Uncover: Using Coverability Analysis for Verifying
Graph Transformation Systems*

Jan Stiickrath

Universitdt Duisburg-Essen, Germany
jan.stueckrath@Quni-due.de

Abstract. UNCOVER is a tool for high level verification of distributed or con-
current systems. It uses graphs and graph transformation rules to model these
systems in a natural way. Errors in such a system are modelled by upward-closed
sets for which two orders are provided, the subgraph and the minor ordering.
We can then exploit the theory of well-structured transition systems to obtain
exact or approximating decidability results (depending on the order and system)
for the question whether an error can occur or not. For this framework we also
introduced an extension of classical graph transformation which is capable of
modelling broadcast protocols.

1 Introduction

Verification is a very broad area of computer science and UNCOVER aims at the high-
est abstraction level, i.e. the verification of protocols or dynamic systems in general.
For modelling systems we use graphs and graph transformation rules [17], called graph
transformation systems (GTS). Graphs are here used to model the current state of a
system, and graph transformation rules are used to model state changes. More precisely
we use hypergraphs, a generalization of directed graphs, where each edge need not
connect only two nodes, but can be connected to an arbitrarily long, but finite sequence
of nodes. Graph transformation systems are effectively a transformation schema which
can be applied to possibly infinitely many graphs and can therefore finitely represent
infinitely large transition systems. The transformation approach we use is the single
pushout approach (SPO) based on category theoretical constructions using partial mor-
phisms, i.e. partial mappings from graphs to graphs.

Not many tools for verifying GTS exist, examples being GROOVE [10] for finite
state systems or AUGUR2 [3] and GBT [818] for infinite state systems. Since most
problems are undecidable in the infinite case, the latter two tools use approximations
via Petri nets (AUGUR2) and abstraction with graph patterns (GBT). With UNCOVER
we also target infinite state systems and use the theory of well-structured transition
systems [2/7] to achieve decidability results, which gave rise to the framework we pre-
sented in [[14]. In this paper we will present UNCOVER including an introduction to the
framework it implements.

To obtain a well-structured transition system we need to equip the GTS with a well-
quasi-order which is a simulation relation for the transition relation, i.e. if a graph G

* Research partially funded by DFG project GaReV.

o—r}~0 = O—{A}—0O O O = O—HR}-0
2 1 3 2 1 3 2 1 3 2

1 3

(a) A process generates a new message to elect (b) Other processes forward a message if their

itself as leader ID is higher than that of the sender
M;
7] 0 o = ©
O O = O0—L}—0 1 2 1,2
1 2 1 2

L . d) A process leaves the rin
(c) A process receiving its own message is the AP g

leader
O O
(e) Error configuration of the protocol, show-
ing two leaders (f) Initial ring structure of the protocol

Fig. 1: Modelling of a leader election protocol by graph transformation rules [12]

can be transformed to a G’, then any graph larger than G can be transformed to a graph
larger than G’. Using this order we can now model errors in a GTS by a set of minimal
error graphs, i.e. every graph which is larger or equal to a minimal error graph contains
the error. We can see this for instance in Fig. [T] where we model a leader election pro-
tocol for a ring structure. Initially the protocol starts on a directed ring of processes,
each with a unique ID (Fig.[Tf) where processes can propose their leadership (Fig. [Ta)),
forward other processes proposals (Fig. [Tb), get elected (Fig. or simply leave the
ring (Fig. [Id). The system is erroneous if two processes can both elect themselves to
be leader. This error is exhaustively described (for rings) by the minimal error graph in
Fig. [Te] when using the minor ordering. A graph G is a minor (i.e. smaller or equal) of
a graph G’ if we can obtain G by deleting nodes or contracting edges of G’. A contrac-
tion deletes the edge and merges its incident nodes according to any partition on them,
which includes edge deletion. This means that the graph in Fig. [Te]is a minor of any
directed ring (among others) of length larger or equal to two where there are at least
two leaders. Thus, the protocol is correct if and only if we can not reach such a ring
from the initial ring. Note that contraction is essential in this case and the given error
graph would not be sufficient wrt. subgraph ordering, which only allows node and edge
deletions. In fact, we would need infinitely many subgraphs to describe the same error.

