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Abstract. In recent years there have been several approaches for the
automatic derivation of labels from an unlabeled reactive system. This
can be done in such a way that the resulting bisimilarity is automatically
a congruence. One important aspect that has not been studied so far is
the treatment of reduction rules with negative application conditions.
That is, a rule may only be applied if certain patterns are absent in
the vicinity of a left-hand side. Our goal in this paper is to extend the
borrowed context framework to label derivation with negative applica-
tion conditions and to show that bisimilarity remains a congruence. An
important application area is graph transformation and we will present
an example in terms of blade server systems in order to illustrate the
theory.

1 Introduction

Bisimilarity is an equivalence relation on states of transition systems, associating
states that can match each other’s moves. In this sense, bisimilar states can not
be distinguished by an external observer. Bisimilarity provides a powerful proof
technique to analyze the properties of systems and has been extensively studied
in the field of process calculi since the early 80’s. Especially for CCS [2] and the
π-calculus [3, 4] an extensive theory of bisimulation is now available.

Congruence is a very desirable property that a bisimilarity may have, since it
allows the exchange of bisimilar systems in larger systems without effect on the
observable behavior. Unfortunately, a bisimulation defined on unlabeled reaction
rules is in general not a congruence. Hence, Leifer and Milner [5, 6] proposed a
method that uses so-called idem pushouts (IPOs) to derive a labeled transition
system from unlabeled reaction rules such that the resulting bisimilarity is a
congruence. Motivated by this work, two of the authors proposed in [7, 8] an

⋆ This technical report is the full version of [1]. Research partially supported by the
DFG project SANDS and DAAD (German Academic Exchange Service).



extension to the double pushout approach (DPO, for short) called DPO with
borrowed contexts (DPO-BC), which provides the means to derive labeled tran-
sitions from rewriting rules in such a way that the bisimilarity is automatically
a congruence. This has turned out to be equivalent to a technique by Sassone
and Sobociński [9, 10] which derives labels via groupoidal idem pushouts. In all
approaches the basic idea is the one suggested by Leifer and Milner: the labels
should be the minimal contexts that an observer has to provide in order to
trigger a reduction.

The DPO with borrowed contexts works with productions consisting of two
arrows L ← I → R where the arrows are either graph morphisms, or—more
generally—arrows in an adhesive category. Even though the generative power
of the DPO approach is sufficient to generate any recursively enumerable set of
graphs, very often extra application conditions are a required feature of non-
trivial specifications. Negative application conditions (NACs) [11] for a graph
production are conditions such as the non-existence of nodes, edges, or certain
subgraphs in the graph G being rewritten, as well as embedding restrictions con-
cerning the match L→ G. Similar restrictions can also be achieved in Petri nets
with inhibitor arcs, where these arcs impose an extra requirement to transition
firing, i.e., a transition can only be fired if certain places are currently unmarked.

Graph transformation systems, which are our main focus, are often used
for specification purposes, where—in contrast to programming—it is quite con-
venient and often necessary to constrain the applicability of rules by negative
application conditions. We believe that this is a general feature of specification
languages, which means that the problem of deriving behavioral equivalences in
the presence of NACs may occur in many different settings.

In this work we extend the borrowed context framework to handle produc-
tions with negative application conditions. The extension, which is carried out
for adhesive categories, requires an enrichment of the labels which now do not
only indicate the context that is provided by the observer, but also constrain
further additional contexts that may (not) satisfy the negative application con-
dition. That is, we do not only specify what must be borrowed, but also what
must not be borrowed. We prove that the main result of [8] (bisimilarity is a
congruence) still holds for our extension. Moreover, we further develop an up-to
context technique in order to cope with NACs and apply it to examples.

The current paper is structured as follows. Section 2 briefly reviews the DPO
approach with borrowed contexts. In Section 3 we discuss the problems which
arise due to productions with NACs and how they can be overcome in order
to guarantee that the derived bisimilarities are congruences. Section 4 presents
proof techniques for our extension. Finally, we present two examples in terms
of graph transformation: a small one in Section 5 and a more elaborate one in
Section 6, where blade server systems are presented. The appendices contain
additional proofs and further information about the examples.
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2 Double-Pushout with Borrowed Contexts

In this section we recall the DPO approach with borrowed contexts [7, 8]. In
standard DPO [12], productions rewrite graphs with no interaction with any
other entity than the graph itself and the production. In the DPO with borrowed
contexts [8] graphs have interfaces and may borrow missing parts of left-hand
sides from the environment via the interface. This leads to open systems which
take into account interaction with the outside world.

The DPO-BC framework was originally defined for the category of graph
structures, but, as already stated in [7, 8], its results can be automatically lifted
to adhesive categories since the corresponding proofs only use pushout and pull-
back constructions which are compliant with adhesive categories. In the following
we present the DPO-BC setting for adhesive categories [13] to which we first give
a short introduction.

Definition 1 (Adhesive Category). A category C is called adhesive if

1. C has pushouts along monos;
2. C has pullbacks;
3. Given a cube diagram as shown on the right

with: (i) A → C mono, (ii) the bottom square a
pushout and (iii) the left and back squares pull-
backs, we have that the top square is a pushout
iff the front and right squares are pullbacks.

A′ //

!!C
CC

��

C ′

!!C
CC

��

B′ //

��

D′

��

A //

!!D
DD C

""D
DD

B // D

Pullbacks preserve monos and pushouts preserve epis in any category. Fur-
thermore, for adhesive categories it is known that monos are preserved by push-
outs. For the DPO-BC extension to productions with negative application con-
ditions, defined in Section 3, we need one further requirement, namely that
pullbacks preserve epis. This means that if the square (A′, B′, A,B) above is a
pullback and A→ B is epi, we can conclude that A′ → B′ is epi as well.

Our prototypical instance of an adhesive category, which will be used for
the examples in the paper are the categories of node-labeled and edge-labeled
graphs, where arrows are graph morphisms. In this category pullbacks preserve
epis.

We will now define the notion of objects with interfaces and contexts, followed
by the definition of a rewriting step with borrowed contexts as defined in [8] and
extended in [10].

Definition 2 (Objects with Interfaces and Contexts). An object G with
interface J is an arrow J → G and a context consists of two arrows J → E ← J .
The embedding3 of J → G into a context J → E ← J is an object with interface
J → G which is obtained by constructing G as the pushout of J → G and J → E

(see diagram below).

3 The embedding is defined up to iso since the pushout object is unique up to iso.
Embedding/insertion into a context and contextualization are used as synonyms.
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J //

��
PO

E

��

Joo

��

G // G

Definition 3 (Rewriting with Borrowed Contexts). Given an object with
interface J → G and a production p : L ← I → R, we say that J → G reduces
to K → H with transition label4 J → F ← K if there are objects D, G+, C

and additional arrows such that the diagram below commutes and the squares are
either pushouts (PO) or pullbacks (PB) with monos. In this case a rewriting step

with borrowed context (BC step) is called feasible: (J → G)
J→F←K
−−−−−−→ (K → H).

