
Saturated Semantics for Reactive Systems∗

Filippo Bonchi
University of Pisa

Barbara K̈onig
University of Duisburg-Essen

Ugo Montanari
University of Pisa

Abstract

The semantics of process calculi has traditionally been
specified by labelled transition systems (LTS), but with the
development of name calculi it turned out that reaction rules
(i.e., unlabelled transition rules) are often more natural.
This leads to the question of how behavioural equivalences
(bisimilarity, trace equivalence, etc.) defined for LTS can
be transferred to unlabelled transition systems. Recently, in
order to answer this question, several proposals have been
made with the aim of automatically deriving an LTS from
reaction rules in such a way that the resulting equivalences
are congruences. Furthermore these equivalences should
agree with the standard semantics, whenever one exists.

In this paper we propose saturated semantics, based on
a weaker notion of observation and orthogonal to all the
previous proposals, and we demonstrate the appropriate-
ness of our semantics by means of two examples: logic pro-
gramming and a subset of the openπ-calculus. Indeed, we
prove that our equivalences are congruences and that they
coincide with logical equivalence and open bisimilarity re-
spectively, while equivalences studied in previous works are
strictly finer.

1 Introduction

The operational semantics of process calculi is usually
given in terms of transition systems labelled with actions,
which, when visible, represent both observations and inter-
actions with the external world. The abstract semantics is
given in terms of behavioural equivalences, which depend
on the action labels and on the amount of branching struc-
ture considered. Behavioural equivalences are often con-
gruences with respect to the operations of the language, and
this property expresses the compositionality of the abstract
semantics.

A simpler approach, inspired by classical formalisms
like λ-calculus, Petri nets, term and graph rewriting, and
pioneered by the Chemical Abstract Machine [3], defines

∗Research partially supported by the DFG projectSANDS, the IST
2004-16004 SENSORIA, and the MIUR PRIN 2005015824 ART.

operational semantics by means ofstructural axiomsand
reaction rules. Process calculi representing complex sys-
tems, in particular those able to generate and communicate
names, are often defined in this way, since structural ax-
ioms give a clear idea of the intended structure of the states
while reaction rules, which are often non-conditional, give
a direct account of the possible steps. Transitions caused by
reaction rules, however, are not labelled, since they repre-
sent evolutions of the system without interactions with the
external world. Thus reduction semantics in itself is neither
abstract nor compositional. To enhance the expressiveness
of reduction semantics, Leifer and Milner proposed in [12]
a systematic method for deriving bisimulation congruences
from reduction rules. The main idea is the following: a pro-
cessp can do a move with labelC[−] and becomep′ iff
C[p] p′. This definition was inspired by the work of
Sewell [20]. Also, the approach of observing contexts im-
posed on agents at each step was introduced in [16], yield-
ing the notion ofdynamic bisimilarity.

Leifer and Milner introduced also the categorical notions
of relative pushout (RPO) and idem relative pushout (IPO)
in order to specify a/the minimal context that allows the
state to react with a given rule. This construction leads to
labelled transition systems (LTS) that use only contexts gen-
erated by IPOs, and not all contexts, as labels, and thus are
smaller than in the latter case. Bisimilarity on this LTS is a
congruence under rather restrictive conditions. A generali-
sation to reactive systems overG-categories has been pro-
posed by Sassone and Sobociński [19, 18]. Recently other
extensions to open systems and to weak semantics were in-
troduced in [10] and in [4] respectively. The approach has
been applied to bigraphs [14] and DPO graph rewriting [6].

The above constructions start from actionless reduction
rules and have fundamental motivations in terms of min-
imality of basic definitions. However in most interactive
systems some notion of observation is built in, and it is dif-
ficult to derive the corresponding semantics purely by us-
ing contexts, as testified by the lack of results where the
ordinary semantics of a process description language is de-
rived from reduction rules. For instance, Milner and San-
giorgi in [15] introduced the notion ofbarbed bisimula-
tion, where only reactions are considered, but where states

1

are labelled by barbs (potential interactions with the envi-
ronment). Even considering only labelled transitions, the
RPO/IPO paradigm can be used to add relevant experiments
to a transition system for which bisimilarity is not a congru-
ence. In this line, Ferrari, Montanari and Tuosto in [8] con-
sidered a fragment of theπ-calculus where name fusions are
contexts and where IPO constructions add the transitions
with the minimal fusions needed by the symbolic transition
system [17] of the openπ-calculus. But the resulting ab-
stract semantics is strictly finer than open bisimilarity.

Another interesting interpretation of the RPO/IPO con-
struction is in terms of models of computation tailored to
the needs of the general server-to-client bindings required
by the new web service applications. When a new service
is discovered, not only the service must adapt to the client,
e.g. accepting a list of parameters, but also the client must
sometimes adapt to the server, in order to establish the con-
nection. Moreover, the minimal possible adaptation should
be sought, in order to minimise the possible degradation.
Suitable modelling of the details of the negotiation may
lead to formalisations able to take advantage of the semantic
properties guaranteed by the RPO/IPO constructions. The
above symmetrical server-client adaptation reminds us of
the unification step of logic programming, where a goal and
a clause adapt reciprocally in the most general way. Quite
interestingly, in the observational view of logic program-
ming [5] the label of a goal reduction is exactly the instanti-
ation of the goal imposed by the unification step, as required
by the RPO/IPO construction.

In this paper our aim is, as in the ordinary case, to de-
rive a bisimilarity congruence from given reduction rules.
However we introduce in the transition systemall context-
labelled transitions which make a state and a rule match. We
call the resulting equivalencessaturated. Saturated equiv-
alences are coarser than ordinary ones and have nice prop-
erties, e.g., they are trivially congruences, but the LTS is
infinite-branching in more cases. Here we develop asemi-
saturatedtechnique that allows to compute saturated equiv-
alences without considering all matching contexts. In fact,
if we call Alice the player choosing the move and Bob the
player choosing a matching reply, we prove that if Alice
chooses an IPO move and Bob replies with any matching
move, the resulting equivalence is again the saturated one,
even if the moves to be considered are usually much less.
In order to apply this technique we require less restrictive
conditions than for the ordinary equivalences: instead of re-
quiring the existence of all redex RPOs we need only redex
IPOs, i.e., we allow several local minima.

Indeed we show that in some relevant cases saturated
equivalences are exactly what we want, while ordinary
equivalences are too fine. In the paper we discuss two im-
portant cases: logic programming andπ-calculus.

