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Abstract. We introduce a new class of graph transformation systems in which
rewrite rules can be guarded by universally quantified conditions on the neigh-
bourhood of nodes. These conditions are defined via special graph patterns which
may be transformed by the rule as well. For the new class for graph rewrite rules,
we provide a symbolic procedure working on minimal representations of upward
closed sets of configurations. We prove correctness and effectiveness of the pro-
cedure by a categorical presentation of rewrite rules as well as the involved order,
and using results for well-structured transition systems. We apply the resulting
procedure to the analysis of the Distributed Dining Philosophers protocol on an
arbitrary network structure.

1 Introduction

Parameterized verification of distributed algorithms is a very challenging task. Dis-
tributed algorithms are often sensible to the network topology and they are based on
communication patterns like broadcast messages and conditions on channels that can
easily generate undecidable verification instances or finite-state problems of high com-
binatorial complexity. In order to naturally model interaction rules of topology-sensitive
protocols it seems natural to consider languages based on graph rewriting and transfor-
mations as proposed in [21]. However, in this formalism rules can only match fixed
subgraph in the graph they are applied to. Since we need to specify rules where the en-
tire neighbourhood of a node is matched by the rule, we extend the standard approach
by universally quantified patterns attached to nodes. With these patterns the matching of
a left side of a rule can be increased until the entire neighbourhood of a node is covered.
If the matching cannot be extended in this way the rule is not applicable, e.g. we could
formalize a rule which only matches a node when every incident edge is incoming. Ad-
ditionally the matched occurrences of the patterns can also be changed by the rule. A
similar approach are adaptive star grammars [20], the difference being that we do not
restrict our left rule sides to be stars.

The resulting formal language can be applied to specify distributed versions of con-
current algorithms like Dining Philosophers in which neighbour processes use channels
to request and grant access to a given shared resource. The protocol we use has been
? Research partially supported by DFG project GaReV.



proposed by Namjoshi and Trefler in [25]. There requests are specified using process
identifiers attached to edges representing point-to-point communication channels. Uni-
versally quantified guards are used to ensure mutual exclusive access to a resource. In
this paper we formulate the protocol without need of introducing identifiers. We in-
stead use our extended notion of graph transformation systems to specify ownership
of a given communication link. Universally quantified patterns attached to a request-
ing node are used then as guards to ensure exclusive access. Erroneous or undesirable
configurations in the algorithm can be presented by a set of minimal error configura-
tions. We then use a backward procedure to check if a configuration containing one of
the error configurations is reachable. If none is reachable, the algorithm is proven to be
correct.

Following the approach proposed in [7,24], we use basic ingredients of graph trans-
formation and category theory (e.g. pushouts) to formally specify the operational se-
mantics of our model. Parameterized verification for the resulting model is undecidable
in general, even without universally quantified patterns [7]. To overcome this prob-
lem, we provide an approximated symbolic backward procedure using result for well-
structured transition systems [6,22] to guarantee correctness and termination.
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Although the over-approximation is based
on the monotonic abstraction approach
proposed in [3,5], its application to the
considered class of infinite-state systems
is highly non trivial. In fact, our universal
quantification approach is not restricted
to process states only, but it can specify
complex graph patterns as shown on the
right. There the node marked with the X-
edge represents a group where every node
attached with a G-edge is a member of.
The rule can be applied if every edge attached to the two solid nodes is matched and
has the form of the dashed part (the quantification). Effectively the rule adds a node to
a group if all other connected nodes (via a C-edge) are already members of the group.

We have implemented a prototype version of the algorithms in the tool UNCOVER
and tested on some case-studies. For instance, our prototype can verify the Distributed
Dining Philosophers example without need of additional invariants as in [25]. Due to
space limitations, the proofs can be found in an extended version of this paper [17].

2 Preliminaries

In this paper we use hypergraphs, a generalization of directed graphs, where an edge can
connect an arbitrary large but finite set of nodes. Furthermore we use graph morphisms
to define rewriting rules.

