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Abstract. We introduce an analysis method for graph transformation
systems which checks that certain forbidden graphs are not reachable
from the start graph. These forbidden graphs are specified by a context-
free graph grammar. The technique is based on the approximation of
graph transformation systems by Petri nets and on semilinear sets of
markings. Especially we exploit Parikh’s theorem which says that the
Parikh image of a context-free grammar is semilinear. An important
application is deadlock analysis for interaction nets and we specifically
show how to apply the technique to an infinite-state dining philosopher’s
system.

1 Introduction

In recent years there have been several approaches directed specifically at the
verification of graph transformation systems, for instance [21,10,24,1,2,4, 22].
They usually address the following problem: Given a graph transformation sys-
tem 7 generating a set reach(7) of reachable graphs, and a set F of forbidden
graphs, is the intersection reach(7)NJF empty? This problem is undecidable even
for the case in which the set F contains one single graph, and so all approaches
approximate the set reach(7) in some way. In this paper we further develop
the approach of [1,2], which—given 7—constructs a Petri net whose reachable
markings encode a set £ of graphs satisfying £ D reach(7). So emptiness of
L N F implies emptiness of reach(7) N F.

The decidability, complexity, and practicality of checking emptiness of £LNF
depend on the characteristics of the set F. If F is defined as the set of all graphs
containing a given subgraph, then emptiness reduces to the coverability problem
of Petri nets. In [3] we studied the case in which F is the set of models of a
formula in first-order or second-order monadic logic on graphs.

Unfortunately, many forbidden sets of interest for applications are not ex-
pressible in first-order or monadic second-order logic. This follows from the fact
that all expressible sets are recognizable in the sense of Courcelle [7], while the
forbidden sets are often not. For instance counting constraints usually specify
non-recognizable languages. These sets can, however, often be described by (a
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slight variant of) context-free graph grammars. In this paper we propose an
extended emptiness check for this class.

The main ideas behind the new check can already be introduced for trans-
formation systems acting on words. Assume that 7 is such a system. The ap-
proximation of the word language 7 can be intuitively seen as equivalent to a
finite automaton A and a counting constraint C.> The approximation £ is given
by £ = L(A)NL(C), i.e., the words of L are those accepted by A and satisfying
C. Later such counting constraints will be specified via the reachable markings
of a Petri net.

Assume further that F is the language of forbidden words generated by a
context-free word grammar G, i.e., F = L(G). Our task is to check the emptiness
of FNL = L(G) N L(A) N L(C). For this, we proceed in three steps:

(1) Compute a grammar G’ accepting L(G) N L(A) (using the well-known fact
that the intersection of a context-free and a regular language is context-free).
If L(G") = 0, then terminate and conclude F N £ = (, otherwise proceed
with (2).

(2) Compute the strongest counting constraint C” satisfied by L(G"), specifically
L(G’) C L(C"). This is possible by Parikh’s theorem, which states that
the Parikh image of a context-free grammar is semilinear set, which can be
formulated as a counting constraint.

(3) Check the emptiness of L(C) N L(C’) by deciding whether the conjunction
C A C' is unsatisfiable. If it is unsatisfiable we have F N L = (), otherwise the
intersection is non-empty.

The first contribution of the paper is an extension of this procedure to graph
transformation systems. 7 is now a graph transformation system, and F is the
set of graphs generated by a context-free graph grammar. The decidability of
the satisfiability of C' A C” is proved using results from Petri net theory.

While the decidability has some theoretical interest, the complexity of the re-
sulting procedure is too high for practical purposes. Using techniques developed
in [11], it is possible to over-approximate C’ by a system of linear constraints
C". The satisfiability of C' A C” can then be checked with appropriate solvers
for linear programming (such as 1p_solve).

An important application is to verify the absence of deadlocks, which often
manifest themselves as “vicious cycles” (cycles of processes waiting for an action
from another process). We show how to detect such cycles in the general setting
of interaction nets and treat—as a concrete running example—an infinite-state
version of the dining philosophers.

