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Abstract. We define a construction operation on hypergraphs using a colimit and show that
its expressiveness concerning graph rewriting is equal to the graph expressions of Courcelle
and the double-pushout approach of Ehrig. With an inductive way of representing graphs,
graph rewriting arises naturally as a derived concept. The usefulness of our approach for
the compositional modelling of concurrent systems is then shown by defining the semantics
of a process calculus with mobility and of Petri nets.

1 Introduction

Graph rewriting is one adequate approach for modelling the semantics of concurrent systems:
multi-dimensional structures describing interconnected computers or other components can be
naturally described by graphs. When trying to model semantic frameworks for concurrency (such
as process algebras) with graph rewriting, we run into problems since it is hard to represent
compositionality and modularity inherent in these formalisms in the world of graphs. Process
algebras rely on compositionality in the definition of their syntax and their semantics, and in
almost all proofs. Compositionality is easy to achieve in a “string-based” syntax: systems are
constructed out of smaller systems by concatenating their descriptions, connections are established
by having common channel names.

We propose an analogue to concatenation in the world of hypergraphs: hypergraphs have
so-called “external nodes”, their interface to the outside, and in order to attach two (or more)
hypergraphs, information is needed on how these external nodes should be merged. Such a form of
graph concatenation was proposed in [1] in the form of “graph expressions”, where three operators
(disjoint sum, node fusion, redefinition of external nodes) were introduced. These operators can
be used in order to gradually construct hypergraphs out of smaller hypergraphs.

We propose a similar approach of graph construction where the information on how to concate-
nate graphs is not provided by operators, but rather by part of a colimit. The construction itself
consists of completing the colimit and is related to the double-pushout approach [3]. The expres-
sive power of graph rewriting in our approach is the same as for graph expressions [1] (and thus
the same as in the double-pushout approach [8]). Compared to [1] we have additional information
in the uniqueness property of the colimit and embeddings of the subgraphs into the constructed
graph which are provided by the colimit. This information can be helpful when we want to reason
about concurrent systems or if we want to extend the formalism. We still have a description of the
graph in terms of edge and node sets, which makes it easy to add additional labels or annotations.

We demonstrate the usefulness of our approach by giving a compositional semantics of a process
calculus with mobility and of Petri nets. Note that, although we model concurrent systems, the
semantics itself will not be concurrent in the sense of true concurrency (as in [6]).

2 Hypergraphs and Hypergraph Construction

We first define some basic notions, namely hypergraph, hypergraph morphism, and isomorphism
(see also [8]). Hypergraphs are a generalization of directed graphs where an arbitrarily long se-
quence of nodes is assigned to every edge. The order of nodes with respect to a certain edge is



relevant. Intuitively we construct hypergraphs by drawing edges (with nodes) and then merging
the nodes, rather than by drawing nodes and then connecting them by edges. This intuition will
also guide our choice of a hypergraph construction operator.

Definition 1. (Hypergraph, Hypergraph Morphism, Isomorphism) Let L be a fixed set
of labels. A hypergraph H is a tuple H = (VH , EH , sH , lH , χH) where VH is a set of nodes, EH

is a set of edges disjoint from VH , sH : EH → V ∗

H maps each edge to a string of source nodes,
lH : EH → L assigns a label to each edge, and χH ∈ V ∗

H is a string of external nodes.
Let H,H ′ be two hypergraphs. A hypergraph morphism φ : H → H ′ consists of two mappings

φE : EH → EH′ , φV : VH → VH′ satisfying1 φV (sH(e)) = sH′(φE(e)) and lH(e) = lH′(φE(e)) for
all e ∈ EH . If furthermore φV (χH) = χH′ we call φ a strong hypergraph morphism and denote
it by φ : H � H ′. The hypergraphs H and H ′ are called isomorphic (H ∼= H ′) if there exists a
bijective strong morphism (= isomorphism) from one hypergraph into the other.

The arity of a hypergraph H is defined as ar(H) = |χH | while the arity of an edge e of H
is ar(e) = |sH(e)|. We can regard hypergraphs and hypergraph morphisms (respectively strong
hypergraph morphisms) as objects respectively morphisms of a category.

Notation: We call a hypergraph discrete, if its edge set is empty. m
denotes a discrete graph of arity m ∈ lN with m nodes where every
node is external (see (a), external nodes are labelled (1), (2), . . . in their
respective order).
H = [l]n is the hypergraph with exactly one edge e with label l where
sH(e) = χH , |χH | = n, χH contains no duplicates and VH = Set(χH),
where Set(s) is the set of all elements of a string s (see (b), nodes are
ordered from left to right).
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We now present the “concatenation operation” discussed in the introduction. The construction
plan telling us how this concatenation is supposed to happen is represented by hypergraph mor-
phisms mapping discrete graphs to discrete graphs. The following definitions use concepts from
category theory, namely categories and colimits. For an introduction to these concepts see [3, 2].

Definition 2. (Hypergraph Construction) Let H1, . . . , Hn be hypergraphs and let2 ζi : mi →
D, i ∈ [n] be morphisms where ar(Hi) = mi ∈ lN and D is a discrete graph. There is always a
unique strong morphism φi : mi � Hi for every i ∈ [n].