Hypergraph Let Λ be a finite sets of edge labels and ar : Λ→ N a function that assigns
an arity to each label (including the arity zero). A (Λ-)hypergraph (or simply graph) is
a tuple (VG, EG, cG, lG) where VG is a finite set of nodes, EG is a finite set of edges,
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cG : EG → V ∗G is a connection function and lG : EG → Λ is an edge labelling function.
We require that |cG(e)| = ar(lG(e)) for each edge e ∈ EG. An edge e is called incident
to a node v if v occurs in cG(e). An undirected path of length n in a hypergraph is an
alternating sequence v0, e1, v1, . . . , vn−1, en, vn of nodes and edges such that for every
index 1 ≤ i ≤ n both nodes vi−1 and vi are incident to ei and the undirected path
contains all nodes and edges at most once.

Let G, G′ be (Λ-)hypergraphs. A partial hypergraph morphism (or simply mor-
phism) ϕ : G ⇀ G′ consists of a pair of partial functions (ϕV : VG ⇀ VG′ , ϕE :
EG ⇀ EG′) such that for every e ∈ EG it holds that lG(e) = lG′(ϕE(e)) and
ϕV (cG(e)) = cG′(ϕE(e)) whenever ϕE(e) is defined. Furthermore if a morphism is
defined on an edge, it must be defined on all nodes incident to it. We denote total mor-
phisms by an arrow of the form→ and write if the total morphism is known to be
injective.

Pushout Our rewriting formalism is the so-called single-pushout approach (SPO) based
on the categorical notion of pushouts in the category of graphs and partial graph mor-
phisms [21]. Given two morphisms ϕ : G0 ⇀ G1 and ψ : G0 ⇀ G2, the pushout of ϕ,
ψ consists of the graph G3 and two morphisms ϕ′ : G2 ⇀ G3 and ψ′ : G1 ⇀ G3. It
corresponds to a merge of G1 and G2 along a common interface G0 while at the same
time deleting every element of one of the graphs if it has a preimage in G0 which is not
mapped to an element in the other graph. It is known that in our category the pushout
of two morphisms always exists and is unique (up to isomorphism). It can be computed
in the following way.

Let≡V and≡E be the smallest equivalences on VG1
∪VG2

andEG1
∪EG2

satisfying
ϕ(v) ≡V ψ(v) for all v ∈ VG0

and ϕ(e) ≡E ψ(e) for all e ∈ EG0
. The nodes and

edges of the pushout object G3 are then all valid equivalence classes of ≡V and ≡E .
An equivalence class is valid if it does not contain the image of some x ∈ G0 for which
ϕ(x) or ψ(x) is undefined. The equivalence class of an edge is also considered invalid if
it is incident to a node with an invalid equivalence class. The morphisms ϕ′ and ψ′ map
each element to its equivalence class if this class is valid and are undefined otherwise.

For a backward step in our procedure we also need the notion of a pushout comple-
ment which is, given ϕ : G0 ⇀ G1 and ψ′ : G1 ⇀ G3, a graph G2 and morphisms
ψ : G0 ⇀ G2, ϕ′ : G2 ⇀ G3 such that G3 is the pushout of ϕ, ψ. For graphs pushout
complements not necessarily exist and if they exist there may be infinitely many. See
[23] for a detailed description on how pushout complements can be computed.

L R

G H

r

m m′

GTS A rewriting rule is a partial morphism r : L ⇀ R, where
L is called left-hand and R right-hand side. A match (of r) is
a total and injective morphism m : L G. Given a rule and a
match, a rewriting step or rule application is given by a pushout
diagram as shown on the right, resulting in the graph H . Note
that injective matchings are not a restriction since non-injective
matchings can be simulated, but are necessary for universally
the quantified rules defined later.

A graph transformation system (GTS) is a finite set of rules
R. Given a fixed set of graphs G, a graph transition system on G generated by a graph
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transformation system R is represented by a tuple (G,⇒) where G is the set of states
and G⇒ G′ if and only if G,G′ ∈ G and G can be rewritten to G′ using a rule ofR.