A simplified version of our results appeared as a workshop paper in [14]. That
paper uses regular expressions instead of the more powerful context-free graph
grammars employed here. Furthermore, in the current paper the theory is for
the first time applied to the general setting of interaction nets.

3 A constraint on the number of times that each letter can appear in a word of L; for
instance, (#a — 2 - #b) > 3 is a counting constraint for the alphabet {a, b}.



2 Preliminaries

2.1 Monoids and Semilinear Sets

Let M be a monoid with an associative binary operation written mymsy for
mi,mg € M. Furthermore there exists a unit 1 € M. In this paper we will
mainly consider the free monoid over a finite set S, denoted by S*, and the free
commutative monoid over S, denoted by S®. The former monoid consists of all
words over S whereas the latter is isomorphic to the set of all mappings from S
to N, denoted by N¥. Its elements will also be called multisets.

The rational sets of a monoid M are inductively defined as follows:

— Every finite subset of M is rational.

— Whenever A and B are rational sets, then AU B and AB = {ab|a € A,b €
B} are rational sets.

— Whenever A is a rational set, then A* = {ay...a, | n >0, ay,...,a, € A}
is a rational set. Alternatively one can define A* as the intersection of all
sub-monoids of M containing A.

A semilinear set of a monoid M is of the form | J, ;{a;} B, where a; € M and
the B; are finite subsets of M and I is a finite index set. Sets of the form {a;} B}
are called linear. For commutative monoids, every rational set is also semilinear.
Furthermore semilinear sets are closed under intersection and complement [12].

In the following we will denote the monoid operation and the Kleene closure
by @ whenever we are working in a commutative monoid. Furthermore for a
function f: S — T we will denote by f*: §* — T* and f®: S® — T9 its
obvious extensions to words and multisets.

Whenever p: S* — S® is the canonical monoid morphism and A C S*, then
w(A) is called the Parikh image of A in S®. The Parikh image of a rational set
is always semilinear.

2.2 Petri nets

A Petri net is given by a tuple N = (Sy,Tn, *(), )®, pn, mo) where Sy is a set
of places, Ty is a set of transitions, *(),()*: Tw — S§ assign to each transition
its pre-set and post-set (where both are multisets), py: Tn — A assigns an
action label to each transition and mg € SJ% is the initial marking.

Reachability and coverability in Petri nets is defined as usual. The set of all
reachable markings of a net N is denoted by reach(N).

Proposition 1. Let N be a Petri net where Sy is the set of places. Given a
semilinear set A of SI?? 1t is decidable whether there exists a reachable marking
m of N that is contained in A.

The proof is based on a reduction to the reachability problem for Petri nets.
But although this problem is decidable it is not known to be primitive recursive
and quite impossible to solve in practice. Hence, we aim at solving the reacha-
bility problem in an approximative way by solving systems of linear constraints,
as detailed at the end of Section 3.



2.3 Hypergraphs

We assume that A is a fixed and finite set of labels and that each label ¢ € A is
equipped with an arity ar(¢) € N.

Definition 1 (Hypergraph, hypergraph morphism). A (A-)hypergraph G
is a tuple (Vg, Eq, cq,la), where Vi is a finite set of nodes, Eq is a finite set of
edges, cq : Eq — V& is a connection function and lg : Eq — A is the labelling
function for edges satisfying ar(lg(e)) = |cg(e)| for every e € Eg. Nodes are not
labelled.

Let G, G’ be (A-)hypergraphs. A hypergraph morphism ¢ : G — G’ consists
of a pair of total functions (pv : Vo — Ve, ¢r : Ec — Eg/) such that for
every e € Eg it holds that lg(e) = la (pr(e)) and ¢} (ca(e)) = ca(vr(e)). The
morphism o is called edge-bijective if pp is bijective.

We will now introduce the language of all graphs that can be mapped homo-
morphically to a given graph. This is related to regular (word) languages, which
intuitively contain all graphs consisting of a single path that can be mapped
homomorphically to a finite automaton (taking into account also initial and fi-
nal states). However note that the recognizable graph languages of Courcelle are
more general.

