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Abstract operational semantics by means stfuctural axiomsand

reaction rules Process calculi representing complex sys-

The semantics of process calculi has traditionally been tems, in particular those able to generate and communicate
specified by labelled transition systems (LTS), but with thenames, are often defined in this way, since structural ax-
development of name calculiit turned out that reactionsule ioms give a clear idea of the intended structure of the states
(i.e., unlabelled transition rules) are often more natural while reaction rules, which are often non-conditional,egiv
This leads to the question of how behavioural equivalencesa direct account of the possible steps. Transitions cauged b
(bisimilarity, trace equivalence, etc.) defined for LTS can reaction rules, however, are not labelled, since they repre
be transferred to unlabelled transition systems. Recgintly  sent evolutions of the system without interactions with the
order to answer this question, several proposals have beenexternal world. Thus reduction semantics in itself is neith
made with the aim of automatically deriving an LTS from abstract nor compositional. To enhance the expressiveness
reaction rules in such a way that the resulting equivalences of reduction semantics, Leifer and Milner proposed in [12]
are congruences. Furthermore these equivalences shoulda systematic method for deriving bisimulation congruences
agree with the standard semantics, whenever one exists. from reduction rules. The main idea is the following: a pro-

In this paper we propose saturated semantics, based oncessp can do a move with label’[—] and become’ iff
a weaker notion of observation and orthogonal to all the C[p] ~ p’. This definition was inspired by the work of
previous proposals, and we demonstrate the appropriate-Sewell [20]. Also, the approach of observing contexts im-
ness of our semantics by means of two examples: logic proposed on agents at each step was introduced in [16], yield-
gramming and a subset of the opeftalculus. Indeed, we ing the notion ofdynamic bisimilarity

prove that our equivalences are congruences and that they Leifer and Milner introduced also the categorical notions

coincide with I.ogical gquivalence apd open b!similarity "€ of relative pushout (RPO) and idem relative pushout (IPO)
spgcuvgly, while equivalences studied in previous works a in order to specify a/the minimal context that allows the
strictly finer. state to react with a given rule. This construction leads to
labelled transition systems (LTS) that use only contexis ge
erated by IPOs, and not all contexts, as labels, and thus are
1 Introduction smaller than in the latter case. Bisimilarity on this LTS is a
congruence under rather restrictive conditions. A geieral
The operational semantics of process calculi is usually sation to reactive systems ovgrcategories has been pro-
given in terms of transition systems labelled with actions, posed by Sassone and Sotiwti [19, 18]. Recently other
which, when visible, represent both observations and-inter extensions to open systems and to weak semantics were in-
actions with the external world. The abstract semantics istroduced in [10] and in [4] respectively. The approach has
given in terms of behavioural equivalences, which dependbeen applied to bigraphs [14] and DPO graph rewriting [6].

on the action labels and on the amount of branching struc-  The apove constructions start from actionless reduction
ture considered. Behavioural equivalences are often con+jes and have fundamental motivations in terms of min-
gruences with respect to the operations of the language, angin ity of basic definitions. However in most interactive
this property expresses the compositionality of the abtra  gystems some notion of observation is built in, and it is dif-
semantics. o _ ) ficult to derive the corresponding semantics purely by us-
A simpler approach, inspired by classical formalisms ing contexts, as testified by the lack of results where the