Let H (with morphisms φ : D → H, ηi : Hi → H) be the colimit
of ζ1, . . . , ζn, φ1, . . . , φn such that φ is a strong morphism. We define:⊗n

i=1(Hi, ζi) = H. (Alternatively we write (H1, ζ1)⊗ . . .⊗ (Hn, ζn)—or
⊗(H1, ζ1), if n = 1—instead of

⊗n
i=1(Hi, ζi).)
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Generally, colimits do not necessarily exist, but they always exist in our case. The colimit is
unique up to bijective morphisms, but not unique up to isomorphism. Therefore we demand above
that the morphism φ from D into the colimit be a strong morphism and thereby determine the
string of external nodes of the result. Furthermore the morphisms ηi generated by the colimit are
always embeddings (as defined in [1]).

Hypergraph construction without category theory: although the characterization of hypergraph
construction is more elegant in the categorical setting, we can also describe it without category
theory. We assume that the node and edge sets of D and H1, . . . , Hn are pairwise disjoint.
Furthermore let ≈ be the smallest equivalence on their nodes satisfying

ζi(v) ≈ φi(v) if i ∈ [n], v ∈ Vmi

1 Application of morphisms to sequences of nodes is conducted pointwise.
2 [n] stands for the set {1, . . . , n}.



The nodes of the constructed graph are the equivalence classes of ≈. Thus
⊗n

i=1(Hi, ζi) is isomor-
phic to

((VD ∪
n⋃

i=1

VHi
)/≈,

n⋃

i=1

EHi
, sH , lH , χ/≈)

where sH(e) = [v1]≈ . . . [vk]≈ if e ∈ EHi
and sHi

(e) = v1 . . . vk. Furthermore lH(e) = lHi
(e) if

e ∈ EHi
. And we define χ/≈ = [v1]≈ . . . [vk]≈ if χD = v1 . . . vk.

In other words: we join all graphs D,H1, . . . , Hn and fuse exactly the nodes which are the
image of one and the same node in the mi. χD becomes the new sequence of external nodes.

Now the morphisms φ : D � H and ηi : Hi → H can be defined as follows: φ(v) = [v]≈ if
v ∈ VD. Furthermore ηi(v) = [v]≈ if v ∈ VHi

and ηi(e) = e if e ∈ EHi
.

Example: we want to construct a graph H consisting of a hyperedge representing a
message (labelled M) and two hyperedges representing processes (labelled P , Q). (We
will show in section 5 how to model the reception of a message by a process with graph
rewriting.)
H consists of two subgraphsH1 (containing the process labelled P and a message) andH2

(containing a process labelled Q) which are concatenated according to the “construction
plan” given by the discrete morphisms ζ1, ζ2. E.g. the third external node of H1 is fused
with the third external node of D. This, in turn, is fused with the first external node of
H2. Isolated nodes in H are generated by nodes in D which are not in the range of either
of the ζi.
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Example: another example is an operator which takes two hypergraphs of the same arity
and attaches them at their external nodes, i.e. the nodes are merged in their respective
order. Let m be a fixed natural number and let ζ : m � m be a strong morphism. We
define H12H2 = (H1, ζ) ⊗ (H2, ζ) for H1, H2 satisfying ar(H1) = ar(H2) = n.

3 Graph Expressions and the Double-Pushout Approach

3.1 Graph Expressions

Graph expressions were introduced by Michel Bauderon and Bruno Courcelle in [1] as an alge-
braic structure for graph construction. They introduced three operators (explained below) and a
complete set of equations relating hypergraphs if and only if they are isomorphic. We will now
introduce the three operators and give their corresponding version in our framework in terms of
the discrete morphisms ζi.

Disjoint Sum: H1⊕H2 is the hypergraph resulting from the disjoint union of the node and edge
sets and of the source and labelling functions of H1 and H2. Furthermore χH1

and χH2
are



concatenated to form the sequence of external nodes of H1 ⊕ H2. H1 ⊕ H2
∼=

⊗2
i=1(Hi, ζi)

where ζ1, ζ2 are defined as in figure 1 (a) (m = ar(H1), n = ar(H2)).
Redefinition of External Nodes: Let α : [p] → [m] and m = ar(H). Then σα(H) is the

hypergraph resulting from redefining the external nodes ofH according to α, i.e. χH is replaced
by3 bχHcα(1) . . . bχHcα(p). The rest of the hypergraph stays unchanged.
We exploit the fact that α can always be decomposed into α = α1 ◦ . . . ◦αk where each αi has
one of the following three forms listed below. According to [1] σα(H) ∼= σαk

(. . . σα1
(H) . . .).

Thus we only have to consider these three cases.
In each of the following cases σα(H) ∼= ⊗(H, ζ).
Permutation of External Nodes: α : [m] → [m] is a bijection. ζ is defined in (b).
Hiding an External Node: α : [m] → [m+ 1] where α(i) = i. ζ is defined in (c).
Duplicating an External Node: α : [m+1] → [m] where α(i) = i if i ∈ [m] and α(m+1) =

m. Then ζ is defined as in figure 1 (d).
Fusing External Nodes: Let δ be an equivalence relation on [m] where m = ar(H). θδ(H) is

obtained by fusing all external nodes which are related by δ. The arity of the hypergraph is
not changed.
According to [1] θδ(H) ∼= θδk

(. . . θδ1
(H) . . .) where each δi is an equivalence generated by a

single pair (i, j) with i, j ∈ [m]. With the permutation operation defined above it suffices
to define a colimit construction fusing the last two nodes of a hypergraph. Let δ ′ be the
equivalence on [m] generated by the pair (m − 1,m). Then θδ′(H) ∼= ⊗(H, ζ) where ζ is
defined as in figure 1 (e).
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Fig. 1. Converting a graph expression into the corresponding colimit construction.