A computation is a sequence of graphs G0, G1, . . . s.t. Gi ⇒ Gi+1 for i ≥ 0. G0

can reach G1 if there exists a computation from G0 to G1.

3 Graph Transformations with Universally Quantified Conditions

To clarify the ideas and illustrate the usefulness of universally quantified conditions on
the neighbourhood of nodes, let us consider the following example.

F

H

⇒ OF

H

(a) Acquire a fork

F

H

⇒ OF

H

(b) Acquire a fork

OF

H

⇒ F

H

(c) Release a fork

OF

H

⇒ OF

E

(d) Start eating

T

⇒

H

(e) Get hungry

OF

E

⇒ F

T

(f) Release all forks

Fig. 1: Modelling of the dining philosophers problem on an arbitrary net

Example 1. Figure 1 shows a set of rules describing the Dining Philosophers Problem
on an arbitrary graph structure. Each node represents a philosopher who can be in one
of three different states: hungry (H), eating (E) or thinking (T ). Each state is indicated
by a unary edge attached to the philosopher. Between two philosophers there may be a
free fork (an F -edge) or a fork owned by one of the philosophers (anOF -edge pointing
to its owner). Note that our directed edges are in fact hyperedges of arity two, where
the first node is the source and the second node is the target.

Philosophers can take unowned forks (Figure 1a and 1b) and also release control
(Figure 1c). If a philosopher owns all connected forks, he can start to eat (Figure 1d).
The dashed part of the rule indicates a universal quantification, meaning that the rule
can only be applied if all edges attached to the philosopher are part of the matching and
in fact forks owned by him. At some point the philosopher finished eating, releasing all
forks (Figure 1f) and may become hungry in the future (Figure 1e). When releasing all
forks, all forks owned by the philosopher are converted to unowned forks.

Rules matching the entire neighbourhood of a node (in the following called quanti-
fied node), such as the rules in Figure 1d and 1f cannot be described by normal rewriting
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rules. Therefore we extend normal rules to so-called universally quantified rules con-
sisting of a normal rule and a set of universal quantifications. The idea is to first find a
matching for the rule and then extend the rule as well as the matching until the entire
neighbourhood of quantified nodes is part of the matching.

We apply the rule in Figure 1f to the graph G shown in Figure 2. There exists a
match m : L G where r : L ⇀ R is the rule without any use of the quantification.
However, this matching does not match the entire neighbourhood of the quantified node
(marked grey). Before applying the rule we have to add multiple copies of the quantifi-
cation to r generating a so-called instantiation η where the extended match m contains
the entire neighbourhood of the quantified node.

L R

G

E T

E
OF

OF

T
F

F

H

E

H
OF

OF
F

r

η

m

m

Fig. 2: A match of a universally quantified rule has to be extended until the entire neigh-
bourhood of each quantified node is matched

In the following we formalize the notion of universally quantified rules as an exten-
sion of normal rules and introduce instantiations via a sequence of recursive instantia-
tion steps.

Definition 1 (Universally quantified rules). A universally quantified rule is a pair
ρ = (r, U), where r : L ⇀ R is a partial morphism and U is a finite set of uni-
versal quantifications. A universal quantification is a pair (pu, qu) = u ∈ U where
pu : L Lu is a total injective morphism and qu : Lu ⇀ Ru is a partial morphism
satisfying the restriction that qu(pu(x)) is defined and has exactly one preimage in Lu
for every x ∈ L.

With qn(u) we denote the set of quantified nodes of u, which is the set of all v ∈ VL
such that there is an edge incident to pu(v) which has no preimage in L. We denote
the quantified nodes of a rule the same way, i.e. qn(ρ) =

⋃
u∈U qn(u). We require that

qn(u) 6= ∅ for all u ∈ U .

In the rest of the paper we will use UGTS to denote the extension of GTS with
universally quantified rules.

