A Logic for Analyzing Abstractions
of Graph Transformation Systems*

Paolo Baldan', Barbara Kénig?, and Bernhard Kénig?

! Dipartimento di Informatica, Universitd Ca’ Foscari di Venezia, Italy
2 Institut fiir Informatik, Technische Universitit Miinchen, Germany
3 Department of Mathematics, University of California, Irvine, USA

baldan@dsi.unive.it koenigb@in.tum.de bkoenig@math.uci.edu

Abstract. A technique for approximating the behaviour of graph trans-
formation systems (GTSs) by means of Petri net-like structures has been
recently defined in the literature. In this paper we introduce a monadic
second-order logic over graphs expressive enough to characterise typi-
cal graph properties, and we show how its formulae can be effectively
verified. More specifically, we provide an encoding of such graph formu-
lae into quantifier-free formulae over Petri net markings and we char-
acterise, via a type assignment system, a subclass of formulae F' such
that the validity of F' over a GTS G is implied by the validity of the
encoding of F' over the Petri net approximation of G. This allows us to
reuse existing verification techniques, originally developed for Petri nets,
to model-check the logic, suitably enriched with temporal operators.

1 Introduction

Distributed and mobile systems can often be specified by graph transformation
systems (GTSs) in a very natural way. However, work on static analysis and
verification of GTSs is scarce. The fact that GTSs can be seen as a proper
extension of Petri nets suggests the possibility of relying on techniques already
developed in the literature for this related formalism. However, unlike Petri
nets, graph transformation systems are usually Turing-complete so that many
problems decidable for general P/T-nets become undecidable for GTSs.

A technique proposed in [1,2] is based on the approximation of GTSs by
means of Petri net-like structures in the spirit of abstract interpretation of reac-
tive systems [10]. More precisely, an approximated unfolding construction maps
any given GTS G to a finite structure U(G), called covering (or approximated
unfolding) of G. The covering U(G) is a so-called Petri graph, i.e. a structure
consisting of a Petri net with a graphical structure over places. It provides an
over-approximation of the behaviour of G, in the sense that any graph reachable
in G can be mapped homomorphically to the graph underlying ¢(G) and its im-
age is a reachable marking of U(G). (Note that, since G is possibly infinite-state,

* Research supported by the MIUR Project COFIN 2001013518 COMETA, the FET-
GC Project IST-2001-32747 AGILE and the EC RTN 2-2001-00346 SEGRAVS.

while U(G) is finite, it would not be possible to have in /(G) isomorphic images
of all graphs reachable in G.) Therefore, given a property over graphs reflected
by graph morphisms, if it holds for all states reachable in the abstraction U(G)
then it also holds for all reachable graphs in G. In other words, if T" is a temporal
logic formula containing only universal quantifiers (e.g. a formula in ACTL* or
in a suitable fragment of the modal p-calculus) and where state predicates are
reflected by graph morphisms, then the validity of T over the covering U(G)
allows us to infer the validity of T for the original system [3].

However, several relevant questions remain to be answered. First of all, which
logic should we use to specify state predicates (i.e., graph properties)? How can
we identify a subclass of such predicates which is reflected by graph morphisms
and which can thus be safely checked over the approximation? And finally, given
the approximation U(G), is there a way of encoding formulae expressing graph
properties into “equivalent” formulae over Petri net markings?

As for the first point, we propose to describe state predicates, i.e., the graph
properties of interest, by means of a monadic second-order logic £2 on graphs,
where quantification is allowed over (sets of) edges. (Similar logics are considered
in [4].) Relevant graph properties can be expressed in £2, e.g., the non-existence
and non-adjacency of edges with specific labels, the absence of certain paths
(related to security properties) or cycles (related to deadlock-freedom).

Regarding the second question, we introduce a type inference system char-
acterising a subclass of formulae in the logic £2 which are reflected by graph
morphisms. Hence, given any formula F' in such a class, if F' can be proved for
any reachable state of the approximation ¢ (G) then we can deduce that F' holds
for any reachable graph of the original GTS G.

Finally, given the approximation U(G), we define a constructive translation of
graph formulae in £2 into formulae over markings of the Petri net underlying the
abstraction U (G). More precisely, any graph formula F' is mapped to a formula 3
over markings such that a marking satisfies Fifand only if the graph it represents
satisfies F'. Since the graph underlying U(G) is finite and fixed after computing
the abstraction, we can perform quantifier elimination on graph formulae and,
surprisingly, encode even monadic second-order logic formulae into propositional
formulae on markings, containing only predicates of the form #s < ¢ (the number
of tokens in place s is smaller than or equal to ¢). We remark that the encoding
for the first-order fragment of £2 is simpler and can be defined inductively.

Altogether these results allow us to verify behavioural properties of a GTS by
reusing existing model-checking techniques for Petri nets. In fact, given a formula
T of a suitable temporal logic (e.g. a formula of ACTL* or of a fragment of the
modal p-calculus without ¢ and negation), where state predicates are reflected by
graph morphisms, then, by the construction mentioned above and using general
results from abstract interpretation [10], T' can be translated into a formula
which can be checked over the Petri net underlying (G). We recall that general
temporal state-based logics over Petri nets, i.e., logics where basic predicates
have the form #s < ¢, are not decidable in general, but important fragments of
such logics are [8,7,9].

