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Abstract. Graph transformation systems are a general specification
language for systems with dynamically changing topologies, such as mo-
bile and distributed systems. We propose a counterexample-guided ab-
straction refinement technique which is based on the over-approximation
of graph transformation systems (gts) by Petri nets. We show that a
spurious counterexample is caused by merging nodes during the approx-
imation. We present a technique for identifying these merged nodes and
splitting them using abstraction refinement, which removes the spuri-
ous run. The technique has been implemented in the Augur tool and
experimental results are discussed.

1 Introduction

In the last years verification techniques based on counterexample-guided abstrac-
tion refinement [8] have been very successful. The idea behind this approach is
to start with a coarse initial over-approximation and to refine this abstraction by
eliminating spurious counterexamples. The technique has been used successfully
in several tools such as slam [6], blast [10] or magic [7].

Abstraction is also important for graph structures that can arise in several
applications, for instance as evolving pointer structures on the heap, as object
graphs or as networks with mobile processes. So far, little work has been done
in this area concerning abstraction refinement. We are only aware of [12] where
models of a 3-valued logics representing pointer structures are refined in the
framework of shape analysis [16] by generating new instrumentation relations.

Here we are working in a different framework where we are using graph
transformation systems (gts)—instead of 3-valued logics—in order to represent
and transform graph structures. Graph transformation systems are an expressive
and useful specification formalism, allowing to describe dynamic properties of
concurrent and distributed systems [15]. They can be used to model systems
such as pointer structures, object-oriented languages and mobile processes.

In this paper the technique of counterexample-guided abstraction refinement
is applied to the verification of graph transformation systems. Our approach is
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based on a (partial order) technique that approximates gtss by Petri nets via
an unfolding construction [3]. More specifically, in this approach a finite over-
approximation called Petri graph is constructed, which consists of a graph and a
Petri net having the edges of the graph as places. The important property of the
approximation obtained in this way is that each graph reachable from the start
graph in the gts can be mapped, by merging some of its nodes, to a reachable
marking of the over-approximating Petri net. On the other hand there may be
some markings reachable in the obtained Petri graph, which have no counterpart
in the original gts. The sequence of events in the approximation leading to such
a graph is called a spurious run.

In our case spurious runs are caused by the merging of graph nodes in the
construction of the over-approximation. This is similar to the concept of sum-
mary nodes in shape analysis [16]. This paper describes how to construct a more
exact over-approximation by separating merged nodes for which these spurious
runs disappear. This procedure can be performed repeatedly for any number of
spurious runs.

We believe that the technique of identifying the reason for the spurious run
is independent of the abstraction mechanism used in this paper and could also
be used in other frameworks dealing with approximations of graph structures.

The techniques presented here are implemented as an extension of the tool
Augur1. The experimental part of the paper compares this approach with an
already existing abstraction refinement technique which reduces the number of
spurious examples by constructing an over-approximation which is exact up to
some pre-defined depth [5]. It is shown experimentally that counterexample-
guided abstraction refinement is faster and produces smaller Petri graphs.

A long version of this paper is available as a technical report [11].

2 Basic Notions

In this section we describe the notions of hypergraph, gts, Petri net and Petri
graph and also show in an informal way how to construct over-approximating
Petri graphs.

Definition 1 (hypergraphs and hypergraph morphisms). Let Λ be a set
of labels where each label l ∈ Λ has an arity ar(l) ∈ N. A labelled hypergraph
G is a tuple (VG, EG, cG, lG), where VG is a finite set of nodes, EG is a finite
set of edges, cG : EG → V ∗

G is a connection function and lG : EG → L is the
labeling function satisfying ar(lG(e)) = |cG(e)| for every e ∈ EG. The nodes are
not labelled.

Let G and G′ be two labelled hypergraphs. A hypergraph morphism (or simply
morphism) ϕ : G1 → G2 consists of a pair of total functions ϕV : VG1

→ VG2

and ϕE : EG1
→ EG2

such that for every e ∈ EG1
it holds that lG1

(e) =
lG2

(ϕE(e)) and ϕV (cG1
(e)) = cG2

(ϕE(e)). A morphism is called edge-bijective

1 Available from http://www.fmi.uni-stuttgart.de/szs/tools/augur/



(edge-injective) whenever it is bijective (injective) on edges. It is an isomorphism
whenever it is bijective on nodes and edges.

Hypergraphs can be rewritten using rules of the following kind.

Definition 2 (rewriting rule). A rewriting rule r is a triple (L,R, α), where
L and R are hypergraphs, called left-hand side and right-hand side respectively
and α : VL → VR is an injective mapping, indicating how nodes are preserved.

We demand that there are no isolated nodes in the left-hand side L and no
isolated nodes in VR − α(VL). Additionally EL must not be empty.