Definition 2 (Instantiation of a universally quantified rule). An instantiation of a
universally quantified rule ρ = (r, U) consists of a total injective morphism π : L L
and a partial morphism γ : L ⇀ R and is recursively defined as follows:
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– The pair (idL : L L, r), where idL is the identity
on L, is an instantiation of ρ.

– Let (π : L L, γ : L ⇀ R) be an instantiation of
ρ and let (pu : L Lu, qu : Lu ⇀ Ru) = u ∈ U .
Furthermore, let Lu be the pushout of π, pu and let
Ru be the pushout of γ ◦ π, qu ◦ pu, as shown in the
diagram to the right. Then p′u ◦ π and the (unique)
mediating morphism η are also an instantiation of ρ.
We write (p′u ◦ π, η) = (π, γ) � u to indicate that the
instantiation (π, γ) was extended by u.

L L R

Lu Lu

Ru Ru

π γ

pu p′u
π′

qu
η

We say that the length of an instantiation is the number of steps performed to generate
the instantiation, where (idL, r) has a length of 0.

Example 2. Figure 3 shows a possible instantiation of the rule in Figure 1f. There is
only one universal quantification u and this quantification is used once to generate the
instantiation (p′u ◦ idL, η). Any further instantiation will add an additional node and
OF -edge to Lu and an additional node and F -edge to Ru. The universally quantified
node (i.e. qn(u)) is marked grey. This means that η is only applicable if the grey node
is matched to a node with degree (exactly) two. The rule application is performed by
calculating the pushout of η (not r) and a valid matching m. The matching is only valid
if all edges incident to the grey node have a preimage in Lu, such that an application
will always result in all incident OF -edges to be replaced by F -edges. Although the
number of affected edges can be arbitrary large, the quantification it bounded to the
neighbourhood of the grey node and therefore the change is still local.

L L R

Lu Lu

Ru Ru

E E T

OF

E

OF

E

F

E

F

T

idL r

pu p′u

id ′
L

qu
η

Fig. 3: A possible instantiation of the rule in Figure 1f

The order in which universal quantifications are used to generate instantiations can
be neglected, since different sequences will still yield the same instantiation (up to
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isomorphism). Therefore we can uniquely specify instantiations by the number each
universal quantification in its sequence.

Definition 3 (Rule application). Let ρ be a universally quantified rule. We say that ρ
is applicable to a graph G, if there is an instantiation (π, γ) of ρ and a total injective
match m : L G, such that for every x ∈ qn(ρ), there is no e ∈ EG incident to
m(π(x)) without a preimage in L. The application of ρ to G via m results in the graph
H , the pushout of m and γ.

We reuse the notation G ⇒ G′ to denote a rewriting step from G to G′. The previ-
ous definition introduces a restricted form of negative application condition since the
existence of an edge, which cannot be mapped by a quantification, may block the ap-
plication of a rule.

4 A Procedure for Coverability in UGTS

In this paper we focus our attention on verification problems that can be formulated
as reachability and coverability decision problems. Given an initial configuration G0

and a target configuration G1 reachability consists in checking whether there exists a
computation from G0 to G1. The coverability problem is similar to the reachability
problem, but additionally relies on an ordering. In this paper we use the subgraph or-
dering, but there are other suitable orders such as the minor ordering or the induced
subgraph ordering [24].

Definition 4 (Subgraph Ordering). A graph G1 is a subgraph of G2, written G1 ⊆
G2, if there exists a partial, injective and surjective morphism from G2 to G1, written
µ : G2 G1. Such morphisms are called subgraph morphisms.

Given a G, a subgraph can always be obtained by a sequence of node and edge
deletions. Note that due to the morphism property every edge attached to a deleted
node must be deleted as well. Using the subgraph ordering we can represent sets of
configurations by minimal graphs and define two variants of the coverability problem.

