
Verifying Red-Black Trees?

Paolo Baldan1, Andrea Corradini2, Javier Esparza3, Tobias Heindel3,
Barbara König3, and Vitali Kozioura3

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy

3 Institut für Formale Methoden der Informatik, Universität Stuttgart, Germany

baldan@dsi.unive.it andrea@di.unipi.it

{esparza,heindets,koenigba,koziouvi}@fmi.uni-stuttgart.de

Abstract. We show how to verify the correctness of insertion of ele-
ments into red-black trees—a form of balanced search trees—using anal-
ysis techniques developed for graph rewriting. We first model red-black
trees and operations on them using hypergraph rewriting. Then we use
the tool Augur, which computes approximated unfoldings, in order to
show that insertion preserves the property that there are no two consec-
utive red nodes in a tree, a requirement for red-black trees. Furthermore,
we prove that the tree remains balanced by exploiting a type system that
can be obtained as an instance of a general framework.

1 Introduction

In order to verify programs written in languages with dynamic memory alloca-
tion, such as C, it is important to find suitable abstractions for the dynamically
evolving pointer structures on the heap. The same problem arises for object-
oriented languages, for instance Java. Despite existing techniques such as alias
and points-to analysis [20, 24] and shape analysis [19], this is still a major open
problem. This paper proposes to use verification techniques based on graph
rewriting. The basic idea is to represent the state of the heap by a graph and
dynamic transformations of the pointer structure by graph rewriting rules. Com-
pared to the approaches to shape analysis which represent these structures as
models of a 3-valued logic we follow a more direct approach where pointer struc-
tures are represented as graphs, and graph morphisms can be used as a conve-
nient abstraction mechanism. This allows us to exploit partial order semantics
already developed for graph rewriting, as well as its close relation to Petri nets,
which we use as abstractions (over-approximations) of the behavior of graph
rewriting systems.

We demonstrate the effectiveness of this approach by modeling the insertion
of elements into red-black trees and verifying (partial) correctness of the insertion
operation. Red-black trees are binary search trees whose nodes are colored either

? Research partially supported by DFG project SANDS and EC RTN 2-2001-00346
SegraVis.

black or red. Only inner nodes can be red, and the following two properties
are satisfied: no red node has a red child, and the “black depth” is the same
for all leaves. In order to re-establish these properties after a new element is
inserted, it is necessary to perform some local transformations on the tree (called
rotations), which have the effect of rebalancing it. After modeling rotations as
graph rewriting rules, we use two different techniques to show that the two
properties of red-black trees mentioned above still hold after an insertion. The
first property is shown by automatically abstracting the graph rewriting system
into a Petri net [2, 4] by means of the Augur tool. The second property is proved
by resorting to a type-theoretical framework for graph rewriting, proposed in [9].

The rest of the paper is structured as follows. In Section 2 we introduce
red-black trees and their representation as hypergraphs. In Section 3 we model
insertion into red-black trees using graph rewriting. In Section 4 we show how
to verify that insertion preserves the structural properties of red-black trees.
Finally, in Section 5, we draw some conclusions.

2 Red-Black Trees

Red-black trees are a form of balanced search trees which can be easily imple-
mented (see [11, 5]). They can also be seen as a variant of (2, 4)-trees.

Definition 1 (Red-black tree). A red-black tree is a finite binary tree whose
inner nodes are associated with keys. Keys are elements of a totally ordered set. A
node can either be red or black. A red-black tree satisfies the following conditions:

(S) The tree is sorted, i.e., for every node v the maximal key in the left subtree
is smaller than the key of v, and the minimal key in the right subtree is equal
to or larger than the key of v.

(RL) The root and the leaves are black.
(D) All leaves have the same black depth, i.e., the number of black nodes on the

path from the root is the same for all leaves.
(R) No path from the root to a leaf contains two consecutive red nodes.

Due to these conditions the longest path from the root to a leaf is at most
twice as long as the shortest one. The height of a red-black tree with n inner
nodes is therefore O(log(n + 1)), and thus we say that the tree is balanced.