We model logic programming in a way similar to [5]. It

turns out that saturated trace congruence coincides with the
ordinary logic semantics of logic programming, while the
ordinary trace congruence yields a finer semantics, know
in the logic programming community asS-semantics [7].
Interestingly enough, a goal (i.e. a conjunction of atomic
goals) and the head of a clause must adapt in two different
ways: both must be instantiated, but in addition the head
must be (∧-)composed with other formulas which stay idle
in the reduction. We are able to obtain both adaptations
at the same time within our approach, without resorting to
an infinite number of rules, as it is usually the case for the
ordinary construction, since agents are normally forced to
be closed. In fact in our encoding we will have only one rule
for each Horn clause. Several authors (see for instance [10])
consider the restriction to closed agents a big limitation of
the label derivation approaches.

For theπ-calculus we refer to the above mentioned pa-
per [8], where the RPO/IPO approach yields the symbolic
transition system of a fragment of the calculus. Again,
while ordinary bisimilarity congruence yields a finer se-
mantics, the saturated bisimilarity congruence yields theor-
dinary semantics of openπ-calculus.

The main contribution of the paper is the appreciation
of saturated equivalences (bisimilarity and trace). Saturated
bisimilarity (in the sense of all contexts) was already known
in the literature [12], but it was dismissed as not promis-
ing. In this paper we show an alternative definition which
considers fewer contexts and we exhibit two important ex-
amples where saturated equivalences yield the most natural
notions. Our alternative definition works under weaker con-
ditions than those required in [12]. The construction pro-
posed for logic programming is original and, in our opinion,
particularly interesting because, at our knowledge, it is the
only example in the literature of reactive systems, where the
rules are both instantiated and contextualised.

Structure of the paper. In Section 2, we first review
Leifer and Milner’s theory of reactive systems, and then we
recall some basic concepts of logic. In Section 3, we intro-
duce the main theoretical contributions of the paper, and in
Sections 4 and 5 we apply our results to logic programming
and to openπ-calculus. Throughout the paper, we will use
as running example the reactive semantics of CCS [13] with
the reaction rulea.P | a.Q P | Q.

2 Background

Reactive Systems. Here we summarise the theory of re-
active systems proposed in [12] to derive labelled transition
systems and bisimulation congruences from a given reac-
tion semantics. The theory is centred on the concepts of
term, contextand reaction rules: contexts are arrows of a
category, terms are arrows having as domain0 (a special

object that denotes no holes), and reaction rules are pairs of
terms.

Definition 1 (Reactive System). A reactive systemC con-
sists of:

1. a categoryC

2. a distinguished object0 ∈ |C|

3. a composition-reflecting subcategoryD of reactive
contexts

4. a set of pairsR ⊆
⋃
I∈|C| C(0, I) × C(0, I) of reac-

tion rules.

The reactive contexts are those in which a reaction can oc-
cur. By composition-reflecting we mean thatd; d′ ∈ D im-
pliesd, d′ ∈ D.

Note that the rules have to be ground, i.e., left-hand and
right-hand sides have to be terms without holes and, more-
over, with the same codomain. Having ground rules is a
simplification often made, but there is some work which
tries to overcome this constraint [10].

From reaction rules one generates the reaction relation
by closing them under all reactive contexts. Formally the
reaction relation is defined by takingp q if there is
〈l, r〉 ∈ R andd ∈ D such thatp = l; d andq = r; d.

Thus the behaviour of a reactive system is expressed as
an unlabelled transition system. On the other hand many
useful behavioural equivalences are only defined for LTSs.
In order to obtain an LTS, we can plug a termp into some
contextC[−] and observe if a reaction occurs. In this case

we have thatp
C[−]
−−→. Categorically speaking this means that

p;C[−] matchesl; d for some rule〈l, r〉 ∈ R and some
reactive contextd. This situation is formally depicted by
diagram (i) in Figure 1: a commuting diagram like this is
called aredex square.

Definition 2 (context transition system). Thecontext tran-
sition system(CTS for short) is defined as follows:

• states: arrowsp : 0 → I in C, for arbitrary I;

• transitions:p
C[−]
−→C q iff C[p] q.

Note that this labelled transition system is often infinite-
branching since all contexts that allow reactions may occur
as labels. Another problem ofCTSis that it has redundant
transitions. For example, consider the terma.0 of CCS.
The observer can put this term into the contexta.0 | −
and observe a reaction. This correspond to the transition

a.0
a.0|−
−−→C 0|0. However we also havea.0

p|a.0|−
−−−→C p | 0 | 0

as a transition, yetp does not contribute to the reaction.
Hence we need a notion of “minimal context that allows
a reaction”. Leifer and Milner define idem pushouts (IPOs)
to capture this notion.

I4

I2

C[−] ??~~~

I3

d__@@@

0
p

``AAAA
l

>>}}}}

I4

I2

C[−] ??~~~

e
// I5

g
OO

I3
f

oo

d__@@@

0
p

``AAAA
l

>>}}}}

I6

I2

e′ ??~~~

e
// I5

h

OO

I3
f

oo

f′__@@@

I4

I6

g′ ??~~~

I5

g
OO

h

oo

(i) (ii) (iii) (iv)

Figure 1. Redex Square and RPO

Definition 3 (RPO). Let the diagrams in Figure 1 be in
some categoryC. Let (i) be a commuting diagram. Any
tuple〈I5, e, f, g〉 which makes (ii) commute is called acan-
didatefor (i). A relative pushout (RPO)is the smallest such
candidate. More formally, it satisfies the universal property
that given any other candidate〈I6, e′, f ′, g′〉, there exists a
unique mediating morphismh : I5 → I6 such that (iii) and
(iv) commute.

Definition 4 (IPO). A commuting square such as diagram
(i) of Figure 1 is calledidem pushout (IPO)if 〈I4, c, d, idI4〉
is its RPO.

Definition 5 (redex RPOs). A reactive systemhas redex
RPOsif every redex square has an RPO.

Definition 6 (IPO-Labelled Transition System). The IPO-
labelled transition system(ILTS for short) is defined as fol-
lows:

• states:p : 0 → I in C, for arbitrary I;

• transitions: p
C[−]
−→I r; d iff d ∈ D, 〈l, r〉 ∈ R and the

diagram (i) in Figure 1 is an IPO.

In other words, if insertingp into the contextC[−] matches
l; d, andC[−] is the “smallest” such context (according
to the IPO condition), thenp transforms tor; d with label
C[−], wherer is the reduct ofl.

Bisimilarity on ILTS is referred to asstandard bisimilar-
ity (denoted by∼IPO), and Leifer and Milner have shown
that if the reactive system has redex RPOs, then it is a con-
gruence (i.e., it is preserved under all contexts).