Definition 5 (Upward Closure). The upward closure of a set S of graphs is defined as
↑S = {G′ | G ⊆ G′, G ∈ S}. A set S is upward-closed if it satisfies S = ↑S . A basis
of an upward-closed set S is a set B such that S = ↑B.

Definition 6 (Coverability). Let G0, G1 be two graphs. The general coverability prob-
lem is to decide whether from G0 we can reach a graph G2 such that G1 ⊆ G2.

Let G a set of graphs and let G0, G1 ∈ G. The restricted coverability problem is to
decide whether from G0 we can reach a graph G2 ∈ G such that G1 ⊆ G2 and every
graph on the sequence from G0 to G2 is an element of G.

In other words, a configuration is coverable from some initial configuration if we
can reach a configuration containing (as subgraph) a given pattern. Although general
and restricted coverability are both undecidable, we can obtain decidability results by
using a backward search introduced for well-structured transition systems [6,22] as
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already shown in [7]. These systems rely on a well-quasi-order (wqo), which is a tran-
sitive reflexive order≤ such that there is no infinite, strictly decreasing sequence of ele-
ments and no infinite antichain, a sequence of pairwise incomparable elements, wrt. ≤.
A direct consequence of this property is that every upward-closed set wrt. some wqo
has a finite basis. It has been shown that the subgraph ordering is a well-quasi-order on
Gk, the class of graphs in which every undirected path has at most the length k [19]. We
remark that the property does not hold if only directed paths are restricted.

The backward search presented in this paper is a version of the general backward
search presented in [24] adapted to be compatible with UGTS. We denote the set of
predecessors for a set of graphs S by Pred(S) = {G′ | ∃G ∈ S : G′ ⇒ G}. Further-
more we denote the predecessors reachable within multiple step by Pred∗(S) and the
restricted predecessors by PredG(S) = Pred(S) ∩ G. We will present a procedure for
UGTS to compute so-called effective pred-basis and effective Gk-pred-basis. An effec-
tive pred-basis for a graph G is a finite basis pb(G) of ↑Pred(↑{G}) and an effective
Gk-pred-basis is a finite basis pbk(G) of ↑PredGk(↑{G}). Using the effective Gk-pred-
basis the backward search will terminate and compute a finite basis B. If G ∈ ↑B, then
G covers a configuration of S in⇒ (general coverability). If G /∈ ↑B, then G does not
cover a configuration of S in⇒Gk (no restricted coverability), where⇒Gk is the restric-
tion⇒ ∩ (Gk ×Gk). By using the effective pred-basis the backward search computes a
finite basis for Pred∗(S), but is not guaranteed to terminate.

The computation of a Gk-pred-basis is performed by Procedure 1. We assume that
for a graph G and a rule ρ there is an upper bound on the length of instantiations
necessary to compute a backward step and write boundρ(G) to denote such an upper
bound. The existence of this upper bound is shown later on in Proposition 1. The result
of a backward step is a finite set S of graphs such that Pred(↑{G}) ⊆ ↑S.

Procedure 1 (Backward Step).
Input: A rule ρ and a graph G.
Procedure:
1. First compute all instantiations (π : L L, γ : L ⇀ R) of ρ up to the length

boundρ(G).
2. For each γ compute all subgraph morphisms µ : R R′. Note that it is sufficient

to take a representative R′ for each of the finitely many isomorphism classes.
3. For each µ ◦ γ compute all total injective morphisms m′ : R′ → G (co-matches of
R′ in G).

4. For each such morphism m′ calculate all minimal pushout complements G′, m :
L G′ of m′ and µ ◦ γ where m is injective and G′ is an element of Gk. Drop all
G′ where m does not satisfy the application condition of Definition 3, i.e. there is
an edge incident to a quantified node which is not in the matching.

Result: The set of all graphs not dropped in Step 4, written pbk(G).

The motivation behind Step 2 is that G represents not just itself but also its upward
closure. Therefore, the rule must also be applied to every graph larger than G. Instead
of using partial co-matches we concatenate with subgraph morphisms to simulate this
behaviour.

