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t. We introdu
e ranked open nets, a rea
tive extension of Petrinets whi
h generalises a basi
 open net model introdu
ed in a previ-ous work by allowing for a re�ned notion of interfa
e. The interfa
e to-wards the external environment of a ranked open net is given by a subsetof pla
es designated as open and used for 
omposition. Additionally, abound on the number of 
onne
tions whi
h are allowed on an open pla
e
an be spe
i�ed. We show that the non-deterministi
 pro
ess semanti
sis 
ompositional with respe
t to the 
omposition operation over rankedopen nets, a result whi
h did not hold for basi
 open nets.Introdu
tionPetri nets are a well-known model of 
on
urrent and distributed systems, widelyused both in theoreti
al and appli
ative areas [14℄. While the basi
 model ismainly aimed at representing 
losed, 
ompletely spe
i�ed systems evolving au-tonomously through the �ring of transitions, in re
ent years there has been anin
reasing attention to the development of rea
tive Petri net models, dire
tlysupporting 
ertain features needed for modeling open systems, whi
h 
an inter-a
t with the surrounding environment [11, 15, 12, 13, 9, 3℄.In parti
ular, open Petri nets, as introdu
ed in [1℄, are a mild extensionof basi
 nets with the possibility of intera
ting with the environment and of
omposing a larger net out of smaller open 
omponents. An open net is anordinary net with a distinguished set of pla
es, designated as open, throughwhi
h the net 
an intera
t with the environment. As a 
onsequen
e of su
hintera
tion, tokens 
an be freely generated and removed in open pla
es. Opennets are endowed with a 
omposition operation, 
hara
terised as a pushout inthe 
orresponding 
ategory, suitable to model both intera
tion through openpla
es and syn
hronisation of transitions.It is very 
onvenient if 
ompositionality at the system level is re
e
ted at thesemanti
 level, i.e., if the behaviour of a system 
an be suitably expressed on the? Supported by the MIUR Proje
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basis of the behaviour of its 
omponents. This allows for modular analysis of thesystems and it helps in de�ning system re
on�gurations (repla
ing a 
omponentby another) whi
h keep the observable behaviour un
hanged [2, 4℄.In parti
ular, as non-sequential pro
esses of a Petri net 
an be fruitfully usedas a representation of possible s
enarios in the exe
ution of a system (see, e.g.,the work on work
ows and the en
odings of web-servi
e des
ription languageslike OWL or BPEL as Petri nets [16, 17, 4, 18℄), it 
an be interesting to relate thepro
esses of a Petri net with those of its 
omponents. Spe
i�
ally, one shouldunderstand under whi
h 
onditions pro
esses of the sub
omponent nets 
an be
ombined into a 
onsistent pro
ess of their 
omposition and vi
e versa, howpro
esses of the full system 
an be de
omposed into pro
esses of the 
omponents.Results in this dire
tion have been provided for open nets in [1℄, by showing
ompositionality for a semanti
s based on deterministi
 pro
esses �a la Goltz-Reisig. Unfortunately, as noti
ed in the same paper, the result does not extendto non-deterministi
 pro
esses. To get a rough intuition of what fails, 
onsiderthe open nets in the Fig. 3(b) (ignoring, for the moment, the labels 2 and !atta
hed to dangling ar
s). The representation of the nets is standard; only openpla
es have ingoing and/or outgoing dangling ar
s, meaning that transitions ofthe environment 
ould be atta
hed and thus put and/or remove tokens in thesepla
es. The nets Zi are simple enough to be 
onsidered pro
esses themselves. Forinstan
e, Z1 represents a pro
ess in whi
h a token 
an be 
onsumed either by t1or by the environment. When joining Z1 and Z2 along the net Z0, in the resultZ3 pla
e s is still open, the intuition being that ea
h open pla
e allows for anunbounded number of 
onne
tions, hen
e adding one 
onne
tion does not a�e
tits openness. There is no way of spe
ifying that, as a result of the 
omposition,the open port of ea
h of the two 
omponents is o

upied by the other 
omponent,thus produ
ing a net where pla
e s is 
losed. This is problemati
 sin
e a netidenti
al to Z3, but where pla
e s is 
losed, is a valid pro
ess of Z3 (spe
ifyinga 
omputation having no intera
tions with the environment). However there isno way to obtain it as the 
omposition of two pro
esses of Z1 and Z2.In order to over
ome this problem, we introdu
e ranked open nets, a re�nedmodel of open nets where besides spe
ifying the open pla
es, whi
h 
an be usedfor 
omposition with other nets, we also spe
ify the maximum number of allowed(input and output) 
onne
tions. This provides a more expressive model, properlysubsuming basi
 open nets (whi
h 
an be seen as spe
ial ranked open nets, whereopen pla
es always allow for an unbounded number of 
onne
tions).A me
hanism for 
omposing ranked open nets is de�ned whi
h generalisesthe one for basi
 open nets. In this 
ase the 
omposition operation 
annot be
hara
terised as a 
olimit. Instead, it 
an be seen as an abstra
tion of a pushoutin a more 
on
rete 
ategory where ports are made expli
it.The 
omposition operation is extended to non-deterministi
 pro
esses andwe prove the desired 
ompositionality result: if a net Z3 is the 
omposition of Z1and Z2, then any pro
ess of Z3 
an be obtained as the 
omposition of pro
essesof the 
omponent nets and vi
e versa, the 
omposition of pro
esses of Z1 andZ2, whi
h agree on the 
ommon interfa
e, always provides a pro
ess of Z3.2