Since we will model insertion into red-black trees by hypergraph rewriting,
in the paper we always depict red-black trees as hypergraphs.

In the following, given a set A, let A∗ denote the set of finite sequences of
elements of A and for s ∈ A∗, let |s| denote its length.

Definition 2 (Hypergraph). Let Λ be a fixed set of edge labels, where every
label l ∈ Λ is associated with an arity ar(l) ∈ N.

A (Λ-)hypergraph (or simply graph) is a tuple G = (VG, EG, cG, lG), where
VG is a set of vertices and EG is a set of hyperedges. Each hyperedge is attached
to a sequence of vertices, as expressed by the connection function cG:EG → V ∗

G
,

L L L L

R

9

L

Rt

B

B

B B L

11

16

4

19

L

R

23

Fig. 1. An example of a red-black tree.

and it is labeled with an element of Λ via the labeling function lG:EG → Λ. For
any hyperedge e ∈ EG it must hold that ar(lG(e)) = |cG(e)|, i.e., the number of
nodes an hyperedge is attached to is determined by the arity of its label.

Hypergraph morphisms ϕ:G → G′ are defined, as usual, as structure pre-
serving mappings (see also [18]).

A red-black tree is represented as a hypergraph where hyperedges correspond
to the nodes of the tree. Inner nodes are represented by hyperedges of arity
3, i.e., they are connected to exactly three vertices, where the parent and the
left and right children can be attached. They are labeled by either R or B

depending on whether the node is red or black. Leaves are represented by unary
hyperedges labeled L. Furthermore there is, for technical convenience, a single
unary hyperedge labeled Rt , indicating the root node. Figure 1 depicts a red-
black tree, where the keys are written next to the hyperedges. Note that, by
definition of hypergraph, each hyperedge is connected to an ordered sequence
of vertices. In our pictures, vertices are always arranged in such a way that the
vertex above a hyperedge is its first vertex, whereas the remaining vertices are
ordered counter-clockwise.

3 Insertion into Red-Black Trees using Graph Rewriting

We introduce now the concepts of graph rewriting rule and rewriting step, which
will be used to model the insertion of a new node into a red-black tree.

Definition 3 (Graph rewriting rule). A graph rewriting rule r is a tuple
(L,R, α) where L and R are hypergraphs, called the left-hand side and right-
hand side of the rule, while α : VL → VR is an injective function.

Intuitively, to apply a rule r = (L,R, α) to a hypergraph G one must find an
occurrence of the left-hand side L in G, i.e., a hypergraph morphism ϕ : L→ G.
The application of the rule first removes from G the image of the hyperedges
of L, and then extends the resulting hypergraph by adding the new vertices in
R (i.e., the vertices in VR − α(VL)) and all the hyperedges of R, yielding a new
hypergraph H. In this case we write G⇒r H. Observe that, unlike hyperedges,
vertices are never deleted: the vertices of G are not affected by the rewriting step.
We refer to [2] for a discussion of this restriction with respect to more general
definitions of graph rewriting. Notice, anyway, that the deletion of a vertex can
be simulated in our framework by leaving it isolated in the resulting graph.

The insertion of a new node into a red-black tree is described by the hyper-
graph rewriting rules shown in Fig. 2 and Fig. 3. For the corresponding pseudo-
code, see for instance [11]. An interesting question, that we leave as a topic of
future research, is whether and how graph rewriting rules can be synthesized
automatically from (pseudo-)code.

In the following the mapping α of a rule is represented by numbering the
nodes in the left-hand and right-hand sides: α maps a node in the left-hand-side
to the node of the right-hand side with the same number. Furthermore keys are
denoted by the letters y, z, u, v.