In this setting, checking whether an error is reachable is equivalent to checking
whether a minimal error graph is coverable, which is decidable for well-structured tran-
sition systems if a so-called effective pred-basis exists. An effective pred-basis is a algo-
rithm which takes a graph G and computes the minimal graphs which can be rewritten —
in one step — to a graph larger than GG. When called, UNCOVER will use the initial error
graphs as working set and compute in each step the pred-basis of the current working

set, add it to the set and keeps only the minimal graphs, until eventually the working set
stabilizes. All graphs which are larger or equal to one of the graphs in the final working
set can reach an error, i.e. a graph larger or equal to an initial error graph. For the exam-
ple in Fig. [T using three processes this will be 38 graphs in total, representing mostly
graphs with a “broken” ring structure or graphs where two processes have the same
ID. Since the initial graph (Fig. is not larger or equal to any of those graphs, the
protocol is correct. The simulation property of the order ensures the correctness of the
result set and being a well-quasi-order ensures termination. This theory has also been
successfully applied to related formalisms such as the 7-calculus [15].

So far both the subgraph ordering and the coarser minor ordering are implemented
in UNCOVER. Both orders impose different restrictions on the graphs and graph trans-
formation systems and we will illustrate the resulting trade-off in Section (3| in more
detail. The sources and documentation of the UNCOVER tool, as well as some example
case studies (including Fig. [I)) can be found on its main website [19].

2 Design and Usage

UNCOVER is a command line tool, written in C++ and licensed under GPLv2. Since run
times may be long for larger systems, it is designed to run autonomously on a server
once it has received its input, logging the performed computations up to the desired
verbosity and storing the final set of error graphs. Fig.[2]shows how an invocation of the
tool may look like.

To perform an analysis UNCOVER requires three parameters: the system model, the
initial error description and the order used. The first two parameters may be any GTS
(not requiring initial graphs) and any set of graphs up to certain restrictions depend-
ing on the order (see Section [3). The order may be chosen from a set of predefined
orders provided by UNCOVER, currently the minor ordering and the subgraph ordering.
Beyond the required parameters, there are a few optional parameters e.g. for setting a
timeout or the log file verbosity, which are described in the documentation [19].

System Model. The system to be analysed must be modelled as a graph transformation
system using SPO rules [17], i.e. partial morphisms, as shown in Fig. [Ta]to[Td](the set of
initial graphs may also be empty). Injective or conflict-free matches can be used, which
result in a slightly different induced transition system. In this context a match is conflict-
free wrt. some rule if every two elements with the same image are either both deleted
or both preserved by the rule. Note that the transition system induced by conflict-free

specifies that a backward the GXL file storing the sets a timeout of one
analysis will be performed initial error graphs hour (optional)

uncover —--scn=backw GTS.xml Error.xml "subgraph[-]" to=3600

7 /

filename of the GTXL string specifying the
storing the GTS order used

Fig. 2: Shows an exemplary use of the UNCOVER tool

matches contains the transition system using injective matches, since every injective
match is also conflict-free. In recent work we extended the standard SPO approach with
so-called universally quantified rules, i.e. rules capable of matching the entire neigh-
bourhood of a node, to to model broadcast operations [6]] and also implemented this
extension in UNCOVER. The input format for the GTS is based on the GTXL format
(i.e. XML-based) and a definition file is available with the source code [19].

Initial Error Description. The initial error description is a finite set of graphs and is
interpreted as the minimal elements of an upward-closed class of graphs all containing
an error. This means that an error can be described in this way if it is invariant wrt. to
the order used, i.e. if a graph contains the error, any larger graph must contain the error
as well. For instance the error graph in Fig. [I¢| represents — wrt. the minor ordering —
all rings (among others) containing two leaders, which are all erroneous states of the
system. As input format for the initial error description we use the XML-based GXL
format [[11]].

Predefined Orders. For an analysis the used order must be specified. It influences the
interpretation of the initial error configuration and may impose restrictions on the ana-
lyzable GTS (see Section [3). UNCOVER currently supports the minor ordering and the
subgraph ordering, although the implemented framework is not limited to these orders.
In fact, in [[14] we stated necessary conditions for an order to be compatible and have
also shown that the induced subgraph orderin satisfies these conditions. Note that
different orders also lead to different notions of coverability and may impose differ-
ent restrictions on the system model. As indicated in Fig. [2] the third parameter may
either be ‘minor’ for the minor ordering or ‘subgraph [x]’ for the subgraph order-
ing, where x may either be a natural number specifying a path bound or ‘-’ for no
bound (we define and discuss path bounds in Section @]) Furthermore, UNCOVER is
specifically implemented to be easily extendible with further orders.