For the sake of simplicity, although the approximation method of [1, 2] was
originally designed for hypergraphs, in this paper we concentrate on directed
graphs. The extension to general hypergraphs requires some changes to the graph
logic £2. This rises some technical difficulties which are, while not being insur-
mountable, a hindrance to the clear and easy presentation of our results.

In the rest of the paper we will first summarise the approximation technique
for GTSs in [1], shortly mentioning some results from [2]. Then, we will define
the monadic second-order logic £2 over graphs and we will introduce the type
system characterising a subclass of formulae in £2 which are reflected by graph
morphisms, and which can thus be checked on the covering. Finally we will show
how to encode these formulae into quantifier-free state-based formulae on the
markings of Petri nets, starting from the simpler case of first-order formulae.

2 Approximated Unfolding Construction

In this section we sketch the algorithm, introduced in [1], for the construction
of a finite approximation of the unfolding of a graph transformation system.
We first define graphs and structure-preserving morphisms on graphs. We will
assume that A denotes a fixed and finite set of labels. Note that multiple edges
between nodes are allowed.

Definition 1 (Graph, graph morphism). A graph G = (Vg, Eg, sa,ta,lc)
consists of a set Vg of nodes, a set Eg of edges, a source and a target function
sa,ta: Eg — Vg and a function lg: Eg — A labelling the edges.

A graph morphism ¢:G1 — G2 is a pair of mappings ¢v: Vg, — Vg, and
vr:Eg, — Eg, such that oy o sq, = sg, 0 ¢E, pv otg, = tg, © pr and
lg, =lg, 0pg for each edge e € E¢,. A morphism ¢ will be called edge-bijective
if pp is a bijection. The subscripts in ¢ g and ¢y will be usually omitted.

We next define the notion of a graph transformation system and the corre-
sponding rewriting relation.

Definition 2 (Graph transformation system). A graph transformation sys-
tem (GTS) (Go, R) consists of an initial graph G and a set R of rewriting rules
of the form r = (L, R,a), where L, R are graphs, called left-hand side and
right-hand side, respectively, and a: V, — Vg is an injective function.

A match of a rewriting rule r in a graph G is a morphism ¢: L — G which is
injective on edges. We can apply r to a match in G obtaining a new graph H,
written G = H. The target graph H is defined as follows

Vi =Ve W (Ve —a(VL)) Ey = (Eq — ¢(EL)) W ER
and, defining @ : Vg — Vg by B(a(v)) = ¢(v) if v € Vi, and $(v) = v otherwise,
the source, target and labelling functions are given by
e€ Ec—p(EL) = su(e)=scle), tule)=tale), lule)=la(e)
e€Er = su(e) =0(srle), tule)=9(tr(e), lule)=Ir(e)

V)

Intuitively, the application of r to G at the match ¢ first removes from G the
image of the edges of L. Then the graph G is extended by adding the new nodes
in R (i.e., the nodes in Vg — (V1)) and the edges of R. Observe that the (images
of) the nodes in L are preserved, i.e., not affected by the rewriting step.

Ezxample 1. Consider a system where processes compete for resources R, and Rj.
A process needs both resources in order to perform some task. The system is
represented as a GTS Sys as follows. We consider edges labelled by Ry, Ra, R{ , R£
standing for assigned and free resources, respectively, and Py, P, and P3 denoting
a process waiting for resource Ry, a process waiting for resource R and a process
holding both resources, respectively. Furthermore, edges labelled by D; and D
connect the target node of a process and the source node of a resource when the
process is asking for the resource. When the target node of a resource coincides
with the source node of a process, this means that the resource is assigned to
the process. The initial scenario for Sys is represented in Fig. 1, with a single
process P asking for both resources.

Fig. 1. Start graph of Sys with a process and resources.

The rewriting rules of Sys are defined with the aim of avoiding deadlocks
in the form of vicious cycles. There are three kind of rules, depicted in Fig. 2:
(1) a process P; can acquire a free resource RY whenever i = j and become
Pi11, (2) P3 can release its resources and (3) processes of the form P; can fork
creating more processes of the same kind with demand for the same resources.
The natural numbers 1,2, 3, ... which decorate nodes in the left-hand side and
right-hand side of rules implicitly represent the mapping «.

Observe that an additional rule, analogous to rule 1, but with ¢ = 1 and
j = 2, would possibly lead to a vicious cycle with circular demand for resources,
in two steps (see Fig. 3).

Some basic notation concerning multisets is needed to deal with Petri nets.
Given a set A we will denote by A® the free commutative monoid over A, whose
elements will be called multisets over A. In the sequel we will sometime identify
A® with the set of functions m: A — N such that the set {a € A | m(a) # 0} is
finite. E.g., in particular, m(a) denotes the multiplicity of an element @ in the
multiset m. Sometimes a multiset will be also identified with the underlying set,
writing, e.g., a € m for m(a) # 0. Given a function f: A — B, by f®: A® — B®
we denote its monoidal extension, i.e., f®(m)(b) = > f(ay—p m(a) for every b € B.

w

Fig. 2. Rewriting rules of the GTS Sys.