Definition 2 (Language induced by a graph). Let G be a hypergraph. Then
we denote by g the language induced by G, defined by

I ={G | ¢: G — G}.
For later use we need the following notion of node fusion.

Definition 3 (Closure under node fusion). Let L be a graph language. By
nf (L) we denote the language obtained from L by fusing arbitrary nodes, i.e.,

nf (L) ={G/=| G € L and = is an equivalence on Vg}
={G" | ¢: G— G, G € L, edge-bijective}.

2.4 Graph Transformation Systems

We now define the notion of a graph transformation system. In order to simplify
the analysis we focus on restricted rewriting rules which can not delete nodes
(but nodes may eventually become isolated).

Definition 4 (Graph transformation system). A graph transformation sys-
tem (GTS) 7 = (Go, R) consists of an initial graph Go and a set R of rewriting
rules of the form r = (L, R, &), where L, R are graphs, called left-hand side and
right-hand side, respectively, and o: Vi, — Vg is a function.

A match of a rewriting rule r in a graph G is a morphism p: L — G which
1s injective on edges. We can apply v to a match in G obtaining a new graph
H, written G = H, where the target graph H is defined as follows. Let = be the



smallest equivalence on Vg satisfying a(w1) = a(ws) whenever p(wy) = p(ws)
for two nodes wy,ws € V. Furthermore let : Vg W Vg — Vg be defined as
follows:

v ifveVg— QD(VL)
?(v) = ¢ [a(w)lz ifve VL), v=pw)
[v]= ifveVp
Then we can define
Vi = Ve — (VL)W (Vr/ =) Ey = (Eq — ¢(EL))WER

) lu(e) =la(e)
), lu(e) = lr(e)

The set of all reachable graphs, i.e., graphs that can be derived from Gy via
repeated rule application, will be denoted by reach(T).

e€ Eg—9(EL) = cule)=9(cq
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The application of r to G at the match ¢ first removes from G the image of the
nodes and edges of L. Then the graph G is extended by adding the new nodes
and edges in R, which are connected accordingly. Observe that the nodes of R
have to be grouped into equivalence classes, i.e. merged, depending on whether
they are assigned to the same nodes in G. The notion of graph rewriting that
we use is a special case of the double-pushout approach.

Ezxample 1. As a running example we consider an infinite-state dining philo-
sphers system. The start graph of the system is depicted in Figure 1 where we
see three philosophers (indicated by label H, since they are hungry) and three
forks (indicated by labels F or F’). Some edges will be pointing clockwise along
the cycle, others (indicated by a prime) counter-clockwise. Note that for binary
edges, i.e., for edges connected to exactly two nodes, the first node is indicated
by an arrowhead.

In order to avoid deadlocks we use a technique similar to the one presented
in [6] where a dining philosophers system is seen as a directed acyclic graph
with philosophers as nodes and forks as directed edges. In our setting only a
philosopher which is maximal wrt. the partial order established by the forks,
i.e., a philosopher which has only forks pointing towards it, may start eating.

Figure 2 depicts the rules governing the behaviour of the dining philosophers.
A hungry philosopher may take up a fork pointing towards it (rule (Wait)) and
become a waiting philosopher (labelled W'). Subsequently a waiting philoso-
pher may pick up another fork also pointing towards it and become an eating
philosopher (rule (Eat)). The reason for modelling an eating philosopher by two
edges is that we will later view this GTS as an instance of an interaction net
system, where a left-hand side must always consist of exactly two edges. Since
eating philosophers may react of their own impulse it is here necessary to repre-
sent them by two edges forming a valid redex. An eating philosopher may then
either give back its forks in such a way that they are pointing away from it
(rule (Hungry)) or replicate itself in order to create another hungry philosopher
with another fork (rule (Rep)). This last rule makes the system infinite-state



Fig. 1. Start graph of the infinite-state dining philosophers system

and hence non-trivial to analyze. Our aim is to show that no deadlock — which
in this case manifests itself as a vicious cycle — will ever occur.
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Fig. 2. Productions of the infinite-state dining philosophers system

2.5 Context-Free Graph Grammars

In order to characterize graph languages more complex than the ones of Defini-
tion 2, we introduce context-free graph grammars, also called hyperedge replace-
ment grammars [13]. Similar to the case of word languages, the left-hand side of
a context-free rule consists of a single hyperedge, whereas right-hand sides can
be of arbitrary shape.