Results. The analysis procedure returns a finite set of graphs. It contains all graphs that
can reach a graph larger than one of the initial error graph. Obviously this also includes
the initial error description.

Additional scenarios. In addition to the backward analysis scenario, UNCOVER also
provides auxiliary scenarios, the important being ‘gtxl2latex’ and ‘gxl2pic’,
which use Graphviz [9] and Latex to draw GXL and GTXL files, and ‘leqg’, which
checks if a graph is in the upward closure of a given set of graphs. All auxiliary scenarios
are described in the documentation.

3 Decidability Results

Normally, given a (finite) set of initial error graphs Z and a GTS 7, UNCOVER will
return a (finite) set of final graphs £, which characterize by their upward closure all
graphs from which an error can be reached. More precisely, a graph G can reach a
graph larger than a graph of Z if and only if there is an G’ € & such that G’ C G
(wrt. the order used). However, UNCOVER is not always guaranteed to terminate and in

' G is an induced subgraph of G’ if we can obtain G by deleting a subset of the nodes of G’
including their incident edges.

the following subsections we will examine this separately for the minor and subgraph
orderings. We will also see that there is a trade-off between these orders: the minor
ordering guarantees termination for all classes of graphs whereas the subgraph ordering
can analyse any GTS. Which order is best suited depends on the concrete case study.
If the GTS is suitable, the minor ordering is often a good choice. However, the minor
ordering is too coarse for some properties to be described as its upward closure, in
which case the subgraph ordering is better.

If the GTS has initial graphs for which coverability should be checked, UNCOVER
can also prematurely terminate as soon as a graph was found that is smaller or equal
to one of the initial graphs. Moreover, we are not limited to checking coverability for
individual graphs. If 7 models for instance a distributed algorithm, the final graphs £
represent all network topologies for which the algorithm is not correct. This effect can
be seen in the leader election protocol in Fig.[I] where final graphs (see [12]) represent
networks with duplicate process identifiers as well as non-ring structures.

3.1 Minor Ordering

The minor ordering for hypergraphs was first used in [12] and a similar idea was pre-
sented in [[1]] to abstractly represent heaps of programs, a more restricted class of graphs.
Since the minor ordering is a well-quasi-order on all graphs [[L6], all upward-closed sets
are finitely representable. This also guarantees that UNCOVER will terminate when us-
ing minors. However, the minor ordering is not a simulation relation wrt. all GTS, but
only for GTS containing edge contraction rules for each label, i.e. rules deleting an
edge and merging an arbitrary partition on its incident nodes. A class of systems which
naturally satisfy this restriction are lossy systems, where communication is assumed to
be unreliable, i.e. messages may be lost at any time. In the example shown in Fig. [I]
a process leaving the ring and the loss of messages (not shown explicitly) constitute
edge contraction rules. In [13] we have shown that this restriction may even hold in
the presence of negative application conditions, although this is not yet implemented in
UNCOVER.

If the input GTS does not satisfy the previously mentioned restriction, then UN-
COVER will analyse the GTS as if it would contain edge contraction rules, i.e. implic-
itly add these rules. Obviously this GTS is an over-approximation of the original GTS
and & will be an over-approximation as well. Note that the precision of this approxima-
tion strongly depends on the GTS and that UNCOVER is still guaranteed to terminate,
regardless of approximation.

Although it is technically not a problem, injective matches can currently not be used
with the minor ordering in UNCOVER.

3.2 Subgraph Ordering

We first proposed to use the subgraph ordering for the backwards analysis in [5] and
integrated it into our framework in [14]]. However, there have also been other approaches
to use the subgraph ordering backwards [18] or forwards [4] in the context of well-
structured transition systems, often introducing approximations. UNCOVER implements
the subgraph ordering with conflict-free and injective matches and additionally allows

so-called universally quantified rules, capable of matching entire neighbourhoods of
nodes, in the injective case.