D // //

��

��
PO

L
��

��
PO

Ioo //

��

��
PO

R
��

��

G // //

PO

G+

PB

Coo // H

J

OO

// // F

OO

Koo

OO >>

In the diagram above the upper left-hand square merges L and the object G

to be rewritten according to a partial match G← D → L. The resulting object
G+ contains a total match of L and can be rewritten as in the standard DPO
approach, producing the two remaining squares in the upper row. The pushout
in the lower row gives us the borrowed (or minimal) context F , along with an
arrow J → F indicating how F should be pasted to G. Finally, we need an
interface for the resulting object H, which can be obtained by “intersecting” the
borrowed context F and the object C via a pullback. Note that the two pushout
complements that are needed in Definition 3, namely C and F , may not exist.
In this case, the rewriting step is not feasible. The arrows depicted as → in the
diagram above can also be non-mono (see [9]).

Note that with the procedure described above we may derive infinitely many
labels of the form J → F ← K. However, observe that there are only finitely
many up to iso and hence they can be represented in a finite way.

A bisimulation is an equivalence relation between states of transition systems,
associating states which can simulate each other.

Definition 4 (Bisimulation and Bisimilarity). Let P be a set of produc-
tions and R a symmetric relation containing pairs of objects with interfaces
(J → G, J → G′). The relation R is called a bisimulation if, whenever we have
(J → G)R (J → G′) and a transition

(J → G)
J→F←K
−−−−−−→ (K → H),

then there exists an object with interface K → H ′ and a transition

(J → G′)
J→F←K
−−−−−−→ (K → H ′)

4 Transition labels, derived labels and labels are synonyms in this work.
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such that (K → H)R (K → H ′).
We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that

relates the two objects with interface. The relation ∼ is called bisimilarity.

Theorem 1 (Bisimilarity is a Congruence [8]). The bisimilarity relation
∼ is a congruence, i.e., it is preserved by contextualization as described in Defi-
nition 2.

3 Borrowed Contexts with NACs

Here we will extend the DPO-BC framework of [8] to productions with negative
application conditions. In order to simplify the theory and the presentation we
will from now on require that productions and objects with interfaces consist of
monos, which implies that all arrows in the diagram in Definition 3 are monos.

Prior to the extension we will investigate in Section 3.1 why such an extension
is not trivial. It is worth emphasizing that the extension will be carried out for
adhesive categories with an additional requirement that pullbacks preserve epis,
but the examples will be given in the category of labeled directed graphs. First,
we define negative application conditions for productions.

Definition 5 (Negative Application Condition). A negative application
condition NAC (x) on L is a mono x : L→ NAC . A mono m : L→ G satisfies
NAC (x) on L if and only if there is no mono p : NAC → G with p ◦ x = m.

NAC

p ##G
GG

GG
G L

m
��

xoo

=

G

A rule L ← I → R with NACs is equipped with a finite set of negative
application conditions {L→ NAC y}y∈Y and is applicable to a match m : L→ G

only if all NACs are satisfied. If we add NACs to the rules in Definition 3, we
have two ways to check their satisfiability: before (on G) or after the borrowing
(on G+), but the latter is more suitable since the first one does not take into
account any borrowed structure.

3.1 Bisimulation and NACs – Is Bisimilarity still a Congruence?

Let us assume that borrowed context rewriting works as in Definition 3 (with
monos) if the total match L → G+ satisfies all NACs of a production, i.e., G+

does not contain any prohibited structure (specified by a NAC) at the match of
L. With the following example in terms of labeled directed graphs we will show
that this notion is not yet the right one.

Below on the right we depict two servers as graphs with interfaces: J→ G

and J→ G′. An s-node represents a server. Each server has two queues Q1 and
Q2 where it receives tasks to be processed. Tasks are modelled as loops and may
either be standard (T) or urgent (U). In real world applications, standard tasks
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may come from regular users while urgent ones come from administrators. On
the left we depict how the servers work. Rule1 says that an urgent task in Q2

must be immediately executed, whereas Rule2 specifies how a standard task T

in Q2 is executed. The negative application condition NAC1 allows rule2 to be
applied only when there is no other T-task waiting in the high priority queue
Q1. We assume that a processed task is consumed by the server (see R1 and R2).

From the servers J→ G and J→ G′ above we derive the labeled transition
system (LTS) on the right w.r.t. rule1 and rule2. No further label can be derived
from K→ H and K→ H′ and the labels leading to these graphs are equal. By
Definition 4 we could conclude that (J→ G) ∼ (J→ G′). Since bisimilarity is a
congruence (at least for rules without NACs), the insertion of J→ G and J→ G′

into a context C, as in Definition 2, produces graphs J→ G and J→ G
′
respec-

tively, which should be bisimilar. Below we show a context C with a standard

task, the resulting graphs J→ G and J→ G
′
which received the T-task in queue

Q1 via the interface J, and their LTS. The server J→ G
′

cannot perform any
transition since NAC1 of rule2 forbids the BC step, i.e., the T-task in Q2 cannot
be executed because there is another standard task in the high priority queue
Q1. However, J→ G is still able to perform a transition and evolve to K→ H.
Thus, bisimilarity is no longer a congruence when productions have NACs.

The LTS for J→ G and J→ G′ shows that label1, which is derived from rule1

(without NAC) is matched by label2, which is generated by rule2 (with NAC).
These matches between labels obtained from rules with and without NACs are
the reason why the congruence property does no longer hold. In fact, the actual
definitions of bisimulation and borrowed context step are too coarse to handle
NACs.

Our idea is to enrich the transition labels J → F ← K with some infor-
mation provided by the NACs in order to define a finer bisimulation based on
these labels. A label must not only know which structures (borrowed context) are
needed to perform it, but also which forbidden structures (defined by the NACs)
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cannot be additionally present in order to guarantee its execution. These forbid-
den structures will be called negative borrowed contexts and are represented by
objects Ni attached to the label via monos from the borrowed context F (see
example below). In our server example, label1 would remain without any nega-
tive borrowed context since rule1 has no NAC. However, label2 would be the label
below on the left, where the negative borrowed context F→ N1 specifies that if
a T-task was in Q1, then NAC1 would have forbidden the BC step of J→ G′ via
rule2. That is, with the new form of labels the two graphs are no longer bisimilar
and hence we no longer have a counterexample to the congruence property.

The intuition of negative borrowed contexts is the following: given J → G,
whenever it is possible to derive a label J → F ← K with negative borrowed
context F → Ni via a production p with NACs, then if J → G is inserted into
a context5 J → Ni ← J no further label can be derived from J → G via p

since some of its NACs will forbid the rule application (see example above on
the right). Put differently, the label says that a transition can be executed if
the environment “lends” F as minimal context. Furthermore, the environment
can observe that a production is only executable under certain constraints on
the context. Finally, it is not executable at all if the object G+ with borrowed
context already contains the NAC.

3.2 DPO with Borrowed Contexts – Extension to Rules with NACs

Now we are ready to extend the DPO-BC framework to deal with productions
with NACs. First we define when a BC step is executable.

Definition 6 (Executable Borrowed Context Step). Assume that all ar-
rows are mono. Given J → G, a production L ← I → R; {xy : L → NAC y}y∈Y

and a partial match G ← D → L, we say that the BC step is executable on
J → G if for the pushout G+ in the diagram below there is no py : NAC y → G+

with m = py ◦ xy for every y ∈ Y .

D //

��
PO

L
m

��

xy
//

=
NAC y

pyzzuuuuu

J // G // G+

In the following we need the concept of a pair of jointly epi arrows in order to
“cover” an object with two other objects. That is needed to find possible overlaps
between the NACs and the object G+ which includes the borrowed context.