It can be easily shown that bisimilarity overCTSis a con-
gruence as well. In this paper we will focus on this bisim-
ilarity, which will be calledsaturated bisimilarity(denoted
by ∼SAT). In [12], it is referred to as∼4, and the authors
show that∼IPO ⊆∼SAT .

Logic Programming. As an application domain for satu-
rated semantics we will now introduce logic programming
and semantic equivalences of logic formulas.

A logic signatureΓ is a pair(Σ,Π), whereΣ is a set of
function symbolsandΠ is a set ofpredicate symbolswith
an associated arity. As usual, given a setX of variables,

we denote byTΣ(X) the freeΣ-algebra overX. A term
overX is an element ofTΣ(X). Given a termt, Var(t) is
the smallest set of variablesX such thatt ∈ TΣ(X). An
atomic formulaoverX has the formP (t1, . . . , tn) where
P is a predicate with arityn, andt1, . . . , tn are terms over
X. A formula is a finite conjunction of atomic formulas:
a1 ∧ · · · ∧ an where∧ is associative and it has theempty
formula� as unit. Note that in the standard definition∧ is
also commutative, but to simplify our construction, as it is
the case in Prolog, we do not consider it to be commutative
(however the resulting behaviour is the same).

If X andY are sets of variables, asubstitutionfromX to
Y is a functionσ : X → TΣ(Y). If t is a term overX andσ
a substitution fromX to Y , then the term overY , obtained
by simultaneously substituting int all the occurrences of
the variables inX with their image underσ, is called the
application ofσ to t and writtent;σ (or σ(t)). If σ is a
substitution fromX to Y , andσ′ from Y to Z, thenσ;σ′

from X to Z is defined by applyingσ′ to each image of
the variables inX underσ. Givenσ : X → TΣ(Y) and
X ′ ⊆ X the restriction of σ to X ′, written σ ↿ X ′, is the
substitutionσ′ : X ′ → TΣ(Y) acting asσ onX ′.

A substitutionσ is more generalthanσ′ if there exists a
substitutionθ such thatσ′ = σ; θ. Two substitutionsψ and
φ unify if there exists a substitutionσ such thatψ;σ = φ;σ,
in this caseσ is aunifierof ψ andφ. It is well-known that if
ψ andφ unify, then there exists a unifier that is more general
than all the others, called themost general unifier(mgufor
short). It is also well-known that anmguis the coequalizer
in the category of substitutions [9], and in [5] it is shown
that themguof substitutions with disjoint sets of variables
corresponds to a pushout (this will be detailed later).

A logic program is a finite collection ofHorn clauses,
i.e., expressions of the formh :− b whereh is an atomic
formula called theheadof a clause, andb is a formula called
thebody. Rules in Table 1 define the operational semantics
of logic programming. A goalg = a1∧· · ·∧an reacts with
a clausec = h :− b if ai, an atomic formula of the goal
g, unifies withρ(h) (whereρ substitutes the variables ofh
with fresh variables not appearing ing). Letσ be themguof
ai andρ(h), theng reacts and becomesg′ = σ(a1) ∧ · · · ∧
σ(ai−1) ∧ σ(b) ∧ σ(ai+1) ∧ · · · ∧ σ(an). A refutationof g
is a derivationg ⇒σ1

g2 ⇒σ2
· · · ⇒σn

gn ending with the
empty formula (i.e.gn = �). In this caseσ = σ1; . . . ;σn ↿
Var(g) is acomputed answer substitutionof g.

Now, given a logic program, when are two goals equiva-
lent? First note that we already have an LTS, but bisimula-
tion is quite uninteresting in this case because we would like
to consider as equivalent two goals with different branching
behaviour. Here the interesting point is if, and when, two
goals can be refuted. The first naive equivalence that comes
to mind is: g1 can be refuted iffg2 can be refuted. This
equivalence is however not a congruence.

h :− b ∈ P σ = mgu(a, ρ(h))

P
 a⇒σ σ(ρ(b))
whereρ renames to globally fresh names

P
 g ⇒σ f

P
 g1 ∧ g ∧ g2 ⇒σ σ(g1) ∧ f ∧ σ(g2)

Table 1. Operational rules for SLD-resolution

Logic equivalence(denoted by≃L) equatesg1 and g2
if and only if, for any ground substitutionσ, σ(g1) is re-
futed iff σ(g2) is refuted. In [7],S-equivalence(denoted
by ≃S) is proposed:g1 andg2 have the same set of com-
puted answer substitutions. Another interesting equivalence
is correct answer equivalence(denoted by≃C) that equates
two goals iff they have the same set of correct answer sub-
stitutions (defined as follows). Let

σ
−→ be the transition sys-

tem defined by changing the premise of the first rule of Ta-
ble 1: we do not require anymore thatσ is the mgu, but
only that it unifiesa and ρ(h) i.e, σ(a) = σ(ρ(h)). If
g
σ1−→ g2

σ2−→ . . .
σn−→ � we say thatσ = σ1; . . . ;σn ↿Var(g)

is acorrect answer substitutionof g. In other wordsσ is a
correct answer substitution ofg iff σ(g) is a logical conse-
quence of the program.

In [5], it is shown that, if we work with an infinite set of
function symbols,g1 ≃L g2 iff g1 ≃C g2.

The following example shows thatS-equivalence is
somehow too detailed and that logic equivalence is more
abstract.

Example 1. Consider the following program, wherey is a
variable anda is a constant:

P (y) :−� P (a) :−� Q(y) :−�

Now consider the goalsP (x) andQ(x). They are refuted
by any ground substitution, which means that they are logic
equivalent (and also correct answer equivalent). However,
they are notS-equivalent: in fact the set of computed an-
swer substitutions forP (x) is {ǫ, [a/x]}, while the com-
puted answer substitutions forQ(x) are{ǫ}.

3 Saturated Semantics

In Section 2 we have shown that given a reactive sys-
tem one can define two LTSs: theCTS, where the labels
are all contexts allowing a reaction, and theILTS, where la-
bels are the minimal contexts allowing a reaction. On those
LTSs we can define various kinds of equivalences, such as
bisimilarity, trace and failure equivalence. The termsatu-
rated semanticsstands for equivalences defined on theCTS,
while standard semanticsstands for equivalences defined
on theILTS.

Theorem 1. Saturated bisimilarity is the coarsest bisimu-
lation on that is also a congruence.

