
Approximating the Behaviour

of Graph Transformation Systems?

Paolo Baldan1 and Barbara König2

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
2 Institut für Informatik, Technische Universität München, Germany

baldan@dsi.unive.it koenigb@in.tum.de

Abstract. We propose a technique for the analysis of graph trans-
formation systems based on the construction of finite structures ap-
proximating the behaviour of such systems with arbitrary accuracy.
Following a classical approach, one can construct a chain of finite
under-approximations (k-truncations) of the Winskel’s style unfolding
of a graph grammar. More interestingly, also a chain of finite over-
approximations (k-coverings) of the unfolding can be constructed and
both chains converge (in a categorical sense) to the full unfolding. The
finite over- and under-approximations can be used to check properties
of a graph transformation system, like safety and liveness properties,
expressed in (meaningful fragments of) the modal µ-calculus. This is
done by embedding our approach in the general framework of abstract
interpretation.

1 Introduction

Graph transformation systems (gtss) [28] are a powerful specification formalism
for concurrent and distributed systems [10], generalising Petri nets. Along the
years their concurrent behaviour has been deeply studied and a consolidated
theory of concurrency is now available [27, 11]. Although several semantics of
Petri nets, like process and unfolding semantics, have been extended to gtss
(see, e.g., [5, 26, 3, 4]), concerning automated verification, the literature does not
contain many contributions to the static analysis of gtss (see [18, 19]).

Most of the mentioned semantics for gtss define an operational model of
computation, which gives a concrete description of the behaviour of the sys-
tem in terms of non-effective (e.g., infinite, non-decidable) structures. In this
paper, generalising the work in [1], we provide a technique for constructing fi-
nite approximations of the behaviour for a class of (hyper)graph transformation
systems. We show how one can construct under- and over-approximations of the
behaviour of the system. The “accuracy” of such approximations can be fixed
and arbitrarily increased in a way that the corresponding chain of (both under-
and over-) approximations converges to the exact behaviour.

? Research partially supported by the EC TMR Network GETGRATS, by the IST
Project AGILE, and by the MURST project TOSCA.

We concentrate on the unfolding semantics of gtss, one reason for referring
to a concurrent semantics being the fact that it allows to avoid to check all the
interleavings of concurrent events. The unfolding construction for gtss produces
a static structure which fully describes the concurrent behaviour of the system,
including all possible rewriting steps and their mutual dependencies, as well
as all reachable states [26, 4]. However, as already mentioned, the unfolding,
being infinite for any non-trivial system, cannot be used directly for verification
purposes. Given a graph grammar, i.e., a gts with a start hypergraph, we show
how to construct finite structures which can be seen as approximations of the
full unfolding of the grammar, at a chosen level k of accuracy.

Under-approximations (k-truncations). The unfolding of a graph grammar G
can be defined categorically as the colimit of its prefixes of finite causal depth.
Hence “under-approximations” of the behaviour of G can be trivially produced
by stopping the construction of the unfolding at a finite causal depth k, thus
obtaining the so-called k-truncation T k(G) of the unfolding of G. In the case
of Petri nets this is at the basis of the finite prefix approach: if the system is
finite-state and if the stop condition is suitably chosen, the prefix turns out to
be complete, i.e., it contains the same information as the full unfolding [22, 12].
In general, for infinite-state systems, any truncation of the unfolding will be just
an under-approximation of the behaviour of the system, in the sense that any
computation in the truncation can be really performed in the original system,
but not vice versa. Nevertheless, finite truncations can still be used to check
interesting properties of the grammar, e.g., some liveness properties of the form
“eventually A” for a predicate A (see Section 5).

Over-approximations (k-coverings). A more challenging issue is to provide (sen-
sible) over-approximations of the behaviour of a grammar G, i.e., finite approx-
imations of the unfolding which “represent” all computations of the original
system (but possibly more). To this aim, generalising [1], we propose an algo-
rithm which, given a graph grammar G, produces a finite structure, called Petri
graph, consisting of a hypergraph and of a P/T net (possibly not safe or cyclic)
over it, which can be seen as an over-approximation of the unfolding. Differently
from [1], one can require the approximation to be exact up to a certain causal
depth k, thus obtaining the so-called k-covering Ck(G) of the unfolding of G.

The covering Ck(G) over-approximates the behaviour of G in the sense that
every computation in G is mapped to a valid computation in Ck(G). Moreover ev-
ery hypergraph reachable from the start graph can be mapped homomorphically
to (the graphical component of) Ck(G) and its image is reachable in the Petri
graph. Therefore, given a property over graphs reflected by graph morphisms, if
it holds for all graphs reachable in the covering Ck(G) then it also holds for all
reachable graphs in G. Important properties of this kind are the non-existence
and non-adjacency of edges with specific labels, the absence of certain paths (for
checking security properties) or cycles (for checking deadlock-freedom). Tempo-
ral properties, such as several safety properties of the form “always A”, can be
proven directly on the Petri net component of the coverings (see Section 5).

2

The fact that the unfolding can be approximated with arbitrary high accu-
racy is formalised by proving that both under- and over-approximations of the
unfolding, converge to the full (exact) unfolding. In categorical terms, the un-
folding U(G) of a graph grammar G can be expressed both as the colimit of the
chain of k-truncations T k(G) and as the limit of the chain of k-coverings Ck(G):

T 0(G)

++XXXXXXXXXXXXXXXXXX
// T 1(G)

((QQQQQQ
T k(G)

��

// T k+1(G)

uullllll

. . .