The paper is organised as follows. In x 1 we introdu
e the 
ategories of rankedopen nets, and an operation of 
omposition for su
h nets is de�ned in x 2. In x 3we introdu
e non-deterministi
 pro
esses for ranked open nets. In x 4 we provethe main result, i.e., 
ompositionality for non-deterministi
 pro
esses. Finally,in x 5 we draw some 
on
lusions and dire
tions of future investigation.1 Ranked Open NetsAn open net, as introdu
ed in [1℄, is an ordinary P/T Petri net with a distin-guished set of pla
es. These pla
es are intended to represent the interfa
e of thenet towards the environment, whi
h, intera
ting with the net, 
an \freely" addor remove some tokens in the open pla
es. Rather than simply distinguishingbetween input and output pla
es, here, for every pla
e we spe
ify the largestnumber of allowed in
oming and outgoing new 
onne
tions. A pla
e is 
losed ifit does not allow for any new 
onne
tion.Given a set X we will denote by X� the free 
ommutative monoid generatedby X , with identity 0, and by 2X its powerset. Furthermore given a fun
tionh : X ! Y we denote by h� : X� ! Y � its monoidal extension, while the samesymbol h : 2X ! 2Y denotes the extension of h to sets.A P/T Petri net is a tuple N = (S; T; �; �) where S is the set of pla
es,T is the set of transitions (S \ T = ;) and �; � : T ! S� assign sour
e andtarget to ea
h transition. In this paper we will 
onsider only �nite Petri nets.We will denote by �(�) and (�)� the monoidal extensions of the fun
tions � and� to fun
tions from T� to S�. Furthermore, given a pla
e s 2 S, the pre- andpost-set of s are de�ned by �s = ft 2 T j s 2 t�g and s� = ft 2 T j s 2 �tg.Let N0 and N1 be Petri nets. A Petri net morphism f : N0 ! N1 is a pair oftotal fun
tions f = hfT ; fSi with fT : T0 ! T1 and fS : S0 ! S1, su
h that forall t0 2 T0, �fT (t0) = fS�( �t0) and fT (t0)� = fS�(t0�). The 
ategory of P/TPetri nets and Petri net morphisms will be denoted by Net.We use N for the set of natural numbers and N! for the same set extendedwith in�nity, i.e., N [ f!g. Operations and relations on N! are de�ned in theexpe
ted way, i.e., n � ! for ea
h n 2 N, ! � n = ! + n = ! + ! = ! for ea
hn 2 N, while ! � ! is unde�ned. The same operators will be applied, pointwise,to fun
tions over natural numbers. E.g., given f; g : X ! N! we denote byf + g : X ! N! the fun
tion de�ned by (f + g)(x) = f(x)+ g(x) for any x 2 X .De�nition 1 (ranked open net). A (ranked) open net is a pair Z = (NZ ; oZ),where NZ = (SZ ; TZ ; �Z ; �Z) is an ordinary P/T Petri net (
alled the underlyingnet) and oZ = (o+Z ; o�Z ) : SZ ! N! . We de�ne OxZ = fs 2 SZ : oxZ(s) > 0g, forx 2 f+;�g and 
all them the sets of input and output open pla
es of the net.As mentioned above, the fun
tions o+Z and o�Z intuitively spe
ify for ea
hpla
e in SZ the maximum number of allowed new ingoing/outgoing 
onne
tions,also referred to as the ranks of s. In [1℄ whenever a pla
e was open, intuitivelythere was no limit to the number of new 
onne
tions. Hen
e the open nets of [1℄
an be seen as spe
ial ranked open nets, where oxZ(s) 2 f0; !g for any pla
e s.3



Fig. 1. Composing ranked open nets.As an example of ranked open nets, 
onsider net Z3 in Fig. 1, intuitivelymodelling the booking of a ti
ket in a travel agen
y. In the graphi
al representa-tion an input (resp. output) open pla
e s has a dangling ingoing (resp. outgoing)ar
, marked by the 
orresponding rank. When the rank is 1 it is omitted.Con
eptually, we 
an think that every pla
e of an open net has a set ofatta
hing points, whi
h 
an either be used by an existing transition 
onne
tedto the pla
e, or 
an be free and thus usable for 
onne
ting new transitions.Sometimes, as in the de�nition of 
on
rete morphisms below (De�nition 6), weneed to 
onsider an expli
it identity of su
h atta
hing points, that we 
all ports.A port used by a transition is identi�ed with the transition itself, while freeports are identi�ed by a progressive number. Most often, however, we will beinterested only in their number, i.e., in the degree of a pla
e. Given n 2 N, let [n℄denote the set f0 : : : ; n� 1g. For all 
onsidered Z we assume that T \ N! = ;.De�nition 2 (input and ouput ports and degree). Let Z be an open net.For any pla
e s 2 S we de�ne the sets of input and output ports of s as follows:p+(s) = [o+Z (s)℄ [ �s and p�(s) = [o�Z (s)℄ [ s�The ports in [o+Z (s)℄ and [o�Z (s)℄ are 
alled open ports.Furthermore, we de�ne the input degree of s as deg+(s) = jp+(s)j, and,similarly, the output degree of s as deg�(s) = jp�(s)j.The token game of open nets. The notion of enabledness for transitions isthe usual one, but, besides the 
hanges produ
ed by the �ring of the transitions ofthe net, we 
onsider also the intera
tion with the environment whi
h is modelledby events, denoted by +s and �s, whi
h produ
e or 
onsume a token in an openpla
e s. For an open net Z, the set of extended events, denoted �TZ , is de�ned as4