In our opinion, the standard semantics (using IPOs as la-
bels) is not really observational since the observer has to
know exactly the right amount of information that the pro-
cess needs to react, while saturated semantics are truly ob-
servational: the observer plugs the process into some con-
text and observes if a reaction occurs. However, with the
current definition it is hard to show that two systems are sat-
urated bisimilar, sinceCTSis often infinite-branching and
bisimilarity must consider all possible moves.

3.1 Semi-Saturated Bisimulation

Here we propose an alternative and, (in some cases) fini-
tary characterisation of saturated bisimilarity: in the bisim-
ulation game, one player proposes an IPO transition and the
other answers with a contextual transition.

Definition 7 (semi-saturated bisimulation). A symmetric re-
lationR is asemi-saturated bisimulationif wheneverpR q,

thenp
C[−]
−→I p

′ impliesq
C[−]
−→C q′ andp′Rq′.

We call the union of all semi-saturated bisimulations
semi-saturated bisimilarity(denoted by∼SS).

Theorem 2 states that under very weak conditions this kind
of bisimilarity coincides with saturated bisimilarity (and
thus it is a congruence). In this way we can prove that
two processes are saturated bisimilar just starting with IPO
moves that are sometimes (see, e.g., Corollary 1) finite in
number. Once an IPO move is chosen, the contextC[−] is
fixed, and thus only the moves fromC[q] must be con-
sidered. Milner and Leifer have shown that∼IPO is a con-
gruence if the reactive system has redex RPOs, i.e., if for
each redex there exist an RPO. For∼SS it is sufficient to
require that the reactive system has redex IPOs.

Definition 8 (redex IPOs). A reactive systemhas redex
IPOs, if every redex square has at least one IPO as can-
didate.

Clearly this constraint is weaker than having redex RPOs,
and hence our results can be applied to a larger number
of reactive systems. Having RPOs means to have a mini-
mum candidate (i.e., a candidate smaller than all the others),
while having IPOs allows to have several minimal candi-
dates (also not comparable among them). The following
example (introduced in [21] and inspired by [12]) exempli-
fies the difference between redex IPOs and redex RPOs.

Example 2 (Abstract Bunch Contexts). An abstract bunch
context is a string of multisets containing elements from
some alphabetK and places (i.e., holes). Abstract bunch
contexts form a category having natural numbers as objects

and abstract bunch contexts of lengthn havingm holes as
arrowsm → n. Composition ofa : m → n andb : n → o
is defined by plugging then multiset ofa into then holes of
b. Finally, the identityidn is {−1}{−2} . . . {−n}.
This category does not have RPOs: consider the exterior
squares in diagrams (i) and (ii) below (note that they are
equal). This square has no RPOs since it has as candidates
the arrows inside which are not comparable (in the sense
that neither is smaller than the other). But note that both
are IPOs, since they have as candidates only isomorphic
diagrams.

1

1

{K,−1}

::vvvvvvvvvv

{−1}

// 1

{K,−1}

OO

1
{−1}

oo

{K,−1}

ddHHHHHHHHHH

0

{K}

ddHHHHHHHHHH
{K}

::vvvvvvvvvv

1

1

{K,−1}

::vvvvvvvvvv

{−1}{K}

// 2

{−1,−2}

OO

1
{K}{−1}

oo

{K,−1}

ddHHHHHHHHHH

0

{K}

ddHHHHHHHHHH
{K}

::vvvvvvvvvv

(i) (ii)

Theorem 2. In a reactive system having redex-IPOs, semi-
saturated bisimilarity coincides with saturated bisimilarity
(i.e.,p ∼SS q ⇐⇒ p ∼SAT q).

Theorem 3. In a reactive system having redex-IPOs, a sym-
metric relationR is a semi-saturated bisimulation iff when-
everpR q, thenp

c
−→I p

′ implies the existence ofd, e such

thatd; e = c, q
d

−→I q
′ andp′Rq′; e.

Theorem 3 offers another characterisation of semi-saturated
bisimilarity (and thus of saturated bisimilarity) that resem-
bles open [17], asynchronous [1] and large [2] bisimilarity.

3.2 Saturated Trace Equivalences

Besides bisimulation, many other equivalences have
been defined on LTSs. Here we introduceφ-trace equiva-
lence, a quite general equivalence, parametric with respect
to a propertyφ, that generalises trace andS-equivalence of
logic programming. This equivalence can be instantiated
both on the IPO and on the contextual LTS and, as we did
for bisimulation, we define a semi-saturated version of it
and we show that it corresponds to saturated equivalence.

Definition 9 (φ-trace equivalence). LetX be a set of states,
L a set of labels and→⊆ X ×L×X a transition relation.
Let−;− : L×L→ L be an associative operator on labels
and letφ be a property onX. We say thatp, q ∈ X areφ-
trace equivalent (p ≃φ q) if the following conditions hold:

• φ(p) if and only ifφ(q),

• if p
l
։ p′ ∧ φ(p′) thenq

l
։ q′ ∧ φ(q′),

• if q
l
։ q′ ∧ φ(q′) thenp

l
։ p′ ∧ φ(p′),

wherep
l
։ p′ iff p

l1→ p2 . . . pn
ln→ p′ and l = l1; l2; . . . ; ln

with n ≥ 1.

Note that ifφ holds in every state ofX and; is string con-
catenation, then we obtain the classical trace semantics for
→, while if φ holds just for the empty goal�, → is the
SLD transition relation and if; is composition of substitu-
tions, then we obtainS-equivalence of logic programming.

In the rest of this section we will study this equivalence
in the setting of reactive systems, and we will fix the; op-
erator to be context composition. As we did for bisimilar-
ity, we can define this equivalence on theILTS (standard
φ-trace equivalencedenoted by≃φI) or on theCTS(satu-
ratedφ-trace equivalencedenoted by≃φSAT).

In order to obtain a congruence we have to require the
following conditions:

1. φ is defined on all arrows, and the arrows satisfyingφ
form a composition-reflecting subcategory;

2. all contexts are reactive.

The first requirement is not very strong, and we will show
that in our encoding of logic programming, settingφ(a) ⇔
a = � defines a composition-reflecting sub-category. The
second constraint is rather restrictive, but there are many
formalisms for which it holds, as for example DPO graph
rewriting or logic programming.

Theorem 4. In a reactive system where all contexts are re-
active≃φSAT is a congruence.