The first condition says that we abstract from isolated nodes, whereas the
second is a standard requirement for unfolding-based techniques, where every
rule must be consuming. Note furthermore that we do not consider rules that
preserve edges of the left-hand side.

For convenience we will in the following often assume that α is an inclusion
denoted by id, which can be enforced by renaming the nodes of the left or right-
hand side appropriately, and that the node and edge sets of L and R are disjoint
otherwise. That is, we demand that VL ⊆ VR and EL ∩ ER = ∅ which implies
that the union L ∪R is well-defined.

Given a hypergraph, a rewriting rule and a match of the left-hand side, we
can apply this rule and replace the left-hand side by the right-hand side in the
following way. Additionally we define a partial morphism ν from the original
graph to the rewritten graph, keeping track of preserved nodes and edges.

Definition 3 (rewriting step). Let r = (L,R, id) be a rewriting rule. A match
of r in a hypergraph G is any morphism ϕ : L → G injective on edges. We can
apply r to G according to the match ϕ and obtain a new graph H, written G⇒r

H, which is defined as follows: VH = VG ⊎ (VR −VL), EH = (EG −ϕ(EL))⊎ER

and, defining ϕ:VR → VH by ϕ(v) = ϕ(v) if v ∈ VL and ϕ(v) = v otherwise, the
connection and labelling functions are given by cH(e) = cG(e), lH(e) = lG(e) if
e ∈ EG − ϕ(EL) and cH(e) = ϕ(cR(e)), lH(e) = lR(e) if e ∈ ER.

We also define an injective partial morphism ν : G→ H where νV : VG → VH

and νE : (EG − ϕ(EL)) → EH with ν(x) = x for every node or edge x.

A graph transformation system (gts) G = (R, G0) is a finite set of rules
together with a start hypergraph (also called initial graph).

Example: We illustrate the definitions of this chapter with an example describing
a firewall system similar to the one introduced in [4]. This system contains an
(arbitrarily large) set of processes running behind a firewall (safe processes) and
one process in a public area (unsafe process). Any number of safe processes (SP)
and connected locations (L) can be generated during runtime. The property to
verify is that the unsafe process from the public area does not penetrate the
firewall. If this situation is detected, rule “Error” will be applied and an edge
labelled Error is created.

Fig. 1 and Table 1 depict the initial graph and the rules of the firewall system.
A double-headed arrow in a rule means that the rule can be applied in both



directions. Numbers close to the nodes indicate the mapping α. The private and
public areas are connected by the firewall (F ), and initially there is one unsafe
processes (UP) in the public area. Only safe processes will be generated and
the firewall can be crossed in one direction only. Our aim is to show that no
reachable graph contains the 0-ary edge Error .

L F L

UP

v1 w1 w2 v2

Fig. 1. Initial graph of the firewall system.
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Table 1. Rules of the firewall system.

In order to approximate gtss we will employ Petri nets, which, as multi-
set rewriting systems, can be seen as a special case of graph rewriting. Petri
nets are an easier model than gts and hence more amenable to analysis. Sev-
eral algorithms and tools are available for their verification. Furthermore, by
approximating with Petri nets we will be able to preserve nice properties of
the gts model, such as locality (state changes are only described locally) and
concurrency (no unnecessary interleaving of events) in the approximation.

We will now introduce a notation for Petri nets.2

2 By A⊕ we denote a multiset over A and for a function f : A → B we denote by
f⊕ : A⊕ → B⊕ its extension to multisets. Furthermore for m ∈ A⊕ and a ∈ A we
denote by m(a) the multiplicity of a in m.



Definition 4 (Petri net). Let ∆ be a finite set of labels. A ∆-labelled Petri
net is a tuple N = (S, T, •(), ()•, p), where S is the set of places, T is a set of
transitions, •(), ()• : T → S⊕ assign to each transition its pre-set and post-set
and p : T → ∆ assigns a label to each transition. A marked Petri net is a pair
(N,mN ), where N is a Petri net and mN ∈ S⊕ is the initial marking.

3 Approximated Unfolding

In this section we will give a short overview of a technique that approximates
a graph transformation system by a structure that is both a Petri net and a
hypergraph [3–5].

First we define the notion of Petri graph which will be used to represent an
over-approximation for a given gts. Note that the edges of the graph are at the
same time the places of the net and that the transitions are labelled with rules
of the gts.

Definition 5 (Petri graph). Let G = (R, G0) be a gts. A Petri graph (over
R) is a tuple P = (G,N, µ), where G is a hypergraph, N = (EG, TN ,

•(), ()•, pN )
is an R-labelled Petri net where the places are the edges of G and µ associates
to each transition t ∈ TN , with pN (t) = (L,R, id), a hypergraph morphism
µ(t) : L ∪R→ G such that •t = µ(t)⊕(EL) and t• = µ(t)⊕(ER).