like A-calculus, Petri nets, term and graph rewriting, and qginary semantics of a process description language is de-
pioneered by the Chemical Abstract Machine [3], defines rjyeq from reduction rules. For instance, Milner and San-
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are labelled by barbs (potential interactions with the envi turns out that saturated trace congruence coincides wéth th
ronment). Even considering only labelled transitions, the ordinary logic semantics of logic programming, while the
RPO/IPO paradigm can be used to add relevant experiment®rdinary trace congruence yields a finer semantics, know
to a transition system for which bisimilarity is not a congru in the logic programming community a-semantics [7].
ence. In this line, Ferrari, Montanari and Tuosto in [8] con- Interestingly enough, a goal (i.e. a conjunction of atomic
sidered a fragment of the-calculus where name fusions are goals) and the head of a clause must adapt in two different
contexts and where IPO constructions add the transitionsways: both must be instantiated, but in addition the head
with the minimal fusions needed by the symbolic transition must be A-)composed with other formulas which stay idle
system [17] of the opem-calculus. But the resulting ab- in the reduction. We are able to obtain both adaptations
stract semantics is strictly finer than open bisimilarity. at the same time within our approach, without resorting to
Another interesting interpretation of the RPO/IPO con- an infinite number of rU|ES, asitis usually the case for the
struction is in terms of models of computation tailored to ordinary construction, since agents are normally forced to
the needs of the general server-to-client bindings reduire be closed. Infactin our encoding we will have only one rule
by the new web service applications. When a new servicefor each Horn clause. Several authors (see for instancg [10]
is discovered, not only the service must adapt to the client,consider the restriction to closed agents a big limitatién o
e.g. accepting a list of parameters, but also the client mustthe label derivation approaches.
sometimes adapt to the server, in order to establish the con-  For ther-calculus we refer to the above mentioned pa-
nection. Moreover, the minimal possible adaptation should per [8], where the RPO/IPO approach yields the symbolic
be sought, in order to minimise the possible degradation.transition system of a fragment of the calculus. Again,
Suitable modelling of the details of the negotiation may while ordinary bisimilarity congruence yields a finer se-
lead to formalisations able to take advantage of the semanti mantics, the saturated bisimilarity congruence yieldsothe
properties guaranteed by the RPO/IPO constructions. Thedinary semantics of oper-calculus.
above symmetrical server-client adaptation reminds us of The main contribution of the paper is the appreciation
the unification step of logic programming, where a goal and of saturated equivalences (bisimilarity and trace). Sdad
a clause adapt reciprocally in the most general way. Quitebisimilarity (in the sense of all contexts) was already know
interestingly, in the observational view of logic program- in the literature [12], but it was dismissed as not promis-
ming [5] the label of a goal reduction is exactly the instanti ing. In this paper we show an alternative definition which
ation of the goal imposed by the unification step, as requiredconsiders fewer contexts and we exhibit two important ex-
by the RPO/IPO construction. amples where saturated equivalences yield the most natural
In this paper our aim is, as in the ordinary case, to de- notions. Our alternative definition works under weaker con-
rive a bisimilarity congruence from given reduction rules. ditions than those required in [12]. The construction pro-
However we introduce in the transition systathcontext-  Posed for logic programming is original and, in our opinion,
labelled transitions which make a state and a rule match. Weparticularly interesting because, at our knowledge, ihes t
call the resulting equivalencesaturated Saturated equiv-  Only example in the literature of reactive systems, wheee th
alences are coarser than ordinary ones and have nice propiles are both instantiated and contextualised.
erties, e.g., they are trivially congruences, but the LTS is
infinite-branching in more cases. Here we develgemi-
saturatedtechnique that allows to compute saturated equiv-
alences without considering all matching contexts. In,fact
if we call Alice the player choosing the move and Bob the
player choosing a matching reply, we prove that if Alice
chooses an IPO. move gnd Bob _rephe; with any matching as running example the reactive semantics of CCS [13] with
move, the resulting equwalen_ce is again the saturated ON€y « reaction rules. P 13.Q ~ P|Q.
even if the moves to be considered are usually much less.
In order to apply this technique we require less restrictive
conditions than for the ordinary equivalences: insteagofr 2 Background
quiring the existence of all redex RPOs we need only redex

IPOs, i.e., we allow several local minima. Reactive Systems. Here we summarise the theory of re-
Indeed we show that in some relevant cases saturatedictive systems proposed in [12] to derive labelled tramsiti
equivalences are exactly what we want, while ordinary systems and bisimulation congruences from a given reac-
equivalences are too fine. In the paper we discuss two im-tion semantics. The theory is centred on the concepts of
portant cases: logic programming ametalculus. term, contextandreaction rules contexts are arrows of a
We model logic programming in a way similar to [5]. It category, terms are arrows having as dom@ita special

Structure of the paper. In Section 2, we first review
Leifer and Milner’s theory of reactive systems, and then we
recall some basic concepts of logic. In Section 3, we intro-
duce the main theoretical contributions of the paper, and in
Sections 4 and 5 we apply our results to logic programming
and to openr-calculus. Throughout the paper, we will use



object that denotes no holes), and reaction rules are plairs o I, 1, Iy | L
terms. TN TN N
Definition 1 (Reactive System)A reactive systent con- E Is bzl Iy rl<Is loso1s
sists of: AN 0 /. AN 0 i

1. a categoryC (i) (i) (iii) (iv)

2. adistinguished object € [C| Figure 1. Redex Square and RPO

3. a composition-reflecting subcategoFy of reactive

contexts

) Definition 3 (RPO) Let the diagrams in Figure 1 be in

4. asetof pairsk C (J;¢ | C(0,1) x C(0,I) of reac-  some categoryC. Let () be a commuting diagram. Any
tion rules tuple (Is, e, f, g) which makes (ii) commute is callectan-

didatefor (i). A relative pushout (RPQ3 the smallest such
candidate. More formally, it satisfies the universal prdger
that given any other candidatds, ¢/, f', ¢’), there exists a
dunique mediating morphisi: I — Iz such that (iii) and
(iv) commute.

The reactive contexts are those in which a reaction can oc-
cur. By composition-reflecting we mean thatl’ € D im-
pliesd,d’ € D.

Note that the rules have to be ground, i.e., left-hand an
right-hand sides have to be terms without holes and, more-
over, with the same codomain. Having ground rules is a
simplification often made, but there is some work which Definition 4 (IPO). A commuting square such as diagram
tries to overcome this constraint [10]. (i) of Figure 1 is calleddem pushout (IPO (14, ¢, d, idy,)

From reaction rules one generates the reaction relationis its RPO.

by closing them under all reactive contexts. Formally the o ]
reaction relationis defined by takings ~ ¢ if there is Definition 5 (redex RPOs) A reactive systenhas redex

(1,7) € R andd € D such thap = I;d andg = r; d. RPOsif every redex square has an RPO.