Standard bisimilarity is a congruence under the constraintof
having all redex RPOs, while here standardφ-trace equiva-
lence is a congruence under the assumption that RPOs exist
not only for redex squares but also for squares where the
four arrows are contexts (in reactive systems RPOs are only
required for squares where one of the lower arrows is a re-
dex). We say that a reactive system hasredex and context
RPOsif it satisfies this constraint. We have to require this
condition since we are working with the transitive closure
of −→I . A similar condition is needed in [4] where the au-
thors require to have all RPOs, in order to show that weak
bisimulation is a congruence.

Theorem 5. In a reactive system with redex and context
RPOs, where all contexts are reactive andφ defines a
composition-reflecting subcategory,≃φI is a congruence.

As for bisimulation we can define a semi-saturated version
of φ-trace equivalence.

Definition 10. LetC be a reactive system, andφ a property
on the arrows ofC. We say thatp andq are semi-saturated
φ-traceequivalent (p ≃φSS q) if the following holds:

• φ(p) if and only ifφ(q),

• if p
l
։I p

′ ∧ φ(p′) thenq
l
։C q′ andφ(q′),

• if q
l
։I q

′ ∧ φ(q′) thenp
l
։C p′ andφ(p′),

where։I and։C are the transitive closures of−→I and
−→C .

As semi-saturated bisimilarity corresponds to saturated
bisimilarity, semi-saturatedφ-trace equivalence is saturated
φ-trace equivalence, under the weak constraint of the exis-
tence of redex IPOs.

Theorem 6. In a reactive system with redex IPOs, where all
contexts are reactive, and such thatφ defines a composition-
reflecting subcategory, then≃φSS =≃φSAT .

4 Logic Programs as Reactive Systems

In this section we will show how logic programs can
be seen as reactive systems and how the theory developed
above can be applied in this framework. Consider two basic
sortst for terms andp for formulas (predicates are atomic
formulas). We useǫ to denote the empty string andtn to
denote the string composed ofn occurrences oft. Given a
logic signatureΓ = (Σ,Π), we defineΓ′ as the signature
Γ enriched with the symbols∧ that takes two formulas and
returns one formula and� a constant formula. LetE be the
set of axioms describing that∧ is associative (not commuta-
tive) and has identity�. LetXp andXt be sets of predicate
and term variables. We useTΓ′/E(Xp,Xt) to denote the
Γ′-algebra freely generated by(Xp,Xt) quotiented byE.
A term of this algebra in sortp is a logic formula having
term and predicate variables fromXt andXp.

Definition 11. The categoryTh[Γ′/E] is the freealgebraic
theory[11] associated to the specificationΓ′, E.

This category has been used in [5] as base category for a
tile system for logic programming. Usuallyalgebraic the-
ories are applied to a one sorted signature and the result-
ing category has natural numbers as objects, while here it
is applied to a two sorted signature and it has strings of
sorts (i.e., elements of{t, p}∗) as objects. For example, an
object pntm can be thought of as representingn ordered
canonical predicate variables(i.e., variables indexed from
1 ton) p1, . . . , pn andm orderedcanonical term variables
x1, . . . , xm. To avoid confusion, it must be clear that the
canonical variables are just placeholders, i.e., their scope is
only local. The arrows froms1 to s2 ares1-tuples of ele-
ments ofTΓ′/E with s2 canonical variables and the compo-
sition of arrows is term substitution.

The subcategory of the arrows of the formtn → tm

is isomorphic to the category of finite substitutions onΣ
(with canonical sets of variables) and the arrowst → ǫ
are closed term overΣ, while arrowsp → ǫ are closed

formulas overΓ′. Arrows p → tn are formulas overn
canonical term variables, while arrowsp → ptnp are for-
mulas overn canonical term variables and two canonical
predicate variables. Consider for example〈P (x1, x2) ∧
p1, f(x1), Q(f(x2)), p5〉 wherex1, x2 are terms variables
andp1, p5 are predicate variables. This tuple corresponds
to an arrow fromptp2 to t2p5. Note also that the above
tuple can represent also an arrow fromptp2 to tptp4.

Furthermore the above tuple can be seen as an arrow hav-
ing as codomain objectstnpm for n ≥ 2 andm ≥ 5, i.e. the
codomain does not define the exact index of (term or pred-
icate) variables, but the maximum index that the variables
can have. In the following for a goalg and a natural number
n larger than the maximal index of variables appearing ing,
we will write gn to denote the arrowp → tn.

In the classical interpretation by Leifer and Milner, the
arrows having domain objects different from0 (the dis-
tinguished object) are seen as contexts which can be pre-
composed with terms. In our reactive system these arrows
are substitutions which instantiate the variables of formulas.
Horn clauses, not only must be instantiated by substitutions,
but they must be also contextualised with the∧ operator.

In the rest of this section we will use the formula
f1 = P (s(x1), x2) ∧ P (x1, t(x3)) and the clausec1 =
P (y1, t(y2)) : −Q(y1) as running example. The head
of the c1 must be instantiated (e.g., substitutingy1 with
x1 and y2 with x3) and contextualised (plugging it into
P (s(x1), x2) ∧ [−]) in order to matchf1.

Similar problems arise with process calculi where the
rules usually are not ground, and have to be instantiated
and contextualised. For example, the redex of the CCS
rule a.P | a.Q P | Q matchesνa.(a.0 | a.0) instan-
tiating P,Q to 0 and plugging the left-hand side into the
contextνa.[−]. Usually this problem is avoided by creat-
ing infinitely many rules corresponding to all possible in-
stantiations of the rule, and then considering only contex-
tualisation, as it is done for bigraphs [14]. This approach
causes the problem of having infinitely many rules and con-
sequently infinitely many transitions. In [10] the notion of
open reactive systems is developed in order to overcome this
problem, but the resulting theory is quite restrictive. Here
we propose a different approach: we simulate contextual-
isation by substitutions by supplying appropriate variables
in the rules. The redex of a rule is not simply an arrow of
the formh : p → tn that can only be instantiated, but it is
an arrowp1∧h∧p2 : p → ptnp that can be instantiated and
contextualised (by instantiating the variablesp1 andp2). In
this way, we also get a finite branchingILTS.

Thus, in our reactive system, the head of the clausec1
above becomesp1 ∧ P (y1, t(y2)) ∧ p2 and, in this way, the
head can match the goal instantiatingp1 toP (s(x1), x2), p2

to� andy1 to x1 andy2 to x3.
Summarizing, we can say that we allow only substitu-

tions and simulate contextualisations by substitutions by
supplying appropriate variables in the rules (see below). In
order to integrate this idea with the theory of reactive sys-
tems we have “reversed” the arrows, i.e., a formula overn
term variables becomesp → tn (instead of the maybe more
intuitive tn → p).