Definition 5 (Single hyperedge). Let £ € A be a label of arity ar(€). Then
edge(?) is a hypergraph H which consists of a single edge e labelled ¢ and ar(?)
nodes such that the nodes in cy(e) are all pairwise different.

Definition 6 (Context-free graph grammar). Assume that the set of labels
A is the disjoint union of Ar (the set of terminal labels) and Ax (the set of



non-terminal labels). A context-free graph grammar G is a special graph trans-
formation system where

— for every rule r = (L, R, o) it holds that L = edge(A) for some A € Ax and
« 1§ injective.
— the start graph Gg is of the form edge(S) for some S € An with ar(S) = 0.

Definition 7 (Context-free graph language). Let G be a context-free graph
grammar. Then the language generated by G, denoted by L(G), is defined as

L(G) = {G € reach(G) | all labels of G are contained in Ar}.
In analogy to word languages, L£(G) is also called a context-free (graph) language.

Note that not every language induced by a graph according to Definition 2 is
context-free. Especially the language of all hypergraphs is induced by the final
hypergraph (i.e., a graph consisting of one node and one edge for every label),
but it is not context-free (cf. [13]).

Furthermore, given a graph language L over a label set Ar, its Parikh image
is {I3(Eg) | G € L} C A3, i.e., for every graph in the language take the multiset
of its edge labels.

2.6 Approximating Graph Transformation Systems by Petri Nets

In this section we sketch the algorithm, introduced in [1], for the construction
of a finite approximation of the unfolding of a graph transformation system. Of
course there is a straightforward counting abstraction via a Petri net which just
counts the number of occurrences of each edge, regardless of structure. However,
this will be too coarse for our purposes and we use Petri nets over a hypergraph
structure, so-called Petri graphs.

Definition 8 (Petri graphs). Let 7 = (Go,R) be a GTS. A Petri graph P
(over T) is a tuple (G, N) where

— G is a graph;

— N = (Eg,Tn, *(), (), pn, mg) is an R-labelled Petri net, where the set of
places is Eg, i.e., the edge set of G;

— mo = 19(Eg,) for a graph morphism ¢ : Go — G (i.e., mo must properly
correspond to the initial state of the GTS T ).

A marking m € EE will be called reachable (coverable) in P if it is reachable
(coverable) from the initial marking in the Petri net underlying P.

A marking m of a Petri graph can be seen as an abstract representation of a
graph in the following sense.



Definition 9. Let (G, N) be a Petri graph and let m € Eg) be a marking of N.
The graph H generated by m, denoted by graph(m), is defined as follows: Vg =
{veVg|Ieemi: (v=cg(e)i)}, Fu ={(e;i) |ee mA1l <i<me)},
cr((e,i)) = cgle) and lg((e,i)) = la(e).

That is, we take only the nodes adjacent to a marked edge and make parallel
copies of all edges according to their multiplicity (see also Example 2 below).

Given a GTS 7 = (G, R), with some additional minor constraints on the
format of rewriting rules (see [1,2]), we can construct a Petri graph approxima-
tion of 7, called covering and denoted by U(7T ). The (0-)covering is produced by
the following (terminating) algorithm which generates a sequence P; = (G;, N;)
of Petri graphs. (There is also an extension which produces k-coverings, having
a better precision.)

1. Py = (Go, No), where the net Ny contains no transitions and mg = Eg,,.
2. As long as one of the following steps is applicable, transform P; into P;;1,
giving precedence to folding steps.

Unfolding. Find a rule r = (L, R, ) € R and a match ¢: L — G; such that
® (EL) is coverable in P;. Then extend P; by “attaching” R to G; according
to a and add a transition ¢, labelled by 7, describing the application of rule r.