Fig. 3. Vicious cycle representing a deadlock.

In order to approximate graph transformation systems we use Petri graphs,
introduced in [1], which are basically Petri nets, specifying the operational be-
haviour, with added graph structure.

Definition 3 (Petri graphs). Let G = (G, R) be a GTS. A Petri graph P
(over G) is a tuple (G, N, mg) where

— (G is a graph;

— N = (Eg,Tn, *(),()®,pn) is a Petri net, where the set of places E¢ is the
edge set, T is the set of transitions, *(),()*:Tn — Eg specify the post-set
and pre-set of each transition and py: TN — R is the labelling function;

— mo € (Eg)?® is the initial marking of the Petri graph, satisfying mo =
1®(Eg,) for a suitable graph morphism ¢ : Gy — G (i.e., mo must properly
correspond to the initial state of the GTS G).

A marking m € Eg will be called reachable (coverable) in P if it is reachable
(coverable) from the initial marking in the Petri net underlying P.

Remark. The definition of Petri graph is slightly different from the original one
in [1], in that we omit some graph morphisms associated to transitions (the pu-
component) and to the initial marking, and the so-called irredundancy condition.
Both are needed for the actual construction of the Petri graph from a GTS, but
they play no role in the results of this paper.

A marking m of a Petri graph can be seen as an abstract representation of a
graph in the following sense.

Definition 4. Let (G, N,mg) be a Petri graph and let m € Eg be a marking
of N. The graph generated by m, denoted by graph(m), is the graph H defined
as follows: Vg = {v € Vg | Je € m: (sg(e) = v Vig(e) =v)}, Eg = {(e,i) | e €
mAl<i<m(e)}, su((e,i)) =sag(e), tu((e,i)) =ta(e) and Ig((e, 7)) = lg(e).

Alternatively the graph graph(m) can be defined as the unique graph H, up to
isomorphism, such that there exists a morphism ¥: H — G injective on nodes
with @ (Fy) = m. An example of a Petri net marking with the corresponding
generated graph can be found in Fig. 4.

Fig. 4. A pair (G',m’) contained in a simulation.

Given a GTS (G, R), with some minor constraints on the format of rewrit-
ing rules (see [1,2]), we can construct a Petri graph approximation of (Go,R),

called covering and denoted by U(Gp,R). The covering is produced by the
last step of the following (terminating) algorithm which generates a sequence
P, = (G4, N;,m;) of Petri graphs.

1. Py = (Go, No,mp), where the net Ny contains no transitions and mg = Eg,.
2. As long as one of the following steps is applicable, transform P; into P41,
giving precedence to folding steps.

Unfolding. Find a rule r = (L, R,) € R and a match ¢: L — G; such that
@(EP) is coverable in P;. Then extend P; by “attaching” R to G; according
to a and add a transition ¢, labelled by r, describing the application of rule r.

Folding. Find a rule r = (L,R,«) € R and two matches ¢, ¢: L — G;
such that o®(FEp) and ¢’ (Ey) are coverable in N; and the second match is
causally dependent on the transition unfolding the first match. Then merge
the two matches by setting p(e) = ¢’(e) for each e € Ep and factoring
through the resulting equivalence relation =.

folding

2x

Fig. 5. An unfolding and two folding steps.

For instance an unfolding step involving rule 3 is depicted in Fig. 5. Transi-
tions are represented as black rectangles and the Petri net structure is rendered
by connecting edges (places) to transitions with dashed lines. The label k for
dashed lines represents the weight with which the target/source place occurs in
the post-set (pre-set); when the weight is 1, the label is omitted. In the resulting

Petri graph we can find three occurrences of the left-hand side of rule 3. The
latter two are causally dependent on the first, which means that they can be
merged in two folding steps. The algorithm, starting from the start graph in
Fig. 1, terminates producing the Petri graph (Sys) in Fig. 6, where the initial
marking is represented by tokens.

Fig. 6. The Petri graph U(Sys) computed as covering of Sys.

The covering U(Gp, R) is an abstraction of the original GTS (Go, R) in the
following sense.

Proposition 1 (Abstraction). Let G = (Go,R) be a graph transformation
system and let U(G) = (G, N, myg) be its covering. Furthermore let G be the set
of graphs reachable from Gy in G and let M be the set of reachable markings in
U(G). Then there exists a simulation S C G x M with the following properties:

- (Go,mo) es;

— whenever (G',m') € S and G' = G", then there exists a marking m” with
m' 5 m" and (G",m") € S;

— for every (G',m') € S there is an edge-bijective morphism ¢: G’ — graph(m’).

