
UniGra’03 Preliminary Version

Towards Unfolding-Based Verification
for Graph Transformation Systems

Paolo Baldan 1,2

Dipartimento di Informatica

Università Ca’ Foscari di Venezia

Italy

Andrea Corradini 1,3

Dipartimento di Informatica

Università di Pisa

Italy

Barbara König 4

Institut für Informatik

Technische Universität München

Germany

Abstract

The unfolding semantics of graph transformation systems can represent a basis for
their formal verification. For general, possibly infinite-state, graph transformation
systems one can construct finite under- and over- approximations of the (infinite)
unfolding, with arbitrary accuracy. Such approximations can be used to check prop-
erties of a graph transformation system, like safety and liveness properties, expressed
in suitable fragments of the µ-calculus. For finite-state graph transformation sys-
tems, a variant of McMillan’s approach (originally developed for Petri nets) allows
us to single out a finite under-approximation which is a so-called complete prefix of
the unfolding, i.e., which provides an “exact” representation of the behaviour the
original system as far as reachable states are concerned. Some problems related to
the constructive definition of the prefix are discussed.

1 Research supported by the MIUR Project COFIN 2001013518 CoMeta and by the FET-
GC Projects IST-2001-32747 Agile.
2 Email: baldan@dsi.unive.it
3 Email: andrea@di.unipi.it
4 Email: koenigb@in.tum.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Baldan, Corradini, König

1 Introduction

Graph transformation systems (GTSs) [15] are recognized as a powerful spec-
ification formalism for concurrent and distributed systems [7], generalizing
Petri nets. Along the years their truly concurrent behaviour has been deeply
studied and a consolidated theory of concurrency is now available [15,7]. In
particular, several semantics of Petri nets, like process and unfolding seman-
tics, have been extended to GTSs (see, e.g., [6,14,2,3]). However, concerning
automated verification, while several approaches exist for Petri nets, ranging
from the calculus of invariants [13] to model checking based on finite complete
prefixes [12], the rich literature on GTSs does not contain many contributions
to the static analysis of such systems (see [10,11,9]).

In fact most of the mentioned semantics for GTSs define a (possibly con-
current) operational model of computation, which gives a concrete descrip-
tion of the behaviour of the system in terms of non-effective (e.g., infinite,
non-decidable) structures, hardly usable in a direct way for model-checking
purposes. A common schema in the literature consists of considering an ab-
straction A of the concrete semantical model, providing a description of the
behaviour of the system which is approximated, but still useful to check some
properties of interest. Fixed a class L of properties of interest, the construction
of the abstraction is typically guided by L, in a way that given any property
ϕ in L, the validity of ϕ in abstraction A implies its validity in the original
system. In some optimal cases, also the converse holds, i.e., the abstraction is
“exact” for the properties in L.

We focus on the unfolding semantics as a description of the behaviour of
GTSs, one reason for referring to a concurrent semantics being the fact that
it allows to avoid to check all the interleavings of concurrent events. The
unfolding construction for GTSs produces a static structure which fully de-
scribes the concurrent behaviour of the system, including all possible rewriting
steps and their mutual dependencies, as well as all reachable states. It is con-
structed [14,3] inductively beginning from the start graph and then applying
at each step in all possible ways the rules, without deleting the left-hand sides,
and recording each occurrence of a rule and each new graph item generated
in the rewriting process.

The unfolding is infinite for any non-trivial GTS. Here, concentrating on
GTSs where rules do not delete nodes, we suggest how one can define finite
structures, approximating the full unfolding, where interesting classes of prop-
erties of the original system can be studied and verified. We remark that the
impossibility of deleting nodes is not a severe limitation since the deletion of
a node can be simulated by leaving the node isolated.

• For general, possibly infinite-state (hyper)graph transformation systems one
can construct finite under- and over-approximations of the behaviour of the
system. The “accuracy” of such approximations can be fixed and arbitrarily

2



Baldan, Corradini, König

increased in a way that the corresponding chain of (both under- and over-)
approximations converges to the exact behaviour.

• For finite-state graph transformation systems a generalization of McMillan’s
approach (originally developed for Petri nets) allows us to single out a finite
under-approximation which is a so-called complete prefix of the unfolding,
providing an “exact” abstraction of the behaviour the original system as far
as reachable states are concerned. Some problems related to the constructive
definition of the prefix are discussed.

Some results are still in a preliminary shape, but they are promising in
suggesting how the unfolding approach to the semantics of GTSs can represent
a solid theoretical basis for a formal verification activity.