U(G)

ssffffffffffffffffff

vvmmmmmmm

��))RRRRRRR

C0(G) C1(G)oo Ck(G) Ck+1(G)oo . . .

The idea that finite under- and over-approximations can be used for checking
properties of a graph grammar G is enforced by identifying significant fragments
of the µ-calculus for which the validity of a formula in some approximation
implies the validity of the same formula in the original grammar. Nicely, this
is done by viewing our approach as a special case of the general paradigm of
abstract interpretation.

2 Hypergraph rewriting, Petri nets and Petri graphs

In this section we first introduce the class of (hyper)graph transformation sys-
tems considered in the paper. Then, after recalling some basic notions for Petri
nets, we will define Petri graphs, the structure combining hypergraphs and Petri
nets, which will be used to represent and approximate the behaviour of gtss.

2.1 Graph transformation systems

Given a set A we denote by A∗ the set of finite strings of elements of A. For
u ∈ A∗ we write |u| for the length of u. Moreover, if f : A→ B is a function then
f∗ : A∗ → B∗ denotes its extension to strings. Throughout the paper Λ denotes
a fixed set of labels and each label l ∈ Λ is associated with an arity ar(l) ∈ N.

Definition 1 (hypergraph). A (Λ-)hypergraph G is a tuple (VG, EG, cG, lG),
where VG is a set of nodes, EG is a set of edges, cG : EG → VG

∗ is a con-
nection function and lG : EG → Λ is the labelling function for edges satisfying
ar(lG(e)) = |cG(e)| for every e ∈ EG. Nodes are not labelled. A node v ∈ VG is
called isolated if it is not connected to any edge.

We use rules as in the double-pushout approach [9], with some restrictions.

Definition 2 (rewriting rule). A graph rewriting rule is a span of injective

hypergraph morphisms r = (L
ϕL

←↩ K
ϕR

↪→ R), where L, K, R are finite hypergraphs.
The rule is called simple if (i) K is discrete, i.e. it contains no edges, (ii) no
two edges in the left-hand side L have the same label, (iii) the morphism ϕL is
bijective on nodes, (iv) VL does not contain isolated nodes.

3

Hereafter we will restrict to simple rules. A simple rule can delete and produce
but not preserve edges, while nodes cannot be deleted (conditions (i) and (iii)).
Moreover, it cannot consume two edges with the same label and its left-hand side
must be connected (conditions (ii) and (iv)). These restrictions are mainly aimed
at simplifying the presentation. Only (iii), which allows to apply a rule without
checking the dangling condition, could require serious technical complications
to be removed (but observe that deletion of nodes can be simulated considering
graphs up to isolated nodes and leaving a node isolated instead of deleting it).

To simplify the notation, in the following we will assume that for any rule

r = (L
ϕL

←↩ K
ϕR

↪→ R), the morphisms ϕL and ϕR are (set-theoretical) inclusions
and that K = L ∩R (componentwise). Furthermore the components of a rule r
will be denoted by Lr, Kr and Rr.

Definition 3 (hypergraph rewriting). Let r be a rewriting rule. A match
of r in a hypergraph G is any morphism ϕ : Lr → G. In this case we write
G⇒r,ϕ H or simply G⇒r H, if there exists a double-pushout diagram

Lr
ϕ ��

Kr
? _oo � � //

��

Rr

��

G D?
_oo � � // H

Given a graph transformation system (gts), i.e., a finite set of rules R, we
write G⇒R H if G⇒r H for some r ∈ R. Moreover ⇒∗

R denotes the transitive
closure of ⇒R. A gts with a (finite) start graph G = (R, GR) is called a graph
grammar.

2.2 Petri nets

We fix some basic notation for Petri nets [25, 23]. Given a set A we will denote
by A⊕ the free commutative monoid over A (multisets over A). Given a function
f : A→ B, by f⊕ : A⊕ → B⊕ we denote its monoidal extension.

Definition 4 (Petri net). Let A be a finite set of action labels. An A-labelled
Petri net is a tuple N = (S, T, •(), ()•, p) where S is a set of places, T is a set of
transitions, •(), ()• : T → S⊕ assign to each transition its pre-set and post-set
and p : T → A assigns an action label to each transition.

The Petri net is called irredundant if there are no distinct transitions with
the same label and pre-set, i.e., if for any t, t′ ∈ T

p(t) = p(t′) ∧ •t = •t′ ⇒ t = t′. (1)

A marked Petri net is a pair (N,mN), where N is a Petri net and mN ∈ S
⊕

is the initial marking.

The irredundancy condition (1) aims at avoiding the presence of multiple events,
indistinguishable for what regards the behaviour of the system. Hereafter all the
considered Petri nets will be assumed irredundant, unless stated otherwise.

Definition 5 (causality relation). Let N be a (marked) Petri net. The causal-
ity relation <N over N is the least transitive relation such that, for any t ∈ T ,
s ∈ S, we have (i) s <N t if s ∈ •t and (ii) t <N s if s ∈ t•.

4

2.3 Petri graphs

Petri graphs, as introduced in [1], are structures consisting of a hypergraph and
of a Petri net whose places are the edges of the graph.