Definition 12. Given a logic programP on a signatureΓ,
we define a reactive systemR(P) as follows:

• Th[Γ′/E] is the underlying category

• p is the distinguished object

• all contexts are reactive

• for each clauseh :− b, let n be the largest index of
variables contained inh andb; then we add the rule

(p1 ∧ h ∧ p2 , p1 ∧ b ∧ p2)

where left and right-hand sides are arrowsp → ptnp

andp1, p2 are predicate variables.

Note thath andb do not necessarily have the same number
of variables, while our theory requires that left-hand and
right-hand side of a rule have the same interface (i.e., they
must be arrows with the same target). In this case we extend
the smaller interface.

A generic redex square of this reactive system is depicted
in diagram (i) of Figure 2. Arrowc is a substitution that in-
stantiates the variables ofg, while arrowd instantiates the
variables ofh and contextualisesh, instantiating the predi-
cate variablesp1 andp2. Thus for any reaction step an atom
of the goal is unified with the head of a clause andp1 is in-
stantiated with the formula on the left of the chosen atom,
andp2 is instantiated with the formula on the right.

Lemma 1. The exterior square of diagram (i) in Figure 2
commutes if and only if there exist formulasg1, g2 and an
atomic formulaa such thatg = g1 ∧ a ∧ g2, p1; d = g1; c,
p2; d = g2; c andh; d = a; c.

In general, inR(P), given a rule and a goal, there exist sev-
eral ways of unifying them: one for each atom of the goal
that can match the headh. Consider for example the redex
of c1 and the goalf1. The head ofc1 unifies both with the
left predicate off1 and with the right one. This means that,
given a redex and a goal—seen as arrows—there usually
exists no a minimal way of matching them (i.e., no pushout
exists). The following lemma assures that each commuting
square fixes a “way” of matching, i.e., chooses the atom of
the goal that unifiesh.

Lemma 2. Let the exterior square in diagram (i) of Figure 2
be commuting. Letg1, a, g2 be formulas as described in
Lemma 1. Then for each candidate〈e, f, i〉, the following
hold: p1; f = g1; e, p2; f = g2; e andh; f = a; e.

to

tm

c

>>}}}}}}}}
e //

to
′

i

OO

ptnpfoo

d

bbDDDDDDDD

p

g

``AAAAAAAA p1∧h∧p2

<<zzzzzzzzz

to

tm

φ
>>}}}}}}}}

tn

ψ
``AAAAAAA

p

a

``BBBBBBBB h

>>}}}}}}}}

to
′

tm
′

φ′
>>}}}}}}}}

x // tq

z

OO

tn
′

ψ′
``@@@@@@@

yoo

p

g1∧a∧g2

aaBBBBBBBB (p1 ∧ h ∧ p2);α

=
g1 ∧ h ∧ g2

>>||||||||

to
′

tm
′

φ′
>>}}}}}}}}

x // tq

z

OO

ptnp

α;ψ′
aaCCCCCCCC

α;yoo

p

g1∧a∧g2

aaBBBBBBBB p1∧h∧p2

<<zzzzzzzzz

(i) (ii) (iii) (iv)

Figure 2. Redex squares, pushouts and RPOs in a reactive syst em R(P)

As a next step we are going to show that in our reactive
system a redex RPO is themguof a andh, together with
the instantiation ofp1 andp2 to appropriate formulas. We
start by recalling a theorem from [5].

Theorem 7. Given two substitutions of termsa andb with
disjoint sets of variables, their mgu is the pushout of the
arrowsam andbn, for m,n larger than the maximal index
of variables ofa andb.

Remember that if two substitutions can unify, then there ex-
ists anmgu. This, together with Theorem 7, assures that
for each commuting square of substitutions there exists a
pushout. Moreover this result holds not only for substitu-
tions but also for atomic goals since two atomic goals unify
iff they consist of the same predicate and the terms within
the predicate unify. In the rest of the paper we useg to de-
note a formula having the same predicate symbols asg, but
without function symbols and where all variables are differ-
ent. For examplef1 = P (u1, u2) ∧ P (u3, u4). Note that
the arrowd of a generic redex square (see Figure 2(i)) can
always be decomposed intoα;ψ′ whereα instantiatesp1

andp2 to g1 andg2 andψ′ is a substitution. It is exactly this
arrowα that chooses which atom of the goal matchesh.

The following lemma generalises the theorem above to
non-atomic formulas of the formg1∧a∧g2 andg1∧b∧g2.

Lemma 3. Let a and h be atomic formulas. In Figure 2
〈φ, ψ〉 is the pushout ofa andh (depicted in diagram (ii)) if
and only if〈φ′, ψ′〉 is the pushout ofg1∧a∧g2 andg1∧h∧g2
(see diagram (iii)), whereφ′ is equal toφ on Var(a) and
the identity on the others variables, andψ′ is equal toψ on
Var(h) and such thatg1;φ = g1;ψ andg2;φ = g2;ψ.

The meaning of this lemma is more intuitive if one consid-
ers formulas. Suppose thata andh unify, and let〈φ, ψ〉 be
theirmgu. Then alsog1∧a∧g2 andg1∧h∧g2 unify and the
mguis themguof a andh (since all the variables ofg1 and
g2 are different and can be instantiated tog1;φ andg2;ψ).

The following lemma is central since it shows the re-
lationship between RPOs and pushouts: if we fix a way of
matching (the arrowα), then we have only one minimal uni-
fier (i.e, pushout) while if we do not fix it, we have several
minimal unifiers (i.e., RPOs) one for each way of matching
(i.e., for eachα).

Lemma 4. Let a andh be atomic formulas, andα as de-
scribed above i.e., such that(p1∧h∧p2);α = g1∧h∧g2. In
Figure 2〈x, y〉 is the pushout ofg1 ∧a∧g2 andg1 ∧h∧g2,
andz the mediating morphism (as depicted in diagram (iii))
iff 〈x, α; y, z〉 is the RPO of the diagram (iv).

Then, given a commuting square, this fixes a way of match-
ing (i.e., oneα) and so there exists a minimal unifier, that is
themgubetween the head of a clauseh and chosen atoma
of the formulag.

Theorem 8. R(P) has redex and context RPOs.

In the rest of this section we will show thatS-equivalence
corresponds to standardφ-trace equivalence, while correct
answer equivalence corresponds to saturatedφ-trace equiv-
alence. We start by showing that−→C corresponds to−→
(as defined in Section 2) while−→I corresponds to⇒ (i.e.,
SLD transitions).