Thus the behaviour of a reactive system is expressed agyqfinition 6 (IPO-Labelled Transition System)ThelPO-

an unlabelle(_j transitior_1 system. On the oth_er hand many|abelled transition systeifiLTS for short) is defined as fol-
useful behavioural equivalences are only defined for LTSs. o

In order to obtain an LTS, we can plug a tegninto some lows:

contextC[—] and observe if a reaction occurs. In this case e states:;p: 0 — I in C, for arbitrary I;

we have thap i Categorically speaking this means that N Cl-] )

p; C[—] matched/; d for some rule(l,r) € R and some e transitions:p —; r;diff d € D, (I,r) € R and the
reactive context!. This situation is formally depicted by diagram (i) in Figure 1 is an IPO.

diagram (i) in Figure 1: a commuting diagram like this is

In other words, if inserting into the context”[—] matches
called aredex square

l;d, and C[—] is the “smallest” such context (according
Definition 2 (context transition system)jThecontext tran- {0 the IPO condition), thep transforms tor; d with label

sition system(CTS for short) is defined as follows: C[—], wherer is the reduct of.
Bisimilarity on ILTSis referred to astandard bisimilar-
e states: arrowg : 0 — I in C, for arbitrary I; ity (denoted by~;po), and Leifer and Milner have shown
- -] . that if the reactive system has redex RPOs, then it is a con-
e transitions:p —¢ ¢ iff C[p] ~ q. gruence (i.e., it is preserved under all contexts).

It can be easily shown that bisimilarity ov@iT Sis a con-
gruence as well. In this paper we will focus on this bisim-
ilarity, which will be calledsaturated bisimilaritydenoted
by ~ga7). In[12], it is referred to as-,4, and the authors
show that~1p0 Cr~gar.

Note that this labelled transition system is often infinite-
branching since all contexts that allow reactions may occur
as labels. Another problem @TSis that it has redundant
transitions. For example, consider the tetnd of CCS.
The observer can put this term into the contexd | —

andﬁobserve a reaction. This corresporld to the transitionl_ogiC Programming. As an application domain for satu-
a.0 ‘ﬂbc 0|0. However we also have.0 ]MTC p|0]0 rated semantics we will now introduce logic programming
as a transition, yep does not contribute to the reaction. and semantic equivalences of logic formulas.

Hence we need a notion of “minimal context that allows A logic signaturel is a pair(%, IT), whereX is a set of
areaction”. Leifer and Milner define idem pushouts (IPOs) function symbolandII is a set ofpredicate symbolsvith

to capture this notion. an associated arity. As usual, given a ebf variables,



we denote byl (X) the freeX-algebra overX. A term h:—b€ P o=mgUa,p(h))

over X is an element of x(X). Given a termy, Var(t) is PlFa=,a(p))

the smallest set of variable¥ such that € 7% (X). An wherep renames to globally fresh names
atomic formulaover X has the formP(¢1,...,t,) where

P is a predicate with arity:, andtq, ..., t, are terms over Plrg=sf

X. A formulais a finite conjunction of atomic formulas: Pl-giANgA g2 =s0(g1) A fAo(ge)

a1 A -+ A a, WhereA is associative and it has tlenpty
formulad as unit. Note that in the standard definitions
also commutative, but to simplify our construction, as it is
the case in Prolog, we do not consider it to be commutative
(however the resulting behaviour is the same).

If X andY are sets of variables,substitutionfrom X to
Yisafunctions : X — Tx(Y). If tis aterm overX ando
a substitution fromX to Y, then the term oveY’, obtained
by simultaneously substituting ihall the occurrences of
the variables inX with their image undew, is called the
application ofs to ¢t and writtent; o (or o(t)). If o is a
substitution fromX to Y, ando’ from Y to Z, theno;o’
from X to Z is defined by applying’ to each image of
the variables inX underos. Givens : X — Tx(Y) and
X’ C X therestrictionof o to X/, writteno | X', is the 9% g . T Owesaythat — oy:...: 0, ] Var(g)

H 1 /. / 1 /
substitutions” : X' — T(Y') acting asr on X". is acorrect answer substitutioaf g. In other wordss is a

A substitutiono is more generathano’ if there exists a  correct answer substitution gfiff o(g) is a logical conse-
substitutiory such that’ = o; 0. Two substitutions) and quence of the program.

¢ unifyif there exists a substitutionsuch that); o = ¢; 0, In [5], it is shown that, if we work with an infinite set of
in this caser is aunifierof ¢ andg. Itis well-known thatif  fynction symbolsg, ~;. g2 iff g1 ~c go.
¥ and¢ unify, then there exists a unifier thatis more general  1he following example shows tha$-equivalence is

than all the others, called theost general unifie(mgufor  somehow too detailed and that logic equivalence is more
short). Itis also well-known that amguis the coequalizer  gpsiract.

in the category of substitutions [9], and in [5] it is shown
that themguof substitutions with disjoint sets of variables Example 1. Consider the following program, whetgis a