A nice property of the subgraph ordering is that it is a simulation relation wrt. all
GTS. However, not every upward closed set is finitely representable, since it is not a
well-quasi-order on all graphs, but only on the class of graphs where every (undirected)
path is bounded by a constant k. This also means that termination is not guaranteed
when we call UNCOVER without a path bound, although we obtain a precise result for
every terminating instance. Note that in the case of non-termination we can still semi-
decide coverability for a graph G by letting UNCOVER check if G was found after each
backward step.

To guarantee termination, we need to set a path bound, but this will affect the ex-
pressiveness of the computed £. It still holds, that any G in the upward closure of &£
can cover a initial error graph. However, for any G not in the upward closure of £ we
only know that G cannot cover an initial error without exceeding the path bound. In the
latter case we simply do not know whether G can or cannot cover an error if the paths
were not bounded.

When using the subgraph ordering with injective matches, we can also use uni-
versally quantified rules as introduced in [6]]. Regardless of the use of bounded or un-
bounded paths, £ will usually be an over-approximation when using universally quan-
tified rules, since these rules impose negative application conditions.

4 Case Studies

To demonstrate the effectiveness of our analysis procedure we verified several case
studies of which some are published in several papers [SI6/12113l14]]. TableE]shows for
each case study the order used, the class of graphs for which the system was verified,
the runtime and the number of graphs in the final graphs £. The runtime results where
computed on an Intel®) Xeon®) CPU E5-2637 v2 with 64 GB RAM using only one core
(parallelisation is not yet implemented). All case studies are available on the UNCOVER
website [19]).

Table 1: Runtime result for different case studies

case study [order [graph class [runtime [#EQG)
Leader election (IDs < 10) | minor | all graphs Im 1.6s 451
Leader election (IDs < 20) | minor | all graphs | 28m 17.5s | 2401
Termination det. (faulty) minor | all graphs 803ms 69
Termination det. (correct) | minor | all graphs 330ms 101
Rights management subg. | all graphs 37ms 4
Dining Philosophers subg. | all graphs 466ms 12
Public-private server subg. | path < 50 13.8s 104
Public-private server subg. | path < 100 | 3m 28.6s 204

Leader election (see [12]]) This is the leader election protocol modelled in Fig. |1} We
could verify that no two processes are elected as leader if the protocol is used on
a ring. However, the number of processes needs to be fixed beforehand, since it
affects the GTS.

Termination Detection (see [5/13]) Here we modelled a termination detection proto-
col for a ring structure, where processes can be generated by other processes, leave
the ring and can be passive or active. We modelled two variants, a faulty and a cor-
rect version, where in the former case our analysis found the error and in the latter
case we could prove the protocol correct. In [13] we extended this protocol with
negative conditions.

Rights management (see [[14]) We modelled a rights management protocol with users
and objects where users can have read or write access rights for objects. We could
show that no two users may obtain write access to the same object. For this case
study the analysis terminates without setting a path bound (which is not guaranteed
in general).

Dining Philosophers (see [6]) In this case study we modelled the Dining Philosophers
Problem on an arbitrary graph structure using universally quantified rules, i.e. two
philosophers need all adjacent forks to eat. We proved that no two adjacent philoso-
phers can eat at the same time. The analysis also terminates without a path bound.

Public-private server Here we modelled a system of communicating public and pri-
vate servers and proved that communication between private servers is never leaked
to public servers. This analysis needs a path bound to ensure termination.

The computation of the case studies above involves several combinatorial problems
which had to be tackled in the implementation of UNCOVER. On the one hand it is NP-
complete to check whether two graphs are related wrt. the subgraph or minor ordering.
On the other hand the search for possible matches as well as the actual backward ap-
plication of a rule are also potential sources of combinatorial explosion. This made it
necessary to implement a careful memory management and early optimisations when-
ever enumerating graphs or matches.

S Future Development

There are several ways to further improve and extend UNCOVER. To handle the com-
binatorial blow-up some optimisations are implemented, such as deleting rules which
do not affect the analysis, but this could be extended further. This especially holds for
universally quantified rules, which still have a lot of optimisation potential. Another
obvious improvement is parallelisation, from which UNCOVER would greatly benefit
due to the inherently parallel nature of a backward step. There are even some parts
of the general framework, such as the induced subgraph ordering or injective matches
and negative application conditions for the minor ordering, which still remain to be im-
plemented. For convenience UNCOVER still requires an automatic visualisation of its
performed steps, to support a user in understanding how an error can occur.