Definition 6 (Petri graph). Let R be a gts. A Petri graph (over R) is a
tuple P = (G,N, µ) where G is a hypergraph, N = (EG, TN ,

•(), ()•, pN) is an
R-labelled Petri net with edges of G as places, and µ associates to each transition
t ∈ TN , with pN (t) = r, a hypergraph morphism µ(t) : Lr ∪Rr → G such that

•t = µ(t)
⊕

(ELr
) ∧ t• = µ(t)

⊕
(ERr

) (2)

A Petri graph for a grammar (R, GR) is a pair (P, ι) where P = (G,N, µ) is a
Petri graph for R and ι : GR → G is a graph morphism. The multiset ι⊕(EGR

) is
called initial marking of the Petri graph. A marking m ∈ EG

⊕ is called reachable
(coverable) in (P, ι) if it is reachable (coverable) in the underlying Petri net.

Condition (2) allow to interpret transitions in the net as “occurrences” of
rules in R. More precisely, if pN (t) = r and µ(t) : Lr ∪Rr → G is the morphism
associated to the transition, then µ(t)|L : Lr → G must be a match of r in G

such that the image of the edges of Lr in G coincides with the pre-set of t. Then,
the graph items resulting from the application of r must be already in G, and
the corresponding edges must coincide with the post-set of t. This is formalised
by the condition over the image through µ(t) of the edges of Rr. For an example
see Section 5, where Fig. 2 presents two Petri graphs for the gts in Fig. 1.

A safe marking m of a Petri graph P = (G,N, µ) is intended to represent
the subgraph of G consisting of the edges in m and of the nodes attached to
these edges. For a general non-safe marking edges with k tokens will result in k
“parallel” edges. This is formalised in the next definition.

Definition 7. Let P = (G,N, µ) be a Petri graph. Given a hypergraph mor-
phism ϕ : G′ → G injective on nodes, we say that the marking ϕ⊕(EG′) generates
the graph G′.

In the following we will often confuse a marking of a Petri graph with its gener-
ated graph, and say, e.g., that a given graph is reachable in a Petri graph.

Every hypergraph G can be considered as a Petri graph [G] = (G,N, µ) for
R, by taking N as the net with SN = EG and no transitions. Similarly, GR can
be seen as a Petri graph for (R, GR) by taking as ι : GR → GR the identity.

Definition 8 (category of Petri graphs). A Petri graph morphism is a pair
ψ = (ϕ, τ) : (G,N, µ)→ (G′, N ′, µ′) where

– ϕ : G→ G′ is a hypergraph morphism;
– τ : TN → TN ′ is a mapping such that for every t ∈ TN , •τ(t) = ϕ⊕(•t) and
τ(t)• = ϕ⊕(t•), and pN ′ ◦ τ = pN .

– for every t ∈ TN , µ′(τ(t)) = ϕ ◦ µ(t).

The category of Petri graphs and Petri graph morphisms is denoted by PG.

It is possible to show that the category PG is finitely cocomplete, i.e. it con-
tains all finite colimits. In particular we will later make use of pushouts and
coequalizers to define unfolding and folding operations.

5

3 Unfolding and under-approximations

In this section we define the unfolding of a graph grammar. Following a common
approach in the literature (see, e.g., [26, 29]) the unfolding is defined as the limit
(actually, the categorical colimit) of the chain of its finite prefixes, each of which
can be seen as an under-approximation of the behaviour of the system.

The finite prefixes of the unfolding are constructed inductively beginning
from the start graph of the grammar and performing, at each stage, all the
possible basic unfolding steps, until the given causal depth is reached. A basic
step roughly consists of the “partial” application of a rule to a match, which does
not delete the left-hand side, but only records the new graph item generated in
the rewriting process and the rule occurrence.

To formally define a basic step we need to fix some notation. Given a tran-
sition t and a rule r we will denote by P (t, r) the Petri graph (Lr ∪ Rr, N, µ)
where N = (ELr∪Rr

, {t}, •t = ELr
, t• = ERr

, pN (t) = r) and µ(t) = idLr∪Rr
.

By ∅ we denote a function with an empty set as domain.

Definition 9 (unfolding operation). Let P = (G,N, µ) be a Petri graph for
a gts R. Let r ∈ R be a rule and let ϕ : Lr → G be a match of r in G. The
unfolding of P with rule r at match ϕ, denoted by unf(P, r, ϕ), is the Petri graph
obtained as pushout of (ϕ, ∅) : [Lr]→ P and (idLr

, ∅) : [Lr]→ P (t, r).
If (P, ι) is a Petri graph for a graph grammar (R, GR), in the same situation,

we define unf((P, ι), r, ϕ) = (P ′, ψ◦ ι) where (ψ, τ) : P → P ′ is the PG morphism
generated by the pushout.

We need to define the depth of an item in a Petri graph. We start with a
definition of depth over Petri nets. To deal with the presence of causal cycles it
is convenient to define several depth functions, each one measuring the depth of
an item up to a fixed level k. Consider the monoid Mk = ({0, . . . , k},+), where
for m,n ∈ {0, . . . , k}, m + n is ordinary addition if m + n ≤ k and m + n = k

otherwise.

Definition 10 (depth in a Petri net). Let N be a Petri net. We define a
function D : (SN ∪ TN →Mk)→ (SN ∪ TN →Mk) as follows:

D(d)(x) = max{d(s) | s ∈ SN ∧ s < x}+ 1.

Then the function depthk : SN ∪TN →Mk, assigning depth information to every
Petri net item is the least fixed point of D.

The function depthk assigns to each item x of a Petri net its causal depth, i.e.,
the length h of the maximal chain of causally related items leading from the
initial marking to x, when h ≤ k and k otherwise. Note that an item x located
in a causality cycle has always maximal depth, i.e., depthk(x) = k for any k.