We have shown how to emulate all three operators by colimits. It is still left to show how the
subsequent application of colimits can be converted into one single colimit construction. We will
delay this until section 4.

3.2 The Double-Pushout Approach

The double-pushout approach to graph rewriting was introduced by Ehrig [3], the double-pushout
approach to hypergraph rewriting is presented in [8]. Our colimit construction is closely related to
this approach. We will now make this connection precise. If, in the diagram in definition 2, we set
n = 1 and allow D to be an arbitrary non-discrete graph, we obtain exactly the right-hand side
of a double-pushout.

This does not yet reveal anything about the expressive power of our approach. We will now
define the notion of a rewriting step: let r = (L,R) be a rewriting rule, where L,R are hypergraphs

with ar(L) = ar(R). Then
r

=⇒ is the smallest relation which is generated by the following two
rules and is closed under isomorphism.

3 bsci denotes the i-th element of the string s.



L
r

=⇒ R
H1

r
=⇒ H ′

1

(H1, ζ1) ⊗ (H2, ζ2)
r

=⇒ (H ′

1, ζ1) ⊗ (H2, ζ2)

Proposition 1. Let G, H be hypergraphs and let r = (L,R) be a rewriting rule. Then G
r

=⇒ H if
and only if G can be transformed into H by r in the double-pushout approach (with a production
span L � m � R where m = ar(L) = ar(R)).

Proof. It was already shown in [1] that the expressive power of rewriting in terms of graph ex-
pressions is equal to the expressive power of the double-pushout approach (where components
of a production span might be non-injective). The proposition follows from the fact that graph
expressions are equivalent to our form of graph construction (see section 3.1).

We now show the proposition in a more direct way and explain in detail how the double-pushout
approach relates to our approach:

– first, we prove that if H is a colimit of ζ1, ζ2, φ1, φ2 in diagram (a) and diagram (b) consists
of two pushouts, then H ∼= H ′.
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Diagrams (a) and (b) can always be completed to form colimits, since we can always explicitly
construct the colimit as in the remark after definition 2.
• We first construct a morphism ψ : H → H ′. From diagram (b) it follows that ηK ◦ ηD :
D → H ′, η′1 : H1 → H ′ and ηK ◦ η′2 : H2 → H ′. Since diagram (a) is a colimit this implies
the existence of a morphism ψ : H → H ′ satisfying ψ ◦ φ = ηK ◦ ηD, ψ ◦ η1 = η′1 and
ψ ◦ η2 = ηK ◦ η′2 (see figure (c) below).
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• In the same way we can show that there is a morphism ψ′

2 : H ′ → H: from diagram (a)
it follows that φ : D → H and η2 : H2 → H. This implies the existence of ψ′

1 : K → H
satisfying ψ′

1 ◦ η
′

2 = η2 and ψ′

1 ◦ ηD = φ. Since there is a morphism η1 : H1 → H, it follows
that there exists a morphism ψ′

2 : H ′ → H satisfying ψ′

2 ◦ η
′

1 = η1 and ψ′

2 ◦ ηK = ψ′

1.



• We will now show that ψ′

2 ◦ ψ = idH′ : we know that (ψ′

2 ◦ ψ) ◦ φ = ψ′

2 ◦ ηK ◦ ηD = φ,
(ψ′

2 ◦ ψ) ◦ η1 = ψ′

2 ◦ η′1 = η1 and (ψ′

2 ◦ ψ) ◦ η2 = ψ′

2 ◦ ηK ◦ η′2 = η2. Since a morphism
satisfying these conditions is unique and there is already one morphism (idH′) satisfying
them, it follows that ψ′

2 ◦ ψ = idH′ .

• The next step is to show that also ψ ◦ ψ′

2 = idH . We first show that ψ ◦ ψ′

1 = ηK by
regarding the pushout on the left-hand side in diagram (b) and the hypergraph H ′: we
know that ηK ◦ ηD = ψ ◦ φ = (ψ ◦ ψ′

1) ◦ ηD and ηK ◦ η′2 = ψ ◦ η2 = (ψ ◦ ψ′

1) ◦ η
′

2. Since the
morphism satisfying these conditions is unique it follows that ηK = ψ ◦ ψ′

1.

Furthermore it follows that (ψ ◦ ψ′

2) ◦ η
′

1 = ψ ◦ η1 = η′1 and (ψ ◦ ψ′

2) ◦ ηK = ψ ◦ ψ′

1 = ηK .
Since (because of the pushout on the right-hand side in diagram (b)) there is a unique
morphism satisfying these conditions, and we know that idH is satisfying them, it follows
that ψ ◦ ψ′

2 = idH .

• Since ψ′

2 ◦ ψ = idH′ and ψ ◦ ψ′

2 = idH it follows that ψ is bijective. It is left to show that
it is a strong morphism: ψ(χH) = ψ(φ(χD)) = ηK(ηD(χD)) = χH′ . (φ, ηK , ηD are strong
by definition.)