Rule [add-leaf] describes how a leaf is replaced by a new inner node labeled
M and two leaves. The label M stands for “marker” and denotes a red node
during the insertion phase. Rule [add-leaf] also consumes a “token”, the 0-ary
hyperedge add , that will be generated again when the insertion is completed:
this mechanism prevents the concurrent insertion of nodes. We assume that the
insertion of the new key y starts from the appropriate leaf, whose position must
have been determined by a previous search on the tree. Although this is out of
our focus, it is worth observing that this search could be realized by means of
graph rewriting rules acting on attributed graphs [10].

The remaining rules describe the local transformations needed to ensure that
the tree is converted into a red-black tree. If the marker has a black parent, it
is converted into a red hyperedge and insertion terminates (rule [marker-black],
this rule has two symmetric variants). If the marker is the root (rule [marker-
root]), it is replaced by a black hyperedge; in this case the black depth of the
tree increases by one. If the marker has a red parent, we distinguish several
cases (notice that in this case the marker’s grandparent (if any) must be black,
because otherwise Condition (R) would be violated):

– If the red parent of the marker has a red sibling, we perform a flip and move
the marker upwards (rule [flip], four variants). In this case the algorithm
continues.

– If the red parent of the marker has a black sibling, and this sibling is not a
leaf, we apply either rule [rotation] or rule [double-rotation]. Rule [rotation]
is applied if the marker and its red parent are either both left children or both
right children. In the two remaining cases rule [double-rotation] is applied.
In all cases the algorithm terminates.

add

L

1 1

L

M

L

y

[add-leaf]

B

M

y

z

1

2

3

4 5

2

add

y

z

1

3

4 5

R

B

[marker-black]

Rt

1

M

z

2 3

add

1

z

2 3

Rt

B

[marker-root]

2

4

5 5

y

z u

v

1

6 7

8 9

3

M

B

R

B

R

y

z u

v

R

M

1

2 3

4

6 7

8 9

B

[flip]

Fig. 2. Graph rewriting rules (insertion of an element into a red-black tree), part I.

– If the red parent of the marker has a black sibling, but this sibling is a
leaf, we proceed similarly to the previous case. There are four more rules,
obtained from those of Fig. 3 by replacing the node with key u by a leaf.

One can see fairly easily that all the transformations expressed by the above
rules preserve the sortedness Condition (S) in Definition 1. Moreover, for any
given finite tree, the insertion procedure started by rule [add-leaf] surely ter-
minates, generating again the token add . The formal verification of these two
properties goes beyond the goals of this paper: we shall only sketch in the con-
clusion how this could be done by exploiting the available theory of confluence
and termination of graph rewriting systems.

Note that modeling insertion into red-black trees using graph rewriting rules
is very natural. Similar diagrams can be found in most text books introducing

2

4

3

5 9

add

1

B

y

z u

v

M

1

2 3

4

6 7

8 9

R B

8 5

6 7

u

y

z

v

B

R R

B

[rotation]

2

v

M

8 9

5

add

z

1

B

y

z u

1

2 3

6 7

R B

6 7

4 4 9

3

5

v

u

y

B

R R

B

8

[double-rotation]

Fig. 3. Graph rewriting rules (insertion of an element into a red-black tree), part II.

red-black trees. Usually no marker is used, a red node takes its place instead.
However, this would lead to “inconsistent” intermediate states, produced dur-
ing the insertion procedure, which do contain two consecutive red hyperedges,
violating Condition (R). We avoid this by using a specific marker, which is fur-
thermore useful for indicating the position in the tree where operations have to
be performed.

4 Verifying Red-Black Trees

In the following we describe two static analysis techniques developed for the
verification of graph transformation systems: approximated unfolding and type
systems. Approximated unfolding is a fully automatic technique, based on a par-
tial order semantics of graph transformation systems. Here it is used to show that
no tree generated by the rewriting rules for insertion has two consecutive red
nodes (Condition (R)). The property that red-black trees remain balanced (Con-

dition (D)) is checked using a suitable type system, which is a simple instance
of a general framework [9]. We assume that the preservation of Conditions (S)
and (RL) has already been proved, as well as the fact that the result of the
insertion procedure is again a tree.