The definition generalises to Petri graphs in a straightforward way: places
become edges and the depth of a node v is defined as the maximal depth of rules
r where v appears in Rr \Lr (intuitively, of rules which can “generate” node v).

6

Definition 11 (depth of items in a Petri graph). Let (P, ι) be a Petri graph
with P = (G,N, µ). For any k the function depthk : EG ∪ TN → Mk is defined
as in Definition 10. This function is extended to nodes by defining, for v ∈ VG

depthk(v) = max{depthk(t) | pN (t) = r ∧ v ∈ µ(t)(VRr
\VLr

)}

The prefixes of the unfolding of a graph grammar up to a given causal depth
k are defined by the following algorithm.

Definition 12 (k-truncation). Let k ∈ N and let G = (R, GR) be a graph
grammar. The algorithm generates a sequence (Pi, ιi)i∈N of Petri graphs.

(Step 0) Initialise (P0, ι0) = ([GR], idGR
).

(Step i + 1) Let (Pi, ιi), with Pi = (Gi, Ni, µi), be the Petri graph produced at
step i.

? Unfolding: Find a rule r in R and a match ϕ : Lr → Gi such that

– ϕ⊕(ELr
) is a coverable marking in Pi;

– there is no transition t ∈ TNi
such that •t = ϕ⊕(ELr

) and pNi
(t) = r;

– for all x ∈ ϕ(Lr) it holds that depthk(x) 6= k.

Then set (Pi+1, ιi+1) = unf((Pi, ιi), r, ϕ).

If no unfolding step can be performed, the algorithm stops. The resulting Petri
graph (Pi, ιi) is called k-truncation of the unfolding of G and denoted by T k(G).

It can be easily proven that the unfolding procedure described above is terminat-
ing and confluent, and thus that T k(G) is well-defined. Furthermore, T k+1(G)
can be obtained from T k(G) by performing only the unfolding steps which involve
items of depth k. This gives a uniquely determined embedding λk : T k(G) →

T k+1(G) for any k ∈ N. The diagram T 0(G)
λ0→ . . . T k(G)

λk→ T k+1(G)
λk+1

→ . . . is
called the truncation tower.

The next definition introduces the full unfolding of a graph grammar as
colimit of its finite truncations (which can be shown to exist).

Definition 13 (unfolding as colimit of the k-truncations). The (full) un-
folding U(G) of a graph grammar G is the colimit of the truncation tower.

The proposition below clarifies in which sense the unfolding represents the
behaviour of the original grammar: any graph reachable in a graph grammar
can be mapped isomorphically to a reachable subgraph of its unfolding, and,
vice versa, any reachable subgraph of the unfolding is the isomorphic image of
a reachable graph in the original grammar. Furthermore steps in the original
grammar correspond to steps in the unfolding [26, 4].

Proposition 14. Let G = (R, GR) be a graph grammar and let U(G) =
(U,N, µ) be its unfolding. Then for every graph G we have GR ⇒

∗
R G iff there

exists an injective morphism ϕG : G → U and the marking ϕG
⊕(EG) is reach-

able in U(G). Furthermore, in the situation above if G⇒R G′ then ϕG
⊕(EG)

t
→

ϕG′
⊕(EG′) for a suitable transition t in U(G). And if ϕG

⊕(EG)
t
→ m for some

marking m, then there exists a graph G′ such that G⇒R G′ and m = ϕG′
⊕(EG′).

7

Clearly, k-truncations provide, in general, only under-approximations of the
behaviour of the original grammar G, i.e., only one implication of Proposition 14
holds: any graph reachable in T k(G) is mapped isomorphically to a graph reach-
able in G and any valid computation in T k(G) corresponds to a valid derivation
sequence in G, but, in general, not vice versa. Still, as we will see in Section 5,
k-truncations can be useful for proving properties of the original grammar.

4 Folding and over-approximations

In this section we define an algorithm which, given a graph grammar G and a
level of accuracy k, produces a finite Petri graph Ck(G), called k-covering, which
can be seen as an over-approximation of the behaviour of the grammar G.

We have already mentioned that the full unfolding is usually infinite, also for
finite-state systems. To obtain a finite over-approximation we modify the unfold-
ing procedure by considering, besides the unfolding rule, also a folding rule which
allows us to “merge” two occurrences of the left-hand side of a rule whenever
they are, in a sense made precise later, one causally dependent on the other. In-
tuitively, the presence of such two occurrences of a left-hand side reveals a cyclic
behaviour and applying the folding rule one avoids to unfold the corresponding
infinite path. While guaranteeing finiteness, the folding operation causes a loss
of information in a way that the resulting structure over-approximates the be-
haviour of the original system: every graph reachable in the original grammar
G corresponds to a marking which is reachable in the covering and every valid
derivation in G corresponds to a valid firing sequence in the covering (but not
vice versa).

In order to compute better over-approximations of the behaviour the idea is
to delay folding steps, constraining the algorithm to apply only unfolding steps
until a given causal depth is reached. Roughly, this is obtained by “freezing” an
initial part of the approximated unfolding, up to a given causal depth k, and by
allowing only unfolding and no folding steps to affect that part. The resulting
over-approximation Ck(G) is “exact” up to causal depth k, in the sense that any
graph reachable in G in less than k steps will have a reachable isomorphic image
in Ck(G). Instead, graphs which are reachable in a larger number of steps, in
general, will be mapped homomorphically in Ck(G) (still to a reachable graph).