The above result will allow us to use existing results concerning abstractions of
reactive systems [3,10]. Consider the system Sys in our running example. We
would like to verify that, according to the design intentions, Sys is deadlock-free.
This is formalised by the requirement that all reachable graphs do not contain a
vicious cycle, i.e., a cycle of edges where P-labelled edges (processes holding a
resource and waiting for a second resource) occur twice. This graph property is
reflected by graph morphisms, hence, by using Proposition 1, if we can prove it
on the covering U(Sys), we could deduce that it holds for the original system Sys
as well. Observe that actually, in this case, even the stronger property #e < 1,
where e is the edge labelled P,, holds for all reachable markings as it can be
easily verified by drawing the coverability graph of the Petri net. This is an ad

hoc proof of the property, which instead, by the results in this paper, will follow
as an instance of a general theory.

The idea that will be concretized by the results in the paper, is the follow-
ing. Let G be a GTS and let U(G) be its covering. By Proposition 1, U(G) =
(G, N, mg) “approximates” G via a simulation consisting of pairs (G’,m’) such
that G’ can be mapped to graph(m') (see, e.g., Fig. 4) via an edge-bijective
morphism. Given a formula on graphs F', expressing a state property in G, a
corresponding formula M (F') on the markings of ¢(G) is constructed such that,
for any pair in the simulation,

m' = M(F) = G' | F.

This will be obtained in two steps. First, we will identify formulae F which
are reflected by edge-bijective morphisms, ensuring that graph(m’) = F implies
G’ | F. Then, we will encode F into a propositional formula M (F') on multisets
such that m’ = M(F) <= graph(m’) = F.

Call F the above mentioned class of graph formulae. Now, one can consider a
temporal logic over GTSs, where basic predicates are taken from JF. For suitable
fragments of such logics, e.g., the modal p-calculus without negation and the
“possibility operator” <, by Proposition 1 and exploiting general results in [10],
any temporal formula T over graphs can be translated to a formula M (T) over
markings (translating the basic predicates as above), such that, if N = M(T)
then G E T, i.e., T is valid for the original GTS.

3 A Second-Order Monadic Logic for Graphs

We introduce the monadic second-order logic £2 for specifying graph properties.
Quantification is allowed over edges, but not over nodes (as, e.g., in [4]).

Definition 5 (Graph formula). Let X} = {z,y, 2, ...} be a set of (first-order)
edge variables and let X> = {X,Y,Z,...} be a set of (second-order) variables
representing edge sets. The set of graph formulae of the logic £2 is defined as
follows, where £ € A

Fou=az=y | s@)=s() | sz)=ty) | tz)=1ty) |
lab(z) =0 | € X (Predicates)
FVF | FANF | F=F | -F (Connectives)
Ve.F | 3z.F | VX.F | 3X.F (Quantifiers)

We denote by free(F') and Free(F') the sets of first-order and second-order vari-
ables, respectively, occurring free in F', defined in the obvious way.

Note that, even if quantification over nodes is disallowed, formulae expressing
properties of classes of nodes can be easily stated, e.g., the property “for all non-
isolated nodes v it holds that P(v)” is formalised as “Va.(P(s(z)) A P(t(x)))”.

Definition 6 (Quantifier depth). The first-order and second-order quantifier
depth (qd; (F) and qd,(F'), respectively) of a graph formula F in £2 is inductively
defined as follows, where A is a predicate, op € {A,V,=} and i € {1, 2}.

qd;(A) =0 ad;(=F1) = qd;(F1) aqd;(Fiop F2) = max{qd,(F1),qd,(F>2)}
qd, (Vz.F1) = qdy (3z.F1) = qd,(F1) + 1 qd, (Vz.F1) = qdy(3z.F1) = qdo (F1)
qd, (VX.F) = qd, BX.F) = qd, (F1) qd,(VX.F)) = qdy(3X.F1) = qdy(F)) + 1

The notion of satisfaction is defined in a straightforward way.

Definition 7 (Satisfaction). Let G be a graph, let F' be a graph formula in
L2, let o : free(F) — Eg and X : Free(F) — P(E¢g) be valuations for the
free first- and second-order variables of F', respectively. The satisfaction relation
G =, 5 F is defined inductively, in the usual way; for instance:

Gloxaz=y < o) =0(y)
G oz s(x) =s(y) < sclo(z)) =s
G oy lab(x) = < lg(o(x)) =1
GloxreX < o(x) e Y(X)

a(o(y))

Ezxample 2. The formula NC; below states that a graph does not contain a cycle
including two distinct edges labelled ¢, a property that will be used to express the
absence of vicious cycles in our system Sys. It is based on the formula NP(z,y),
which says that there is no path connecting the edges = and y, stating that a
set that contains at least all successors of x does not always contain y.

NP(z,y) = VX.(Vz.(t(x) = s(z) VIw.(w € X At(w) = s(2))) = z € X)
=yeX)

NCy =VaVy.(lab(z) = L A lab(y) =L A =(z =y) = NP(z,y) V NP(y,x))

The following standard argument shows that this property can not be stated
in first-order logic, a fact which motivates our choice of considering a second-
order logic: it is easy to find sentences 1, in first-order logic stating that ‘there is
no cycle of length < n through two distinct edges labelled ¢’. Every finite subset
of the theory T = {=NCy} U{¢y }nen is satisfiable but T itself is not satisfiable.
The compactness theorem rules this out for first-order theories, so NC'; cannot
be first-order.