Table 1. Operational rules for SLD-resolution

Logic equivalencddenoted by~;) equatesy; and g,
if and only if, for any ground substitution, o(g;) is re-
futed iff o(g2) is refuted. In [7],S-equivalencegdenoted
by ~¢) is proposed.g; and g, have the same set of com-
puted answer substitutions. Another interesting equiade
is correct answer equivalengeenoted by~ ) that equates
two goals iff they have the same set of correct answer sub-
stitutions (defined as follows). Le% be the transition sys-
tem defined by changing the premise of the first rule of Ta-
ble 1: we do not require anymore thatis the mgu, but
only that it unifiesa and p(h) i.e, o(a) = o(p(h)). If

corresponds to a pushout (this will be detailed later). variable anda is a constant:
A logic programis a finite collection ofHorn clauses
i.e., expressions of the for : — b whereh is an atomic Py)—0 Pla)=0 Qy):—0O

formula called théneadof a clause, andis a formula called

thebody. Rules in Table 1 define the operational semantics

of logic programming. A goay = a1 A - - - Aa,, reacts with

a clausec = h :—1b if a;, an atomic formula of the goal

g, unifies withp(h) (wherep substitutes the variables bf

with fresh variables not appearinggi. Leto be themguof

a; andp(h), theng reacts and become$ = o(a1) A+ -+ A

o(ai—1) No(b) Ao(ai+1) A -+ Ao(ay). A refutationof g

is a derivationy =, g2 =, --- =, gn endingwiththe 3 Saturated Semantics

empty formula (i.eg,, = 0). In this caser = 01;...;0,]

Var(g) is acomputed answer substitutiof g. In Section 2 we have shown that given a reactive sys-
Now, given a logic program, when are two goals equiva- tem one can define two LTSs: t&TS where the labels

lent? First note that we already have an LTS, but bisimula- are all contexts allowing a reaction, and th&S, where la-

tion is quite uninteresting in this case because we would lik bels are the minimal contexts allowing a reaction. On those

to consider as equivalent two goals with different branghin LTSs we can define various kinds of equivalences, such as

behaviour. Here the interesting point is if, and when, two bisimilarity, trace and failure equivalence. The tesatu-

goals can be refuted. The first naive equivalence that comesated semanticstands for equivalences defined on @ES

to mind is: g; can be refuted iffy; can be refuted. This  while standard semanticstands for equivalences defined

equivalence is however not a congruence. on thelLTS

Now consider the goal®(xz) and Q(x). They are refuted
by any ground substitution, which means that they are logic
equivalent (and also correct answer equivalent). However,
they are notS-equivalent: in fact the set of computed an-
swer substitutions foP(x) is {e, [a/z]}, while the com-
puted answer substitutions f@¥(z) are {¢}.



Theorem 1. Saturated bisimilarity is the coarsest bisimu- and abstract bunch contexts of lengtthavingm holes as
lation on~~ that is also a congruence. arrowsm — n. Composition ot : m — nandb:n — o

o ) ) is defined by plugging the multiset ofa into then holes of
In our opinion, the standard semantics (using IPOs as Ia—b' Finally, the identityid,, is {—1}{—s}...{—n}.
bels) is not really observational since the observer has toTpig category does not have RPOs: consider the exterior
know exactly the right amount of information that the pro- squares in diagrams (i) and (ii) below (note that they are
cess needs to react, while saturated semantics are truly Obéqual). This square has no RPOs since it has as candidates
servational: the observer plugs the process into some CoNthe arrows inside which are not comparable (in the sense

text and observes if a reaction occurs. However, with the . heither is smaller than the other). But note that both
current definition itis hard to show that two systems are sat- 5re |pQs; since they have as candidates only isomorphic
urated bisimilar, sinc€TSis often infinite-branching and diagrams.

bisimilarity must consider all possible moves.

1 1
3.1 Semi-Saturated Bisimulation {%ﬁw} e {J_N}
| |
Here we propose an alternative and, (in some cases) fini- 11 (-1} 1 1 (—1H K} 2 (K} {-1} 1
tary characterisation of saturated bisimilarity: in theityi-
ulation game, one player proposes an IPO transition and the k 0 % X %

other answers with a contextual transition. ) (%
i ii
Definition 7 (semi-saturated bisimulationp symmetric re- ) . .
lation R is asemi-saturated bisimulatighwhenevep R g, Theorem 2. In a reactive system having redex-IPOs, semi-
cl-] cl-] saturated bisimilarity coincides with saturated bisinitg

thenp —; p’ impliesq —¢ ¢’ andp’ R¢'.
We call the union of all semi-saturated bisimulations
semi-saturated bisimilarit@denoted by~ s5). Theorem 3. In areactive system having redex-IPOs, a sym-
metric relationR is a semi-saturated bisimulation iff when-
Theorem 2 states that under very weak conditions this kindeverp R ¢, thenp —5; p’ implies the existence df e such

of bisimilarity coincides with saturated bisimilarity (dn
thus it is a congruence). In this way we can prove that
two processes are saturated bisimilar just starting with IP Theorem 3 offers another characterisation of semi-sadrat
moves that are sometimes (see, e.g., Corollary 1) finite inbisimilarity (and thus of saturated bisimilarity) that ees-
number. Once an IPO move is chosen, the corféxt] is bles open [17], asynchronous [1] and large [2] bisimilarity
fixed, and thus only the~ moves fromC'[g] must be con-
sidered. Milner and Leifer have shown thaipo is a con- 3.2 Saturated Trace Equivalences
gruence if the reactive system has redex RPOs, i.e., if for
each redex there exist an RPO. Fogg it is sufficient to Besides bisimulation, many other equivalences have
require that the reactive system has redex IPOs. been defined on LTSs. Here we introdugérace equiva-
o ] lence, a quite general equivalence, parametric with respec
Definition 8 (redex IPOs) A reactive systenmas redex g 4 propertys, that generalises trace aSdequivalence of
IPOs if every redex square has at least one IPO as can- |5gic programming. This equivalence can be instantiated
didate. both on the IPO and on the contextual LTS and, as we did
for bisimulation, we define a semi-saturated version of it
and we show that it corresponds to saturated equivalence.