In this way one can obtain arbitrarily accurate approximations, a fact which
is enforced by proving that the chain of k-coverings of a grammar G converges
to the full (possibly infinite) unfolding U(G). In categorical terms, U(G) turns
out to be the limit of the chain of coverings in a suitable subcategory of Petri
graphs.

4.1 Computing k-coverings

A basic definition needed to introduce k-coverings is that of a folding operation.
Intuitively, it allows to merge two matches of the same rule in a Petri graph.

8

Definition 15 (folding operation). Let P = (G,N, µ) be a Petri graph for a
gts R. Let r ∈ R be a rule and let ϕ′, ϕ : Lr → G be matches of r in G. The
folding of P at the matches ϕ′, ϕ, denoted fold(P, r, ϕ′, ϕ) = P ′, is the Petri
graph P ′ obtained as the coequalizer of (ϕ, ∅), (ϕ′, ∅) : [Lr]→ P in category PG.

If (P, ι) is a Petri graph for a graph grammar (R, GR), in the same situation,
we define fold((P, ι), r, ϕ′, ϕ) = (P ′, ψ ◦ ι) where (ψ, τ) : P → P ′ is the PG
morphism generated by the coequalizer.

The algorithm which produces the k-covering Ck(G) generates a sequence
of Petri graphs, beginning from the start graph of G and applying, non-
deterministically, at each step, a folding or unfolding operation, until none of
such steps is admitted. Folding steps will be applied only at depth k or greater.
Note that as soon as folding steps are applied, the Petri graph will contain cycles.

Definition 16 (k-covering). Let G = (R, GR) be a graph grammar and let
k ∈ N. The algorithm generates a sequence (Pi, ιi)i∈N of Petri graphs, as follows.

(Step 0) Initialise (P0, ι0) = ([GR], idGR
).

(Step i + 1) Let (Pi, ιi), with Pi = (Gi, Ni, µi), be the Petri graph produced at
step i. Choose non-deterministically one of the following actions

? Folding: Find a rule r in R and two different matches ϕ′, ϕ : Lr → Gi of r
such that

– ϕ⊕(ELr
) is a coverable marking in Pi;

– there exists a transition t ∈ TNi
such that

pNi
(t) = r ∧ •t = ϕ′⊕(ELr

) ∧ ∀e ∈ ϕ⊕(ELr
) : (e ∈ •t ∨ t <Ni

e) (3)

– for every edge or node x ∈ ELr
∪ VLr

it holds that

ϕ(x) = ϕ′(x) ∨ depthk(ϕ(x)) = depthk(ϕ′(x)) = k. (4)

Then set (Pi+1, ιi+1) = fold((Pi, ιi), r, ϕ
′, ϕ).

? Unfolding: Find a rule r in R and a match ϕ : Lr → Gi such that

– ϕ⊕(ELr
) is a coverable marking in Pi;

– there is no transition t ∈ TNi
such that •t = ϕ⊕(ELr

) and pNi
(t) = r;

– there is no other match ϕ′ : Lr → Gi satisfying the folding condition.

Then set (Pi+1, ιi+1) = unf((Pi, ιi), r, ϕ).

If no folding or unfolding step can be performed, the algorithm terminates.
The resulting Petri graph (Pi, ιi) is called k-covering of the unfolding of G and
denoted by Ck(G).

Condition (3) basically states that we can fold two matches of a rule r whenever
the first one has been already unfolded producing a transition t, and the second
match depends on the first one, in the sense that any edge in the second match

9

is already in the first one or causally depends on t. Roughly, the idea is that
we should not unfold a left-hand side again, if we have already done the same
unfolding step in its past, since this might lead to infinitely many steps. There are
some similarities, to be further investigated, with the work in [14] where the sets
of descendants and of normal forms of term rewriting systems are approximated
by constructing an approximation automaton. Additionally, by Condition (4)
only items of depth k can be merged, in a way that the prefix up to depth k

of the unfolding is not involved in any folding operations. Actually some items
of depth less than k can be part of a folding operation, but they must be left
unchanged by the step.

4.2 Correctness, termination and confluence

We first show that the computed Petri graph Ck(G) gives an over-approximation
of the behaviour of the given graph grammar, exact up to causal depth k. More
precisely we prove that for any graph reachable in G, there is a morphism into
the covering Ck(G) such that the image of its edge set corresponds to a reachable
marking. Furthermore, if a graph is reachable in G in less than k steps, then it
will be mapped isomorphically to to (the graphical component) of Ck(G).

Proposition 17 (correctness). Let G = (R, GR) be a graph grammar and
assume that the algorithm computing the k-covering terminates producing the
Petri graph Ck(G) = ((U,N, µ), ι). Then for every graph G

i) if GR ⇒
∗
R G there exists a morphism ϕG : G → U and the marking

ϕG
⊕(EG) is reachable in Ck(G). Furthermore, if G ⇒R G′ then ϕG

⊕(EG)
t
→

ϕG′
⊕(EG′) for a suitable transition t in Ck(G).

ii) If GR ⇒
∗
R G with a (possibly parallel) derivation of length less than k

then there exists an injective morphism ϕG : G → U such that the marking
ϕG

⊕(EG) is reachable in Ck(G) and max{depthk(x)) | x ∈ G} < k, and vice

versa. Furthermore if ϕG
⊕(EG)

t
→ m for some transition t, then there exists a

graph G′ such that G⇒R G′ and m = ϕG′
⊕(EG′).

It is not obvious at first glance that the algorithm computing the k-covering
always terminates. To prove termination we rely on the corresponding result
in [1] where we show that it is not possible to perform infinitely many unfolding
steps, without having the folding condition satisfied at some stage.