Theorem 9. LetP be a logic program. Letf, g be two for-
mulas andm,n larger than the maximal index of variables
appearing inf andg. Furthermore letσ be a substitution,
and letθ : tm → tn be equal toσ onV ar(f) andid other-
wise. Then:

• P
 f
σ
−→ g iff in R(P) it holds thatfm

θ
−→C gn,

• P
 f ⇒σ g iff in R(P) it holds thatfm
θ

−→I g
n.

Corollary 1. In R(P), the ILTS is finite-branching.

Note thatS-equivalence and correct answer equivalence are
φ-trace equivalence where the predicateφ holds only for the
empty goal. Formally we define the predicate�() over all
the arrows of the categoryTh[Γ′/E]: �(a) holds iff a is an
arrow obtained by decomposing�n : p → tn, where�n

is� : p → ǫ with the interface extended withn extra term
variables. Essentially�() holds for all term substitutions
and for empty formulas. The predicate�() defines a com-
position reflecting subcategory and, since all contexts are
reactive, we can apply our theoretical results to≃�

I , ≃�
SAT

and≃�
SS : these three equivalences are congruences (w.r.t.

substitutions) and≃�
SAT =≃�

SS .
Now we show that the first corresponds to≃S , while the

second (and then also the third) correspond to≃C (that, in
the case of infinitely many function symbols, is≃L).

Theorem 10. ≃S =≃�
I , ≃C =≃�

SAT .

5 Saturated Bisimilarity is Open Bisimilarity

In [8], a reactive system for a subset of theπ-calculus is
defined in order to study how to model symbolic semantics
via reactive systems. The reactive system constructed there
is rather complicated, and for this reason we do not fully
report it here. Instead we focus on those aspects that relate
saturated bisimilarity toopen bisimilarity. The subset of the
π-calculus considered there is the standardπ-calculus with-
out matching,τ -prefixes and restriction. The operational se-
mantic is the symbolic LTS whose labels are either actions
or fusions. An output̄ax, and an inputb(y) can synchronise

leading to a transition
a=b
−→. If a andb are equala = b is the

identity fusion denoted byǫ. Note that also in the original
paper introducing open bisimilarity [17], the theory is first
developed for the calculus without restriction and distinc-
tions to simplify the presentation. A totally ordered set of
names{a1, a2, . . . } is assumed. Briefly, the underlying cat-
egory of the defined reactive system has the natural numbers
(representing the free names of a process) plus⋆ as objects.
A π-processp is represented as an arrowpm : ⋆→ mwhere
m ≥ max{k | ak ∈ fn(p)}. The contexts in the cate-
gory represent silent actions (τm : m→ m), output actions
(aimaj : m → m) and input actions (aim : m → m + 1)
and reaction rules are essentially transitions of the ordinary
openπ-calculus. When a rule is applied to a process, the
IPO construction recreates a transition labeled exactly by
the corresponding action, thus essentially embedding the
LTS of the ordinary openπ-calculus in theILTS. However
also fusions ([ai = aj]m : m → m − 1) are possible con-
texts, and when a synchronization rule is selected for a pro-
cess which has the input and the output actions on different
channels, the IPO construction generates a fusion for them.
As a consequence, the resultingILTS is essentially the sym-
bolic LTS of the openπ calculus.

Lemma 5 (from [8]). Letp be a process of our subset ofπ
andm ≥ max{k | ak ∈ fn(p)}. Furthermore let→ and
−→I be the symbolic and the IPO transition relations. Then

p
ahak−−→ p′ ⇔ pm

ah
mak−−→I p

′
m,

p
ai(aj)
−−→ p′ ⇔ pm

ai
m

−→I p
′
m+1, p

ǫ
−→ p′ ⇔ pm

τm

−→I p
′
m,

p
ai=aj

−−→ p′ ⇔ pm
τm;[ai=aj]m
−−−−−−→I p

′
m; [ai = aj]m.

In [8] it is shown that the reactive system has redex RPOs
and hence the resulting equivalence∼IPO is a congruence.
However, this does not coincide with open bisimilarity but
with syntactical bisimilarity, formally defined below.

Definition 13 (Open/Syntactical Bisimilarity). A symmet-
ric relation R is an open bisimulationif wheneverpR q it
holds:

• if p
α
−→ p′ thenq

α
−→ q′ andp′Rq′,

• if p
a=b
−→ p′ then (q

a=b
−→ q′ ∨ q

ǫ
−→ q′) andσ(p′)Rσ(q′).

whereα is an input, an output orǫ andσ is a fusion that
fusesa to b. The union of all open bisimulation isopen
bisimilarity (denoted by∼O).

Syntactical bisimilarity(denoted by∼SY N) is obtained
by replacing the last condition of open bisimulation with:

• if p
a=b
−→ p′ thenq

a=b
−→ q′ andσ(p′)Rσ(q′).

It is immediate to see that∼SY N ⊆∼O since the conditions
for matching transitions for∼O are weaker than that the
ones for∼SY N . The following example shows that∼SY N
is strictly finer.

Example 3. Consider the following processes:

• p = (āb | a′(c)) + (d̄e | d(f))

• q = āb.a′(c) + a′(c).āb+ (d̄e | d(f))

It holds thatp ∼O q since the movep
a=a′
−−→ is matched by the

(unique) synchronisation ofq. However,p 6∼SY N q since

the transitionp
a=a′
−−→ cannot be matched byq.

With Lemma 5 one can show that∼IPO coincides with
∼SY N (see [8]), in fact in∼IPO if Alice proposes a fu-
sion moves, then Bob must answer with the same fusion,
while in open bisimilarity Bob can answer with a less re-
strictive fusion. But this is exactly what happens with
saturated bisimilarity. In fact look at the characterisation
of semi-saturated bisimulation given by Theorem 3. If

pm
τm;[ai=aj]m
−−−−−−→I p′m; [ai = aj]m, then qm can answer

with qm
τm;[ai=aj]m
−−−−−−→I q′m; [ai = aj]m where p′m; [ai =

aj]mRq
′
m; [ai = aj]m (in this case arrowd of Theorem

3 is τm; [ai = aj]m ande = id), or qm
τm

−→I q′m where
p′m; [ai = aj]mRq

′
m; [ai = aj]m (d = τm, e = [ai =

aj]m).

Theorem 11. ∼O =∼SAT .