5
J → Ni is the composition of J → F → Ni.
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Definition 7 (Jointly Epi Arrows). Two arrows f : A → B and g : C → B

are jointly epi whenever for every pair of arrows a, b : B → D such that a ◦ f =
b ◦ f and a ◦ g = b ◦ g it holds that a = b.

In a pushout square the generated arrows are always jointly epi. This is a
straightforward consequence of the uniqueness of the mediating arrow.

Definition 8 (Borrowed Context Rewriting for Rules with NACs).
Given J → G, a production L ← I → R; {L → NAC y}y∈Y and a partial
match G← D → L, we say that J → G reduces to K → H with transition label
J → F ← K; {F → Nz}z∈Z if the following holds:

(i) the BC step is executable (as in Definition 6);
(ii) there are objects G+, C and additional arrows such that Diagram (1) below

commutes and the squares are either pushouts (PO) or pullbacks (PB) with
monos;

(iii) the set {F → Nz}z∈Z contains exactly the arrows constructed via Dia-
gram (2) (where all arrows are mono). (That is, there exists an object Mz

such that all squares commute and are pushouts or arrows are jointly epi as
indicated.)

NAC y

D //

�� PO

L
m��

xy

OO

PO

Ioo //

�� PO

R

��

G //

PO

G+

PB

Coo // H

J

OO

// F

OO

��

Koo

OO <<

Nz

(1)

NAC y
//

=

Mz

PO

Nz
oo

L

xy

OO

m
//

j.epi

G+

OO

Foo

OO
(2)

In this case a borrowed context step (BC step) is feasible and we write:

(J → G)
J→F←K;{F→Nz}z∈Z
−−−−−−−−−−−−−−−→ (K → H).

Observe that Definition 8 coincides with Definition 3 when no NACs are
present (cf. Condition (ii)). By taking NACs into account, a BC step can only
be executed when G+ contains no forbidden structure of any negative application
condition NAC y at the match of L (Condition (i)). Additionally, enriched labels
are generated (Condition (iii)).

In Condition (iii) the arrows F → Nz are also called negative borrowed
contexts and each Nz represents the structures that should not be in G+ in
order to enable the BC step. This extra information in the label is of funda-
mental importance for the bisimulation game with NACs (Definition 9), where
two objects with interfaces must not only agree on the borrowed context which
enables a transition but also on what should not be present in order to per-
form the transition. The negative borrowed contexts F → Nz are obtained from

NAC y

xy

← L
m
→ G+ ← F of Diagram (1) via Diagram (2), where we create all
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possible overlaps Mz of G+ and NAC y in order to check which structures the
environment should not provide in order to guarantee the execution of a BC
step. To consider all possible overlaps is necessary in order to take into account
that parts of the NAC might already be present in the object which is being
rewritten.

Whenever the pushout complement in Diagram (2) exists, the object G+ with
borrowed context can be extended to Mz by attaching the negative borrowed
context Nz via F . When the pushout complement does not exist, some parts
of G+ which are needed to perform the extension are not “visible” from the
environment and no negative borrowed context is generated.

Due to the non-uniqueness of the jointly-epi square one single negative appli-
cation condition NAC y may produce more than one negative borrowed context
as depicted in the example below. The rule used in the BC step on the left
shows that an online server (marked with an ON-loop) can be turned off only if
there is no standard task in any of its queues. Note that there are two possible
overlaps between NAC1 and G+. On the right we show the two corresponding
negative borrowed contexts {F→ Nz}z∈{1,2}. We depict in detail the construction
of F→ N1 as described in Definition 8.

Furthermore, in Definition 8 the set {F → Nz}z∈Z is in general infinite, but
if we consider finite objects L, NAC y and G+ (i.e., objects which have only
finitely many subobjects) there exist only finitely many overlaps Mz up to iso.
Hence the set {F → Nz}z∈Z can be finitely represented by forming appropriate
isomorphism classes of arrows.

Definition 9 (Bisimulation and Bisimilarity with NACs). Let P be a set
of productions with NACs and R a symmetric relation containing pairs of objects
with interfaces (J → G, J → G′). The relation R is called a bisimulation if, for
every (J → G)R (J → G′) and a transition

(J → G)
J→F←K;{F→Nz}z∈Z
−−−−−−−−−−−−−−−→ (K → H),
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there exists an object with interface K → H ′ and a transition

(J → G′)
J→F←K;{F→Nz}z∈Z
−−−−−−−−−−−−−−−→ (K → H ′)

such that (K → H)R (K → H ′).
We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that

relates the two objects with interface. The relation ∼ is called bisimilarity.

The difference between the bisimilarity of Definition 4 and the one above is
the transition label, which in the latter case is enriched with negative borrowed
contexts. Thus, Definition 9 yields in general a finer bisimulation.

We are now ready to show the congruence result. Recall that we are working
in the framework of adhesive categories. Our main result below needs one extra
requirement, namely that pullbacks preserve epis.

All lemmas mentioned in the proof can be found in Appendix A. Furthermore,
some steps in the proof can be conveniently illustrated by Venn-like diagrams,
which can be found in Appendix B.

Theorem 2 (Bisimilarity based on Productions with NACs is a Con-
gruence). The bisimilarity ∼ of Definition 9 is a congruence, i.e., it is preserved
by contextualization as in Definition 2.

Proof. In [8] it was shown for the category of graph structures that bisimila-
rity derived from graph productions of the form L ← I → R with monos is a
congruence. The pushout and pullback properties employed in [8] also hold for
any adhesive category. Here we will extend the proof of [8] to handle produc-
tions with NACs in adhesive categories. All constructions used in this current
proof are compliant with adhesive categories, except for parts of Lemma 2 (in
Appendix A), which requires that pullbacks preserve epis.

We will show that whenever R is a bisimulation, then R̂, which is the con-
textualization of R as in Definition 2, is also a bisimulation. With the following
argument we can infer that ∼̂ ⊆ ∼ and that ∼ is a congruence: Whenever (J →

G) ∼̂ (J → G
′
), there exists a bisimulation R such that (J → G) R̂ (J → G

′
).

Since, as we will show, R̂ is a bisimulation, it follows that (J → G) ∼ (J → G
′
).

Let R be a bisimulation and let (J → G) R̂ (J → G
′
). That is, there is a

pair (J → G) R (J → G′) and a context J → E ← J such that J → G and

J → G
′
are obtained by inserting J → G and J → G′ into this context.

Let us also assume that

(J → G)
J→F←K;{F→Nx}x∈X
−−−−−−−−−−−−−−−→ (K → H).

Our goal is to show that there exists a transition

(J → G
′
)

J→F←K;{F→Nx}x∈X
−−−−−−−−−−−−−−−→ (K → H ′)

with (K → H) R̂ (K → H ′), which implies that R̂ is a bisimulation. In Step A
we construct a transition

(J → G)
J→F←K;{F→Ny}y∈Y∪Z

−−−−−−−−−−−−−−−−−→ (K → H)

10



which implies a transition

(J → G′)
J→F←K;{F→Ny}y∈Y∪Z

−−−−−−−−−−−−−−−−−→ (K → H ′)

with (K → H) R (K → H ′), since R is a bisimulation. In Step B we extend
the second transition to obtain the transition stated in our goal above. This
argument is basically the same as in [8], except for the fact that here we are
dealing with a bisimulation definition involving transition labels with negative
borrowed contexts.

Step A: From transition (J → G)
J→F←K;{F→Nx}x∈X
−−−−−−−−−−−−−−−→ (K → H) we can derive

Diagram (3), where the decomposition of J → G is shown explicitly, all arrows
are mono and all squares are pushouts, except for the indicated pullback.