2 Approximations of Infinite-State GTSs

Let G be a general, possibly infinite-state graph grammar, i.e., GTS with a
start hypergraph representing the initial state of the system. Here we consider
basic graph grammars, without any distinction between terminal and non-
terminal symbols and without any high-level control mechanism. As shown
in [1,5] variations of the unfolding algorithm can be used to construct finite
structures which can be seen as approximations of the full unfolding of the
grammar, at a chosen level k of accuracy.

2.1 Under-approximations (k-truncations)

The unfolding of the grammar G can be defined categorically as the colimit
of its prefixes of finite causal depth. Hence “under-approximations” of the
behaviour of G can be trivially produced by stopping the construction of the
unfolding at a finite causal depth k, thus obtaining the so-called k-truncation
T k(G) of the unfolding of G. In general, for infinite state systems, any trunca-
tion of the unfolding will be a proper under-approximation of the behaviour
of the system, in the sense that any computation in the truncation can be re-
ally performed in the original system, but not vice versa. Nevertheless, finite
truncations can still be used to check interesting properties of the grammar,
e.g., some liveness properties of the form “eventually A” for a predicate A.

2.2 Over-approximations (k-coverings).

A more challenging issue is to provide (sensible) over-approximations of the
behaviour of a grammar G, i.e., finite approximations of the unfolding which
“represent” all computations of the original system (but possibly more). To
this aim the papers [1,5] propose an algorithm which, given a graph grammar
G, produces a finite structure, called Petri graph, consisting of a hypergraph
and of a P/T net (possibly not safe or cyclic) over it, which can be seen as
an (over-)approximation of the unfolding. The outcome of the algorithm is

3



Baldan, Corradini, König

not uniquely determined by the graph grammar, but changes according to the
chosen level of accuracy: essentially one can require the approximation to be
exact up to a certain causal depth k, thus obtaining the so-called k-covering
Ck(G) of the unfolding of G.

The covering Ck(G) over-approximates the behaviour of G in the sense that
every computation in G is mapped to a valid computation in Ck(G) and every
hypergraph reachable from the start graph can be mapped homomorphically
to (the graphical component of) Ck(G) (and its image is reachable in the Petri
graph). Therefore, given a property over graphs reflected by graph morphisms,
if it holds for all graphs reachable in the covering Ck(G) then it also holds for all
reachable graphs in G. Important properties of this kind are the non-existence
and non-adjacency of edges with specific labels, the absence of certain paths
(for checking security properties) or cycles (for checking deadlock-freedom).
Temporal properties, such as several safety properties of the form “always A”,
can be proved directly on the Petri net component of the coverings.

The unfolding is approximated by k-truncations and k-coverings with ar-
bitrary high accuracy, a fact that is formalized by proving that both under-
and over-approximations of the unfolding, converge to the full unfolding. In
categorical terms we show that the unfolding U(G) of a graph grammar G can
be expressed both as the colimit of the chain of k-truncations T k(G) and as
the limit of the chain of k-coverings Ck(G):

T 0(G)

,,XXXXXXXXXXXXXXXXXX
// T 1(G)

((RRRRRR
T k(G)

��

// T k+1(G)

uukkkkkkk

. . .

U(G)

rrffffffffffffffffff

vvlllllll

�� ))SSSSSSS

C0(G) C1(G)oo Ck(G) Ck+1(G)oo . . .

The idea that finite under- and over-approximations can be used for check-
ing properties of a graph grammar G is enforced by identifying significant
fragments of the µ-calculus for which the validity of a formula in some ap-
proximation implies the validity of the same formula in the original grammar.
Nicely, this is done by viewing our approach as a special case of the general
paradigm of abstract interpretation.

3 Complete Prefix for Finite-State GTSs

For Petri nets and for other formalisms endowed with an unfolding semantics,
it has been shown that, when the system is finite-state, it is possible to identify
a finite initial part of the unfolding, called finite complete prefix [12,8], which
provides an exact approximation of the system as far as reachability proper-
ties are concerned. A complete prefix represents all and only the markings
reachable in the original Petri net, in the sense that the reachable markings
corresponds exactly to the concurrent subsets of places in the finite prefix.

To construct the finite prefix the idea consists of unfolding the given Petri

4



Baldan, Corradini, König

net avoiding to insert “useless” transitions, where “useless” means transitions
which do not contribute to generate new markings. More precisely the con-
struction stops at the so-called cut-off events, which, roughly speaking, are
transitions which produce the same marking as other transitions but with a
larger causal history (i.e., in a larger number of steps).