Folding. Find a rule r = (L, R,a) € R and two matches ¢,¢": L — G;
such that o®(EL) and ¢'®(EL) are coverable in N; and the second match is
causally dependent on the transition unfolding the first match. Then merge
the two matches by setting p(e) = ¢’(e) for each e € Ep and factoring
through the resulting equivalence relation =.

The first construction above is an unfolding construction that “unwinds” a
system, while still preserving its concurrent behaviour. Hence unfoldings can lead
to very compact descriptions of the state space of a concurrent system. Here,
we add so called folding steps to the unfolding construction in order to obtain
a finite over-approximation, even if the GTS has an infinite state space. We
lose information by merging nodes that would actually be distinct. The covering
U(T) is an abstraction of the original GTS (Go, R) in the following sense.

Proposition 2 (Abstraction [3]). Let T = (Go, R) be a graph transformation
system and let U(T) = (G, N) be its covering where N has initial marking my.
Then there exists a simulation S C reach(T) X reach(N) with the following
properties:

= (Go,m0) € S;

— whenever (G,m) €S and G = G, then there exists a marking m', obtained
from m by firing a transition labelled v, and (G',m') € S;

— for every (G, m) € S there is an edge-bijective morphism ¢: G — graph(m).

4 Note that [5]; denotes the i-th element of the string 5 and that m(e) denotes the
multiplicity of e in the multiset m.



From this one can easily deduce that the set of all reachable graphs is over-
approximated by the set of all graphs generated by reachable markings where
edges can be “pulled apart” at the nodes in an arbitrary way, where by “pulling
apart” we mean the reverse of node folding introduced earlier:

nf 1 ({graph(m) | m € reach(N)}) D reach(T) (1)

Ezxample 2. With the approximated unfolding technique sketched above we ob-
tain the Petri graph in Figure 3. It has been computed automatically using
the tool AUGUR 2 [16]. Note that edges of the graph and places of the net
coincide and that arcs between places and transitions are drawn with dashed
lines. The marking shown is the initial marking mg and the corresponding graph
graph(mg) has two nodes and six edges. Two parallel F'-labelled and three par-
allel H-labelled edges are going from right to left whereas one F-labelled edge
is pointing from left to right. This graph is an over-approximation of Gy in the
sense described above.
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Fig. 3. A Petri graph approximating the dining philosophers system

3 Specifying Sets of Forbidden Graphs by Semilinear Sets

We assume that we are provided with a context-free graph grammar G that
specifies the set of all “bad” or forbidden graphs, i.e., graphs representing error
states. The set of forbidden graphs will not be the language generated by G, but
also all graphs G’ that arise from graphs of £(G) by node fusion, i.e., we are
interested in nf(£(G)). The introduction of node fusion is due to two reasons:
first, the operator nf provides us with the possibility of specifying languages that
can otherwise not be specified with a context-free grammar. For instance, the
language of all graphs is not context-free (see [13]), but it can be obtained from
a context-free language via node fusion. (Of course, this also means that other
languages are excluded.) Second, our approximation method over-approximates



with respect to the identity of nodes (see equation (1)), so if we find out—via
the approximation—that a graph G is not reachable, the same is true for every
preimage of G wrt. node fusion.

Given a graph transformation system 7, an over-approximating Petri graph
P =(G,N), i.e., a Petri graph satisfying equation (1), and a context-free graph
grammar G, our task is to construct a set S of markings of N which satisfies:
For a marking m of N it holds that m € S if and only if graph(m) € nf (L(G)).

If we can then show that no marking m € S is reachable in N, we know
for sure that no graph G € nf(£(G)) is reachable in 7. To prove this, assume
that such a graph is reachable in 7. Then it holds that there exists a reachable
marking m and an edge-bijective morphism ¢: G — graph(m), i.e., graph(m) is a
“folded” variant of G. Furthermore graph(m) € nf(L£(G)) and hence as required
above m € S. But this is a contradiction, since we have checked that no marking
of S is reachable in the net.