NACw

D //

��

L
��

OO

Ioo //

��

R
��

G // G //
G

+
Coo // H

J

OO

// E

OO

J

OO

// F

PB

OO

��

Koo

OO GG

Nx

(3)

NACw

D //

��

D //

��

����
L

��

xxrrr
r

OO

I //

~~}}

��

oo R

��

����

G̃
//

��
>>

G+

%%K
KK

Coo //

��
??

H
��

==

G //

@@��

G //
G

+
Coo // H

F1
//

  
AA

OO

F
&&M

MM
M

OO

��

Koo

  BB

OO ??

J

OO

>>}}
// E

OO

// E2

OO

E1

OO

oo

??

Ny

J

OO

// F

OO

��
Koo

OO

GG

Nx

(4)

From Diagram (3) we construct Diagram (4) according to [8], i.e., we project
the borrowed context diagram of J → G to a borrowed context diagram of
J → G, first without taking into account NACs. The square (K,H,E1,H) is a
pushout.

Observe that all negative borrowed contexts Nx of the transition are ob-
tained via Diagram (7). It is shown in Lemma 6 (NAC compatibility) that such
a diagram can be “decomposed” into two Diagrams (5) and (6), where the for-
mer shows the derivation of negative borrowed contexts for G+. That is, every

negative borrowed context of the larger object G
+

is associated with at least
one borrowed context of the smaller object G+. Note that the transformation of
one negative borrowed context into the other is only dependent on the context
J → E ← J , into which J → G is inserted, but not on G itself, since E2 is the
pushout of J → E, J → F . This independence of G will allow us to use this
construction for J → G′ in Step B (see Appendix B for this construction as a
Venn diagram).

In addition there might be further negative borrowed contexts F → Ny with
indices y ∈ Z, where Y and Z are disjoint index sets. These are exactly the
negative borrowed contexts for which Diagram (6) can not be completed since
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the pushout complement does not exist. If we could complete Diagram (6) we
would be able to reconstruct Diagram (7) due to Lemma 6.

Hence we obtain a transition from J → G which satisfies Conditions (ii) and
(iii) of Definition 8. We still have to show that the BC step for G+ is executable
(Condition (i)). By assumption, the BC step from J → G of Diagram (4) is
executable. So by Lemma 7 there does not exist any iso F → Nx, which by
Lemma 5 implies that no F → Ny, y ∈ Y is an iso. Furthermore no F → Ny

with y ∈ Z can be an iso, since otherwise we could complete Diagram (6). Then
by Lemma 7 we conclude that the BC step from J → G is executable.

Since all conditions of Definition 8 are satisfied, we can derive the transition

(J → G)
J→F←K;{F→Ny}y∈Y∪Z

−−−−−−−−−−−−−−−−−→ (K → H) from Diagram (4) using Definition 9.

Since R is a bisimulation, this implies (J → G′)
J→F←K;{F→Ny}y∈Y∪Z

−−−−−−−−−−−−−−−−−→ (K →
H ′) with (K → H) R (K → H ′). Additionally we can infer from Diagram (4)
that K → H is the insertion of K → H into the context K → E1 ← K.

Step B: In Step A we have shown that J → G′ can mimic J → G due to

the bisimulation R. Here we will show that (J → G
′
) can also mimic (J → G)

since R is a bisimulation and both objects with interface are derived from the
insertion of J → G and J → G′ into the context J → E ← J .

We take the transition from J → G′ to K → H ′ with (K → H) R (K → H ′)

from Step A and construct a transition from (J → G
′
) to (K → H

′
) with (K →

H) R̂ (K → H
′
). Recall that J → G

′
is J → G′ in the context J → E ← J .

NACw
// My Ny

oo

L

OO

//

=
j.epi

G+

OO

F

OO

oo

PO

(5)

Ny
// M ′

x Nx
oo

F

OO

//

=
j.epi

E2

OO

F

OO

oo

PO

(6)

NACw
// Mx Nx

oo

L

OO

//

=
j.epi

G
+

OO

F

OO

oo

PO

(7)

NACw

D′ //

��

D
′ //

��

����
L

��

yyss
ss

OO

I //

��~~~

��

oo R

��

~~}}

G̃′ //

��
??

G′+

%%K
KK

C ′oo //

��
??

H ′
  

@@

G′ //

??��

G
′ //

G
′+

C
′oo //

H
′

F1
//

  
BB

OO

F
&&M

MMM

OO

��

Koo

  B
B

OO >>

J

OO

>>||
// E

OO

// E2

OO

E1

OO

oo

>>

Ny

J

OO

// F

OO

��
Koo

OO

FF

Nx

(8)

According to [8] we obtain Diagram (8), first without considering the NACs.

The square (K,H ′, E1,H
′
) is a pushout. Then we construct {F → Nx}x∈X as

shown in Diagram (6). The arrows F → E2 ← F and {F → Ny}y∈Y are already
present in Diagram (8) and so we build M ′

x and Nx by considering all jointly epi
squares. Each F → Nx constructed in this way can be also derived as a negative
borrowed context with Diagram (7) due to Lemma 6 (NAC compatibility). Fur-
thermore, we will not derive additional negative borrowed contexts because the
arrows F → Ny with y ∈ Z can not be extended to negative borrowed contexts
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of the full object G+ since an appropriate Diagram (6) does not exist. Hence we

obtain a transition label from J → G
′

which satisfies Conditions (ii) and (iii)

of Definition 8. We still have to show that the BC step for G
′+

is executable
(Condition (i)).

Observe that F → E2 ← F of Diagram (6) are equal in Step A and Step B
and do not contain any information about G or G′ (see Appendix B). We can
conclude that Diagram (6) generates the same negative borrowed contexts in
both steps. Since in Diagram (4) there is no negative borrowed context which is
an iso, the same holds for Diagram (8). By Lemma 7 we conclude that the BC

step from J → G
′
is also executable.

Finally, by Definition 9 we infer that (J → G
′
)

J→F←K;{F→Nx}x∈X
−−−−−−−−−−−−−−−→ (K →

H
′
), and since the square (K,H ′, E1,H

′
) is a pushout, K → H

′
is K → H ′

inserted into the context K → E1 ← K. From earlier considerations we know
that K → H is obtained by inserting K → H into K → E1 ← K. Hence, we

can conclude that (K → H) R̂ (K → H
′
) and we have achieved our goal stated

at the beginning of the proof, which implies that R̂ is a bisimulation and ∼ is a
congruence. ⊓⊔

4 Proof Techniques for DPO-BC with NACs

Bisimulation proofs often need infinite relations. Up-to techniques [14] relieve the
onerous task of bisimulation proofs by reducing the size of the relation needed
to define a bisimulation. It is also possible to check bisimilarity with finite up-to
relations in some cases where any bisimulation is infinite. In order to introduce
this technique we first need to define the notion of progression (see also [14]).

Definition 10 (Progression with NACs). Let R, S be relations containing
pairs of objects with interfaces of the form (J → G, J → G′), where R is sym-
metric. We say that R progresses to S, abbreviated by R  S, if whenever

(J → G)R (J → G′) and (J → G)
J→F←K;{F→Nz}z∈Z
−−−−−−−−−−−−−−−→ (K → H), there ex-

ists an object with interface K → H ′ such that (J → G′)
J→F←K;{F→Nz}z∈Z
−−−−−−−−−−−−−−−→

(K → H ′) with (K → H)S (K → H ′).