6 Conclusions and Future Work

In this paper we have proposed a semi-saturated tech-
nique for efficiently characterising certain congruences that
are usually coarser than those presented by Leifer and Mil-
ner in [12]. Our approach applies to different kinds of se-
mantics (here we have handled bisimilarity and trace se-
mantics, but we are confident that it applies to others). In
this paper we have integrated semi-saturation within the
IPO framework, but it could be applied also toG-reactive
systems [18] and open reactive systems [10] where, in our
opinion, it might help to relax the constraints of the the-
ory. Another advantage of semi-saturation is that it can be

applied to a larger class of reactive systems, because we re-
quire only the existence of redex IPOs and not necessarily
of redex RPOs.

Besides our examples, there are other cases where sat-
urated bisimilarity seems to be appropriate. In∼IPO, if
Alice proposes a fusion move, then Bob must answer with
the same syntactic fusion, while in open bisimilarity Bob
can answer with a “smaller label” (as it happens in satu-
rated bisimilarity). We conjecture that the same can be said
for asynchronous bisimilarity[1], since similarly to open
bisimilarity, an input move of Alice can be matched with a
τ move of Bob. Here we want to emphasize that the “shape”
of asynchronous and open bisimulations is really similar to
that of semi-saturated bisimulation as expressed by Theo-
rem 3.

The question is still open of where saturated equiva-
lences are appropriate. We have shown that for logic pro-
gramming and symbolic openπ-calculus they capture ex-
actly the right congruences. However, when trying to de-
rive a reasonable LTS semantics from a reduction seman-
tics of process calculi, saturated bisimilarity seems to be
too coarse. In fact let us consider two processes that al-
ways diverge i.e., such that for every reactive context into
which they can be put, they can always react: they will al-
ways be saturated bisimilar, since they react in the same
contexts. Consider for example the following CCS pro-
cesses:P = τ.P andQ = τ.Q + a.P . Putting them into
any possible context, we will always get two processes that
always diverge. In the standard CCS semantics these pro-
cesses are definitely considered different. We are confident
that a mixed approach, where some labeled transitions are
present also in the initial reduction system, might be suc-
cessful also for contextualizing process calculi. In fact this
was already the case for dynamic bisimilarity [16] and for
our symbolicπ-calculus example. More interesting results
could probably be obtained by minimizing the transition la-
bels in the initial system, or by observing actions also in the
states as for barbed bisimulation.

Another original contribution of this paper is the encod-
ing of logic programs as reactive systems, where the IPO
semantics correspond toS-equivalence while the saturated
semantics corresponds to logical equivalence. The encod-
ing of logic programs proposes a new way of handling non-
ground rules in reactive systems: even within the theoreti-
cal framework proposed by Leifer and Milner we can use
arrows that can both instantiate and contextualise the rules.
In this way we can work with a finite number of rules and
not with infinitely many as it happens, for example, with
bigraphs. We conjecture that this approach can be extended
to all contexts of the form[−] | p.

Acknowledgements We would like to thank Roberto
Bruni, Andrea Corradini, Fabio Gadducci, Emilio Tuosto
and the anonymous referees for their helpful comments.

References

[1] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimula-
tions for the asynchronous pi-calculus. InProc. of CONCUR
’96, volume 1119 ofLNCS, 147–162. Springer, 1996.

[2] P. Baldan, A. Bracciali, and R. Bruni. Bisimulation by uni-
fication. In Proc. of AMAST ’02, volume 2422 ofLNCS,
254–270. Springer, 2002.

[3] G. Berry and G. Boudol. The chemical abstract machine.
Theor. Comput. Sci., 96:217–248, 1992.

[4] R. Bruni, F. Gadducci, U. Montanari, and P. Sobocinski. De-
riving weak bisimulation congruences from reduction sys-
tems. InProc. of CONCUR ’05, volume 3653 ofLNCS,
293–307. Springer, 2005.

[5] R. Bruni, U. Montanari, and F. Rossi. An interactive seman-
tics of logic programming.TPLP, 1(6):647–690, 2001.

[6] H. Ehrig and B. K̈onig. Deriving bisimulation congruences
in the DPO approach to graph rewriting. InProc. of FoS-
SaCS ’05, volume 2987 ofLNCS, 151–166. Springer, 2004.

[7] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi.
Declarative modeling of the operational behavior of logic
languages. 69(3):289–318, 1989.

[8] G. Ferrari, U. Montanari, and E. Tuosto. Model checking
for nominal calculi. InProc. of FoSSaCS ’05, volume 3441
of LNCS, 1–24. Springer, 2005.

[9] J. Goguen. What is unification? A categorical view of sub-
stitution, equation and solution. In M. Nivat and H. Aı̈t-
Kaci, editors,Resolution of Equations in Algebraic Struc-
tures, 217–261. 1989.

[10] B. Klin, V. Sassone, and P. Sobocinski. Labels from reduc-
tions: Towards a general theory. InProc. of CALCO ’05,
volume 3629 ofLNCS, 30–50. Springer, 2005.

[11] F. Lawvere. Some algebraic problems in the context of func-
torial semantics of algebraic theories. InProc. of the Mid-
west Category Seminar II, volume 61, 41–61, 1968.

[12] J. J. Leifer and R. Milner. Deriving bisimulation congru-
ences for reactive systems. InProc. of CONCUR ’00, vol-
ume 1877 ofLNCS, 243–258. Springer, 2000.

[13] R. Milner. Communicating and Mobile Systems: theπ-
Calculus. Cambridge University Press, 1999.

[14] R. Milner. Bigraphical reactive systems. InProc. of CON-
CUR ’01, volume 2154 ofLNCS, 16–35. Springer, 2001.

[15] R. Milner and D. Sangiorgi. Barbed bisimulation. InProc. of
ICALP ’92, volume 623 ofLNCS, 685–695. Springer, 1992.

[16] U. Montanari and V. Sassone. Dynamic congruence vs. pro-
gressing bisimulation for ccs.Fundam. Inform., 16(1):171–
199, 1992.

[17] D. Sangiorgi. A theory of bisimulation for the pi-calculus.
Acta Inf., 33(1):69–97, 1996.

[18] V. Sassone and P. Sobocinski. Locating reaction with 2-
categories.Theor. Comput. Sci., 333(1-2):297–327, 2005.

[19] V. Sassone and P. Sobociński. Reactive systems over
cospans. InProc. of LICS ’05, 311–320. IEEE, 2005.

[20] P. Sewell. From rewrite to bisimulation congruences. In
Proc. of CONCUR ’98, volume 1466 ofLNCS, 269–284.
Springer, 1998.

[21] P. Sobocínski. Deriving process congruences from reaction
rules. PhD thesis, 2004.