�TZ = TZ [ f+s : s 2 O+Z g [ f�s : s 2 O�Z g.Pre- and post-set fun
tions are extended by de�ning �+s = 0 and +s� = s, andsymmetri
ally, ��s = s and �s� = 0.De�nition 3 (�ring). Let Z be an open net. A �ring in Z 
onsists of theexe
ution of an extended event � 2 �TZ , i.e., u� �� [�i u� ��.A �ring 
an be (i) the exe
ution of a transition u � �t [ti u� t�, with t 2 TZ ;(ii) the 
reation of a token by the environment u [+si u�s, with s 2 O+Z ; (iii) thedeletion of a token by the environment u� s [�si u, with s 2 O�Z .Morphisms of open nets. Morphisms of open nets will be de�ned as standardnet morphisms satisfying suitable 
onditions on the pla
e ranks. Intuitively, amorphism f : Z1 ! Z2 \inserts" net Z1 into a larger net Z2, allowing a pla
e sof Z1 to be 
onne
ted to \new" transitions, i.e., transitions in Z2 n f(Z1). The
ondition we impose guarantees that ea
h new 
onne
tion of s and ea
h openport of f(s) 
an be mapped to an open port of s.For reasons dis
ussed in x 2, we de�ne two kinds of morphisms. In the moreabstra
t ones, we impose only a 
ardinality 
onstraint, while in the more 
on
reteones we require an expli
it mapping relating, for ea
h pla
e s of Z1, the ports ofs to those of f(s). We next formalise the idea of \new 
onne
tions" of a pla
e.De�nition 4 (in-set and out-set of a pla
e along a morphism). Givenopen nets Z1 and Z2 and a Petri net morphism f : NZ1 ! NZ2 , for ea
h pla
es1 2 S1 the in-set of s1 along f is de�ned as in(f)(s1) = f �fS(s1) � fT ( �s1)g,and similarly the out-set is out(f)(s1) = ffS(s1)� � fT (s1�)g. This de�nes thefun
tions in(f); out(f) : S1 ! 2T2 .The fun
tions #in(f);#out(f) : S1 ! N are de�ned, respe
tively, as#in(f)(s1) = jin(f)(s1)j and #out(f)(s1) = jout(f)(s1)j.De�nition 5 (open net morphisms). An open net morphism f : Z1 ! Z2is a Petri net morphism f : NZ1 ! NZ2 su
h that(i) #in(f) + o+2 Æ fs � o+1 and (ii) #out(f) + o�2 Æ fs � o�1 .A morphism f is 
alled an open net embedding if both fT and fS are inje
tive.Intuitively, 
ondition (i) requires that the number of new in
oming transitionsadded to s 2 S1 in the target net Z2 plus the input 
onne
tions whi
h are stillallowed for fS(s) in Z2 must be bounded by the maximum number of allowedinput 
onne
tions for s. Examples of open net embeddings 
an be found in Fig. 1.The mappings are those suggested by the labelling of the nets.De�nition 6 (
on
rete morphisms). Let Z1 and Z2 be open nets. A 
on
reteopen net morphism f : Z1 ! Z2 is a pair f = hf; ffs1gs12S1i, where f : NZ1 !NZ2 is a Petri net morphism and for any s1 2 S1, fs1 
onsists of a pair ofpartial surje
tions fxs1 : px(s1) ! px(f(s1)) for x 2 f+;�g, 
onsistent with f ,i.e., satisfying, for any t 2 �s1, f+s1(t) = f(t) and for any t 2 s1�, f�s1(t) = f(t).A morphism f is 
alled an open net embedding if all 
omponents are inje
tive.5