It will turn out that S is semilinear and it corresponds to the strongest
counting constraint mentioned in the introduction. As a first step towards the
construction of S we determine a context-free graph grammar that generates
the intersection of a context-free graph language with a language induced by a
graph, i.e., the set of graphs that can be mapped to a fixed graph G. Here G
will usually be the graph component of a Petri graph.

As far as we know the underlying construction is original. It has similarities to
the construction of the “cross-product” of a context-free grammar with a finite
automaton. Furthermore there is a related result by Courcelle [7] who shows
that the intersection of recognizable set and a equational set of graphs is always
equational. Equational sets correspond to context-free graph languages.

Proposition 3. For a context-free graph grammar G and a graph G there exists
a context-free graph grammar G' such that L(G') = L(G) NZg.

The construction used in the proof of the previous proposition is now the key
to the construction of the required semilinar set .S. Specifically, we can derive S
from the grammar G’ of Proposition 3, which implies that S is semilinear.

Proposition 4. For a contezt-free graph grammar G and a graph G the follow-
ing set Sg, is a semilinear set of ES: S, = {m € EZ | graph(m) € nf(L(G))}.

Finally it is well-known that Sg is effectively computable and furthermore it
follows from Proposition 1 that it is decidable whether there exists a reachable
marking of a net that is contained in a given semilinear set. This would allow
us to automatically verify whether graph(m) & nf(L£(G)) for all reachable mark-
ings m, which—as detailed above—implies that no graph contained in nf(£(G))
is reachable in the graph transformation system 7. Figure 4 summarizes the
technique.

However, checking whether no marking of a semilinear set is reachable is at
least as costly as the reachability problem for Petri nets [19]. Since this problem is
not known to be primitive recursive and all known algorithms are very complex,
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Fig. 4. Summary of the technique.

it will usually be necessary to resort to approximative reachability methods
based on the marking equation and traps [11]. These techniques are based on
the efficient solving of linear constraints over natural numbers, which can be
handled using a tool such as lp_solve.

4 Characterizing Deadlocks of Interaction Nets

Interaction nets [17] are a special form of graph transformation systems with
strong restrictions on the start graph and on the form of rules. In this setting
one can ensure confluence and furthermore a deadlock (i.e., non-applicability of
any rule) always manifests itself structurally in the presence of vicious cycles.
We will here present a slight adaptation of interaction nets, especially we will
differ by allowing isolated nodes, which however have no influence on further
reductions.

In the following, the first node attached to a hyperedge will be called principal
node and denoted by an arrow head. The degree of a node v is the number of
“tentacles” attached to a node, i.e., deg(v) = [{(e,4) | [ca(e)]; = v}

Definition 10 (Interaction net (system)). A graph transformation system
T s called an interaction net system whenever the following conditions hold:

— Every node of the start graph is either isolated or has degree 2. (Any such
graph is called interaction net.)
— For a rewriting rule (L, R, &) the left-hand side L has the following form:

We require that deg(a(v)) = 0 and that v is the only node that o maps
to a(v). For every other node v' in the right-hand side R it holds that:
deg(v') = 2 — |a~(v")|. (That is, nodes which are not in the image of «
have degree 2 and whenever two nodes of the left-hand side are merged, the
resulting node has degree 0. The remaining nodes have degree 1.)

Finally, for every pair A, B € A of labels there exists a rule with a left-hand
side as depicted above.



Note that the second condition above is required in order to make sure that
interaction nets are closed under rewriting.

All nodes in the left-hand side which are different from v and their images
in the right-hand side are called external.

Ezample 3. The example graph transformation system introduced in Section 2.4
satisfies the conditions imposed by Definition 10, apart from the last. This last
condition can be satisfied by adding dummy rules for the remaining left-hand
sides. These dummy rules have no effect, i.e., a left-hand side with two edges
(e.g., F, F') is replaced by the same left-hand side plus an isolated node.