4 Preservation and Reflection of Graph Formulae

In this section we introduce a type system over graph formulae in £2 which
allows us to single out subclasses of formulae preserved or reflected by edge-
bijective morphisms. By Proposition 1, given a GTS G every graph reachable
in G can be mapped homomorphically via an edge-bijective morphism to the

10

graph generated by a marking reachable in the covering U(G) of G. Hence a
formula reflected by all edge-bijective morphisms can be safely checked over the
approximation U(G), in the sense that if it holds in U(G), then we can deduce
that it holds also in G.

To define the notions of reflection (and preservation) of general graph for-
mulae, possibly with free variables, observe that valuations are naturally “trans-
formed” under graph morphisms. Let F' be formula, let ¢ : G; — G3 be a
graph morphism, and let oy : free(F) — Eg, and Xy : Free(F) — P(Eg,)
be valuations. A valuation for the first-order variables of F' in G5 is naturally
given by ¢ o o1, while a valuation Y5 for second-order variables can be defined
by Xo(X) = (X1 (X)) for any variable X. Abusing the notation, Xy will be
denoted by ¢ o 3.

Definition 8 (Reflection and Preservation). Let F' be a formula in £2 and
let ¢: Gy — G4 be a graph morphism. We say that F' is preserved by ¢ if for all
valuations oy: free(F) — Eqg, and Xy: Free(F) — P(Eg,)

Gl ':crl,El F = G2):L,DOO',APOEl F.
Symmetrically, F' is reflected by if the above holds where = is replaced by <.

Observe that, in particular, a closed formula F is preserved by a graph morphism
@ Gl — G2 if Gl)ZQ)’@ F implies G2 'Z@’@ F.

As mentioned above we are interested in syntactic criteria characterising
classes of graph formulae reflected, respectively preserved, by all edge-bijective
graph morphisms. For first-order predicate logic, criteria for arbitrary morphisms
can be found in [6]. Here we provide a technique which works for general second-
order monadic formulae, based on a type system assigning to every formula F'
either —, meaning that F' is preserved, or «, meaning that F is reflected by
edge-bijective morphisms. The type rules are given in Fig. 7 where it is intended
that —!=« and «~'=—. Moreover F :+ is a shortcut for F :— and F :«—,
while Fi, F5 : d stands for Fy : d and F5 : d.

Typing predicates:
s(x) = s(y), s(z) = t(y), t(x) =ty):— z=y, lab(z) ={ v € X:

Typing connectives and quantifiers:

F:d F, Fy:d Fi:d™', Fs:d F:d F:d
—F:d7 ' RV Fy,FIAFy:d F| = Fa:d Ve.F:d 3z F:d
F:d F:d

VX.F:d dX.F:d

Fig. 7. The type system for preservation and reflection.

11

The type system can be shown to be correct.

Proposition 2 (Correctness). Let F' be a graph formula. If F: — is provable
then F' is preserved by all edge-bijective morphisms. Similarly, if F: < is provable
then F is reflected by all edge-bijective graph morphisms.

Ezample 3. Tt holds that NP(z,y): < and NCy: «, i.e., absence of paths and of
vicious cycles is reflected by edge-bijective morphisms.

Not all formulae that are preserved respectively reflected are recognised by
the above type system. The following result shows that this incompleteness is a
fundamental problem, due to the undecidability of reflection and preservation.

Proposition 3 (Undecidability of the Reflection (Preservation) Prob-
lem for formulae). The following two sets are undecidable:

Reflpo = {F | F closed first-order formula, reflected by edge-bijective
graph morphisms}

Prespo = {F | F closed first-order formula, preserved by edge-bijective
graph morphisms}

5 A Propositional Logic on Multisets

In order to characterise markings of Petri nets we use the following logic on
multisets. We consider a fixed universe A over which all multisets are formed.

Definition 9 (Multiset formula). The set of multiset formulae, ranged over
by M, is defined as follows, where a € A and ¢ € N

M = #a<c | -M | MVM | MAM'.

Let m be a multiset with elements from A. The satisfaction relation m = M
is defined, on basic predicates, as m = (#a < ¢) <= m(a) < c. Logical
connectives are dealt with as usual.

We will consider also derived predicates of the form #a > ¢ and #a = ¢ where

“(#e<c—1) ife>0
true otherwise ’

(#azc)—{ (#e=rc) = (#e < c)A(#e > c).

6 Encoding First-Order Graph Logic

In this section we show how first-order graph formulae can be encoded into
“equivalent” multiset formulae. More precisely, given the fixed Petri graph P =
(G, N,myg) the aim is to find an encoding M of first-order graph formulae into
multiset formulae such that graph(m) | F <= m |= M;(F) for every marking
m of P and every closed first order graph formula F'.