– We now assume that G
(L,R)
⇒ H. Because of proposition 2 in section 4 we can assume that

each of the two rewrite rules generating
(L,R)
⇒ is used exactly once. Thus we can conclude that

G ∼= (L, ζ1)⊗ (J, ζ2) and H ∼= (R, ζ1)⊗ (J, ζ2). We now set K = ⊗(J, ζ2) (as in the pushout on
the right-hand side in diagram (b)). Then G is the pushout of ηD ◦ ζ1 and φ1 (the canonical
strong morphism) in diagram (b). (We assume that H1 = L, H2 = J and H ′ = G.) In the
same way we can describe H as a pushout of ηD ◦ ζ1 and the canonical strong morphism from
m1 into R.

– Now assume we can transform G into H by applying the production span L � m � R in the
double-pushout approach. (In [4] it was shown that every double-pushout can be converted
into a double-pushout where the middle graph in the production span is discrete. We can also
assume that all its nodes are external, that it is therefore isomorphic to m and that there are
strong morphisms φL : m � L and φR : m � R.) A double-pushout has the form shown in
figure (e).
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We assume thatK ′ is the same hypergraph asK with a different sequence of external nodes. We
obtain K ′ by replacing the sequence of external nodes of K by χK ◦ψ(χm). Let ξ : n + m → D
(where n = ar(K)) be a discrete morphism such that K ∼= ⊗(K ′, ξ), i.e. ξ hides the last m
nodes of K ′ (compare with section 3.1). Now let ζ : m → D be a discrete morphism such that4

ζ(χm) = ξ(bχcn+1...n+m), therefore η′(ζ(χm)) = η′(ξ(bχcn+1...n+m)) = ψ(χm) and η′ ◦ ζ = ψ.
(η′ is generated by the pushout in figure (f).)

This implies that G ∼= (L, ζ) ⊗ (K ′, ξ). And in the same way we can show that H ∼= (R, ζ) ⊗

(K ′, ξ). It thus follows that G
(L,R)
⇒ H.

2

4 Let s = a1 . . . an be a string of elements. Then bsci1...im = ai1
. . . aim



4 Some Properties of Hypergraph Construction

As promised in the previous section we now introduce a mechanism for combining several construc-
tion operations into one by collapsing hierarchies of graph construction. In the world of strings
this has a rough analogue in the associativity of concatenation, which does not hold for graph
construction.

Proposition 2. In the following let i range over [n] and j range over [ni]. Let ζij : mij → Di and
ζi : mi → D be morphisms with mi = ar(Di). Let φi : mi � Di be the unique strong morphisms
and let the ξi be the morphisms generated by colimit (a) in the figure below. Then it holds for
arbitrary hypergraphs Hij with mij = ar(Hij) that

n⊗

i=1

(

ni⊗

j=1

(Hij , ζij), ζi) ∼=
⊗

i,j

(Hij , ξi ◦ ζij) (1)

Proof.

The proof of the proposition is shown in the figure.
While the left-hand side of equation (1) is formed by apply-
ing first colimits (b) to the Hij followed by an application of
colimit (a)+(c), the same goal can be achieved by forming
colimit (a) first and applying colimits (b)+(c) afterwards.
This argumentation is valid since the combination of two
colimits always yields another colimit.
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Example: we translate a sequence of redefinitions of external node into graph construc-
tions and collapse them into one single application of a colimit. Assume we want to
compute σα(H) where ar(H) = 3, α : [3] → [3] and α(1) = 2, α(2) = α(3) = 1. As
explained in section 3.1 we can decompose α into α = α1 ◦ α2 ◦ α3 with α1 : [3] → [2]
(hiding an external node), α2 : [2] → [2] (permutation, exchanging the first and the
second node) and α3 : [2] → [3] (duplicating an external node).
We can now construct the respective discrete morphisms ζ1, ζ2 and ζ3 (according to
figure 1) and combine them according to proposition 2. The result is ζ shown in the
figure below. That is σα(H) ∼= ⊗(H, ζ) for every hypergraph H of arity 3.
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Hyperedges are the basic units of graph construction. Just as every element of a vector space
can be decomposed into base vectors in a unique way, there is a unique decomposition of ev-
ery hypergraph into hyperedges. Note that isolated nodes are created by nodes of the discrete
hypergraph D which are not in the range of any of the ζi.

Proposition 3. (Unique Factorization) Let H be a hypergraph. Then there exists a natural
number n, labels li and morphisms ζi : mi → D (where i ∈ [n] and D is a discrete hypergraph) such
that H ∼=

⊗n
i=1([li]mi

, ζi). This factorization is unique up to isomorphism and index permutation.



Proof. With section 3.1 and [1] it is straightforward to see that such a factorization of a hypergraph
H is always possible (isolated nodes in H are generated by nodes of the discrete graph G which
are not in the range of any of the ζi.)

We will now show that the factorization is unique. Let

H ∼=

n⊗

i=1

([li]mi
, ζi) H ∼=

n′⊗

i=1

([l′i]m′

i
, ζ ′i)

where ζi : mi → D, i ∈ [n] respectively ζ ′i : m′

i → D, i ∈ [n′]. Let ηi : [li]mi
→ H, i ∈ [n] and

φ : D � H respectively η′i : [l′i]m′

i
→ H, i ∈ [n′] and φ′ : D′

� H be the morphisms generated by
the colimit.