Proposition 18 (termination). The algorithm computing the k-covering (see
Definition 16) terminates for every graph grammar G and every k ∈ N.

In order to prove that the algorithm produces a uniquely determined result,
independently of the order in which folding and unfolding steps are applied, we
can show that the rewriting relation on Petri graphs induced by folding and
unfolding steps is locally confluent. By the Diamond Lemma [8], for a rewriting
system local confluence and termination imply confluence.

10

Proposition 19 (confluence). For any input grammar G and k ∈ N the al-
gorithm computing the k-covering terminates with a result Ck(G) unique up to
isomorphism.

4.3 Full unfolding as limit of the coverings

The fact that folding and unfolding operations are given in terms of colimits
allows us to define, for any k, a (uniquely determined) Petri graph morphism

υk : Ck+1(G) → Ck(G). The diagram C0(G)
υ0← . . . Ck(G)

υk← Ck+1(G)
υk+1

← . . . is
called the covering tower.

The next proposition presents a central result of this paper. For technical
reasons we consider the full subcategory PG∗ of PG having as objects Petri
graphs in which every edge is coverable and every transition can be fired.

Proposition 20 (unfolding as limit of the coverings). The limit in the

category PG∗ of the covering tower C0(G)
υ0← . . . Ck(G)

υk← Ck+1(G)
υk+1

← . . . is the
full unfolding U(G) of the graph grammar.

5 Checking Temporal Properties

In this section we illustrate how our technique can be seen as a specific instance
of abstract interpretation [7, 17]. Embedding our work into this context we can
resort to some results from [20], thus identifying classes of temporal properties
(µ-calculus formulae) which, being preserved/reflected by abstractions, can be
studied over suitable approximations of a gts.

We recall some concepts from [20], the more basic one being the formalisation
of abstraction given in terms of Galois connections (over powerset lattices).

Definition 21 (Galois connection). Let Q1 and Q2 be two sets of states. A
Galois connection from P(Q1) to P(Q2) is a pair of monotonic functions (α, γ),
with α : P(Q1) → P(Q2) (abstraction) and γ : P(Q2) → P(Q1) (concretiza-
tion), such that idQ1

⊆ γ ◦ α and α ◦ γ ⊆ idQ2
.

Next we introduce 〈α, γ〉-simulations which turn out to coincide with simu-
lations in the sense of Milner (see [20] for details).

Definition 22 (〈α, γ〉-simulation). Let Ti = (Qi,→i) with i ∈ {1, 2} be tran-
sition systems, where Qi is a set of states and →i⊆ Qi × Qi is the transition
relation. Let furthermore (α, γ) be a Galois connection from P(Q1) to P(Q2).

We say that T2 〈α, γ〉-simulates T2, written T1 v〈α,γ〉 T2, if α ◦ pre[→1] ◦
γ ⊆ pre[→2], where the function pre[→i] : P(Qi) → P(Qi) is defined by
pre[→i](Q) = {q ∈ Qi | ∃ q

′ ∈ Q : q →i q
′}.

Let T1, T2 be transition systems and let ϕ : T1 → T2 be a transition system
morphism, i.e., a function ϕ : Q1 → Q2 such that such that for any q, q′ ∈ Q1 if
q →1 q

′ then ϕ(q) →2 ϕ(q′) (in other words, ϕ is a special kind of simulation).

11

Then, it can be easily seen that the pair (ϕ,ϕ−1) is a Galois connection and
furthermore T1 v〈ϕ,ϕ−1〉 T2.

We next discuss how our under- and over-approximations of the behaviour of
a graph grammar can be interpreted in this context. First observe that, a Petri
graph (P, ι), with P = (G,N, µ), can be associated with a transition system
M(P,ι), having reachable markings (multi-sets of edges) as states and the firing
relation of the underlying Petri net N as transition relation. Alternatively we
can consider the transition system, G(P,ι), where states are graphs (generated by
the reachable markings, in the sense of Definition 7) and the transition relation
is again induced by the firing relation of N .

Let G be a graph grammar and consider the full unfolding U(G), the k-
truncations T k(G) and the k-coverings Ck(G). Since by Definition 13 and Proposi-
tion 20 the full unfolding is the colimit of the truncations and the limit of the cov-
erings, we have (unique) morphisms ηk : T k(G)→ U(G) and θk : U(G)→ Ck(G),
which can be regarded as functions from sets of markings to sets of markings
and furthermore they are morphisms between the transition systems of the un-
derlying Petri nets. Hence we have the following result.

Proposition 23. Let G be a graph grammar. Then (ηk, η
−1
k) and (θk, θ

−1
k) are

Galois connections and MT k(G) v〈ηk,η−1

k
〉 MU(G) v〈θk,θ−1

k
〉 MCk(G).