As the rest of the paper concentrates only on structural properties of red-
black trees, we neglect keys in the following.

4.1 Approximated Unfolding

Approximated unfolding was proposed in [2, 4] for the verification of infinite state
systems, modelled as graph transformation systems. It is based on the unfolding
construction which, applied to a graph transformation system, produces a static
structure fully describing the concurrent behavior of the system, including all
possible rewriting steps and their mutual dependencies, as well as all reachable
states [17, 3].

The unfolding is infinite for any non-trivial graph transformation system. The
mentioned papers propose an algorithm for constructing finite structures which
can be seen as over-approximations of the full unfolding, where interesting classes
of properties of the original system can be studied and verified. The structures
used for approximation are so-called Petri graphs, consisting of Petri nets the
places of which are hyperedges.

The outcome of the algorithm is determined by the chosen level of accuracy:
essentially one can require the approximation to be exact up to a certain causal
depth k, thus obtaining the so-called k-covering Ck(G) of the unfolding of G.

The covering Ck(G) over-approximates the behavior of G in the sense that
every computation in G is mapped to a valid computation in Ck(G) and every hy-
pergraph reachable from the start hypergraph can be mapped homomorphically
to (the graphical component of) Ck(G) (and its image is reachable in the Petri
graph). Therefore, given a property over hypergraphs reflected by hypergraph
morphisms, if it holds for all hypergraphs reachable in the covering Ck(G) then it
also holds for all reachable hypergraphs in G. Important properties of this kind
are the non-existence and non-adjacency of edges with specific labels, the ab-
sence of certain paths (for checking security properties) or cycles (for checking
deadlock-freedom). These structural properties can be specified using regular
expressions or by a monadic second-order logic on graphs that can be combined
with a temporal logic [4].

The technique described above has been implemented as part of the Augur

tool.4 It takes as input a graph transformation system encoded in GTXL (Graph
Transformation eXchange Language, an XML standard for graph transformation
systems) and outputs the Petri graph in GXL (Graph eXchange Language).
Next, several tools integrated with Augur can be used for verifying the desired
properties over the resulting Petri graph.

In order to show with Augur that insertion in a red-black tree does not
violate Condition (R), we provide as input to the tool a modified version of the

4 See http://www.fmi.uni-stuttgart.de/szs/tools/augur/.

Rt

BT

Initial graph:

BT

add

LB

1

B

1

BT

B

1

BT RT RT RT RT

1

B

1

BT BT

1 1

BT BT

RT R

Fig. 4. A context-free grammar for generating red-black trees.

add

L

1 1

Lx

M

Lx

y

[add-leaf-conv]

Rt

1

M

z

2 3

1

z

2 3

Rtx

Bx

[marker-root-conv]

Fig. 5. Rules of the converted system, part I.

rules shown in Figs. 2 and 3, as well as rules for generating all possible red-black
trees. The context-free rules for generating trees are shown in Fig. 4, together
with the initial graph: they use the non-terminals BT and RT , and generate all
finite trees satisfying Conditions (RL) and (R), but possibly not Condition (D)
(i.e., they are not balanced). Moreover, the rules modeling insertion are obtained
from those of the previous section as described next.

First, since every possible red-black tree is generated by the rules of Fig. 4,
it is sufficient to show that Condition (R) holds again after a single insertion;
thus in the modified rules, the token add is never generated again. Second, in
order to speed-up the verification, it is convenient to “freeze” the part of the
tree traversed during insertion. This is obtained by changing all labels Rt, B,
R and L appearing in the right-hand side of rules to labels Rtx , Bx , Rx and
Lx , respectively, which do not appear in any rule’s left-hand side (see Fig. 5).
This transformation is safe, because the hyperedges with x-marked labels do not
interfere with the current insertion, and no further insertion is possible by the
previous point.