Since n respectively n′ stand for the number of edges of H it follows that n = n′. And since the
ηi respectively η′i are the embeddings of the edges into H, it follows that there is a permutation
α : [n] → [n] such that ηi = η′α(i), which implies that mi = m′

α(i) and li = l′α(i).

It is left to show that ζi and ζ ′α(i) are equal up to isomorphism. We prove that φV is a bijection

(the same holds for φ′

V with the same arguments). From the remark after definition 2 it follows
that a hypergraph isomorphic to H can be constructed by taking the union of D and the edges
[li]mi

and fusing the nodes according to the equivalence ≈. Because of the special nature of the
hypergraphs which are concatenated (the [li]mi

have no duplicates in their sequences of external
nodes and no internal nodes), it follows that every nodes of an edge [li]mi

is related to some node
in D and that no two different nodes of D are related. That is, the equivalence classes are exactly
the nodes of D. Since φV is isomorphic to a function that maps every node of D to its equivalence
class, it follows that φV : VD → VH is a bijection.

It follows that

(ζi)V = φ−1
V ◦ (ηi)V ◦ (φi)V = φ−1

V ◦ (η′α(i))V ◦ (φ′α(i))V = φ−1
V ◦ φ′V ◦ (ζ ′α(i))V

φ−1
V ◦ φ′V : VD′ → VD is a bijection and since ζi, ζ

′

α(i) are defined only on discrete graphs they are
the same up to isomorphism. 2

As in vector spaces we can define linear mappings on hypergraphs.

Definition 3. (Linear Mapping) A linear mapping L maps hypergraphs to hypergraphs of the
same arity and satisfies L(

⊗n
i=1(Hi, ζi)) ∼=

⊗n
i=1(L(Hi), ζi).

Proposition 4. (Unique Linear Mapping) For each mapping of hyperedges [l]m to hypergraphs
of arity m, there is exactly one linear mapping (up to isomorphism) which is an extension of the
original mapping.

Proof. Let L′ map hyperedges to hypergraphs of the same arity.

– We first show that there is at most one linear mapping L which extends L′: let H be an
arbitrary hypergraph and let H ∼=

⊗n
i=1([li]mi

, ζi) be the unique factorization of H according
to proposition 3. If there is a linear mapping L it satisfies: L(H) ∼=

⊗n
i=1(L

′([li]mi
), ζi) and

L(H) is fixed up to isomorphism.
– We now show that there is at least one linear mapping L. We define L as follows:

L(

n⊗

i=1

([li]mi
, ζi)) =

n⊗

i=1

(L′([li]mi
), ζi)

This is well-defined since the factorization of every hypergraph is unique. It is left to show
that L is a linear mapping.
Let H ∼=

⊗n
i=1(Hi, ζi). According to proposition 3 Hi

∼=
⊗ni

j=1([lij ]mij
, ζij) for suitable

lij ,mij , ζij . It follows that

L(H) ∼= L(

n⊗

i=1

(

ni⊗

j=1

([lij ]mij
, ζij), ζi))



From proposition 2 follows the existence of morphisms ξi such that

L(H) ∼= L(
⊗

i,j

([lij ]mij
, ξi ◦ ζij)) =

⊗

i,j

(L′([lij ]mij
), ξi ◦ ζij)

Again from proposition 2 it follows that

L(H) ∼=

n⊗

i=1

(

ni⊗

j=1

(L′([lij ]mij
), ζij), ζi) ∼=

n⊗

i=1

(L(Hi), ζi)

2

One can view the application of a linear mapping as a synchronous rewriting step, replacing
every hyperedge at the same time.

Examples: we define a mapping that duplicates every edge in a hypergraph. If H =
(V,E, s, l, χ) is a hypergraph, dupl(H) is defined by (V,E ∪ Ē, s ∪ s̄, l ∪ l̄, χ) where Ē =
{ē | e ∈ E}, s̄ : Ē → V ∗ with s̄(ē) = s(e) and l̄ : Ē → L with l̄(ē) = l(e).
dupl is a linear mapping and can be generated by fixing the images of single hyperedges:
dupl([l]m) = [l]m2[l]m (where 2 is the operator defined in section 2).
Note that a mapping that duplicates all nodes, can not be linear.

Another simple example is a mapping that deletes all edges, i.e. produces a discrete
graph. We define discrete(H) = (V, ∅, ∅, ∅, χ). It is linear and can be generated by defining
discrete([l]m) = m for all hyperedges.

The usefulness of linear mappings will become clear in the following section where we use a
linear mapping in order to analyse mobile processes. Another important use of linear mappings
is to annotate hypergraphs. We can extend the construction operation in order to concatenate
hypergraphs with annotations (e.g. nodes labelled with monoid elements), as will be done in
section 6. We can then define an extended notion of a linear mapping which maps hypergraph to
annotated hypergraph and satisfies

L(

n⊗

i=1

(Hi, ζi)) ∼=

n⊗

i=1

(L(Hi), ζi)

where we use the extended construction operation on the right-hand side.