The procedure for a single backward step can be used to define a backward search
procedure for the coverability problem for UGTS. The procedure exploits the property
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that, even if compatibility is not satisfied, Pred(↑S) ⊆ ↑Pred(↑S) still holds for every
set of graphs S . We can iteratively compute backward steps for all minimal graphs G
of ↑S and check that no initial state is reached backwards.

Procedure 2 (Backward Search).
Input: A natural number k, a setR of graph transformation rules and a finite set of final
graphs F . Start with the working setW = F .
Backward Step: For each G ∈ W add all graphs of pbk(G) to W and minimize W
by removing all graphs H ′ for which there is a graph H ′′ ∈ W with H ′ 6= H ′′ and
H ′′ ⊆ H ′. Repeat this backward steps until the sequence of working setsW becomes
stationary, i.e. for every G ∈ W the computation of the backward step using G results
in no change ofW .
Result: The resulting setW contains minimal representatives of graphs from which a
final state is coverable. This set may be an over-approximation, even without quantified
rules.

To show the termination of Procedure 1 and 2 it is important to show the existence
of a bounding function boundρ(). By the following proposition this function exists for
every rule ρ, but as we will show later this bound can be tightened in most cases.

Proposition 1. Let ι be an instantiation of length k of some rule ρ. If k is larger than
the number of nodes and edges of G, then every graph computed by the backward
application of ι is already represented by the backward application of an instantiation
of lower length.

The following two lemmas prove that Procedure 1 computes a finite basis of an
over-approximation of the restricted predecessors.

Lemma 1. The set pbk(G) is a finite subset of Pred(↑{G}) and pbk(G) ⊆ Gk.

Lemma 2. It holds that ↑pbk(G) ⊇ ↑PredGk(↑{G}).

We recapitulate our main result in the following proposition.

Proposition 2. For each graph G, pbk(G) is an effective Gk-pred-basis. Furthermore,
Procedure 2 terminates and computes an over-approximation of all configurations in
Gk from which a final configuration is coverable.

Proof. By Lemma 1 and 2 we know that ↑pbk(G) = ↑PredGk(↑{G}) and thus pbk(G)
is a Gk-pred-basis. According to Proposition 1 for every ρ ∈ R the number of necessary
instantiation steps is bounded by boundρ(G), thus, the number of instantiations is fine.
For each instantiation the minimal pushout complements restricted to Gk are finite and
computable. Since the subgraph ordering is decidable the minimization is computable
and pbk(G) is effective.

Since the subgraph ordering is a wqo on Gk, every infinite increasing sequence
of upward-closed set becomes stationary. The upward-closures of the working setsW
form such an infinite increasing sequence, thus the termination criteria of Procedure 2
will be satisfied at some point. ut
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A Variant of pbk() Without Path Bound

In Step 4 of Procedure 1 every graph which is not an element of Gk is dropped. This
is needed to guarantee that the working set of Procedure 2 becomes stationary and the
search terminates. However, this restriction can be dropped to obtain a backward search
which solves the general coverability problem. Termination is not guaranteed, but cor-
rectness can be proven analogously to the restricted variant, as already shown in [24].
Let pb() be Procedure 1 without the restriction to Gk. We summarize the decidability
of this second variant in the following proposition.

Proposition 3. For each graphG, pb(G) is an effective pred-basis. Furthermore, when
using pb() instead of pbk(), Procedure 2 computes an over-approximation of all con-
figurations from which a final configuration is coverable.

Experimental Results

We added support for universally quantified rules to the UNCOVER tool. This tool
can perform the backward search for the subgraph ordering and the minor ordering (a
coarser order compared to subgraphs). Both variants of the backward search are imple-
mented, but a timeout might occur when using the unresticted variant. However, given
the rules in Figure 1 and the error graphs in Figure 4 the unrestricted variant terminates
after 12 seconds and results in a set of 12 minimal graphs. Two of these graphs are the
initial error graphs and two other computed graphs are shown in Figure 5. Every min-
imal graph contains a node in the state E. Since initially no philosopher is eating, the
initial configuration is not represented and none of the initial error graphs is reachable.
This proves that two adjacent philosophers cannot be eating at the same time.