(i.e.p~ssq <= p~sar q).

thatd;e = ¢, ¢ —%; ¢’ andp’ R¢/;e.

Clearly this constraint is weaker than having redex RPOs,
and hence our results can be applied to a larger numbe
of reactive systems. Having RPOs means to have a mini-Definition 9 (¢-trace equivalence)Let X be a set of states,
mum candidate (i.e., a candidate smaller than all the dthers [, 3 set of labels and- C X x L x X a transition relation.
while having IPOs allows to have several minimal candi- |et—; — : Lx L — L be an associative operator on labels
dates (also not comparable among them). The following and let¢ be a property onX. We say thap, ¢ € X are ¢-

example (introduced in [21] and inspired by [12]) exempli- trace equivalent ~¢ ¢) if the following conditions hold:
fies the difference between redex IPOs and redex RPOs. ) ]
e ¢(p) ifand only ifop(q),

Example 2 (Abstract Bunch Contexts)An abstract bunch . .
context is a string of multisets containing elements from e if p — p’ A ¢(p') theng — ¢’ A &(¢'),
some alphabekC and places (i.e., holes). Abstract bunch . .
contexts form a category having natural numbers as objects e if ¢ — ¢’ A ¢(¢') thenp — p’ A &(p'),



l . ) l l
wherep — p’ iff p L P2...Pn In p'andl = ly;l9;...:1, o if p—o1 ' Ao(p') theng —¢ ¢’ andg(q'),
withn > 1.

H ! / / ! / /

Note that if¢ holds in every state ok and; is string con- ¢ fq—rd' Ao(q) thenp —c p’ ando(p’),
catenation, then we obtain the classical trace semantics fowhere—; and —» ¢ are the transitive closures of; and
—, while if ¢ holds just for the empty godll, — is the —c.
SLD transition relation and if is composition of substitu-
tions, then we obtai%-equivalence of logic programming.

In the rest of this section we will study this equivalence
in the setting of reactive systems, and we will fix thep-
erator to be context composition. As we did for bisimilar-

ity, we can define this equivalence on tha'S (standard  Theorem 6. In a reactive system with redex IPOs, where all

As semi-saturated bisimilarity corresponds to saturated
bisimilarity, semi-saturated-trace equivalence is saturated
¢-trace equivalence, under the weak constraint of the exis-
tence of redex IPOs.

¢-trace equivalencelenoted by~7) or on theCTS(satu-  contexts are reactive, and such thadefines a composition-
rated ¢-trace equivalencedenoted by:‘g AT)- reflecting subcategory, theﬂ‘g ¢ = gg AT
In order to obtain a congruence we have to require the

following conditions: 4 Logic Programs as Reactive Systems

1. ¢ is defined on all arrows, and the arrows satisfying ) ] ) )

form a composition-reflecting subcategory: In this sect|0n_ we will show how logic programs can
be seen as reactive systems and how the theory developed
2. all contexts are reactive. above can be applied in this framework. Consider two basic

) ) . ) sortst for terms ancdb for formulas (predicates are atomic
The first requirement is not very strong, and we will show formulas). We use to denote the empty string and to

that in our encoding of logic programming, settiag:) < denote the string composed ofoccurrences of. Given a
a = O defines a composition-reflecting sub-category. The logic signaturel’ = (X, IT), we definel” as the signature

second constraint is rather restrictive, but there are Manyr anriched with the symbols that takes two formulas and
formalisms for which it holds, as for example DPO graph |e(,ns one formula arid a constant formula. Lek be the

rewriting or logic programming. set of axioms describing thatis associative (not commuta-

Theorem 4. In a reactive system where all contexts are re- tive) and has identiti/l. Let X;, and.X; be sets of predicate

activengT is a Congruence_ and term variables. We USE“’/E(Xpth) to denote the
I'-algebra freely generated X, X;) quotiented byFE.

Standard bisimilarity is a congruence under the constadint A term of this algebra in sorp is a logic formula having

having all redex RPOs, while here standgrttace equiva-  term and predicate variables froy and X,,.

lence is a congruence under the assumption that RPOs exist

not only for redex squares but also for squares where theDefinition 11. The categoryT'h[I'"/E] is the freealgebraic

four arrows are contexts (in reactive systems RPOs are onlytheory[11] associated to the specificatidi, £.

required for squares wherg one of the lower arrows is a re-This category has been used in [5] as base category for a
dex). We say that a reactive system hadex and context e gystem for logic programming. Usualblgebraic the-
RPOsif it satisfies this constraint. We have to require this jias'are applied to a one sorted signature and the result-

condition since we are _Wor_klng with the transitive closure ing category has natural numbers as objects, while here it
of —. A similar condition is needed in [4] where the au- s 5jied to a two sorted signature and it has strings of
thors require to have all RPOs, in order to show that weak sorts (i.e., elements dft, p}*) as objects. For example, an

bisimulation is a congruence. objectp™t™ can be thought of as representingordered

Theorem 5. In a reactive system with redex and context canonical predicate variable§.e., variables indexed from
RPOs, where all contexts are reactive anddefines a  1107) p1,...,p, andm orderedcanonical term variables
composition-reflecting subcategory? is a congruence. Z1,...,Tm. 1O avoid confusion, it must be clear that the
canonical variables are just placeholders, i.e., theipsds

As for bisimulation we can define a semi-saturated version only local. The arrows froms; to s, ares;-tuples of ele-
of ¢-trace equivalence. ments of} ;; with s, canonical variables and the compo-
sition of arrows is term substitution.