5 Typed Process Graphs

We show how to model a process calculus, closely related to the asynchronous polyadic π-calculus
[14], by so-called process graphs. There is an encoding from the π-calculus into process graphs
[10, 9]. On the other hand there is a straightforward encoding of process graphs into closed action
calculi [7] and a close relation of our process graphs to the ones in [16]. A process graph is defined
inductively in the following way.

Definition 4. (Process Graphs) A process graph P is inductively defined as follows: P is a
hypergraph where each edge e is either labelled with (n)Q where Q is again a process graph and
1 ≤ n ≤ ar(Q) (e is a process waiting for a message with n ports arriving at its first node), with
!Q (e is a process which can replicate itself creating aribitrary many instances of Q) or with the
constant M (e is a message sent to its last node). The reduction relation (reception of a message
and its nodes by a process) is generated by the rewrite rules in figure (a) and is closed under graph
construction.



(a)
(m) (m+n’)(1) (m+1)

...

M

...

(n)Q Q

(1) (m) (m)(1)

...

!Q

...

!QQ

The rewrite rule in (a) is not always defined, it may fail if ar(Q) 6= m + n′ in the message
reception rule or ar(Q) 6= m in the replication rule. Furthermore we want to avoid that n 6= n′ in
the message reception rule, that is we want to ensure that the expected number of nodes is received.
We use morphisms, graph construction and a linear mapping in order to define a condition which
is sufficient for avoiding this kind of runtime errors and which can be checked statically.

Proposition 5. Let L be a linear mapping which is defined on the hyperedges as follows: L([M ]n) =
[t]n (t is a new edge label), L([!Q]m) = L(Q) if m = ar(Q) and L([(n)Q]m) = (L(Q), ζ)⊗([t]n+1, ξ)
if n+m = ar(Q) (undefined otherwise). ζ, ξ are defined in figure (b).

(1)

...

...

...
... ...(m+n)(m+1)(m)(1)

(m)(1)(n+1)(n)

... ...

...

(b)ζ

ξ

Let P be a process graph. If there exists a strong morphism ψ : L(P ) � H into a hypergraph H
which satisfies

e1, e2 ∈ EH , bsH(e1)car(e1) = bsH(e2)car(e2) ⇒ e1 = e2 (2)

(i.e. all messages that share the last node are already the same) then P will never encounter a
runtime error during reduction.

Proof. Let P be a process graph with ψ : L(P ) � H where H satisfies condition 2.
We now show that P does not encounter a runtime error in its next reduction step, along with

the fact that the subject reduction property ist satisfied. The subject reduction property says that
if P ⇒ P ′, then there is also a strong morphism ψ′ : L(P ′) � H. These two properties together
ensure absence of runtime errors for the entire reduction.

We proceed by induction on the reduction rules:

– Let P be the left-hand side of the message reception rule in figure (a). From proposition 2 it
follows that L(P ) ∼= (L(Q), ζ1) ⊗ ([t]n+1, ζ2) ⊗ ([t]n′+1, ζ3) =: R where ζ1, ζ2, ζ3 are defined as
follows:

(1) ... (n’)

(1) ... (n+1)(n) ζ2

ζ1...
(m+n)(m+1)(m)(1)

(n’+1) ...(m+1) (m+n’)

... ...

ζ3

... ...
(m)(1)

...

...

D

The condition in the definition of L tells us that m+ n = ar(Q) and since we will later show
that n = n′ we have thus eliminated the first sort of runtime error.
Now let η1 : L(Q) → R, η2 : [t]n+1 → R, η3 : [t]n′+1 → R be the embeddings into R generated
by the colimit. Furthermore we know that there exists a strong morphism ψ : R � H. Our
aim is to show that ψ ◦ η1 : L(Q) → H is the strong morphism we are looking for. We proceed
in two steps:



• We first show that ψ(η1(bχl(Q)c1...m)) = bχHc1...m:

ψ(η1(bχL(Q)c1...m)) = ψ(η1(φ1(bχm+nc1...m)))

= ψ(φ(ζ1(bχm+nc1...m))) = ψ(φ(bχDc1...m)) = ψ(bχRc1...m)

= bχHc1...m

(φ1 ist the canonical strong morphism from m + n into L(Q) and φ : D � R is the strong
morphism generated by the colimit.)

• In the next step we show that ψ(η1(bχL(Q)cm+1...m+n)) = bχHcm+1...m+n′ and thus n = n′

which avoids the second sort of runtime errors.
Let e be the one edge in [t]n+1 = T and let e′ be the one edge in [t]n′+1 = T ′. It follows
that

bsH(ψ(η2(e)))car(e) = bψ(η2(sT (e)))cn+1 = bψ(η2(χT ))cn+1

= bψ(η2(φ2(χn+1)))cn+1 = bψ(φ(ζ2(χn+1)))cn+1

= bψ(φ(ζ3(χn′+1)))cn′+1 = bψ(η3(φ3(χn′+1)))cn′+1 = bψ(η3(χT ′))cn′+1

= bψ(η3(sT ′(e)))cn′+1 = bsH(ψ(η3(e)))car(e′)

(φ2 respectively φ2 are the canonical strong morphisms from n + 1 into [t]n+1 respectively
from n′ + 1 into [t]n′+1.) Condition (2) implies that ψ(η2(e)) = ψ(η3(e