E E

F

E E

OF

Fig. 4: Two error configurations in the
Dining Philosophers Problem

H E

F

E T

OF

Fig. 5: Two other error graphs com-
puted by the backward search

5 Optimizations

In this section we discuss and formalize some optimizations that can be applied to the
basic backward procedure described in the previous section.

Lifting the Application Condition to a Post Conditions In Procedure 1 the applica-
tion condition is checked in Step 4 for each pushout complement. However, by lifting
the application condition over the instantiation we can check beforehand whether the
backward step yields new graphs. We show the lifting in the following lemma.
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Lemma 3. Let ρ be a rule, (π : L L, γ : L ⇀ R) an instantiation of ρ and m :
R G a co-match of the instantiation to some graph G. If there is a node x ∈ qn(ρ)
where m(γ(π(x)) is defined and attached to an edge e without preimage in R, then
there is no pushout complement H of γ, m satisfying the condition of Definition 3.

Tightening the Upper Bound of Instantiations The bound on the length of instan-
tiations proven to exist in Proposition 1 can be improved depending on the rule used.
Let ρ = (r : L ⇀ R,U) be a rule. Obviously boundρ(G) = 0 if U = ∅. The same
holds if instantiations only increase the left side of the rule, i.e. for every u ∈ U given
the instantiation (idL, r) � u = (π : L Lu, γ : Lu ⇀ Ru), the graphs Ru and R are
isomorphic.

A more common situation is that quantifications do not add edges to the right side
of the instantiations which are solely incident to nodes of the original rule r. This is
case for all rules used in Example 1. The bound can be reduced as shown below.

Lemma 4. Let ρ = (r : L ⇀ R,U) and let (idL, r) � u = (π : L Lu, γ : Lu ⇀
Ru). If for every u ∈ U every edge e ∈ Ru without preimage in R is connected to a
node v ∈ Ru without preimage in R, then boundρ(G) = |VG|.

Optimization by Preparation The general framework in [24] uses a preparation step
in the backward search to compute the concatenation of rules and subgraph morphisms
performed in Step 2 of Procedure 1. This is not fully possible with universally quan-
tified rules since the instantiations are generated within the backward steps. However,
the preparation step can be performed for rules without universal quantifications. For
rules with quantification the inner rule morphism can be concatenated with subgraph
morphisms to partially prepare the rule. It can also be show that any concatenation of
an instantiation and a subgraph morphism which is also a subgraph morphism, will not
yield new graph in the backward step and thus can be dropped. This also holds for rules
with universal quantification if all possible instantiations are also subgraph morphisms.

6 Conclusions and Related Work

In this paper we introduced a categorical formalization for an extension of graph trans-
formation systems with universally quantified rules built on the single pushout ap-
proach. These rules are powerful enough to model distributed algorithms which use
broadcast communication. A similar concept are adaptive star grammars [20] where the
left-hand side of a rule is a star, i.e. a designated center node connected to a set of other
nodes. Arbitrary large graphs can be matched by cloning parts of the star, which is –
apart of the restriction to stars – one of the main differences to our approach. Techni-
cally our instantiations are a special form of amalgamated graph transformations [9], a
technique to merge rules.

The backward search procedure presented in this paper is an extension of [24] with
universally quantified rules and can be used for the verification of distributed algo-
rithms, similar to [14]. There the induced subgraph ordering was used, which was also
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shown to be compatible with the framework in [24]. However, our quantifications differ
as we have a stronger negative application condition such that the induced subgraph
ordering is not enough to cause our UGTS to satisfy the compatibility condition. This
also causes the approached to differ in expressiveness. In general our approach should
be compatible with the induced subgraph ordering and the minor ordering, but we did
not yet investigated this.