The subcategory of the arrows of the fofh — t™
is isomorphic to the category of finite substitutions Xin
(with canonical sets of variables) and the arrows- ¢
e o(p) ifand only ifp(q), are closed term oveE, while arrowsp — € are closed

Definition 10. LetC be a reactive system, amda property
on the arrows ofC. We say thap and ¢ are semi-saturated
¢-traceequivalent f :‘gs q) if the following holds:



formulas overI”. Arrows p — t" are formulas ovemn
canonical term variables, while arrows— pt™p are for-
mulas overn canonical term variables and two canonical
predicate variables. Consider for examglB(z,,z2) A

p1, f(21),Q(f(x2)), ps) Wherez;, x5 are terms variables
andp,, ps are predicate variables. This tuple corresponds
to an arrow fromptp? to t?p°. Note also that the above
tuple can represent also an arrow frpmp? to tptp?.

Furthermore the above tuple can be seen as an arrow hav-

ing as codomain object§p™ forn > 2andm > 5, i.e. the
codomain does not define the exact index of (term or pred-
icate) variables, but the maximum index that the variables
can have. In the following for a gogland a natural number
n larger than the maximal index of variables appearing,in
we will write g™ to denote the arrow — t".

In the classical interpretation by Leifer and Milner, the
arrows having domain objects different frofn(the dis-

tinguished object) are seen as contexts which can be pre-
composed with terms. In our reactive system these arrows

are substitutions which instantiate the variables of fdesu
Horn clauses, not only must be instantiated by substitation
but they must be also contextualised with theperator.

In the rest of this section we will use the formula
fi = P(s(x1),22) A P(z1,t(z3)) and the clause; =
P(y1,t(y2)) : —Q(y1) as running example. The head
of the ¢; must be instantiated (e.g., substituting with
x1 and ys with z3) and contextualised (plugging it into
P(s(x1),2z2) A [—]) in order to matchf;.

Similar problems arise with process calculi where the

rules usually are not ground, and have to be instantiated

and contextualised. For example, the redex of the CCS
rule a.P | a.QQ ~ P | @ matchesa.(a.0 | @.0) instan-
tiating P, @ to 0 and plugging the left-hand side into the
contextva.[—]. Usually this problem is avoided by creat-
ing infinitely many rules corresponding to all possible in-
stantiations of the rule, and then considering only contex-
tualisation, as it is done for bigraphs [14]. This approach

tions and simulate contextualisations by substitutions by
supplying appropriate variables in the rules (see below). |
order to integrate this idea with the theory of reactive sys-
tems we have “reversed” the arrows, i.e., a formula over
term variables becomegs— t™ (instead of the maybe more
intuitive t™ — p).

Definition 12. Given a logic programP on a signaturd’”,
we define a reactive systeR{P) as follows:

e Th[I”/E] is the underlying category
e pis the distinguished object
¢ all contexts are reactive

e for each clausé: : — b, let n be the largest index of
variables contained ith andb; then we add the rule

(p1 AR Ap2, pr AbA D)

where left and right-hand sides are arrows— pt™p
andp,, p» are predicate variables.

Note thath andb do not necessarily have the same number
of variables, while our theory requires that left-hand and
right-hand side of a rule have the same interface (i.e., they
must be arrows with the same target). In this case we extend
the smaller interface.

A generic redex square of this reactive system is depicted
in diagram (i) of Figure 2. Arrow: is a substitution that in-
stantiates the variables gf while arrowd instantiates the
variables ofh and contextualise, instantiating the predi-
cate variablep; andp,. Thus for any reaction step an atom
of the goal is unified with the head of a clause ands in-
stantiated with the formula on the left of the chosen atom,
andp is instantiated with the formula on the right.

Lemma 1. The exterior square of diagram (i) in Figure 2
commutes if and only if there exist formulas g- and an
atomic formulaa such thaty = g1 A a A g2, p1;d = g1;¢,

causes the problem of having infinitely many rules and con- p,: d = g»; candh; d = a;c.

sequently infinitely many transitions. In [10] the notion of

open reactive systems is developed in order to overcome thidh general, ini(

problem, but the resulting theory is quite restrictive. &ler
we propose a different approach: we simulate contextua
isation by substitutions by supplying appropriate vagabl
in the rules. The redex of a rule is not simply an arrow of
the formh : p — t™ that can only be instantiated, but it is
an arrowp; AhAps : p — pt"p that can be instantiated and
contextualised (by instantiating the variabjgsandp.). In
this way, we also get a finite branchifidgr S

Thus, in our reactive system, the head of the clatyjse
above becomeg; A P(y1,t(y2)) A p2 and, in this way, the
head can match the goal instantiatingo P(s(x1), z2), p2
to 0 andy; to z; andys to z3.