As anti
ipated, 
on
rete morphisms expli
itly relate, for ea
h pla
e s 2 S1,the ports of f(s) and of s, using the 
omponent fs. In the sequel, instead of f+sand f�s , when pla
e s is 
lear from the 
ontext, we will often write f+ and f�.Moreover, when de�ning fxs we will only spe
ify its values on the open ports[oxZ1(s)℄, whi
h, as fxs must be 
onsistent with f , 
ompletely determines fxs .As expe
ted, the two notions of morphism just introdu
ed determine two
ategories related by an obvious forgetful fun
tor. In fa
t, given a 
on
rete mor-phism f = hf; ffs1gs12S1i : Z1 ! Z2 it is straightforward to 
he
k that the Petrinet morphism f satis�es 
onditions (i) and (ii) of De�nition 5.De�nition 7 (open nets 
ategories). We denote by ONetr the 
ategory ofranked open nets and open net morphisms, and by ONet
 the 
ategory havingthe same obje
ts and 
on
rete open net morphisms as arrows.Furthermore, we denote by U : ONet
 ! ONetr the forgetful fun
tor whi
his the identity on obje
ts, and a
ts on an arrow f = hf; ffsgi as U(f) = f .Sometimes, 
ategories ONet
 and ONetr will be referred to as the 
on
reteand the abstra
t 
ategory of (ranked) open nets, respe
tively.The 
ategory of basi
 open nets introdu
ed in [1℄ is (isomorphi
 to) the fullsub
ategory of ONetr in
luding all the nets Z su
h that for any pla
e s we haveoxZ(s) 2 f0; !g, i.e., either s is 
losed or it allows for an unbounded number of
onne
tions. In the following this sub
ategory will be referred to as ONet.2 Composing Open NetsIntuitively, two open nets Z1 and Z2 are 
omposed by spe
ifying a 
ommonsubnet Z0, and then by joining the two nets along Z0. Composition will be 
har-a
terised as a pushout in the 
on
rete 
ategory of open nets ONet
. But sin
efor spe
i�
ation purposes the abstra
t 
ategory ONetr is often more appropri-ate and easier to deal with, next we will fo
us on the notion of 
ompositionindu
ed on su
h 
ategory by the 
olimit based 
omposition in ONet
.Composition is possible if it respe
ts the interfa
e of the involved nets. Thisis formalised by the notion of 
omposability of a span of embeddings in ONet
.De�nition 8 (
omposable span in ONet
). A span of embeddings f1 : Z0 !Z1 and f2 : Z0 ! Z2 in ONet
 is 
alled 
omposable if, for any s0 2 S01. for all i 2 [o+Z0(s0)℄, if f+1 (i) 2 in(f1)(s0) then f+2 (i) 2 [o+Z2(f2(s0))℄2. for all i 2 [o�Z0(s0)℄, if f�1 (i) 2 out(f1)(s0) then f�2 (i) 2 [o�Z2(f2(s0))℄plus the analogous 
onditions, ex
hanging the roles of Z1 and Z2.Intuitively, 
ondition (1) says that, given a pla
e s0 and an open input porti 2 [o+Z1(s0)℄, if a

ording to f1 the transition f+1 (i) 2 in(f1)(s0) is going tobe atta
hed to this port, then the 
orresponding port in Z2 must be open, i.e.,f+2 (i) 2 [o+Z2(f2(s0))℄. The other 
onditions are analogous.6



Z0 f2f1Z1 g1 Z2g2Z3Fig. 2. Composition of ranked open nets.Given a 
on
rete 
omposable span Z1 f1 Z0 f2! Z2, the 
omposition of Z1and Z2 along Z0 is the open net Z3 (see Fig. 2) obtained as the pushout of f1and f2, whi
h exists by the next result.Proposition 9 (pushout in ONet
). A span of embeddings f1 : Z0 ! Z1, f2 :Z0 ! Z2 in ONet
 is 
omposable if and only if it has a pushout Z1 g1! Z3 g2 Z2in ONet
, whose underlying diagram is a pushout in Net.The 
onstru
tion of the pushout of a 
omposable span in ONet
 turns outto be quite 
omplex and it is not reported for spa
e limitations, but the intuitionis simple. Firstly, the underlying net NZ3 is obtained as the pushout of NZ1 andNZ2 along NZ0 in Net. Next, if a pla
e is not in Z0, then in the pushout itmaintains exa
tly its ports. Instead, for a pla
e s in Z0, in the pushout the portsof the image of s are obtained by taking the pushout of the ports of the imagesof s in Z1 and Z2. Sin
e mappings between ports 
an be partial, open ports 
andisappear. A port is open only if it is open in both nets Z1 and Z2.The notions of 
omposability of spans and of 
omposition between nets 
anbe transferred to the abstra
t 
ategory via the forgetful fun
tor U : ONet
 !ONetr. More interestingly, these notions 
an be de�ned also dire
tly at the ab-stra
t level, by referring only to the ranks of pla
es of the involved nets. Thanksto this fa
t, in the rest of the paper we will be able to work in the abstra
t
ategory only, whi
h provides a simpler and natural framework to be used forspe
i�
ation purposes. Still, we stress here that we de�ned the 
omposition ofnets in the 
on
rete 
ategory �rst, be
ause the 
orresponding notion in the ab-stra
t 
ategory 
annot be 
hara
terized by a universal property as a pushout.Given a pair of embeddings f1 : Z0 ! Z1 and f2 : Z0 ! Z2 in ONetr, wesay that they are 
omposable if there exists a 
omposable span of embeddingsf1 : Z0 ! Z1 and f2 : Z0 ! Z2 in ONet
 su
h that U(f1) = f1 and U(f2) = f2.Fa
t 10 (
omposable span in ONetr). A span of embeddings f1 : Z0 ! Z1and f2 : Z0 ! Z2 in ONetr is 
omposable if and only if1. #in(f1) � o+Z2 Æ f2 and #out(f1) � o�Z2 Æ f2;2. #in(f2) � o+Z1 Æ f1 and #out(f2) � o�Z1 Æ f1.Intuitively, the �rst half of 
ondition (1) requires that the number of input
onne
tions whi
h are added to ea
h pla
e s of Z0 by f1, namely #in(f1)(s), isbounded by the number of additional input 
onne
tions allowed for f2(s) in Z2,i.e., o+Z2(f2(s)). The remaining 
onditions are similar.7