According to Definition 9, a relationR is a bisimulation if and only ifR R.

Definition 11 (Bisimulation up to Context with NACs). Let R be a sym-
metric relation containing pairs of objects with interfaces of the form
(J → G, J → G′). If R  R̂, where R̂ is the closure of R under contextua-
lization, then R is called bisimulation up to context.

It can be shown that bisimilarity up to context implies bisimilarity.

Proposition 1 (Bisimulation up to Context with NACs implies Bisim-
ilarity). Let R be a bisimulation up to context. Then it holds that R ⊆ ∼.
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Proof. Follows quite easily from the proof of Theorem 2 (see also [8]). ⊓⊔

For productions of the form L ← I → R (without NACs) a bisimulation
checking technique is proposed in [8] and it takes into account only certain la-
bels. A label is considered superfluous and called independent if we can add two
arrows D → J and D → I to the BC step diagram in Definition 3 such that
D → I → L = D → L and D → J → G = D → G. That is, intuitively, the ob-
ject G to be rewritten and the left-hand side L overlap only in their interfaces.
Any move made by an independent label need not be matched in the bisimula-
tion game, since a matching transition is always possible. Hence, only dependent
labels have to be checked. Dependent labels are called engaged in Milner’s ap-
proach [15]. In the following we will investigate whether this technique can be
carried over to productions with NACs.

First, we repeat the relevant definition for productions without NACs.

Definition 12 ((In)Dependent Transition Labels of Productions with-

out NACs). Let (J → G)
J→F←K
−−−−−−→ (K → H) be a transition of (J → G).

We say that this transition is independent whenever we can add two arrows
D → J and D → I to the diagram in Definition 3 such that the diagram below
commutes, i.e., D → I → L = D → L and D → J → G = D → G. We write

(J → G)
J→F←K
−−−−−−→d (K → H) if the transition is not independent and we call it

dependent.

D //

��

��

%%
L

��

Ioo //

��

R

��

G // G+ Coo // H

J

OO

// F

OO

Koo

OO >>

(9)

Let R, S be relations containing pairs of objects with interfaces of the form
(J → G, J → G′), where R is symmetric. We say that R d-progresses to
S, abbreviated by R d S, if whenever (J → G)R (J → G′) and (J →

G)
J→F←K
−−−−−−→d (K → H), there exists an object with interface K → H ′ such

that6 (J → G′)
J→F←K
−−−−−−→ (K → H ′) and (K → H)S (K → H ′).

If no NACs are present, the proof technique works according to the following
proposition.

Proposition 2. Let R be symmetric and let R d R̂. This implies that R is
contained in ∼.

Unfortunately, as we will show in the following counterexample, the proof
technique based on (in)dependent labels does not carry over straightforwardly
into the setting with NACs. We will give an example for a transition with an
independent label for one graph that can not be simulated by its partner due to
the fact that the negative application condition is satisfied for the first graph,
but not for the second.
6 Note that J → G

′ may answer with an independent transition label.
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Consider two graphs with interface: J→ G above and J→ G′ below. Above
we depict how the independent label li = J→ F← K; {F→ N1} is derived from
J→ G via a graph production p = L← I→ R; {L→ NAC} using Definition 8.

Recall that if p was a rule without NAC then the same transition label li
would be induced for J→ G′ and it would not be necessary to consider these
labels in the bisimulation checking procedure [8]. However, the presence of a
NAC in p restricts the applicability of this proof technique since the transition
with label li of J→ G′ is only feasible if the NAC allows the execution of the BC
step. Below we illustrate the induced BC step from J→ G′ via p. This BC step
is not executable since G′+ contains NAC. However, for completeness we still list
all negative borrowed contexts (below on the right).

Note that in other cases the BC step of the second graph could be feasible,
but with different negative borrowed contexts. Again, in this case the two steps
would not properly match each other and the two graphs would not be bisimilar.

As we have shown, the proof technique based on independent labels does not
work in general for rules with NACs. On the other hand, we can still use these
labels to improve efficiency of the bisimulation checking procedure. This works
as follows: whenever we derive an independent label from J→ G via a production
with NACs, we can construct the same borrowed context diagram for J→ G′ and
it only remains to show that in both cases the same set of negative borrowed
contexts is produced. Then for sure the BC step from J→ G′ is executable and
both independent labels are suitable matched. Furthermore, in this case it is not
necessary to check whether the pair of successors is contained in the bisimulation
relation since both can be obtained by inserting J→ G, J→ G′ into the same
context (this is analogous to the corresponding proof in [8]). This simplification
will often lead to smaller bisimulations.

In Appendix C we illustrate this efficiency improvement for our next example.
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5 Example 1: Servers as Graphs with Interfaces

Here we apply the DPO-BC extension to NACs in order to check the bisimilarity
of two graphs with interfaces J1 → G1 and J1 → G2 (shown below on the right)
with respect to rule1 and rule2 of Section 3.1. Here G1 contains only one server,
whereas G2 contains two servers which may work in parallel.

Above on the left we show a transition derivation for J1 → G1 (which contains
only one server) via rule2 according to Definition 8. There is no mono NAC1 → G+

1

forbidding the BC rewriting (Condition (i)) and the step is executable. The graph
C1 and additional monos lead to the BC step (Condition (ii)). The construction
of the negative borrowed context F1 → N1 from NAC1 ← L2 → G+

1
← F1, as spe-

cified in Condition (iii), is shown on the right. Here the graph M1 is the only
possible overlap of NAC1 and G+

1
such that the square with indicated jointly epi

monos commutes. Since the pushout complement F1 → N1 → M1 exists, G+
1

can
be indeed extended to M1 by gluing N1 via F1. All three conditions of Definition 8
are satisfied and so the BC step above with label = J1 → F1 ← J1; {F1 → N1} is
feasible. This transition can be interpreted as follows: the environment provides
G1 with a T-task in Q2 (see borrowed context F1) in order to enable the BC step,
but the rewriting is only possible if no T-task is waiting in queue Q1 (see N1).
It can be shown that J1 → G2 can do a matching step with the same label.

Analogously, we can derive other transitions from J1 → G1 and J1 → G2,
where the labels generated via rule1 (without NAC) do not have any negative
borrowed context. Below we depict schematically the resulting labeled transi-
tion systems (LTS), for which we have already shown the derivation of label for
J1 → G1. In each LTS the labels on the left are derived via rule1 and the labels on
the right via rule2. The label l′ results from rule1 with a maximal overlap of the
graph (G1 or G2) and the left-hand side (similar to label). Both LTSs have sev-
eral transitions pointing downwards (labelled l′′,l′′′, etc.), which are derived with
partial matches smaller than the matches of the loops. In fact, the labels in both
LTSs are the same and the resulting states can be matched. So J1 → G1, J1 → G2
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and all their successors can be matched via a bisimulation and we conclude that
(J1 → G1) ∼ (J1 → G2).

Note that in order to obtain an extended example, we could add a rule
modeling the processing of tasks waiting in queue Q1.

6 Example 2: Blade Servers

Here we present a more elaborate example in terms of blade server systems.
A blade server is a server chassis which has multiple circuit boards, known as
blade units. Each blade unit is a server in its own right with components such
as processors, memory and local disk storage. These systems are flexible and
modular since their processing power can be extended by just adding blade
units.