Possible improvements also arise from the underlying formalism. The framework
of [14] and the implementation of UNCOVER are already designed to allow an easy

€X

tension by additional orders. Furthermore, the framework would benefit in particular

from an introduction of structural patterns or attributed graphs for describing sets of
graphs. The former would for instance allow a finite representation of the class of all
circles, even when using subgraphs. Whereas the latter improvement could allow more

ge

neral rules and for instance the analysis of the leader election case study (Fig. [I)

without fixing the number of processes. However, both extensions considerably increase
the complexity of computing pred-bases.

References

1

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

. P. A. Abdulla, A. Bouajjani, J. Cederberg, F. Haziza, and A. Rezine. Monotonic abstraction
for programs with dynamic memory heaps. In Proc. of CAV ’08, pages 341-354, 2008.
LNCS 5123.

. P. A. Abdulla, K. Ceréns, B. Jonsson, and Y.-K. Tsay. General decidability theorems for
infinite-state systems. In Proc. of LICS ’96, pages 313-321. IEEE, 1996.

. AUGUR2. http://www.ti.inf.uni-due.de/research/tools/augur2/\

. K. Bansal, E. Koskinen, T. Wies, and D. Zufferey. Structural counter abstraction. In Pro-
ceedings of the TACAS 13, LNCS, pages 62—77. Springer-Verlag, 2013.

. N. Bertrand, G. Delzanno, B. Konig, A. Sangnier, and J. Stiickrath. On the decidability status
of reachability and coverability in graph transformation systems. In Proceedings of RTA ’12,
volume 15 of LIPIcs, pages 101-116, 2012.

. G. Delzanno and J. Stiickrath. Parameterized verification of graph transformation systems
with whole neighbourhood operations. In J. Ouaknine, 1. Potapov, and J. Worrell, editors,
RP’14, volume 8762 of LNCS, pages 72—84. Springer, 2014.

. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1-2):63-92, Apr. 2001.

. Graph Backwards Tool (GBT). http://www.it.uu.se/research/group/
mobility/adhoc/gbt.

. Graphviz website. http://www.graphviz.org/,

GROOVE. http://groove.cs.utwente.nl/.

R. C. Holt, A. Schiirr, S. E. Sim, and A. Winter. GXL. http://www.gupro.de/GXL/\

S. Joshi and B. Konig. Applying the graph minor theorem to the verification of graph trans-

formation systems. In Proceedings of CAV '08, pages 214-226. Springer, 2008. LNCS 5123.

B. Konig and J. Stiickrath. Well-structured graph transformation systems with negative ap-

plication conditions. In Proceedings of ICGT ’12 (International Conference on Graph Trans-

formation), pages 89-95. Springer, 2012. LNCS 7562.

B. Konig and J. Stiickrath. A general framework for well-structured graph transformation

systems. In P. Baldan and D. Gorla, editors, Proceedings of CONCUR 2014, volume 8704

of LNCS, pages 467-481. Springer, 2014.

R. Meyer. Structural Stationarity in the mw-Calculus. PhD thesis, Carl-von-Ossietzky-

Universitdt Oldenburg, 20009.

N. Robertson and P. Seymour. Graph minors XXIII. Nash-Williams’ immersion conjecture.

Journal of Combinatorial Theory, Series B, 100:181-205, March 2010.

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Transfor-

mation: Volume 1: Foundations. World Scientific Publishing, 1997.

M. Saksena, O. Wibling, and B. Jonsson. Graph grammar modeling and verification of ad

hoc routing protocols. In Proceedings of TACAS’ 08, Lecture Notes in Computer Science,

pages 18-32, Berlin, Heidelberg, 2008. Springer-Verlag.

J. Stiickrath. UNCOVER. http://www.ti.inf.uni-due.de/research/tools/

uncover/l

http://www.ti.inf.uni-due.de/research/tools/augur2/
http://www.it.uu.se/research/group/mobility/adhoc/gbt
http://www.it.uu.se/research/group/mobility/adhoc/gbt
http://www.graphviz.org/
http://groove.cs.utwente.nl/
http://www.gupro.de/GXL/
http://www.ti.inf.uni-due.de/research/tools/uncover/
http://www.ti.inf.uni-due.de/research/tools/uncover/

	Uncover: Using Coverability Analysis for Verifying Graph Transformation Systems

