topi
.Referen
es1. Mens, T., Gorp, P.V.: A taxonomy of model transformation. ENTCS 152 (2006)125{1422. Mens, T., Tourwe, T.: A survey of software refa
toring. IEEE Transa
tions onSoftware Engineering 30(2) (2004) pp. 126{1393. Rangel, G., K�onig, B., Ehrig, H.: Bisimulation veri�
ation for the DPO approa
hwith borrowed
ontexts. In: Pro
. of GT-VMT '07. Volume 6 of Ele
troni
 Com-muni
ations of the EASST. (2007)4. Biermann, E., Ehrig, K., K�ohler, C., Kuhns, G., Taentzer, G., Weiss, E.: EMFmodel refa
toring based on graph transformation
on
epts. In: SeTra'06. Vol-ume 3., Ele
troni
 Communi
ations of EASST (2006)

5. Ho�mann, B., Janssens, D., Eetvelde, N.V.: Cloning and expanding graph trans-formation rules for refa
toring. ENTCS 152 (2006) 53{676. Mens, T., Taentzer, G., Runge, O.: Analysing refa
toring dependen
ies using graphtransformation. Software and Systems Modeling 6(3) (September 2007) 269{2857. van Kempen, M., Chaudron, M., Kourie, D., Boake, A.: Towards proving preser-vation of behaviour of refa
toring of UML models. In: SAICSIT '05, South Afri
anInstitute for Computer S
ientists and Information Te
hnologists (2005) 252{2598. P�erez, J., Crespo, Y.: Exploring a method to dete
t behaviour-preserving evolutionusing graph transformation. In: Pro
eedings of the Third International ERCIMWorkshop on Software Evolution, ERCIM (2007) 114{1229. Narayanan, A., Karsai, G.: Towards verifying model transformations. In Bruni,R., Varr�o, D., eds.: Pro
. of GT-VMT '06. ENTCS, Vienna (2006) 185{19410. Van Gorp, P., Stenten, H., Mens, T., Demeyer, S.: Towards automating sour
e-
onsistent UML refa
torings. In Stevens, P., Whittle, J., Boo
h, G., eds.: UML2003 - The Uni�ed Modeling Language. Volume 2863 of Le
ture Notes in ComputerS
ien
e., Springer-Verlag (2003) 144{15811. Bisztray, D., He
kel, R., Ehrig, H.: Veri�
ation of ar
hite
tural refa
torings by ruleextra
tion. In Fiadeiro, J.L., Inverardi, P., eds.: FASE'08. Volume 4961 of LNCS.,Springer (2008) 347{36112. Ehrig, H., K�onig, B.: Deriving bisimulation
ongruen
es in the DPO approa
hto graph rewriting. In: Pro
. of FoSSaCS '04. Volume 2987 of LNCS. (2004) pp.151{16613. Hirs
hko�, D.: Bisimulation veri�
ation using the up-to te
hniques. InternationalJournal on Software Tools for Te
hnology Transfer 3(3) (August 2001) pp. 271{28514. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebrai
 GraphTransformation (Monographs in Theoreti
al Computer S
ien
e. An EATCS Se-ries). Springer-Verlag New York, In
., Se
au
us, NJ, USA (2006)15. Lambers, L.: Adhesive high-level repla
ement system with negative appli
ation
onditions. Te
hni
al report, TU Berlin (2007)16. Rangel, G., Lambers, L., K�onig, B., Ehrig, H., Baldan, P.: Behavior preservation inmodel refa
toring using DPO transformations with borrowed
ontexts. Te
hni
alReport 12/08, TU Berlin (2008)17. Ehrig, H., K�onig, B.: Deriving bisimulation
ongruen
es in the DPO approa
h tograph rewriting with borrowed
ontexts. Mathemati
al Stru
tures in ComputerS
ien
e 16(6) (2006) pp. 1133{116318. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., He
kel, R., Loewe, M.: Algebrai
approa
hes to graph transformation part I: Basi

on
epts and double pushoutapproa
h. In Rozenberg, G., ed.: Handbook of Graph Grammars and Computingby Graph transformation, Volume 1: Foundations, World S
ienti�
 (1997) pp. 163{24619. Rangel, G.: Bisimulation Veri�
ation for Graph Transformation Systems withBorrowed Contexts. PhD thesis, TU Berlin (2008) To appear.20. Rangel, G., K�onig, B., Ehrig, H.: Deriving bisimulation
ongruen
es in the presen
eof negative appli
ation
onditions. In: Pro
. of FOSSACS '08. Volume 4962 ofLNCS., Springer (2008) 413{427