3

3

42 5

1

RM

1

RMB

5 64 3

5 5

R

1

M

2

4 5

B

1

2

4

RM

5 6

3

2

7

R

1

RMB

3 4

5

2

1

M

Bx Bx

2 66 7

B

1

RMB

3 4

5

2

1

6 7

Bx

Rx Rx

Bx

2 3 4 72

3 4

Rx

Fig. 6. Rules of the converted system, part II.

The third modification is necessary because the current implementation of the
approximated unfolding suffers from the restriction that a rule cannot have two
hyperedges with the same label in the left-hand side, but rules [flip], [rotation]
and [double-rotation] do not satisfy this restriction. Therefore the offending rules
are converted into an equivalent set of rules which use some new labels and satisfy
this restriction. The way the new rules work can be grasped from Fig. 6. If the
first three rules can be applied in sequence, then we identified an occurrence
of the left-hand side of [double-rotation], and therefore the corresponding right-
hand side is generated (modified according to the previous two points). If instead
after the first two rules the left-hand side of the fourth rule is found, then we
generate the right-hand side of a [flip]. It can be shown that the converted rules
are equivalent to the original ones, in the sense that if G and G′ are graphs
containing only labels of the original graph rewriting system, then G can be
rewritten to G′ in the original system if and only if G can be rewritten to G′

in the converted system, possibly in more steps. Furthermore, all hyperedges
labeled by a label introduced in the converted system will eventually be deleted.

Applying Augur to the graph rewriting system just described and asking for
the 0-th approximation we get a Petri graph C0 with 125 hyperedges, 72 vertices
and 46 transitions, which is too large to be depicted here. In order to show

that the property under consideration holds, we want to check that no reachable
graph contains a path corresponding to the regular expression (R+Rx)(R+Rx).
The tools integrated into Augur can convert this regular expression into a set of
markings such that a path of this kind exists in the approximation if and only if
the corresponding markings are reachable in C0. However, in this case the set of
markings is empty, meaning that the hypergraph underlying the Petri graph does
not contain two consecutive red edges. In other words, using only the structural
properties of the covering C0 (without taking into account its behavior) we can
infer the desired property.

4.2 A Type System

In [9] a general framework for typing graph rewriting systems has been presented
which will be instantiated in the following in order to analyze red-black trees.
Type systems of this kind can be used to check structural invariants and are
related to type systems for process calculi [12].

Some intuition. Loosely speaking, a type system for a graph rewriting system
is a mapping that associates to a graph G another graph T , the (graph) type
of G. We say that it satisfies the subject reduction property if whenever G is
rewritten to G′ and G has type T , then G′ also has type T . In order to prove
that insertion preserves Condition (D) (all leaves have the same black depth), it
suffices to design a type system and a condition (P) over graph types such that:

(1) the type system has the subject reduction property with respect to the rules
for insertion;

(2) a graph satisfies Condition (D) if and only if its type satisfies Condition (P).

To see why, let G be any tree satisfying Condition (D), and let G′ be the result
of performing an insertion into G. By (1), G and G′ can be assigned the same
type. By (2), this type satisfies Condition (P) and, by (2) again, G′ satisfies
Condition (D).

Intuitively, our type system assigns to a graph G the graph T obtained by
(a) removing all red hyperedges, directly linking their parents to their children,
and (b) merging all black hyperedges having the same distance from the root. It
is easy to see that G satisfies Condition (D) if and only if no leaf of G is merged
to an inner hyperedge of T . This is Condition (P).

The technical setting. In the following we consider graphs G with a distinguished
sequence of external vertices χG ∈ V ∗

G
, possibly with repetition. Graphically, we

identify the i-th vertex in the sequence by writing the number i close to the
corresponding node. The length of χG is called the arity of G. Rewriting rules
of the form (L,R, α) can now be seen as pairs of graphs with the same arity,
where χL is an arbitrary but fixed linearisation of VL, and α(v) = v′ if and only
if v, v′ appear in the same position of χL, χR. In the following, all operations
and morphisms are expected to preserve external vertices, i.e., for a morphism

2 3 2 3

1

1

Rt

1

1
Rtx

1, 2, 3

1

 L/Lx

11

2 3

1

1

B/Bx R/Rx/M

Fig. 7. Local step.