Finite prefixes have been used for the verification of properties like absence
of deadlocks or hazard-freedom in logic circuits [12,16] and for the model
checking of a simple but quite powerful branching temporal logic over Petri
nets [8], where net properties like reachability, mutual exclusion, concurrency,
liveness, cyclicity can be expressed.

We suggest how the complete prefix approach can be generalized to our
hypergraph transformation systems. More precisely, using the notation in-
troduced in the previous section, we prove that if G is a finite-state graph
grammar then there exists a level of accuracy k such that T k(G) is a complete
prefix, i.e., T k(G) provides an exact approximation of the behaviour of G as
far as reachable states are concerned.

Notably, in the case of graph transformation systems, the possibility of
performing “contextual” rewritings, i.e., of preserving part of the state in
a rewriting step, leads to a form of asymmetric conflict (or weak causality)
between events. Hence differently from what happens for (ordinary) Petri nets,
in graph grammar computations an event does not have a uniquely determined
causal history (consisting of the set of its causes), but it has instead a set of
different local histories [4,3]. The definition of cut-off event must be updated
consequently: an event is called a generalized cut-off if for any of its histories
there exists another event with a smaller local history, producing the same
final state.

Exploiting this definition of generalized cut-off, we are able to prove the
existence of a finite complete prefix for any finite-state graph grammar. Un-
fortunately, for general hypergraph transformation systems, the proof is non-
constructive. Therefore it is still an open problem to devise an algorithm
for constructing such a finite complete prefix, the main difficulty being the
non-monotonicity of the notion of generalized cut-off.

References

[1] P. Baldan, A. Corradini, and B. König. A static analysis technique for graph
transformation systems. In K.G. Larsen and M. Nielsen, editors, Proceedings of

CONCUR 2001, volume 2154 of LNCS, pages 381–395. Springer Verlag, 2001.

[2] P. Baldan, A. Corradini, and U. Montanari. Concatenable graph processes:
relating processes and derivation traces. In Proceedings of ICALP’98, volume
1443 of LNCS, pages 283–295. Springer Verlag, 1998.

[3] P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Structure

5



Baldan, Corradini, König

Semantics for Graph Grammars. In W. Thomas, editor, Proceedings of

FoSSaCS ’99, volume 1578 of LNCS, pages 73–89. Springer Verlag, 1999.

[4] P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asymmetric
event structures and processes. Information and Computation, 171(1):1–49,
2001.

[5] P. Baldan and B. König. Approximating the behaviour of graph transformation
systems. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozemberg, editors,
Proceedings of ICGT’02, volume 2505 of LNCS, pages 14–30. Springer Verlag,
2002.

[6] A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta

Informaticae, 26:241–265, 1996.

[7] H. Ehrig, J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook

of Graph Grammars and Computing by Graph Transformation, Vol. 3:

Concurrency, Parallelism and Distribution. World Scientific, 1999.

[8] J. Esparza. Model checking using net unfoldings. Science of Computer

Programming, 23(2–3):151–195, 1994.

[9] R. Heckel. Compositional verification of reactive systems specified by graph
transformation. In E. Astesiano, editor, Porceedings of FASE’98, volume 1382
of LNCS, pages 138–153. Springer Verlag, 1998.

[10] M. Koch. Integration of Graph Transformation and Temporal Logic for the

Specification of Distributed Systems. PhD thesis, Technische Universität Berlin,
2000.

[11] B. König. A general framework for types in graph rewriting. In Proc. of FST

TCS 2000, volume 1974 of LNCS, pages 373–384. Springer Verlag, 2000.

[12] K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.

[13] W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theoretical
Computer Science. Springer Verlag, 1985.

[14] L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.
PhD thesis, Technische Universität Berlin, 1996.

[15] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph

Transformation, Vol. 1: Foundations. World Scientific, 1997.

[16] W. Vogler, A. Semenov, and A. Yakovlev. Unfolding and finite prefix for nets
with read arcs. In Proceedings of CONCUR’98, volume 1466 of LNCS, pages
501–516. Springer-Verlag, 1998.

6


	Introduction
	Approximations of Infinite-State GTSs
	Under-approximations (k-truncations)
	Over-approximations (k-coverings).

	Complete Prefix for Finite-State GTSs
	References