12

The encoding M is based on the following observation: every graph graph(m)
for some marking m of P can be generated from the finite “template graph”
G in the following way: some edges of G might be removed and some edges
might be multiplied, generating several parallel copies of the same template
edge. Whenever a formula has two free variables z, y and graph(m) has n parallel
copies eq, ..., e, of the same edge, it is not necessary to associate x and y with
all edges, but it is sufficient to assign e; to x and es to y (first alternative) or
e1 to both z and y (second alternative). Thus, whenever we encode a formula
F', we have to keep track of the following information: a partition P on the free
variables free(F’), telling us which variables are mapped to the same edge, and
a mapping p from free(F') to the edges of G, with p(z) = e meaning that z will
be instantiated with a copy of the template edge e. Since there might be several
different copies of the same template edge, two variables x and y in different
sets of P can be mapped by p to the same edge of G. Whenever we encode an
existential quantifier 3z, we have to form a disjunction over all the possibilities
we have in choosing such an z: either x is instantiated with the same edge as
another free variable y, in this case x and y should be in the same set of the
partition P. Or z is instantiated with a new copy of an edge in G. In this case,
a new set {z} is added to P and we have to make sure that enough edges are
available by adding a suitable predicate.

We need the following notation. We will describe an equivalence relation on
a set A by a partition P C P(A) of A, where every element of P represents an
equivalence class. We will write x Py whenever z,y are in the same equivalence
class. Furthermore we assume that each equivalence P is associated with a func-
tion rep : P — A which assigns a representative to every equivalence class. The
encoding given below is independent of any specific choice of representatives.

Given a function f : A — B such that f(a) = f(a’) for all a,a’ € A with
aPa’ and a fixed b € B we define np(b) = {k € P | f(rep(k)) = b}|, i.e.,
np,r(b) is the number of sets in the partition P that are mapped to b.

Definition 10. Let G be a directed graph, let F' be graph formula in the first-
order fragment of £2, let p : free(F) — E¢ and let P C P(free(F)) be an
equivalence relation such that « Py implies p(z) = p(y) for all z,y € free(F).
The encoding M is defined as follows:

M1[—‘F7p,P] :_'Ml[vaaP]
M1[F1VF27/),P] :Ml[th,P}\/Ml[Fl,p,P}
Ml[Fl/\F2ap7P] :Ml[thvP}/\Ml[thvP}

Mifz =y, p, P| = {true ifx Py

false otherwise

true if lg(p(z)) = ¢

My[lab(z) = €, p, P] = {false otherwise

Mifs(z) = s(y), p, P = {}3‘ i 36(p(x)) = 5c(p(v)
the formulae ¢(z) = t(y) and s(x) = t(y)

are treated analogously

13

Mi[32.F,p, Pl = \/ (Mi[F. pU{a = p(rep(k))}, P\{k} U {k U {z}}]) V
keP

V MLIF pu{z = e}, PU{{z}}] A (#e > npp(e) +1))

ecEqg

MiVa.F,p, Pl = [\ (Mi[F, pU{z — p(rep(k))}, P\ {k} U {k U {z}}]) A
kepP

N\ ((#e>np,(e) +1) = Mi[F,pU{z — e}, PU{{z}}])

ecEqg

If F is closed formula (i.e., without free variables), we define My (F) = M, [F, 0, {].

It is worth remarking that such an approach is similar to the model-theoretic
method of quantifier elimination, defined by Tarski in the 1950’s to show decid-
ability and completeness for theories like dense linear orderings or algebraically
closed fields (see [14]). We remark that here finiteness of graphs is essential.
We can now show that the encoding is correct in the sense explained above.
We will omit the index X' in =, » when talking about first-order formulae only.

Proposition 4. Let (G, N, mg) be a Petri graph, F a first-order formula in £2
and m a marking of N. Then it holds that

graph(m) = F' <= m = Mi[F, p, P],
when

— p: free(F) — Eg;

— P is an equivalence on free(F) such that x Py implies p(x) = p(y) for any
x,y € free(F);

— 0 : free(F) — Egrapn(m) satisfies t Py <= o(x) = o(y) and poo = p,
where @: graph(m) — G denotes the projection of graph(m) over G, i.e., a
graph morphism such that ¢((e,i)) = e € Eg.

Whenever F' is closed the proposition above trivially gives us the expected
result. i.e., graph(m) = F ifft m = My (F).

I
Ezample 4. Consider the formula F' = Jx.(lab(x) = A A Vy.—(t(x) = s(y))).

Fy
The graph under consideration is the graph G on the right in Fig. 4 (contain-
ing a looping B-edge e; and an A-edge e3). The encoding goes as follows (with
some simplifications of the formula along the way):

Mi[F,0,0]
= (Mi[Fy, {z = e}, {2} A (e = 1) V (ML [Fy, {o v ea}, {{e}}] A (#e2 > 1))
— (M [lab(2) = A, {w = ex}, {{z}}] AMa[Fa, { = 2}, {{e}}] A (#er 2 1)V

=false

14

(Mi[lab(z) = A, {z — e2}, {z}}] AMA[Fo. {z > e}, {z}}] A (He2 > 1))
= My[~(t(x) = s(9)). {2,y ea}. {{z, 1} A
(o1 > 1= Mi[~(t(z) = s(v)), {2 e,y er}, {{z}, (w}}]) A
=false

(#e2 2 2= Mi[~(t(x) = s(y)), {z,y — ea}, {{z}, {y}}]) A (Fe2 2 1)

=true

= (Fer > 1) A (Fe2 > 1)

7 Encoding Monadic Second-Order Graph Logic

In this section we show that also general monadic second-order graph formulae
in £2 can be encoded into multiset formulae. Differently from the first-order
case, the encoding is not defined inductively, but, still, quantifier elimination is
possible. We start with an easy but useful lemma.