Summarizing, we can say that we allow only substitu-

P), given arule and a goal, there exist sev-
eral ways of unifying them: one for each atom of the goal
that can match the head Consider for example the redex
of ¢; and the goalf;. The head of; unifies both with the

left predicate off; and with the right one. This means that,
given a redex and a goal—seen as arrows—there usually
exists no a minimal way of matching them (i.e., no pushout
exists). The following lemma assures that each commuting
square fixes a “way” of matching, i.e., chooses the atom of
the goal that unifie.

Lemma 2. Let the exterior square in diagram (i) of Figure 2
be commuting. Ley,a,go be formulas as described in
Lemma 1. Then for each candidale f, i), the following
hold: p1; f = g1;€, p2; f = g2;e andh; f = ase.
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Figure 2. Redex squares, pushouts and RPOs in a reactive syst em R(P)

As a next step we are going to show that in our reactive Lemma 4. Leta and h be atomic formulas, and as de-

system a redex RPO is teguof « and h, together with
the instantiation op; andp, to appropriate formulas. We
start by recalling a theorem from [5].

Theorem 7. Given two substitutions of termasand b with

scribed above i.e., such th@i; AhAp2); o = GTARAGS. In
Figure 2 (x, y) is the pushout of; A a A g2 andgr A h A gz,
andz the mediating morphism (as depicted in diagram (iii))
iff (x, o;y, z) is the RPO of the diagram (iv).

disjoint sets of variables, their mgu is the pushout of the Then, given a commuting square, this fixes a way of match-

arrowsa™ andb”, for m, n larger than the maximal index
of variables ofu andb.

ing (i.e., onex) and so there exists a minimal unifier, that is
the mgubetween the head of a clausend chosen atorm

of the formulag.
Remember that if two substitutions can unify, then there ex-

ists anmgu This, together with Theorem 7, assures that 1neorem 8. R(P) has redex and context RPOs.

for each commuting square of substitutions there exists aln the rest of this section we will show thatequivalence
pushout. Moreover this result holds not only for substitu- corresponds to standargtrace equivalence, while correct
tions but also for atomic goals since two atomic goals unify answer equivalence corresponds to saturatégice equiv-
iff they consist of the same predicate and the terms within alence. We start by showing that - corresponds to—

the predicate unify. In the rest of the paper we gde de-
note a formula having the same predicate symbolg asit
without function symbols and where all variables are differ
ent. For examplef; = P(u1,u2) A P(us,us). Note that

the arrowd of a generic redex square (see Figure 2(i)) can

always be decomposed inta ¢y’ where « instantiateg;
andp- to g7 andgs ands)’ is a substitution. It is exactly this
arrow « that chooses which atom of the goal matches

The following lemma generalises the theorem above to

non-atomic formulas of the forgy A a A g2 andgy AbAGs.

Lemma 3. Leta and h be atomic formulas. In Figure 2
(¢, 1) is the pushout o andh (depicted in diagram (ii)) if
and only if(¢’, 1"} is the pushout af; AaAgs andgT ARAG2
(see diagram (jii)), where' is equal to¢ on Var(a) and
the identity on the others variables, atitis equal toy> on
Var(h) and such thay; ¢ = g1; ¢ andge; ¢ = g3; 0.

The meaning of this lemma is more intuitive if one consid-
ers formulas. Suppose thaandh unify, and let(¢, ¢)) be
theirmgu Then alsay; AaAge andgy AhAgs unify and the
mguis themguof a« andh (since all the variables gf; and

gz are different and can be instantiatedjto ¢ andgs; ).

(as defined in Section 2) while-; corresponds te> (i.e.,
SLD transitions).

Theorem 9. Let P be a logic program. Lef, g be two for-
mulas andn, n larger than the maximal index of variables
appearing inf andg. Furthermore letr be a substitution,
and letd : t™ — t™ be equal tar on Var(f) andid other-
wise. Then:

o Pl giffin R(P) itholds thatf™ ¢ g7,

o P+ f =, giffin R(P) it holds thatf™ —%; gn.
Corollary 1. In R(P), the ILTS is finite-branching.

Note thatS-equivalence and correct answer equivalence are
¢-trace equivalence where the predicateolds only for the
empty goal. Formally we define the predicaié) over all

the arrows of the categofYh[I"/E]: O(a) holds iffa is an
arrow obtained by decomposing™ : p — t™, where(1”
is: p — e with the interface extended with extra term
variables. Essentialli() holds for all term substitutions
and for empty formulas. The predicdi¥) defines a com-
position reflecting subcategory and, since all contexts are
reactive, we can apply our theoretical results4g, ~¢ , .

The following lemma is central since it shows the re- and~G: these three equivalences are congruences (W.r.t.
lationship between RPOs and pushouts: if we fix a way of sypstitutions) and:SAT —~0

matching (the arrow), then we have only one minimal uni-
fier (i.e, pushout) while if we do not fix it, we have several

=5s-
Now we show that the first correspondst@, while the
second (and then also the third) correspond-te (that, in

minimal unifiers (i.e., RPOs) one for each way of matching the case of infinitely many function symbolsAs,).