It can then be shown that in an interaction net system every reachable graph
has only nodes which are either isolated or have degree 2. Furthermore it can be
shown (see [17]) that a graph that does not allow the application of a rule has
a vicious cycle. In order to formally characterize vicious cycles we first need the
following definition.

Definition 11 (C-path). Let C be a set of triples (i, A, j), where A € A and
i,7 € {1,...,ar(A)}, i # j. A C-path is a sequence vg,e1,v1,...,€n,V, Of
nodes and edges such that two nodes vy, viy1 are connected by the edge ey where
lcaler)li = vi—1, [ca(er)]; = v and (i,lc(e;),7) € C. We also require that all
edges ey, are distinct. A C'-path is a C-cycle if additionally v, = vy.

We call a C-path a principal C-path whenever for all (i, A, j) € C it holds that
either i=1 or j=1. It is a clockwise C-path if always j=1 and a counterclockwise
C-path if always i=1. (Similar for C-cycles.)

A clockwise C-cycle where C = {(i,A,1) | A€ Ayji € {2,...,ar(A)}} (ie.,
C' contains all possible triples) is also called vicious cycle.

Proposition 5 (Vicious cycles [17]). An interaction net in which no reduc-
tion is possible is either the empty graph or it contains at least one vicious cycle.

Note that this proposition depends heavily on the satisfaction of the last item
of Definition 10 and hence, in our setting, on the existence of dummy rules.

Graphs not containing vicious cycles can be specified using hyperedge re-
placement grammars (and node fusion). However, if we do not have additional
information about the potential form of the vicious cycles, a better and more
local condition can be used in order to check for the absence of deadlocks. It is
enough to check that for each reachable marking m there exists a node v such
that the number of tokens placed on edges having v as principal node is strictly
larger than the number of tokens placed on edges having v as non-principal node.
The node v represents several nodes and the condition implies that at least one
of them is the principal node of two edges. The negation of this requirement can
be expressed as a semilinear set of markings, or, even simpler, directly encoded
into a linear constraint and passed to a linear constraint solver.

Ezxzample 4. Note that the technique described above does not work for the run-
ning example with the Petri graph depicted in Figure 3. Specifically, it discovers



a possible vicious cycle with labels W/, W’ H, F that can be reached after firing
the transition representing rule ( Wait) twice. However, this cycle is not among
the reachable graphs and a modification of the technique is necessary.

5 A Refined Deadlock Analysis

If we know that all reachable interaction nets satisfy a certain invariant, we
can omit deadlock configurations which are known to be unreachable and only
specify the remaining situations via a context-free graph grammar. An invariant
that works well in a number of examples is being {C;};-cycle-covered., i.e., a
graph is covered by cycles ki, ..., ky,, where k; is a C;-cycle (for a set C;, see
Definition 11), and all other cycles are trivial, which means that they consist of
only one node.

It is possible to define sufficient conditions implying this invariant. Further-
more it follows from the invariant that an arising vicious cycle must be one of the
Ci-cycles, and that the remaining edges are from the other cycles. This stronger
non-local property can be described by a hyperedge replacement grammar.

A context-free grammar G, specifying the forbidden graphs with a vicious
Cy-cycle either generates the empty graph or a clockwise Cy-cycle or a coun-
terclockwise Cp-cycle for some index £. In addition it must generate all edges
present in C, for m # ¢. This can be done with the context-free graph gram-
mar, having nonterminals S, CW, CC, given in Figure 5. Then it is necessary
to check that there is an empty intersection of the reachable graphs with each
language L£(Gy).

5 - o | B0 - | &

(i, A,§) € Cp, L £ m ©

O—— O——
:»’iAaé o A5 (i, A1) €C
o () o (7
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Fig. 5. A context-free graph grammar G, for the generation of vicious Cp-cycles

Ezxample 5. In our running example we can easily check the following invariant,
by inspection of the rules and the initial graph: every reachable graph is a C-cycle



for
C=1{(1,H,2),(1,F,2),(1,E,2),(2, F',1),(2, W 1),(2, E5,1)}.