Now, given a 
omposable span of embeddings f1 : Z0 ! Z1 and f2 : Z0 ! Z2in ONetr, let hf1; f2i be any pair of 
omposable embeddings in ONet
 su
hthat U(f1) = f1 and U(f2) = f2. Then the 
omposition of Z1 and Z2 along Z0in ONetr is de�ned exa
tly as their 
omposition in ONet
, i.e., as the pushoutobje
t of f1 and f2 in ONet
. It 
an be shown that this de�nition is well given,and that it 
an be 
hara
terized as follows.Fa
t 11 (
omposition in ONetr). Let f1 : Z0 ! Z1 and f2 : Z0 ! Z2 bea span of embeddings in ONetr. Compute the pushout of the 
orrespondingdiagram in the 
ategory Net obtaining the net NZ3 and the morphisms g1 andg2. For i 2 f1; 2g, de�ne res+i (s3) = oxZi(si)�#in(gi)(si) if there is some si 2 Sisu
h that gi(si) = s3 and res+i (s3) = !, otherwise.5 The fun
tion res�i is de�nedin a dual way. Then take, for x 2 f+;�goxZ3 = minfresx1 ; resx2gThen Z3 (with morphisms g1 and g2) is the 
omposition along Z0 of f1 and f2.Intuitively, for a pla
e s3 = gi(si), the value res+i (si) is obtained by subtra
t-ing from the number of 
onne
tions allowed for si, i.e., o+Zi(si), the number of 
on-ne
tions whi
h have been added as an e�e
t of the 
omposition, i.e., #in(gi)(si).In other words res+i (si) is the residual number of allowed 
onne
tions. Whenjoining two pla
es, the number of allowed 
onne
tions for the resulting pla
e willbe the minimum among the residuals of the two original pla
es.Two simple examples of 
omposition 
an be found in Fig. 3. It is worthexplaining why, for example, diagram (a) is not a pushout in ONetr. In fa
t,sin
e Z1 and Z2 are isomorphi
, we 
an 
lose the span Z1 f1 Z0 f2! Z2 witharrows Z1 id! Z1 �= Z2 obtaining a 
ommutative square in ONetr, but there isno mediating morphism Z3 ! Z1 be
ause the 
ounter-image of an open pla
e
annot be 
losed. For a more 
omplex example see Fig. 1, where two nets Z1 andZ2 representing the planning of a trip and the buying of the ti
ket, respe
tively,are 
omposed. Note, e.g., that pla
e itinerary in Z2 is output open with rank 3and input open with rank 1, as needed for adding the 
onne
tions in Z1.3 Pro
esses of Open NetsA pro
ess of an open net is an open net itself, satisfying suitable a
y
li
ity and
on
i
t freeness requirements, together with a mapping to the original net.The open net underlying a pro
ess is an open o

urren
e net, namely anopen net K su
h that the underlying net NK is an ordinary o

urren
e net,with some additional 
onditions on open pla
es. Fig. 6 shows some examples ofo

urren
e nets. The open pla
es in the o

urren
e net are intended to represento

urren
es of tokens whi
h are produ
ed or 
onsumed by the environment in the
onsidered 
omputation. Hen
e, input open pla
es must satisfy o+(s) = 1 and5 Observe that res+i is well-de�ned sin
e gi is inje
tive.8



(a) (b)Fig. 3. Composing ranked open nets.additionally they must be minimal. In fa
t, an input open pla
e with o+(s) > 1would represent a token possibly produ
ed by two di�erent transitions in theenvironment; similarly an input open pla
e in the post-set of some transitionwould represent a token whi
h 
an be produ
ed either internally or by sometransition in the environments. In both 
ases the situation would 
orrespond toa ba
kward 
on
i
t and it would prevent one to interpret the pla
e as a tokeno

urren
e. Instead, an output open pla
e 
an be in the pre-set of a transition,as it happens for pla
e itinerary in the open o

urren
e nets K1 and K2 of Fig. 6,and it might be that o�Z (s) > 1. The idea is that the token o

urren
e representedby pla
e s 
an be 
onsumed either by transition t or by two or more o

urren
esof transitions in the environment.For a Petri net N = (S; T; �; �) the 
ausality relation <N � (S [ T )2 isthe least transitive relation su
h that x<N y if y 2 x�. Moreover, the 
on
i
trelation #N � (S [ T )2 is the least symmetri
 relation generated by the rules:�t \ �t0 6= ; t 6= t0 t; t0 2 Tt#N t0 x#N y y <N y0x#N y0 (hereditarity)These de�nitions lift to open nets by 
onsidering the underlying net. We willomit the subs
ripts when 
lear from the 
ontext.De�nition 12 (open o

urren
e net). An open o

urren
e net is an opennet K su
h that1. �t and t� are sets rather than proper multisets, for ea
h transition t 2 T ;2. the 
ausality relation <K is a �nitary stri
t partial order;3. the 
on
i
t relation #K is irre
exive;4. there are no ba
kward 
on
i
ts, i.e., deg+(s) � 1 for ea
h pla
e s 2 S.Noti
e that the net NK underlying an open o

urren
e net is an o

urren
enet a

ording to the standard de�nition.We next introdu
e the notion of pro
ess for open nets.De�nition 13 (open net pro
ess). A pro
ess of an open net Z is a mapping� : K ! Z where K is an open o

urren
e net and � : NK ! NZ is a Petri netmorphism, su
h that �S(O+K) � O+Z and �S(O�K) � O�Z .9