Lemma 1 (Edge Permutations). Let 0, X' be valuations such that G =, 5 F.
Furthermore let m : G — G be an automorphism such that sg(e) = sq(w(e)) and
tc(e) =tg(m(e)). Then G Eromox F.

The encoding uses the fact that multiple copies of an edge are distinguished
only by their identity, but have the same source and target nodes and the same
label. Hence whenever we want to encode a first-order quantifier, we only have
to check all the edges that have already appeared so far and a fresh copy of every
edge in G. From this, as we will see, one can infer that for checking the validity
of a formula F' it is sufficient to consider only up to qd;(F) - 2a4:2(F) copies of
every edge in the template graph G.

The following proposition basically states that if there are enough parallel
edges which belong to the same sets of the form X(X), where X' is a second-
order valuation and X a second-order variable, then one of these edges can be
removed—provided that it is not in the range of the first-order valuation oc—
without changing the validity of a formula F'.

Proposition 5. Let G be a graph, F a graph formula in L2, let 0,3 be valua-
tions for the free variables in F and let e € Eg be a fized edge. Assume that

(1) the edge e is not in the range of o and
(2) |ES(e)| > (ad; (F) + [dom(0)]) - 29%2(F) where

ES(e) ={e € Eq | sg(e) =sg(e),tale) =ta(e),lg(e) = la(€),
VX € dom(X).(e € X(X) < € € Y(X))}

Then G f=55 F <= G\ {e} =o 5, F, where G\ {e} is obtained by removing
the edge e from graph G and X.(X) = X(X) — {e}.

15

From Proposition 5 we infer the following corollary.

Corollary 1. Let F be a closed graph formula in L£2. Let furthermore G be a
graph and m € Eg be a multiset over (the set of edges of) G. Then
graph(m) = F if and only if graph(m’) = F, where m’ € EJ is defined by
m’(e) = min{m(e), qd, (F) - 29420

Proof. If F has no free variables then E%mph(m)(e) ={(e,i) | 1 <i < mfe)}.
Using Proposition 5, we can thus reduce the number of copies for every edge to
the number qd, (F) - 299(F) | without changing the truth value of F. O

The following corollary shows that every graph-statement of full monadic
second-order logic can be encoded into a multiset formula.

Corollary 2. Let G be a fixed template graph. A closed graph formula F' in L2
can be encoded into a logical formula Mao(F) on multisets as follows. For any
multiset k € Eg, let Cy, be the conjunction over the following formulae:

— #e = k(e) for every e € Eg satisfying k(e) < qd,(F) - 29%(F) gnd
— #e > k(e) for every e € Eq satisfying k(e) = qd, (F) - 29d2(F)

Define Ms(F) to be the disjunction of all Cy, such that k € EE, graph(k) & F
and k(e) < qd,(F) - 2992 for every e € Eq.
Then graph(m) = F <= m = Ma(F) for every m € ES.

Proof. Let m € Eg be an arbitrary multiset and let m’ be a multiset defined as
in Corollary 1, i.e. m/(e) = min{m(e), qd, (F) - 299"} for e € Eg.

If graph(m) |= F then, by Corollary 1, graph(m’) = F. Hence, by definition
of M, Cy,y appears as a disjunct in My (F'). Since, clearly, m = C,,/, we conclude
that m | My (F).

Vice versa, let m = Ma(F). Then m |= Cj, for some k € EE and graph(k) =
F. By the shape of C}, it is immediate to see that this implies kK = m/'. Therefore
graph(m’) E F, and thus, by Corollary 1, graph(m) = F. a

To conclude let us show how the general schema outlined at the end of
Section 2 applies to our running example. We want to verify that Sys satisfies
a safety property, i.e., the absence of vicious cycles, including two distinct Ps
processes, in all reachable graphs. Let OL, be a fragment of the p-calculus
without negation and “possibility operator” < (see [10]), where basic predicates
are formulae F' taken from our graph logic £2, which can be typed as “reflected
by graph morphisms”, i.e., such that F' :< is provable. The property of interest
can be expressed in 0L, as:

Tne = pp-(NCp, NOp)

where NCy is the formula considered in a previous example. Then Tx¢ can
be translated into a formula over markings, by translating its graph formula
components according to the techniques described in Sections 6 and 7. This

16

will lead to the formula My(Tne) = pp.(M2(NCp,) A Op). By the results in
this paper and by the results in [2], for T in OL,, if U(Sys) = My(T) then
Sys = T. Therefore the formula Ty can be checked by verifying My (Ty¢) on
the Petri net component of the approximated unfolding. In this case it can be
easily verified that My (Tn¢) actually holds in U(Sys) and thus we conclude that
Sys satisfies the desired property.