Modal µ-calculus. One of the central results of [20] is the preservation and
reflection of modal µ-calculus formulae on transitions systems. Recall that the
modal µ-calculus is a temporal logic enriched with fixed-point operators. The
syntax of µ-calculus formulae is the following:

f ::= A | X | 3f | 2f | ¬f | f1 ∨ f2 | f1 ∧ f2 | µX.f | νX.f

where A ∈ A are atomic propositions and X ∈ X are proposition variables. The
formulae are evaluated over a transition system T = (Q,→), with respect to
an interpretation I : A → P(Q), associating to any atomic proposition A ∈ A
the set of states I(A) where it holds. A formula 3f / 2f holds in a state q if
some / any single step leads to a state where f holds. The connectives ¬,∨, ∧
are interpreted in the usual way. The formulae µX.f and νX.f represent the
least and greatest fixed point, respectively. We write q |=I f to mean that the
(closed) formula f holds in the state q, under the interpretation I. We say that
a transition system T satisfies a (closed) formula f under an interpretation I,
written T |=I f , if q0 |=

I f where q0 is the initial state of T .
The fragment of the modal µ-calculus without negation and box operator is

denoted by 3Lµ. By dropping negation and the diamond operator we obtain
the fragment 2Lµ. Some typical liveness properties of the form “eventually A”
(i.e., µX.(A∨3X)) can be expressed in the fragment 3Lµ, whereas some typical
safety properties of the form “always A” (i.e., νX.(A ∧ 2X)) can be expressed
in the fragment 2Lµ. However, while for linear time there exists a syntactic
characterization of liveness and safety properties [24], in the case of branching
time there is not yet any established definition of liveness and safety [21].

12

Let us come back to graph transformation systems, where atomic propositions
stand for graph properties, i.e., for sets of graphs. Let (P, ι) be a Petri graph
and let f be a µ-calculus formula over a set of atomic propositions A. Assume
that Im and Ig are interpretations of A over M(P,ι) and G(P,ι), respectively, such
that, for any A ∈ A, any marking m and graph G(m) generated by m

m ∈ Im(A) iff G(m) ∈ Ig(A). (5)

Then it is immediate to see that M(P,ι) |=
Im f if and only if G(P,ι) |=

Ig f . Fur-
thermore, given a graph grammar G, seen as a transition system in the obvious
way, by Proposition 14 it follows that G |=Ig f if and only if GU(G) |=

Im f .
Using the above observations and exploiting the preservation and reflection

properties in [20] we can obtain the following result. We say that a set Gr
of hypergraphs is preserved by graph morphisms whenever the existence of a
morphism ϕ : G → G′ with G ∈ Gr implies G′ ∈ Gr . Symmetrically, Gr is
reflected by graph morphisms whenever the existence of a morphism ϕ : G→ G′

with G′ ∈ Gr implies G ∈ Gr .

Corollary 24. Let G = (R, GR), let f be a µ-calculus formula over a set of
atomic propositions A. Let Im and Ig be interpretations satisfying (5). Then

– If f ∈ 3Lµ, MT k(G) |=
Im f and every set Ig(A) is preserved by hypergraph

morphisms, then G |=Ig f .
– If f ∈ 2Lµ, MCk(G) |=

Im f and every set Ig(A) is reflected by hypergraph

morphisms, then G |=Ig f .

We have shown how to reduce the analysis of the full transition system of
a graph grammar to the analysis of simpler transition systems, generated by
Petri nets (underlying Petri graphs). These transition systems might still have
infinitely many states, but there are several decidability results for the modal
µ-calculus and other forms of temporal logics [13, 15, 16].

Example. Let us consider the simple graph grammar S in Fig. 1, where edge
labels have the following meaning: C (connections), Spub (public servers), Sprv

(private servers), Pint (internal processes) and Pext (external processes). Internal
processes can wander around the network and public servers can extend the
network by creating new connections. Our aim is to show that the external
process is never connected to a private server and thus has access to classified
data. That is, we want to show that the following logical formula is satisfied
by the graph transformation system: f = νX.(A ∧ 2X) where the atomic
proposition A holds for all the graphs in GrA = {G | ∀e1, e2 ∈ EG.(lG(e1) =
Sprv ∧ lG(e2) = Pext ⇒ cG(e1) 6= cG(e2))} (it always holds that whenever
a private server and an external process appear in a graph, then they are not
connected to the same node). One can easily show that GrA is reflected by
hypergraph morphisms.

Applying the algorithm in Definition 16 to the graph grammar S to compute
the 0-covering C0(S), we obtain the left-hand Petri graph in Fig. 2. Observe

13

C

Pint

Sprv Spub

Pext

Start graph:

Spub

1

2

Pint

1

C

C Spub

1

1

C
2

Pint

Rules of the grammar:

Fig. 1. The example graph grammar S.

that the formula f is not satisfied by this covering, since A is invalid already
for the initial marking. Hence this gives us no indication whether or not the
formula holds for S. Therefore we try and compute the 1-covering and get the
Petri graph on the right-hand side of Fig. 2. Now we can establish that f holds
just by looking at the graph structure of the 1-covering C1(S): edges of the form
Sprv and of the form Pext do not share a common node.

Pint

Sprv

C

Spub

Pext

C

PintPint

Sprv

C

C

C

C

Pint

SpubPext Spub

Fig. 2. The 0-covering C
0(S) and the 1-covering C

1(S) of grammar S in Fig. 1.

It would also be possible to extend the example by adding rules that allow
movement of external processes and verify the same property. However, in this
case the 1-covering would get larger and harder to draw. In [2] we have shown
how to analyse a more complex gts.

6 Conclusion

We have presented a technique for computing under- and over-approximations
of the behaviour of graph transformation systems and we have identified suitable
classes of properties of a gts which can be inferred by analysing its approxima-
tions. We envision a scenario where a property of a given gts can be checked by
computing better and better approximations and verifying the property for each
of them. Because of undecidability issues, this process might never terminate
and it could also be costly from a complexity point of view, but with appro-
priate heuristics and fine-tuning of the technique, it is conceivable that several
interesting properties for non-trivial gtss can be verified in such a way.

In order to test the applicability of our theory we plan to implement the
presented algorithm and to apply it to practical examples.