Note that the mapping from the o

urren
e netK to the original net Z, is notan open net morphism in general. In fa
t, the pro
ess mapping, di�erently fromopen net morphisms, must be a simulation, i.e., it must preserve the behaviour.To this aim the image of an open pla
e in K must be an open pla
e in Z, sin
etokens 
an be produ
ed (
onsumed) by the environment only in input (output)open pla
es of Z. Instead, there is no relation between the rank of open pla
esin the o

urren
e net and in the net Z sin
e a token in an open pla
e 
an be
onsumed by distin
t o

urren
es of the same transition in the environment.We next introdu
e the 
ategory of pro
esses, where obje
ts are pro
esses andarrows are pairs of open net morphisms.De�nition 14 (
ategory of pro
esses). We denote by Pro
 the 
ategorywhere obje
ts are pro
esses and given two pro-
esses �0 : K0 ! Z0 and �1 : K1 ! Z1, anarrow  : �0 ! �1 is a pair of open net mor-phisms  = h Z : Z0 ! Z1;  K : K0 ! K1isu
h that the diagram on the right (indeed theunderlying diagram in Net) 
ommutes. K0�0  K K1�1Z0  Z Z13.1 Proje
ting Behaviours along EmbeddingsSin
e open net morphisms are designed to 
apture the idea of \insertion" of a netinto a larger one, they are expe
ted to \re
e
t" the behaviour in the sense thatgiven f : Z0 ! Z1, the behaviour of Z1 
an be proje
ted along the morphismto the behaviour of Z0. As in [1℄, this intuition 
an be formalised for open netembeddings by showing how a pro
ess of Z1, as de�ned before, 
an be proje
tedalong f giving a pro
ess of Z0. Intuitively, ea
h possible 
omputation in Z1 
anbe \proje
ted" to Z0, by 
onsidering only the part of the 
omputation of thelarger net whi
h is visible in the smaller net. Ranks are de�ned 
orrespondingly.De�nition 15 (proje
tion of a pro
ess). Let f : Z0 ! Z1 be an open netembedding and let �1 : K1 ! Z1 be a pro
ess of Z1. A pro-je
tion of �1 along f , is a pair h�0;  i where �0 : K0 ! Z0is a pro
ess of Z0 and  : �0 ! �1 is an arrow in Pro
,
onstru
ted as follows. Consider the pullba
k of �1 and f inNet, thus obtaining the net morphisms �0 and  K (see thediagram on the right). Then K0 is obtained by taking NK0 asunderlying net, and de�ning NK1 �1 NZ1NK0 K �0 NZ0fo+K0 = o+K1 Æ  K +#in( K) and o�K0 = o�K1 Æ  K +#out( K)(i.e., by opening the pla
es as least as possible to make  K : K0 ! K1 an opennet morphism) and  = h K ; fi.4 Composing Non-deterministi
 Pro
essesConsider a 
omposition diagram in ONetr, as in Fig. 2, where f1 and f2 areopen net embeddings. One would like to establish a 
lear relationship among the10



Fig. 4. Transition t would be in self-
on
i
t in the 
omposition.behaviours of the involved nets. Roughly, we would like that the behaviour ofZ3 
ould be 
onstru
ted \
ompositionally" out of the behaviours of Z1 and Z2.In [1℄ we have shown that in the setting of basi
 open nets this 
an be doneonly for deterministi
 pro
esses. Here we show how, in the setting of ranked opennets, the result extends to general, possibly non-deterministi
 pro
esses. Giventwo pro
esses �1 of Z1 and �2 of Z2 whi
h \agree" on Z0, one 
an 
onstru
ta pro
ess �3 of Z3 by amalgamating �1 and �2. Vi
e versa, ea
h pro
ess �3 ofZ3 
an be proje
ted over two pro
esses �1 and �2 of Z1 and Z2, whi
h 
an beamalgamated to produ
e �3 again. Hen
e, all and only the pro
esses of Z3 
anbe obtained by amalgamating the pro
esses of the 
omponents Z1 and Z2.4.1 Composition of Non-deterministi
 O

urren
e Open NetsA basi
 step towards the 
omposition operation is the formalisation of the in-tuitive idea of pro
esses of di�erent nets whi
h \agree" on a 
ommon part.Con
retely, this amounts to identify suitable 
onditions whi
h ensure that the
omposition of o

urren
e open nets exists and produ
es a net in the same 
lass.First, given a span K1 f1 K0 f2! K2 we introdu
e the notion of 
ausalityrelation indu
ed by K1 and K2 over K0. When the two nets are 
omposed their
ausality relations get \fused". Hen
e, to ensure that the resulting net is againan o

urren
e net, the indu
ed 
ausality must be a stri
t partial order.De�nition 16 (indu
ed 
ausality). Let K1 f1 K0 f2! K2 be a span of em-beddings in ONetr, where Ki (i 2 f0; 1; 2g) are o

urren
e open nets. Therelation of 
ausality <1;2 indu
ed over K0 by K1 and K2, through f1 and f2is the least transitive relation su
h that for any x0; y0, if f1(x0)<K1 f1(y0) orf2(x0)<K2 f2(y0) then x0<1;2 y0.When 
omposing non-deterministi
 o

urren
e nets, whi
h 
an in
lude mu-tual ex
lusive bran
hes of 
omputation, we must also avoid that transitions be-
omes non-�rable due to the 
reation of self-
on
i
ts. For example, Fig. 4 showsa span where the indu
ed 
ausality is a stri
t partial order, but there would bea self-
on
i
t on t in the 
omposed o

urren
e net. Hen
e t would not be �rablein any 
omputation of the net. 11



To this aim, we introdu
e new relations, 
alled anti-
ausality and anti-
on
i
t. Intuitively, two items x and y in K are related by anti-
ausality (anti-
on
i
t) if, to ensure the �rability of ea
h transition in the net, x and y mustremain 
ausally unrelated (not in 
on
i
t, resp.) when K is 
omposed with othernets. Then the idea is to avoid 
ompositions whi
h 
an lead to situations in whi
htwo items are related both by a relation and by the 
orresponding anti-relation.De�nition 17 (anti-relations). Let K be an o