Parameterized verification of combinations of automata- and graph-based models of
distributed systems has been studied, e.g. in [10,4,15,16,13,12]. In [5] we applied graph-
based transformations to model intermediate evaluations of non-atomic mutual exclu-
sion protocols with universally quantified conditions. The conditions are not defined
however in terms of graph rewrite rules. Semi-decision procedures can be defined by
resorting to upward closed abstractions during backward search (monotonic abstraction
as in [11]). In [10] we studied decidability of reachability and coverability for a graph-
based specification used to model biological systems. Among other results, we proved
undecidability for coverability for graph rewrite systems that can only increase the size
of a configuration. Reachability problems for graph-based representations of protocols
have also been considered in [4] where symbolic representations combining a special
graph ordering and constraint-based representation of relations between local data of
different nodes have been used to verify parameterized consistency protocols. Cover-
ability for GTS is studied in [8] where it was proved that it is decidable for bounded path
graphs ordered via subgraph inclusion. A model with topologies represented as acyclic
directed graphs has been presented in [1]. Coverability for automata-based models of
broadcast communication has recently been studied in [15,16,13,18,12]. In the context
of program analysis approximated backward search working on graphs representing
data structures with pointers have been considered in [2]. In this setting approximations
are defined via edges or node deletion.
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6. P. A. Abdulla, K. C̆erāns, B. Jonsson, and Y. Tsay. General decidability theorems for infinite-
state systems. In Proc. of LICS ’96, pages 313–321. IEEE, 1996.

7. N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath. On the decidability status
of reachability and coverability in graph transformation systems. In RTA’12, volume 15 of
LIPIcs, pages 101–116. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

12



8. N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath. On the decidability status
of reachability and coverability in graph transformation systems. In RTA, pages 101–116,
2012.

9. P. Boehm, H. Fonio, and A. Habel. Amalgamation of graph transformations: A synchroniza-
tion mechanism. Journal of Computer and System Sciences, 34:377 – 408, 1987.

10. G. Delzanno, C. Di Giusto, M. Gabbrielli, C. Laneve, and G. Zavattaro. The kappa-lattice:
Decidability boundaries for qualitative analysis in biological languages. In CMSB, pages
158–172, 2009.

11. G. Delzanno and A. Rezine. A lightweight regular model checking approach for parameter-
ized systems. STTT, 14(2):207–222, 2012.

12. G. Delzanno, A. Sangnier, and R. Traverso. Parameterized verification of broadcast networks
of register automata. In RP’13, pages 109–121, 2013.

13. G. Delzanno, A. Sangnier, R. Traverso, and G. Zavattaro. On the complexity of parameter-
ized reachability in reconfigurable broadcast networks. In FSTTCS’12, volume 18 of LIPIcs,
pages 289–300. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

14. G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of ad hoc networks.
In Proc. CONCUR ’10, pages 313–327. Springer, 2010. LNCS 6269.

15. G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of ad hoc networks.
In CONCUR’10, volume 6269 of LNCS, pages 313–327. Springer, 2010.

16. G. Delzanno, A. Sangnier, and G. Zavattaro. On the power of cliques in the parameterized
verification of ad hoc networks. In FOSSACS’11, volume 6604 of LNCS, pages 441–455.
Springer, 2011.

17. G. Delzanno and J. Stückrath. Parameterized verification of graph transformation systems
with whole neighbourhood operations, 2014. arXiv:1407.4394.

18. G. Delzanno and R. Traverso. Decidability and complexity results for verification of asyn-
chronous broadcast networks. In LATA, pages 238–249, 2013.

19. G. Ding. Subgraphs and well-quasi-ordering. Jornal of Graph Theory, 16:489–502, Novem-
ber 1992.

20. F. Drewes, B. Hoffmann, D. Janssens, M. Minas, and N. V. Eetvelde. Adaptive star gram-
mars. In Proc. of ICGT ’06 (International Conference on Graph Transformation), pages
77–91. Springer, 2006. LNCS 4178.
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