ϕ:G → G′ we demand ϕ(χG) = χG′ . Technically, a type system associates to
G not only the graph T , but also all the graphs T ′ such that there is a graph
morphism T → T ′ (the type T can be seen as a subtype of each such T ′). All these
graphs are the graph types of G, and T is the strongest graph type. We consider
type systems in which the strongest graph type is obtained by first applying a
local transformation which replaces every hyperedge e by a graph having the
same arity as e. In a second phase a global closure operator is applied which
usually “folds” the graph obtained after the first step. In [9] it is shown that
under some mild conditions the subject reduction property holds whenever we
can show the following local property for every rewriting rule (L,R, α):

(Local subject reduction) Let TL, TR be the strongest graph types
for L and R. Then there is a morphism ϕ:TR → TL.

The type system. We describe the local and global step of our type system. They
correspond to the algorithmic steps (a) and (b) described above. We consider
here a graph rewriting system modeling a single insertion into a tree, consisting
basically of the rules of Fig. 2 and Fig. 3, where in the right-hand sides the
token add is removed and labels are of the variant marked by x (see the first
two modifications described in Section 4.1).

Local step: We replace every hyperedge modeling a black node by two binary
edges and every leaf by a unary edge indicated by a black rectangle (see Fig. 7).
Furthermore markers and red hyperedges are removed and all their vertices are
collapsed (this corresponds to step (a) above). A hyperedge labeled Rt indicating
the root is typed with a binary edge in order to have a black node “in reserve”
whenever the black depth of a tree grows.5

5 Observe that the type system makes a distinction between Rt and Rtx since in the
case of Rt an extra black edge is inserted, which is not done in the case of Rtx . This
makes it possible to establish the subject reduction property for rule [marker-root].

Fig. 8. Construction of a graph type (after the local/global step).

2, 3

1

2

3

5

2, 3, 4, 5, 8, 9 4, 8, 9

1

← ←

1, 2, 3

←

1 1

6, 7 6, 7

[double-rotation-conv][marker-root-conv][add-leaf-conv]

1

Fig. 9. Checking the local subject reduction property.

Global step/Closure: In the global step we collapse all branching black paths
into one (step (b) above) as follows: Whenever there are two binary edges with
the same source vertex or two unary edges with the same vertex, they are merged.
This process may have to be repeated.

Alternatively this closure operation can also be characterised by means of a
universal property.

If we apply the process described above to the red-black tree E in Fig. 1
we obtain the graph type TE depicted on the right-hand side of Fig. 8 (the
intermediate graph obtained after the local step is shown on the left-hand side).

Proving that insertions preserve Condition (D). According to the scheme shown
at the beginning of the section, we have to prove that (1) the type system has the
subject reduction property and (2) find a condition (P) such that Condition (D)
holds for a graph iff Condition (P) holds for its (strongest) type.

For (1), it is straightforward to show that the components of the type frame-
work, especially the operators used in the local and global step, satisfy the con-
ditions identified in [9], and thus it suffices to prove the local subject reduction
property. This is quite easy for most of the rules, we only show the property for
the rules [add-leaf], [marker-root] and [double-rotation] (see Fig. 9).

As for (2), recall that (P) should intuitively be: no leaf of a graph is merged
with an inner node in the graph type. The next proposition formalizes this fact.

Proposition 1. Let E be a tree satisfying all conditions of a red-black tree with
the possible exception of Condition (D). Furthermore let TE be its strongest type.

Then all leaves in E have the same black depth if and only if TE satisfies the
following condition:

(P) No unary edge (representing a leaf) is attached to a vertex which is
also the source vertex of a binary edge (representing a black edge).

Furthermore (P) satisfies the conditions specified in [9], specifically it is reflected
by morphisms.

Hence we have shown that only balanced red-black trees are reachable from
a balanced red-black tree by the rewriting rules in Figs. 2 and 3.