urren
e open net. The anti-
ausality :<K and anti-
on
i
t :#K relations over (S [ T )2 are de�ned by thefollowing rules (subs
ripts are omitted as 
lear from the 
ontext):x:#x x:<x (anti1) x:# y x0<xx0 :# y (anti2)x:# y x# y0y0 :<y (anti3) x:# yy:# x (anti4)The rules have a 
lear interpretation. Rule (anti1) states that the ea
h single itemmust remain 
on
urrent, while rules (anti2) and (anti3) are obtained by \revert-ing" the rule whi
h expresses hereditarity of 
on
i
t w.r.t. 
ausality. Finally,(anti4) states that :# is symmetri
.Given an open net morphism f1 : K0 ! K1, whereK0 andK1 are o

urren
enets, in the following we will use the symbols <1, #1, :#1 and :<1 to denotethe proje
tion over K0 of the 
orresponding relations over K1, i.e., for any r 2f<;#;:#;:<g and x0; y0 in K0 we will writex0 r1 y0 i� f1(x0) rK1 f1(y0)Given a span of o

urren
e open nets K1 f1 K0 f2! K2 we next de�ne the
on
i
t relation and the anti-relations indu
ed over the net K0 by K1 and K2,through f1 and f2. This has been already done for 
ausality in De�nition 16,where indu
ed 
ausality <1;2 is de�ned as the transitive 
losure of <1 [ <2.De�nition 18 (indu
ed relations). Let K1 f1 K0 f2! K2 be a span in ONetr,where Ki (i 2 f0; 1; 2g) are o

urren
e open nets. The 
on
i
t relation and theanti-relations indu
ed over K0 by K1 and K2, through f1 and f2 are as follows.For x0; y0 in K0, let x0 &1 y0 be a short
ut for x0<1 y0 and there is no z0su
h that x0<K0 z0 �1 y0. Observe that in this 
ase x0 must be a pla
e, 
onne
tedto y0 through a 
hain of transitions in K1, but not in K0. The notation x0 &2 y0is de�ned in the dual way.{ indu
ed 
on
i
t #1;2: The relation #1;2 over K0 is the least relation,hereditary w.r.t. <1;2 su
h that, for any x0; y0,1) if x0#1 y0 or x0#2 y0 then x0#1;2 y0.2) if x0 &1 y0 and x0 &2 z0 then y0#1;2 z0.{ indu
ed anti-relations :<1;2 and :#1;2: The relations :#1;2 and :<1;2over K0 are de�ned as the least relations su
h that for x0; y0, for i 2 f1; 2g,if x:#i y then x:#1;2 y, and similarly, if x:<i y then x:<1;2 y, and 
losedunder rules (anti1)� (anti4). 12



Now we 
an identify the 
onditions whi
h guarantee that the 
omposition oftwo o

urren
e open nets is still an o

urren
e open net.De�nition 19 (
onsistent span). A span K1 f1 K0 f2! K2 of o

urren
e opennets is 
onsistent if it is 
omposable in ONetr and for any x0; y0 in K01. x0 :<1;2 y0 ) :(x0<1;2 y0) and x0 :#1;2 y0 ) :(x0#1;2 y0);2. for i; j 2 f1; 2g, i 6= j, we have that x0 :#i y0 implies :(x0 &j y0).Condition (1) just requires that ea
h anti-relation does not interse
t the 
orre-sponding relation. Condition (2), instead, just imposes that two anti-
on
i
tualpla
es in K1 are never 
onne
ted by a 
hain of transitions in K2 (and vi
e versa),otherwise in the 
omposition one would get a self-
on
i
t.We 
an now show that the 
omposition in ONetr of a 
onsistent span ofo

urren
e nets produ
es an o

urren
e net. We �rst need a preliminary result.Lemma 20. Let K1 f1 K0 f2! K2 be a 
omposable span of embeddings inONetr, where Ki (i 2 f0; 1; 2g) are o

urren
e open nets, and let K1 g1! K3 g2 K2 be the 
omposition. Then for any x0; y0 in K0, if we let x3 = g1(f1(x0)) =g2(f2(x0)) and y3 = g1(f1(y0)) = g2(f2(y0)), we have1. x0<1;2 y0 i� x3<K3 y3;2. x0#1;2 y0 i� x3#K3 y3; 3. x0 :#1;2 y0 i� x3 :#K3 y3;4. x0 :<1;2 y0 i� x3 :<K3 y3.Proposition 21. In the hypotheses of Lemma 20 above, K1 f1 K0 f2! K2 is a
onsistent span i� the 
omposition K3 is an o

urren
e open net.4.2 Amalgamating Non-deterministi
 Pro
essesFor the rest of this se
tion we refer to a �xed 
omposition in ONetr, as in Fig. 2,where f1 and f2 are 
omposable open net embeddings. Two pro
esses �1 of Z1and �2 of Z2 
an be amalgamated when they agree on the 
ommon subnet Z0.De�nition 22 (agreement of non-deterministi
 pro
esses). We say thattwo non-deterministi
 pro
esses �1 : K1 ! Z1 and �2 : K2 ! Z2 agree on Z0if there are proje
tions h�0;  iKi along fi of �i for i 2 f1; 2g su
h that the spanK1  1K K0  2K! K2 is 
onsistent and, for any s0 in K0, if s3 = fi(gi(�0(s0))) isthe 
orresponding pla
e in Z3, the following holds:if #out( 1K)(s0) + #out( 2K)(s0) < o�K0(s0) then s3 2 O�Z3 : (1)In this 
ase h�0;  1Ki, h�0;  2Ki are 
alled agreement proje
tions for �1 and �2.Intuitively, the two pro
esses agree if they have the same proje
tion over Z0.Additionally, as required by 
ondition (1), if, for a pla
e s0 in K0, the numberof external events that 
an 
onsume the token in s0 ex
eeds the events providedby Z1 and Z2 then the 
orresponding pla
e in Z3 must be open.13