(So, in particular, every reachable graph is {C}-cycle-covered.) It follows that a
vicious cycle of a reachable graph must necessarily be equal to the graph itself.

In this case, the context-free graph grammar generating all vicious C-cycles
either generates a counterclockwise cycle consisting only of edge labels H, F, F;
or a clockwise cycle consisting only of edge labels F/, W’ E}. Applying the pro-
cedure for computing semilinear sets of Section 3 to this grammar and the Petri
graph of Figure 3 we obtain S = {H & F}® U {W'}® (where edges are denoted
by their labels, since every label occurs at most once in our Petri graph). The
first set corresponds to a situation where only H- and F-edges are present and
their numbers are the same, i.e., to a vicious cycle of the form H,F, H, F,....
The second set corresponds to the cycle W/, W', .. ..

No marking of S is reachable. This can be shown by setting up systems of
linear constraints, one for each linear set. In our case it is sufficient to use the
marking equation and the equations describing the semilinear set S above. No
solution can be found, and so that this dining-philosophers system will never
reach a deadlock state.

Finally, we can also specify as error graphs all graphs that allow only the
application of the dummy rules introduced above, a more useful property to
verify. Since C-cycles have been established as invariant, all reachable cycles
can be represented as words over the alphabet C' by cutting the cycle at an
arbitrary point. The following regular expression r describes the language of all
“good” cycles allowing the application of at least one non-trivial rule as shown
in Figure 2:

r=C"(2,H1)(1,F,2)C" + C*(2, F,1) (1L, W, 2)C" + C*(2, By, 1)(1, B}, 2)C
+(1,F',2)C*(2, H,1) + (1, W', 2)C*(2, F, 1) + (1, E},2)C*(2, Ey, 1)

Using standard techniques one can compute a regular expression for the com-
plement language (C-cycles allowing only the application of trivial rules) and
turn it into a context-free graph grammar. Applying our techniques we obtain
the same semilinear set S as above and the same reasoning applies.

6 Conclusion

We have shown how to analyze a graph transformation system where the set
of forbidden graphs is specified by a context-free graph grammar. This is done
by using Parikh’s theorem which states that the Parikh image of a context-
free language is semi-linear. Semilinear sets can then be expressed using linear
constraints. Similarly, the specification of the error graphs can be written as
linear constraints. If the resulting constraint system has no solution, we can
infer that no error graph is reachable.

We use graph transformation to model and analyze systems with dynami-
cally evolving communication structures. Several papers in this area concentrate



on identifying decidable classes. Lammich et al. study dynamic pushdown net-
works, in which communication between parallel threads is either abstracted
away or limited (see e.g. [18]), and Meyer describes a decidable fragment of the
m-calculus in [20], subsuming decidability results of previous papers. None of
these formalisms, however, can model the examples of this paper. Results on
parametrized verification cannot be directly applied either, because in those ap-
proaches the number of processes stays fixed during the computation, and the
communication structure is restricted to trees or other structures.

We follow the line of overapproximating the set of reachable states, which in
our case are graphs. Apart from the work on the verification of graph transforma-
tion mentioned in the introduction, related work along this line is shape analysis
[23] and, more recently, separation logic [9]. Both, however, are mainly special-
ized towards the verification of specific pointer structures, such as singly-linked
or doubly-linked lists, rather than arbitrary graphs.

The idea of using Parikh’s theorem for overapproximating context-free struc-
tures has been used by Deutsch [8] and by Bouajjani et al. [5] in settings different
from ours.

The method described in the paper has been partially implemented in the
tool AUGUR 2 [16]. Especially, we have implemented the computation of the
over-approximating Petri graph and the computation of the semi-linear set from
a context-free grammar. We plan to investigate techniques to derive linear con-
straints directly from the context-free grammar, without going via semi-linear
sets, and techniques to automatically generate invariants like the ones obtained
here through vicious cycles.

Finally, verification may also be unsuccessful because the Petri net over-
approximates too coarsely. We have developed a counterexample-guided abstrac-
tion refinement technique [15] that could be adapted to the setting of this paper.
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