5 Conclusion and Related Work

We have shown how to model insertion into red-black trees using graph trans-
formations and we have demonstrated how analysis and verification techniques
based on graph transformation can be successfully used to verify the (partial)
correctness of insertion. The first technique (approximated unfolding) is fully
automatic and especially well-suited for showing that no reachable graph con-
tains certain forbidden graph patterns. Other types of invariants can be more
conveniently checked by using the second technique, a type system which is an
instance of a general framework.

More generally, we are convinced that a single analysis method can not solve
all problems, and thus a mix of several techniques is a promising method for the
verification of pointer structures. For example, there are other relevant properties
related to insertion into red-black trees that we did not address formally (as this
was beyond the goal of the paper), but that we could handle using other available
techniques. For example, it is quite obvious that termination of insertion can be
proved easily by defining a suitable reduction ordering. More interestingly, let
us sketch how the available theory of confluence for graph rewriting systems
could be used to prove that insertion into a red-black tree preserves sortedness
(Condition (S)).

Let us consider the system consisting of the rules of Figs. 2 and 3; since keys
are relevant for this discussion, we assume that they are represented as unary
hyperedges connected to the B, R or M hyperedge through a fourth node. The
technique is based on the well-known fact that a binary tree is sorted (i.e., it
satisfies Condition (S)) if and only if the in-order traversal returns its keys in
sorted order. The in-order traversal can be modeled by graph rewriting rules that,
starting from the root, destroy the tree while collecting all the keys in a linked
list. Then the preservation of sortedness can be reduced to the proof that the
system containing the rules for insertion and for in-order traversal is confluent:
together with termination, intuitively this means that at whatever stage we stop
the insertion, the in-order traversal returns the keys in the same order, and thus
the tree remains sorted if it was so at the beginning. Pragmatically, confluence
can be proved by resorting to a critical pair lemma for graph rewriting [13], and
automated support for critical pair analysis is provided, e.g., by the AGG tool.6

6 See http://tfs.cs.tu-berlin.de/agg/critical pairs.html.

Research concerned with the verification of graph transformation systems is
fairly recent. While some research groups [22, 6] pursue the idea of translating
graph transformation systems into the input language of a model checker, others
attempt to develop new specialized methods for graph rewriting. Work from our
side goes in this latter direction, as well as [15, 14, 16]. Most of the work so far
is concerned with verifying finite-state systems, whereas we have shown in this
paper how to analyze an infinite-state system where elements can be inserted
into red-black trees of arbitrary size.

In [23] red-black trees are checked using the structural analysis technique
implemented in Alloy. Originally written in Java, the program is translated to
Alloy’s input language and is then analyzed (by a further translation to SAT).
This requires bounds on the number of generated objects, on the maximum depth
of the call stack and on the number of times a loop can be executed. In [21], the
Moped model-checker is used, which allows to remove the last two bounds, but
not the first. As a consequence, both techniques will find bugs if they appear for
trees with a few nodes (around 5-7 in [23, 21]), but are not able to completely
verify red-black trees of arbitrary size as we have done in this paper.

In [8] and [1] shape types and shapes are introduced as certain graph lan-
guages. Both papers propose algorithms that analyze each rule and check whether
(and how) it may change the shape of a graph. In order to describe shapes the
former uses context-free grammars whereas the latter uses more expressive graph
reduction systems, that are able to express properties such as balancedness. In
principle this technique could be used to show invariants of red-black trees, but
the choice of graph reduction systems for shapes is non-trivial.

Furthermore insertion into red-black trees has been analyzed using the pointer
assertion logic PALE and the tool MONA [7].

References

1. Adam Bakewell, Detlef Plump, and Colin Runciman. Checking the shape safety
of pointer manipulations. In Rudolf Berghammer, Bernhard Möller, and Georg
Struth, editors, Proc. of RelMiCS ’03, volume 3051 of LNCS, pages 48–61. Springer,
2003.