(i.e., for eachn).

Theorem 10. ~g =~ ~o==0,



5 Saturated Bisimilarity is Open Bisimilarity e if p-= p/ theng = ¢’ andp’ R¢/,
In [8], a reactive system for a subset of thesalculus is o if p™=p'then ¢ =V ¢' vV g = ¢') ando (') Ro(q).

defined in order to study how to model symbolic semantics \yhereq is an input, an output or and o is a fusion that

via reactive systems. The reactive system constructed ther f,ses, to 5. The union of all open bisimulation ispen

is rather complicated, and for this reason we do not fully bisimilarity (denoted by-o).

report it here. Instead we focus on those aspects that relate Syntactical bisimilarity(denoted by~ sy ) is obtained

saturated bisimilarity topen bisimilarity The subset of the by replacing the last condition of open bisimulation with:
m-calculus considered there is the standachlculus with-

out matchingr-prefixes and restriction. The operational se- e if p =% p’ theng =% ¢’ and o(p)Rao(q).
mantic is the symbolic LTS whose labels are either actions
or fusions. An outpuiz, and an inpub(y) can synchronise

leading to a transitiof=2. If a andb are equak = b is the
identity fusion denoted by. Note that also in the original
paper introducing open bisimilarity [17], the theory is firs
developed for the calculus without restriction and distinc Example 3. Consider the following processes:

tions to simplify the presentation. A totally ordered set of _ -

names{as, as, . .. } is assumed. Briefly, the underlyingcat-  * P = (ab | a'(c)) + (de | d(f))

egory of the defined reactive system has the natural numbers ® ¢ = ab.a’(c) +a’(c).ab + (de | d(f))

(representing the free names of a process) plas objects. |t holds thatp ~o ¢ since the move a=a i matched by the
A m-procesg is represented as an arrgyy, : x — m where (unigue) synchronisation af. Howeverp ~gsyn ¢ Since

m > max{k | ar € fn(p)}. The contexts in the cate- o g=a’
gory represent silent actions't : m — m), output actions the transitionp — cannot be matched by

(@;"a; : m — m) and input actionsg™ : m — m + 1) With Lemma 5 one can show that;po coincides with
and reaction rules are essentially transitions of the anyin ~ ~ ¢ n (see [8]), in fact in~;po if Alice proposes a fu-
openn-calculus. When a rule is applied to a process, the sion moves, then Bob must answer with the same fusion,
IPO construction recreates a transition labeled exactly bywhile in open bisimilarity Bob can answer with a less re-
the corresponding action, thus essentially embedding thestrictive fusion. But this is exactly what happens with
LTS of the ordinary opem-calculus in theL TS However  saturated bisimilarity. In fact look at the characterisati
also fusions[g; = a;],, : m — m — 1) are possible con-  of semi-saturated bisimulation given by Theorem 3. If
texts, and when a synchronization rule is selected fora pro- ~ w™lai=a;lm lai = aj]m, then g, can answer
cess which has the input and the output actions on different’™ Tm‘[a,{j’f“ ! Jime m

channels, the IPO construction generates a fusion for themWwith ¢,, ————=7 ¢},;[a; = a;],, wherep), ;[a; =
As a consequence, the resultihd Sis essentially the sym-  a;]m Rq;,; [ai = a;]m (in this case arrowl of Theorem
bolic LTS of the openr calculus. 3is ™ [a; = aj], ande = id), OF g, 3 ¢, where
Pilai = ajlm Rapyilai = ajlm (d = 7", ¢ = [a; =

Itis immediate to see thatsy n C ~0 since the conditions
for matching transitions foro are weaker than that the
ones for~gy . The following example shows thatgy

is strictly finer.

Lemma 5 (from [8]). Letp be a process of our subsetof '
andm > max{k | ar € fn(p)}. Furthermore let— and @jlm):
— 1 be the symbolic and the IPO transition relations. Then Theorem 11. ~p = ~gar.

apag o ap™ay g .
— Pm =1 Pm; 6 Conclusions and Future Work
ai(a;) a;™ € Ty . .
DP——DP < Pm ZIPmt1» P 7P < DPm 1 Pms In this paper we have proposed a semi-saturated tech-
ai—as P —a nigue for efficiently characterising certain congruendes t
T J / 7[ T J]‘"L / . [ R ] . .
P——P < Pm —— 1 Pmi % = Qj|m- are usually coarser than those presented by Leifer and Mil-

In [8] it is shown that the reactive system has redex RPOsN€' in [12]. Our approach applies to different kinds of se-
and hence the resulting equivalenegpo, is a congruence. mantics (here we have handled bisimilarity and trace se-

However, this does not coincide with open bisimilarity but Mantics, but we are confident that it applies to others). In
with syntactical bisimilarity formally defined below. this paper we have integrated semi-saturation within the
IPO framework, but it could be applied also @&reactive

Definition 13 (Open/Syntactical Bisimilarity) A symmet-  systems [18] and open reactive systems [10] where, in our
ric relation R is anopen bisimulationf whenevem R g it opinion, it might help to relax the constraints of the the-
holds: ory. Another advantage of semi-saturation is that it can be
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