Above we depict two blade servers. Each server chassis (M-labeled node) has
three ports: input (in-node), output (out-node) and status (s-node). The input
receives commands from external systems (not modeled here) which are exe-
cuted by a blade. The output makes the result of command executions available
to external systems. The status indicates if a blade server is busy and cannot
handle any further request. The external systems have only access to these three
ports (see interfaces J). Each blade (B-node) performs command executions in-
dependently from other blades. Single-processed blades (marked with a 1x-loop)
perform one command execution at a time, while double processed blades (de-
picted with a 2x-loop) perform up to two commands.

The operational semantics for our blade servers, which is not intended to
be comprehensive, is given by the rules below. Read−in shows how a command
(cmd-node) is read by an available blade (indicated by a free-loop). The free-
loops on each blade specify its processing power currently available. To improve
efficiency, each blade handles incoming command requests simultaneously. The
NACs of Read−in restrict a command to be read only when the blade server is
not busy (NAC1) and not fully loaded (NAC2 and NAC3).

17



Update−Status1 and Update−Status2 update the current status of a server.
When a command is read we set the status to busy and force updating. The
production Update−Status1 checks if there is a free blade so that the busy-
flag can be removed. Update−Status2 checks if the server is not fully loaded.
Process executes commands if the server is not currently updating (see NAC1).
Process−in−parallel1 allows a double capacity blade to execute two commands
in one single step. Process−in−parallel2 specifies that two single capacity blades
can execute their commands in parallel. Finally, Write−out returns the result,
sets the blade as available (free-loop) and flags the blade server to update its
status.

From J→ G and J→ G′ and the operational semantics we derive the labeled
transition system (LTS) below w.r.t. to Definition 8. Black circles are states and
arrows are annotated with labels and rule names. In our example, for each state
the processing capability of a free blade is represented as “ ”. In the following
C abbreviates “command” and R stands for “result”. So when a blade reads
a command, then “ ” becomes “C” and when the command is executed, then
“C” becomes “R”. Since graphs are considered up to isomorphism “C ” (“R ”)
represents the same system state as “ C” (“ R”). If the start state is J→ G

(J→ G′) then Process−in−parallel1 (Process−in−parallel2) is applied to derive
the transition between the “CC” and “RR” states. Labels with the same index
(e.g. l2) are equal. Examples of label derivations and the other labels of the LTS
below can be found in Appendix D.

The LTS below is a simplification since the dashed arrows point to graphs
that are basically J→ G (J→ G′) plus some extra elements to represent the
results of processed commands (which are the same in both cases). This issue is
automatically handled by the up-to context technique given in Definition 11.
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Blade servers are very flexible in terms of adding and removing blades to
cover non-constant demands in terms of computational power. In our example
even though each blade processes commands independently from other blades,
we had to make this explicit for two single-processor blades inside the same
blade server. If we had not defined Process−in−parallel2, it would not have been
possible to show (J→ G) ∼ (J→ G′). This problem might be solvable by using
parallel rule applications, but this might lead to problems with non-injective
matches. Furthermore we would get a different notion of behavioral equivalence
that is reminiscent of step bisimilarity.

7 Conclusions and Future Work

We have shown how rules with NACs should be handled in the DPO with bor-
rowed contexts and proved that the derived bisimilarity relation is a congruence.
This extension to NACs is relevant for the specification of several kinds of non-
trivial systems, where complex conditions play an important role. They are also
frequently used when specifying model transformation, such as transformations
of UML models. Behavior preservation is an important issue for model transfor-
mation.

Here we have obtained a finer congruence than the usual one. Instead, if
one would reduce the number of possible contexts (for instance by forbidding
contexts that contain certain patterns or subobjects), we would obtain coarser
congruences, i.e., more objects would be equivalent. Studying such congruences
will be a direction of future work.

Furthermore, a natural question to ask is whether there are other extensions
to the DPO approach that, when carried over to the DPO-BC framework, would
require the modification of transition labels. One such candidate are generalized
application conditions, so-called graph conditions [16], which are equivalent to
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first-order logic and of which NACs are a special case. Such conditions would
lead to fairly complex labels.

Due to the fact that the bisimulation checking procedure is time consuming
and error-prone when done by hand, we plan to extend the on-the-fly bisimula-
tion checking algorithm, defined in [17, 18], for productions with NACs. In order
to do this efficiently we need further speed-up techniques such as additional up-
to techniques and methods for downsizing the transition system, such as the
elimination of independent labels. We discussed in Section 4 that the proof tech-
nique eliminating independent labels as in [7, 8] (or non-engaged labels as they
are called in [15]) does not carry over straightforwardly from the case without
NACs, but that it can still be useful. This needs to be studied further.

Some open questions remain for the moment. First, in the categorical setting
it would be good to know whether pullbacks always preserve epis in adhesive
categories. This question is currently open, as far as we know. Second, it is
unclear where the congruence is located in the lattice of congruences that respect
rewriting steps with NACs. As for IPO bisimilarity it is probably not the coarsest
such congruence, since saturated bisimilarity is in general coarser [19]. So it
would be desirable to characterize such a congruence in terms of barbs [20].

Finally, it is not clear to us at the moment how NACs could be integrated
directly into reactive systems and how the corresponding notion of IPO would
look like. In our opinion this would lead to fairly complex notions, for instance
one would have to establish a concept similar to that of jointly epi arrows.

Acknowledgements: We would like to thank Tobias Heindel for helpful
discussions on this topic.
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A Additional Lemmas

In this section we present the lemmas required by the proofs in this paper.
Lemmas 2, 4, 5, 6 and 7 require the category to be adhesive. Lemma 2 (and
Lemma 6, which is based on Lemma 2) additionally requires that pullbacks
preserve epis.

Lemma 1. Given the commuting diagram below, where the arrows c and d are
jointly epi, the arrow e is an epi if and only if (f, g) is jointly epi.

B

c
�� f

��

=C
d
//

g 11

=

D
e

  
AA

AA
A

E

Proof. We consider both directions. Take two arrows x, y : E → F .

(“⇐”) Assume that (f, g) is jointly epi and x ◦ e = y ◦ e. Then we have:
x ◦ e ◦ c = y ◦ e ◦ c⇒ x ◦ f = y ◦ f and x ◦ e ◦ d = y ◦ e ◦ d⇒ x ◦ g = y ◦ g. Since
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(f, g) is jointly epi, x ◦ f = y ◦ f and x ◦ g = y ◦ g we have x = y. Therefore we
can conclude that e is an epi.