′)). It follows that
n+ 1 = ar(e) = ar(ψ(η2(e))) = ar(ψ(η3(e

′))) = ar(e′) = n′ + 1 and thus n = n′. Now

ψ(η1(bχL(Q)cm+1...m+n)) = ψ(η1(φ1(bχm+ncm+1...m+n)))

= ψ(φ(ζ1(bχm+ncm+1...m+n))) = ψ(φ(ζ2(bχn+1c1...n)))

= ψ(η2(φ2(bχn+1c1...n))) = ψ(η2(bsT (e)c1...n)) = bsH(ψ(η2(e)))c1...n

= bsH(ψ(η3(e
′)))c1...n = ψ(η3(bsT ′(e′)c1...n)) = ψ(η3(ψ3(bχn′+1c1...n)))

= ψ(φ(ζ3(bχn′+1c1...n))) = ψ(φ(bχDcm+1...m+n′)) = bχHcm+1...m+n′

Together we conclude that ψ(η1(χL(Q))) = χH and ψ ◦η1 is thus the desired strong morphism.
– Let P = [!Q]n be the left-hand side of the replication rule in figure (a). Then P ⇒ P ′ and
P ′ = Q2[!Q]n. L(P ) = L(Q) and L(P ′) = L(Q)2L(Q). Since L(P ) = L(Q) is defined, it
follows that ar(Q) = m and therefore L(P ′) is also defined. We have to show that there exists
a strong morphism ψ : L(Q)2L(Q) � L(Q) (L(Q)2L(Q) = (L(Q), ζ) ⊗ (L(Q), ζ) where
ζ : n � n).

Obviously the identity morphism id : L(Q) �

L(Q) is a strong morphism. Furthermore there
is a unique strong morphism φ′ : n � L(Q)
and it holds that φ′ ◦ ζ = id ◦ φ′. Now let
φ : n � L(Q)2L(Q) be the morphism gen-
erated by the colimit. The properties of a
colimit imply the existence of a morphism
ψ : L(Q)2L(Q) → L(Q) such that ψ ◦ φ = φ′.
Since φ and φ′ are both strong, it follows that
ψ is also a strong morphism.

id

id

ψ

’

L(Q)

’

L(Q)

’

L(Q)

L(Q) L(Q)n

n n

ζ ζ

φ

φφ

φ

– Let
P1 → P ′

1, P2
∼= P ′

2

P = (P1, ζ1) ⊗ (P2, ζ2) ⇒ (P ′

1, ζ1) ⊗ (P ′

2, ζ2) = P ′

L(P ) ∼= (L(P1), ζ1) ⊗ (L(P2), ζ2). Let ηi : L(Pi) → L(P ), i ∈ [2] be the embeddings and let
φ : D → L(P ) be the strong morphism generated by the colimit. It follows that5

ψ ◦ ηi : L(Pi) � H[ψ(ηi(χL(Pi)))]

5 Let H be a hypergraph. H[χ′] is the hypergraph we obtain from H by replacing χH with χ′.



The induction hypothesis implies that there is a strong morphism ψ′

1 : L(P ′

1) � H[ψ(ηi(χL(Pi)))].
Furthermore we set ψ′

2 = ψ ◦ η2.
Let mi = ar(Pi) = ar(P ′

i ). Now let φ′

i : mi � L(P ′

i ) be the canonical strong morphisms,
and let η′i : L(P ′

i ) → L(P ′) and φ′ : D � L(P ′) be the morphisms generated by the colimit
L(P ′) ∼= (L(P ′

1), ζ1) ⊗ (L(P ′

2), ζ2).
We know that ψ′

i : L(P ′

i ) → H and ψ ◦ φ′ : D → H. If we can show that ψ′

i ◦ φ
′

i = (ψ ◦ φ) ◦ ζi
the properties of the colimit guarantee the existence of a morphism ψ′ : L(P ′) → H. And
since ψ′ ◦ φ′ = ψ ◦ φ and ψ, φ, φ′ are strong, it follows that ψ′ is also a strong morphism.

φ’

ψ φ

m

D L(P’)

i

H

η ψζ
i

i
i

’ ’

L(P’i )
φ ’

i

ψ ’

It is left to show that ζi ◦ ψ
′

i = (ψ ◦ φ) ◦ ζi:

ψ′

i(φ
′

i(χmi
)) = ψ′

i(χL(P ′

i
))

= ψ(ηi(χL(Pi))) = ψ(φ(ζi(χmi
)))

And thus ψ′

i ◦ φ
′

i = (ψ ◦ φ) ◦ ζi.

2

L extracts pure communication structure from a process graph, i.e. an edge of the form [t]n
indicates that its nodes (except the last) might be sent or received via its last node. Condition (2)
makes sure that the arity of the arriving message matches the expected arity and that nodes that
might get fused during reduction are already fused in H. It thus guarantees absence of undefined
rewrites for the entire reduction.

H can be regarded as a type of P and we can easily unfold H into well-known type trees of
π-calculus processes [15]. The method presented above corresponds to a type system for the π-
calculus with recursive types and simple polymorphism. The type of a process can also be specified
by inductive typing rules rather than by a linear mapping.

More expressive (generic) type systems for the analysis of processes, which can be nicely inte-
grated into the graph-based setting, can be found in [10, 9].