K0�0 1K  2KK1�1 �1K Z0f1 f2 K2�2�2KZ1 g1 K3�3 Z2g2Z3Fig. 5. Amalgamation of open net pro
esses.De�nition 23 (pro
ess amalgamation). Let �i : Ki ! Zi (i 2 f0; 1; 2; 3g)be non-deterministi
 pro
esses and let h�0;  1Ki and h�0;  2Ki be agreement pro-je
tions of �1 and �2 along f1 and f2 (see Fig. 5). We say that �3 is an amalga-mation of �1 and �2, written �3 = �1+ 1K ; 2K �2, if there are proje
tions h�1; �1iand h�2; �2i of �3 over Z1 and Z2, respe
tively, su
h that the upper square is a
omposition in ONetr.We next give a more 
onstru
tive 
hara
terisation of pro
ess amalgamation,whi
h also proves that the result is unique up to isomorphism.Lemma 24 (amalgamation 
onstru
tion). Let �1 : K1 ! Z1 and �2 : K2 !Z2 be non-deterministi
 pro
esses that agree on Z0, and let h�0;  1Ki and h�0;  2Kibe 
orresponding agreement proje
tions. Then the amalgamation �1+ 1K; 2K �2 isa pro
ess �3 : K3 ! Z3, where net K3 is obtained as the 
omposition in ONetrof  1K : K0 ! K1 and  2K : K0 ! K2 and the pro
ess mapping �3 : K3 ! Z3 isuniquely determined by the universal property of the underlying pushout diagramin Net (see Fig. 5). Hen
e �1 + 1K ; 2K �2 is unique up to isomorphism.As an example, in Fig. 6 a pro
ess for the net Z3 of Fig. 1 is obtained as theamalgamation of pro
esses of the 
omponent nets. The pro
ess for Z1 representsa reservation a
tivity, whi
h 
an su

eed after two attempts or 
an be �nally
an
elled. In the pro
ess for Z2 two possible itineraries are visible: the �rst one
an only be dis
arded (used by the environment) while the se
ond one 
an alsotrigger a payment, thus resulting in a ti
ket. Composing the two pro
esses onegets a full booking pro
ess for net Z3.We next show that ea
h non-deterministi
 pro
ess of a 
omposed net arisesas the amalgamation of non-deterministi
 pro
esses of the 
omponents.Lemma 25 (pro
ess de
omposition). Let �3 : K3 ! Z3 be a pro
ess of Z3and, for i 2 f1; 2g, let h�i; �ii be proje
tions of �3 along gi. Then there areagreement proje
tions h�0;  1Ki, h�0;  2Ki of �1, �2 su
h that �3 �= �1+ 1K ; 2K �2.As a 
onsequen
e we �nally have our main result.Theorem 26 (
ompositionality for non-deterministi
 pro
esses). Alland only the non-deterministi
 pro
esses of Z3 
an be obtained as amalgama-tions of pro
esses of Z1 and Z2 whi
h agree on Z0.14



Fig. 6. An example of pro
ess amalgamation.5 Con
lusions and Future WorkWe have introdu
ed a 
ompositional semanti
s based on non-deterministi
 pro-
esses for ranked open nets, an extension of the basi
 open net model of [1℄where it is possible to spe
ify, for open pla
es, the maximum number of allowed
onne
tions. The 
omposition operation is 
hara
terised as a pushout in a 
at-egory of ranked open nets with 
on
rete morphisms. The notion of agreementbetween pro
esses of di�erent sub-
omponents, whi
h is a requirement for pro-
ess 
omposition, builds upon a theory of anti-relations (i.e., anti-
ausality andanti-
on
i
t) whi
h 
ould have an interest for Petri nets in general.We believe that a theory of non-deterministi
 pro
esses for open nets 
anrepresent a starting point for a modular veri�
ation of open nets based on �nitepre�xes of the unfolding [10℄. There are obvious diÆ
ulties, e.g., the fa
t thatopen nets are always in�nite state (whenever they have at least one input openpla
e). However the \regularity" of the state spa
e suggests the possibility ofundertaking a symboli
 approa
h, for whi
h analogous work for standard Petrinets, like [6℄, 
ould provide an inspiration.We foresee also potential out
omes in the setting of graph transformationsystems. In fa
t graph transformation systems 
an be seen as generalisation ofPetri nets, and it has been often produ
tive to fo
us �rst in the latter simplersetting. The notion of openness [8, 7℄ as well as the notion of pro
esses [5℄ havealready been studied in the setting of graph transformation, however until nowthere have been no attempts to 
ombine them. The present work 
an be a �rststep in this dire
tion. 15
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