(“⇒”) Let e be an epi, x ◦ f = y ◦ f and x ◦ g = y ◦ g. Then we have: x ◦ e ◦ c =
x ◦ f = y ◦ f = y ◦ e ◦ c and x ◦ e ◦ d = x ◦ g = y ◦ g = y ◦ e ◦ d. Since (c, d) is
jointly epi, x ◦ e ◦ c = y ◦ e ◦ c and x ◦ e ◦ d = y ◦ e ◦ d we have x ◦ e = y ◦ e.
Our assumption that e is an epi implies x = y. Thus, we conclude that (f, g) is
jointly epi. ⊓⊔

Lemma 2. Given a commuting cube with all arrows mono and all lateral sides
pushouts, then the pair of arrows (c, d) is jointly epi if and only if (p, q) is jointly
epi.
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k
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F
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vvnnnnnn

n   
BB

G

p
  A

AA
H

q
vvnnnnnnn

I

Proof. We construct the pushout (r, s, J) of m and n and obtain t as an induced
arrow such that p = t ◦ r and q = t ◦ s (see the upper left diagram below). We
proceed analogously for (A,C,B,D) (see the lower left diagram below). Gluing
these new monos to the cube gives rise to the cube below, except for l : E → J .
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Note that r◦i◦a = r◦m◦h = s◦n◦h = s◦j◦b since (A,F,B,G), (F,G,H, J)
and (A,F,C,H) commute. So (A,B,C,E) as a pushout and r ◦ i ◦ a = s ◦ j ◦ b

imply a unique arrow l : E → J such that l ◦ e = r ◦ i and l ◦ f = s ◦ j.
From the inner cube we can infer that (A,F,C,H) + (F,H,G, J) is a pushout
and by the commutativity it implies (A,C,B,E)+(B,E,G, J) as a pushout. By
pushout decomposition, (B,E,G, J) is a pushout since (A,C,B,E) is a pushout.
Analogously, (C,E,H, J) is also a pushout. The rightmost diagram is extracted
from the cube: the outer square and (1) are pushouts. By pushout decomposition
(2) is also a pushout.
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Here we will show: (c, d) jointly epi ⇒ (p, q) jointly epi. Since (A,B,C,E) is
a pushout and (c, d) is jointly epi (assumption), then by Lemma 1 the arrow g

is epi. The arrow t is also epi since (2) is a pushout. Finally, by Lemma 1 we
obtain that p and q are jointly epi.

The other direction (“⇐”) is shown as follows. Since (F,G,H, J) is a pushout
and (p, q) is jointly epi (assumption), then by Lemma 1 the arrow t is epi. Since
(2) is a pushout and l is mono, then (2) is also a pullback. The pullback (2) and
t as epi imply that g is epi as well. So by Lemma 1 (c, d) is jointly epi. ⊓⊔

Lemma 3 (Composition of Jointly Epi Arrows). Whenever (1) is a com-
muting diagram and (f, g) and (i, j) are pairs of jointly epi arrows, then the
composition (f, g ◦ j) is also jointly epi.

A
f
//

(1)

B

C

x

OO

i
// D

g

OO

E

j

OO

Proof. By Definition 7 (f, g) and (i, j) jointly epi means: (i) ∀a, b : B → F : a ◦
f = b ◦ f ∧ a ◦ g = b ◦ g ⇒ a = b and (ii) ∀ c, d : D → G : c ◦ i =
d ◦ i ∧ c ◦ j = d ◦ j ⇒ c = d. We assume that ∀a, b : B → F : a ◦ f =
b ◦ f ∧ a ◦ (g ◦ j) = b ◦ (g ◦ j) and we will show that this implies a = b. Observe
that a◦g ◦ i = a◦f ◦x ((1) commutes) = b◦f ◦x (a◦f = b◦f by assumption) =
b ◦ g ◦ i ((1) commutes). Then we have a ◦ g ◦ i = b ◦ g ◦ i (previous calculation)
and a ◦ g ◦ j = b ◦ g ◦ j (assumption), which implies a ◦ g = b ◦ g (iii). By using
(i) and(iii) (a ◦ f = b ◦ f and a ◦ g = b ◦ g, respectively) together we have:
∀a, b : B → F : a ◦ f = b ◦ f ∧ a ◦ g = b ◦ g, which by (i) implies that a = b. ⊓⊔

Lemma 4. Given the diagram below, where all arrows are mono and (c, d) is
jointly epi, whenever b is an iso then so is c.

C
d // D

A a
//

b

OO

=
j.epi

B

c

OO

Proof. We have to check that c is an iso. Since c is mono and we are working in
an adhesive category it is enough to show that c is epi (cf. [13]). Assume that
there are arrows x, y : D → X with x ◦ c = y ◦ c. Composing with a gives us
x ◦ c ◦ a = y ◦ c ◦ a and hence x ◦ d ◦ b = y ◦ d ◦ b. Since b is an iso it follows that
x ◦ d = y ◦ d. Finally, since c and d are jointly epi we obtain x = y. ⊓⊔

Lemma 5. In the diagram below, where all arrows are mono, it holds: whenever
F → N is not iso then F → N is not iso as well.
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N // M ′ Noo

F

OO

//

=
j.epi

E2

OO

F

OO

oo

PO

Proof. We show the contrapositive: F → N iso⇒ F → N iso. The arrow F → N

as an iso implies by Lemma 4 that E2 → M ′ is also an iso. The pushout along
monos is also a pullback and E2 →M ′ iso implies F → N iso. ⊓⊔

Lemma 6 (NAC Compatibility). In the following let all arrows be mono and
let Diagram (10) be given.

If we have Diagram (12), then there exist objects My, Ny and M ′
x such that

Diagram (11)+(13) can be constructed as indicated. Furthermore, if we have
Diagram (11)+(13), then there exists an object Mx such that Diagram (12) can
be constructed as indicated.

L

�� $$H
HHH

G+ //
=

G
+

F

OO

//

PO

E2

OO

=

Foo

bbDDDD

(10)

NACw
// My Ny

oo

L

OO

//

=
j.epi

G+

OO

F

OO

oo

PO

(11)

NACw
// Mx Nx

oo

L

OO

//

=
j.epi

G
+

OO

F

OO

oo

PO

(12)

Ny
// M ′

x Nx
oo

F

OO

//

=
j.epi

E2

OO

F

OO

oo

PO

(13)

Proof. The proof is split into two steps.
Step 1 (Diagram (11)+(13) ⇒ Diagram (12)). We take the inner squares of

Diagram (11)+(13) and build G
+

as the pushout of E2 ← F → G+ and Mx as
the pushout of M ′

x ← Ny →My (see Diagram (14)). Since (left) is a pushout and

(back), (right) and (top) commute, then there exists a unique arrow G
+
→Mx

such that (bottom) and (front) commute. By pushout composition and then
decomposition we find that (front) is a pushout. So E2 → M ′

x mono implies

G
+
→ Mx mono. The arrows E2 → M ′

x and Ny → M ′
x are jointly epi which

implies by Lemma 2 that G
+
→Mx and My →Mx are also jointly epi.

F //

""E
EE

��

Ny

��

""F
F

E2
//

��

M ′
x

��
G+ //

""E
E

My

""EE

G
+ // Mx

(14)
NACw

// My
// Mx M ′

x
oo Nx

oo

L

OO

//

=
j.epi

G+

OO

//

=
j.epi

G
+

OO

PO

OO

E2

OO

oo F

OO

oo

PO

Gluing the leftmost and rightmost squares of Diagram (11)+(13) to the bot-
tom and front faces of Diagram (14) produces the diagram above on the right,
which by Lemma 3 and pushout composition is exactly Diagram (12). Note that
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for each choice of My and M ′
x in Diagram (11)+(13), there is a unique Mx (up

to iso) leading to Diagram (12).

Step 2 (Diagram (12) ⇒ Diagram (11)+(13)). Combining Diagrams (10) and
(12) gives rise to Diagram (15). We take all possible factorizations NACw →
My → Mx of NACw → Mx such that there exists an arrow G+ → My (see
Diagram (16)) with (1), (2) commuting and jointly epi and all arrows are monos.
At least one such My—which can be obtained as the pushout of L → NACw

and L → G+—exists. By pushout splitting we find M ′
x and both squares are

pushouts along monos.