2. Paolo Baldan, Andrea Corradini, and Barbara König. A static analysis technique
for graph transformation systems. In Proc. of CONCUR ’01, volume 2154 of LNCS,
pages 381–395. Springer, 2001.

3. Paolo Baldan, Andrea Corradini, and Ugo Montanari. Unfolding and Event Struc-
ture Semantics for Graph Grammars. In W. Thomas, editor, Proc. of FoSSaCS
’99, volume 1578 of LNCS, pages 73–89. Springer, 1999.

4. Paolo Baldan and Barbara König. Approximating the behaviour of graph trans-
formation systems. In Proc. of ICGT’02, volume 2505 of LNCS, pages 14–29.
Springer, 2002.

5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2001. Second Edition.

6. Fernando Lúıs Dotti, Luciana Foss, Leila Ribeiro, and Osmar Marchi Santos. Ver-
ification of distributed object-based systems. In Proc. of FMOODS ’03, volume
2884 of LNCS, pages 261–275. Springer, 2003.

7. Jacob Elgaard, Anders Møller, and Michael I. Schwartzbach. Compile-time de-
bugging of C programs working on trees. In Proc. of ESOP ’00, pages 119–134.
Springer-Verlag, 2000. LNCS 1782.

8. Pascal Fradet and Daniel Le Métayer. Shape types. In Proc. of POPL ’97, pages
27–39. ACM, 1997.

9. Barbara König. A general framework for types in graph rewriting. Acta Informat-
ica, to appear.

10. Michael Löwe, Martin Korff, and Annika Wagner. An Algebraic Framework for the
Transformation of Attributed Graphs. In M.R. Sleep, M.J. Plasmeijer, and M.C.
van Eekelen, editors, Term Graph Rewriting: Theory and Practice, chapter 14,
pages 185–199. John Wiley, 1993.

11. Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. EATCS
Monographs on Theoretical Computer Science. Springer, 1984.

12. Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
Journal of Mathematical Structures in Computer Science, 6(5):409–454, 1996.

13. Detlef Plump. Hypergraph rewriting: Critical pairs and undecidability of conflu-
ence. In M.R. Sleep, M.J. Plasmeijer, and M.C. van Eekelen, editors, Term Graph
Rewriting: Theory and Practice, chapter 15, pages 201–214. John Wiley, 1993.

14. Arend Rensink. Model checking graph grammars. In Proc. of AVOCS ’03 (Work-
shop on Automated Verification of Critical Systems), 2003.

15. Arend Rensink. Canonical graph shapes. In Proc. of ESOP ’04, volume 2986 of
LNCS, pages 401–415. Springer, 2004.

16. Arend Rensink. State space abstraction using shape graphs. In Proc. of AVIS ’04,
ENTCS, 2004. to appear.

17. Leila Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.
PhD thesis, Technische Universität Berlin, 1996.

18. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol.1: Foundations, volume 1. World Scientific, 1997.

19. Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3-valued logic. TOPLAS (ACM Transactions on Programming Languages and
Systems), 24(3):217–298, 2002.

20. Bjarne Steensgaard. Points-to analysis in almost linear time. In Proc. of POPL
’96. ACM, 1996.

21. Dejvuth Suwimonteerabuth, Stefan Schwoon, and Javier Esparza. jMoped: A Java
Bytecode Checker Based on Moped. In Proc. of TACAS 2005, volume 3440 of
LNCS, pages 541–545. Springer, 2005.

22. Dániel Varró. Towards symbolic analysis of visual modeling languages. In Proc.
of GT-VMT’02, volume 72 of ENTCS. Elsevier, 2002.

23. Mandana Vaziri and Daniel Jackson. Checking properties of heap-manipulating
procedures with a constraint solver. In Proc. of TACAS 2003, volume 2619 of
LNCS, pages 505–520. Springer, 2003.

24. Robert Paul Wilson. Efficient, Context-Sensitive Pointer Analysis for C Programs.
PhD thesis, Stanford University, 1997.