8 Conclusion

We have presented a logic for specifying graph properties, useful for the veri-
fication of graph transformation systems. A type system allows us to identify
formulae of this logic reflected by edge-bijective morphisms, which can therefore
be verified on the covering, i.e., on the finite Petri graph approximation of a
GTS. Furthermore we have shown how, given a fixed approximation of the orig-
inal system, we can perform quantifier-elimination and encode these formulae
into boolean combination of atomic predicates on multisets. Combined with the
approximated unfolding algorithm of [1], this gives a method for the verifica-
tion and analysis of graph transformation systems. This form of abstraction is
different from the usual forms of abstract interpretation since it abstracts the
structure of a system rather than its data. Maybe the closest relation is shape
analysis, abstracting the data structures of a program [11, 15].

We would like to add some remarks concerning the practicability of this
approach: we are currently developing an implementation of the approximated
unfolding algorithm, which inputs and outputs graphs in the Graph Exchange
Language (GXL) format, based on XML. It remains to be seen up to which size
of a GTS the computation of the approximation is still feasible.

Furthermore encoding a formula into multiset logic may result in a blowup
of the size of the formula which is at least exponential. However, provided that
formulae are rather small if compared to the size of the system or its approx-
imation, this blowup should be manageable. It is also conceivable to simplify
a formula during its encoding (see the example at the end of Section 6). The
encoding itself is not yet implemented, but we plan to do so in the future.

Finally the Petri net produced by the approximated unfolding algorithm and
the formula itself have to be analysed by a model checker or a similar tool, based
on the procedures described in [8,7,9]. Note that formulae on multisets can not
be combined with the temporal operators of CTL* in an arbitrary way. First,
we have to make sure that the resulting formula is still reflected, with respect to
the simulation, hence no existential path quantification is allowed. Furthermore,
arbitrary combinations of the temporal operators “eventually” and “generally”
might make the model-checking problem undecidable. However, important frag-
ments are still decidable, for example a property like “all reachable graphs satisfy
F”, where F is a multiset formula, can be checked. As far as we know, there
is not much tool support for model-checking unbounded Petri nets, but these
algorithms usually rely on the computation of the coverability graph of a Petri
net, which is a well-studied problem [13].

17

Currently we are mainly interested in proving safety properties, liveness prop-
erties require some more care (see [12]). Another interesting line of future re-
search is to adopt techniques used for the analysis of transition systems specified
by integer constraints [5].

Acknowledgements: We are very grateful to Andrea Corradini for his contribu-
tion to the development of the approximated unfolding technique on which this
paper is based. We would also like to thank Ingo Walther who is currently work-
ing on an implementation. We are also grateful to the anonymous referees for
their valuable comments.

References

1. Paolo Baldan, Andrea Corradini, and Barbara Konig. A static analysis tech-
nique for graph transformation systems. In Proc. of CONCUR 01, pages 381-395.
Springer-Verlag, 2001. LNCS 2154.

2. Paolo Baldan and Barbara Konig. Approximating the behaviour of graph trans-
formation systems. In Proc. of ICGT ’02 (International Conference on Graph
Transformation), pages 14-29. Springer-Verlag, 2002. LNCS 2505.

3. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and
abstraction. ACM Transactions on Programming Languages and Systems, 1999.

4. B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In G. Rozenberg, editor, Handbook of Graph Gram-
mars and Computing by Graph Transformation, Vol.1: Foundations, chapter 5.
World Scientific, 1997.

5. Giorgio Delzanno. Automatic verification of parameterized cache coherence proto-

cols. In Proc. of CAV 00, pages 53—68. Springer-Verlag, 2000. LNCS 1855.

Wilfrid Hodges. Model Theory. Cambridge University Press, 1993.

7. R. Howell and L. Rosier. Problems concerning fairness and temporal logic for
conflict-free Petri net. Theoretical Computer Science, 64:305-329, 1989.

8. Rodney R. Howell, Louis E. Rosier, and Hsu-Chun Yen. A taxonomy of fairness and
temporal logic problems for Petri nets. Theoretical Computer Science, 82:341-372,
1991.

9. Petr Jancar. Decidability of a temporal logic problem for Petri nets. Theoretical
Computer Science, 74:71-93, 1990.

10. Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, and Saddek Ben-
salem. Property preserving abstractions for the verification of concurrent systems.
Formal Methods in System Design, 6:1-35, 1995.

11. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag, 1999.

12. Amir Pnueli, Jessie Xu, and Lenore Zuck. Liveness with (0, 1, co)-counter abstrac-
tion. In Proc. of CAV 02, pages 107-122. Springer-Verlag, 2002. LNCS 2404.

13. W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science. Springer-Verlag, Berlin, Germany, 1985.

14. Abraham Robinson. Introduction to Model Theory and to the Metamathematics of
Algebra. North-Holland, 1963.

15. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. In Proc. of POPL 96, pages 16-31. ACM Press, 1996.

o

18