As an example we regard the following process graph:

(1) (2)

(1)

(1) (2)

(1) (2) (3)

M

(3)

(1) (3)

(2)

M

M

!

(1)

There is a server (the process on the left) which receives messages on its first port (before the
server can receive a message it must create a copy of itself) and sends back its second port to
the address that was attached to the message. At this address another process (the process on
the right) is waiting, it receives the message with the second port of the server and sends its own
message there.

We use the following syntactic sugar: the last node of a message (i.e. the node or port to which
the message is sent) is connected with the message by a dashed line. Nodes of hypergraph in inner
level which will be merged with nodes attached to a message are shaded grey.



If we represent the three external ports by a, b, c respectively and denote the internal node by
d, the process graph above corresponds to the following process in the π-calculus [14]:

!a(x).x̄〈b〉 | ā〈c〉 | (νd)(c(y).ȳ〈c, d〉)

Typing the process graph above intuitively means flattening the hypergraph until it consists
of only one hierarchy level. Hyperedges representing replicating processes are discarded, messages
and processes waiting for a message are appropriately replaced by edges labelled t. After folding
the hypergraph (i.e. merging the hyperedges according to condition (2)) we obtain the following
type graph T :

(2)(1) (3)

t t t

We can now reconstruct the type assignment of the corresponding π-calculus process (a type
assignment consists of type trees for every free name) by unfolding the type graph starting at one
of the external nodes. The nodes of the graph T are transformed into nodes of the tree: if there is
an edge e with sT (e) = v1 . . . vn−1vn then v1, . . . , vn−1 are the children of the parent vn (in that
order). In this case the unfolding of the type graph leads to infinite trees which can be represented
by using a recursion operator µ. Thus a valid type assignment for the π-calculus process above is

a : [µα[[α, β]]], b : µα[[α], β], c : µα[[α, β]]

[t1, . . . , tn] is a tree with subtrees t1, . . . , tn, α and β are tree-valued variables. There is some
polymorphism in the type of the process: β is not bound and represents an arbitrary type tree.

6 A Compositional Semantics for Petri Nets

We will now show another application of graph construction by giving a compositional semantics
for Petri nets. A Petri net can easily be represented by a hypergraph H (compare with [12]):
nodes are places and edges are transitions. Since we do not distinguish source and target nodes
a priori, we partition the nodes of an edge into sources and targets with the labelling function
l : E → lN× lN. If l(e) = (s, t) then s+ t = ar(e), s is the number of sources (the first s nodes) and
t (the last t nodes) is the number of targets. We also need an additional labelling z : VH → Mon
mapping each node to an element of a cancellative commutative monoid, in order to represent the
tokens present at each node. In our example we will set Mon = lN, but we could also represent
high-level Petri nets by assuming that Mon is the set of all multi-sets over certain elements.

A Petri net is now a pair [H, z] where H is a hypergraph with labels taken from lN × lN and
z : VH → Mon is a mapping. Before we can define the semantics we first have to extend our notion
of hypergraph construction to hypergraphs with tokens. But this is easy since our construction
operation yields morphisms of the subgraphs into the constructed graph. Let [Hi, zi] be Petri nets.
We define:

n⊗

i=1

([Hi, zi], ζi) ∼= [

n⊗

i=1

(Hi, ζi), z] where z(v) =

n∑

i=1

∑

ηi(w)=v

zi(w)

The ηi are the morphisms of Hi into
⊗n

i=1(Hi, ζi) yielded by the colimit.
∑

is the commutative
operation of Mon.
Inductive Definition of Petri Nets: a Petri net N is either of the form [[s, t]s+t, z] where
z : V[s,t]s+t

→ Mon or
⊗n

i=1(Ni, ζi) with adequate discrete morphisms ζi, where the Ni are again
Petri nets.
Semantics of Petri Nets: we now assume that Mon = lN. A single transition fires if all its source
nodes are labelled with tokens. And if one transition fires, the entire net is changed accordingly.



[T, z] =⇒ [T, z′]
N1 =⇒ N ′

1

(N1, ζ1) ⊗ (N2, ζ2) =⇒ (N ′

1, ζ1) ⊗ (N2, ζ2)

where T = [s, t]s+t is a transition, z, z′ : VT → {0, 1} and z(bχT ci) = 1 ⇐⇒ i ∈ [s] ⇐⇒
z′(bχT ci) = 0.

This approach works also when a place is allowed to hold more than one token. In this case
the extra tokens which are not needed to fire a transition are not attached to the transition (or
edge) itself but to the external nodes of the surrounding hypergraphs.

7 Conclusion

We have presented a method of hypergraph construction which allows us to build hypergraphs out
of smaller ones. The basic units are single edges. This method can be used to give an operational
semantics to concurrent systems whose states can often be represented by hypergraphs in a natural
way.

Another approach concerning inductive graph representation was given in [5] with a different
categorical representation of graphs (in this paper graphs are the morphisms of a category) and
different operators on graphs.

Future work will consist in designing further techniques for the analysis of concurrent systems
with a hypergraph-based semantics. One promising direction is to continue the work on generic
type systems for process graphs [10] and to extend it to more general graph rewrite systems.
Furthermore we plan to investigate the connection between our approach to model Petri nets and
existing approaches as in [13, 12].

Remark: this technical report is the extended version of [11].
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