NACw
// Mx Nx

oo

L

OO

//

=

G+

j.epi

//
G

+

OO OO

E2
oo F

OO

oo

PO

(15) NACw
// My

// Mx M ′
x

oo Nx
oo

L

OO

//

(1)

G+

OO
(2)

//
G

+

OO

E2
oo

OO

PO

F

OO

oo

PO

(16)

Gluing the pushout of Diagram (10) to Diagram (16) produces Diagram (17),
except for Ny and its arrows. So the fact that (left)+(front) is a pushout and the
commutativity of (bottom) imply that the outer square over E2 in Diagram (18)
is a pushout. By pushout splitting we obtain the inner squares as pushouts along
monos.

F

��

// Nx

��
F
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//

=
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x
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(17)
E2

��
=

F
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//

//

PO

Ny

��

//

PO

M ′
x

��

G+ // My
// Mx

(18)

NAC j
// My Ny

oo // M ′
x Nx
oo

L

OO

//

=
j.epi

G+

OO

F

OO

oo

PO

OO

//

=
j.epi

E2

OO

F

OO

oo

PO

(19)

Since all lateral sides of the cube are pushouts, the bottom and top faces

commute and G
+
→Mx and My →Mx are jointly epi we can infer by Lemma 2

that Ny → M ′
x and E2 → M ′

x are jointly epi as well. By taking the squares we
are interested in, we obtain Diagram (19), which is Diagram (11)+(13). Observe
that for each choice of Mx in Diagram (12) and each factor My there is a unique
Ny leading to Diagram (11)+(13). ⊓⊔

Lemma 7. A borrowed context step (as in Definition 8) is not executable when-
ever there exists a mono py : NAC y → G+ such that m = py ◦ xy (see Defi-
nition 6). This is equivalent to the situation, in which there exists a negative
borrowed context F → Nz which is an iso.

Proof. We have to show: ∃py : NAC y → G+ mono with m = py◦xy ⇔ ∃ negative
borrowed context (F → N) which is iso.
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NAC y

py
//

=

G+

PO

Foo

L

xy

OO

m
//

j.epi

G+

≀

OO

Foo

OO

≀

OO

(“⇒”). Assume there exists a mono py : NAC y → G+ with m = py ◦ xy (left
square of the diagram below). The arrows py and idG+ are jointly epi. A pushout
along monos is also a pullback. Thus, we can infer that F → N is also an iso
(idF ).
(“⇐”). Suppose that F → N is an iso, i.e., the arrow coincides with F

∼
→ F .

The pushout implies G+ ∼
→ G+. That is, we have idG+ ◦m = py ◦ xy which can

be simplified to m = py ◦ xy. Observe that py and G+ ∼
→ G+ are clearly jointly

epi. ⊓⊔

B Objects with Interfaces as Venn Diagrams

We depict some diagrams of Theorem 2 as Venn diagrams. The left-hand side
L of a production, its interface I, the object G and its interface J are shown as
circles. The NAC is the circle L together with the “boomerang”-shaped area.
Figure 1 shows typical overlaps between an object J → G and the left-hand
side of a production that occur when a BC step takes place. Depending on the
situation the NAC might have a bigger overlapping structure with G, which—in
the picture—means that the NAC is rotated counterclockwise. On the right we
show an overlapping when J → G is inserted into a context J → E ← J .

Fig. 1. Overlaps between J → G and a production NAC ← L← I → R

Figure 2 shows graphical representations of Diagrams (5),(6) and (7) of The-
orem 2. Non-empty areas, i.e., areas where items are present, are shaded gray.

The diagram at the top shows the construction of negative borrowed contexts
of the form F → N for the BC step of J → G. The objects G+ and NAC

overlap, giving rise to M . The object G+ is G plus the borrowed context F . So
N represents exactly what should not be further provided by the environment in
order to guarantee the feasibility of the BC step. Note that N does not contain
any information about G which is not “visible” from the interface J .

The diagram at the bottom depicts how the negative borrowed context F →
N is built for the BC step of J → G. Also note that N does not contain any
information about G which is not already present in the interface J .

Finally, the diagram in the middle represents the translation of a negative
borrowed context with respect to a new context that is added. Observe that the
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Fig. 2. Graphical representations of Diagrams (5), (6) and (7) of Theorem 2.

27



translation is based on the context E2, which does not depend on the contents
of G, and therefore can be used for both parts of the proof of Theorem 2.

C Example 1 (Servers) – Independent Label Derivation

Here we illustrate how independent labels can be used to improve the efficiency
of the bisimulation checking procedure.

Consider the servers J1 → G1 and J1 → G2 from the example of Section 5.
In Figure 3 we derive the transition label J1 → F1 ← K1; {F1 → N1} via rule2

according to Definition 8. This transition label is independent w.r.t. Defini-
tion 12 since there exist D→ J1 and D→ I2 such that D→ G1 = D→ J1 → G1

and D→ L2 = D→ I2 → L2. In this case the environment provides G with the
entire left-hand side of the rule (see F1).

Fig. 3. Example of independent label derivation from J1 → G1

Since the label above is independent it induces the derivation of an indepen-
dent label J1 → F1 ← K1 (without negative borrowed contexts) for the transition
of J1 → G2 via rule2 (compare with the proof technique for productions without
NACs in [8]). However, rule2 has a NAC and so we have to check an additional
requirement, namely that the negative borrowed contexts are the same for both
independent transition labels. Whenever this extra requirement is satisfied the
independent transition label J1 → F1 ← K1; {F1 → N1} is the same for both BC
steps and the BC step of J1 → G2 is executable.
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Below we depict how this condition is checked. In the diagram on the left
the morphisms NAC 1 ← L2 → F1 ← J1 and J1 → G2 are already known. The
morphisms L2 → F1 ← J1 stems from the BC step of J1 → G1. We then construct
the pushout square in the second row and L2 → G+

2 is the composition of L2 →
F1 and F1 → G+

2 . The construction of the upper part of the diagram proceeds as
in Definition 8 (BC rewriting with NACs). On the right we depict this diagram
for our current example. Note that NAC1 is not present in G+

2
and the negative

borrowed context F1 → N1 obtained below is the same as for the independent
label of J1 → G1. In this case, the induced BC step of J1 → G2 is executable and
provides a matching label for the transition of J1 → G1. Furthermore, we do not
have to check whether the pair of successors is contained in the bisimulation
relation since both can be obtained by inserting J→ G1, J→ G2 into the same
context.

NAC 1
// M2 N1

oo

L2

=
j.epi

//

OO

66G+
2

OO

F1

PO

OO

oo

G2

OO

J1
oo

OO

PO

D Example 2 (Blade Servers) – Label Derivations

Here we show additional label derivations for the blade server example. Figure 4
depicts the BC step for the blade server J→ G, which produces label l1 of the
LTS in Section 6. On the right we show how the negative borrowed context is
generated. Observe that L→ NAC2 and L→ NAC3 of Read−in do not yield any
negative borrowed contexts.

Figure 5 shows another case of label generation, namely the BC step via
Update−Status2 from the leftmost state (“ ”).

Finally, in Figure 6 we depict the remaining labels (l2, l3, l5, l6, l7 and l8) ob-
tained for the blade servers of Section 6. These labels are associated with empty
sets of negative borrowed contexts.
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Fig. 4. Label derivation – label l1

Fig. 5. Label derivation – label l4
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Fig. 6. Remaining transition labels for the blade server example
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