14

On the theoretical side, there are still several open problems. First, it would
be interesting to classify logical formulae on graphs which are preserved and
reflected by graph morphisms, via a kind of type system. This would enable
us to extend the results of Section 5 to a logic in which one is able to reason
specifically about graph transition systems (see also [6]). Additionally it would
be necessary to detail how the verification of these formulae on Petri graphs can
be reduced to the existing model-checking techniques for Petri nets.

Another relevant issue is the extension of the developed theory to gtss having
more general forms of rules. Particularly promising, in order to decrease the size
of the approximations, is the case of gtss where rules might have a non-discrete
left-hand side. This extension would require to resort to contextual nets in order
to represent the Petri net structure underlying a Petri graph.

An open and, as it seems, highly non-trivial question is the treatment of
finite-state gtss. It would be quite interesting to understand if for a given gts

with only finitely many reachable graphs (up to isomorphism), there is a way to
construct—using folding and unfolding steps—a finite Petri graph which gives
an exact representation of the original gts, without any proper approximation.
This would allow to reduce the analysis of finite-state gtss to that of Petri nets.

Acknowledgements: The authors are grateful to Andrea Corradini for his
insightful suggestions and to the anonymous referees for their comments on the
submitted version of this paper.

References

1. P. Baldan, A. Corradini, and B. König. A static analysis technique for graph
transformation systems. In Proc. of CONCUR ’01, pages 381–395. Springer-Verlag,
2001. LNCS 2154.

2. P. Baldan, A. Corradini, and B. König. Static analysis of distributed systems with
mobility specified by graph grammars—a case study. In Proc. of IDPT ’02 (World
Conference on Integrated Design & Process Technology), 2002. to appear.

3. P. Baldan, A. Corradini, and U. Montanari. Concatenable graph processes: relating
processes and derivation traces. In Proc. of ICALP’98, volume 1443 of LNCS, pages
283–295. Springer Verlag, 1998.

4. P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Structure Seman-
tics for Graph Grammars. In W. Thomas, editor, Proc. of FoSSaCS ’99, volume
1578 of LNCS, pages 73–89. Springer Verlag, 1999.

5. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26:241–265, 1996.

6. B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In G. Rozenberg, editor, Handbook of Graph Gram-
mars and Computing by Graph Transformation, Vol.1: Foundations, chapter 5.
World Scientific, 1997.

7. P. Cousot. Abstract interpretation. ACM Computing Surveys, 28(2), 1996.
8. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Jan van Leeuwen, ed-

itor, Formal Models and Semantics, Handbook of Theoretical Computer Science,
volume B, pages 243–320. Elsevier, 1990.

15

9. H. Ehrig. Introduction to the algebraic theory of graph grammars. In V. Claus,
H. Ehrig, and G. Rozenberg, editors, Proc. of the 1st International Workshop on
Graph-Grammars and Their Application to Computer Science and Biology, vol-
ume 73 of LNCS, pages 1–69. Springer Verlag, 1979.

10. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Vol.3: Concurrency,
Parallellism, and Distribution. World Scientific, 1999.

11. H. Ehrig, J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Vol. 2: Concurrency,
Parallelism and Distribution. World Scientific, 1999.

12. J. Esparza. Model checking using net unfoldings. Science of Computer Program-
ming, 23(2–3):151–195, 1994.

13. J. Esparza. Decidability of model-checking for infinite-state concurrent systems.
Acta Informatica, 34:85–107, 1997.

14. T. Genet. Decidable approximations of sets of descendants and sets of normal
forms. In T. Nipkow, editor, Proc. of 9th International Conference on Rewrit-
ing Techniques and Applications, volume 1379 of LNCS, pages 151–165. Springer
Verlag, 1998.

15. R.R. Howell, L.E. Rosier, and H.-C. Yen. A taxonomy of fairness and temporal
logic problems for Petri nets. Theoretical Computer Science, 82:341–372, 1991.

16. P. Janc̆ar. Decidability of a temporal logic problem for Petri nets. Theoretical
Computer Science, 74:71–93, 1990.

17. N.D. Jones and F. Nielson. Abstract interpretation: a semantics-based tool for
program analysis. In S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editors,
Handbook of Logic in Computer Science, Vol. 4: Semantic Modelling, pages 527–
636. Oxford University Press, 1995.

18. M. Koch. Integration of Graph Transformation and Temporal Logic for the Speci-
fication of Distributed Systems. PhD thesis, Technische Universität Berlin, 2000.

19. B. König. A general framework for types in graph rewriting. In Proc. of FST TCS
2000, volume 1974 of LNCS, pages 373–384. Springer-Verlag, 2000.

20. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6:1–35, 1995.

21. P. Manolios and R.J. Trefler. Safety and liveness in branching time. In Proc. of
LICS ’01, 2001.

22. K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
23. J. Meseguer and U. Montanari. Petri nets are monoids. Information and Compu-

tation, 88:105–155, 1990.
24. A. Prasad Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects

of Computing, 6(5):495–512, 1994.
25. W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theoretical

Computer Science. Springer Verlag, 1985.
26. L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.

PhD thesis, Technische Universität Berlin, 1996.
27. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph

Transformation, Vol. 1: Foundations. World Scientific, 1997.
28. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph

Transformation. Volume 1: Foundations. World Scientific, 1997.
29. V. Sassone. On the Semantics of Petri Nets: Processes, Unfolding and Infinite

Computations. PhD thesis, University of Pisa - Department of Computer Science,
1994.

16