A Petri graph for the gts G is a pair (P, ι), where P = (G,N, µ) is a Petri
graph over R and ι : G0 → G is a graph morphism. A marking is reachable
(coverable) in Petri graph if it is reachable (coverable) in the underlying Petri
net with the multiset ι⊕(EG0

) as the initial marking.

We view Petri graphs as symbolic representations of transition systems with
graphs as states. Specifically each marking m of a Petri graph (G,N,m0) can
be seen as representation of a graph, denoted by graph(m), according to the
following definition: We take the marked subgraph of G and duplicate each edge
as indicated by the marking.

Alternatively one can define graph(m) as the unique graph H, up to iso-
morphism, such that H has no isolated nodes and there exists a morphism
ψ : H → G, injective on nodes, with ψ⊕(EH) = m. Furthermore, whenever
there exists a morphism ϕ : G′ → G such that ϕ⊕(EG′) ≤ m, then there exists
an edge-injective morphism em,ϕ:G′ → graph(m) such that ψ ◦ em,ϕ = ϕ.

In order to obtain a Petri graph approximating a gts, we first need—as
building blocks—Petri graphs that describe the effect of a single rule.

Definition 6 (Petri graph for a rewriting rule). Let r = (L,R, id) be a
rewriting rule. By P (t, r) = (G,N, µ) we denote a Petri graph with G = L∪R and
N is a net with places SN = EL ∪ER and one transition t such that pN (t) = r,
•t = EL and t• = ER. Furthermore the morphism µ(t):L∪R → G is the identity.

Given a gts G = (R, G0) one can construct an over-approximating Petri
graph CG (also called the covering of G), using the following algorithm (see



[3]). It starts with a Petri graph P0 that consists only of the start graph and
computes CG iteratively. It is based on an unfolding technique which is combined
with over-approximating folding steps which guarantee a finite approximation.

Algorithm 7 (approximated unfolding) We set P0 = (G0, N0,m0), where
N0 contains no transitions, m0 = EG0

and let ι0:G0 → G0 be the identity. As
long as one of the following steps is applicable, transform Pi into Pi+1 accord-
ing to the possibilities given below (where folding steps take precedence over
unfolding steps).

Unfolding: Find a rule r = (L,R, id) ∈ R and a match ϕ : L→ Gi. Then choose
a new transition t and extend Pi by attaching P (t, r), i.e., take the disjoint union
of both Petri graphs and factor through the equivalence ≡ generated by e ≡ ϕ(e)
for every e ∈ EL.

Folding: Find a rule r = (L,R, id) ∈ R and two matches ϕ,ϕ′ : L → Gi

such that ϕ⊕(EL) and ϕ′⊕(EL) are coverable in Ni and the second match is
causally dependent on the transition unfolding the first match. Then merge the
two matches by setting ϕ(e) ≡ ϕ′(e) for each e ∈ EL and factoring through the
resulting equivalence relation ≡.

If neither possibility applies the Petri graph Pi obtained in the last step is
returned. The result is denoted by CG . In [3] it has been shown that the algorithm
always terminates with a result unique up to isomorphism.

In our running example, the constructed over-approximation consists of the
hypergraph in Fig. 2 and the Petri net in Fig. 3. (Ignore the highlighted tran-
sitions for the moment.) Note that the set of edges of the graph corresponds
exactly to the set of places of the net (the correspondence is indicated by giving
indices to the labels).

C

F

Error

L

SP2

UP2

SP1

UP1

w1,2
v1,2

Fig. 2. Hypergraph component of the approximating Petri graph (firewall example).

Before we can show in what way Petri graphs can be considered as abstrac-
tions of gtss and before we discuss how they can be analyzed, we first need the
definition of an abstract run of a gts and a notion of correspondence of two
abstract runs. Then we can define how Petri graphs can be seen as abstractions
of gtss.
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Fig. 3. Petri net component of the approximating Petri graph (firewall example).

Definition 8 (Abstract run). An abstract run of a gts (R, G0) is a sequence
of hypergraphs J = (J0 ⇛r1

J1 ⇛r2
. . . ⇛rn

Jn), where ri is a rule name,
together with morphisms ϕi : Li+1 → Ji for each i = 1, . . . , n−1, where Li is the
left-hand side of rule ri ∈ R.

Note that we do not demand that Ji can be derived from Ji−1 by applying
rule ri at match ϕi. In this case J will be called a real run and we will also use
the symbol ⇒ instead of ⇛.

Let J ′ = (J ′
0 ⇛r1

J ′
1 ⇛r2

. . . ⇛rn
J ′

n) be another abstract run with mor-
phisms ϕ′

i:Li+1 → J ′
i for each i = 1, . . . , n−1. We say that J ′ weakly corre-

sponds to J (in symbols J ′ ≪ J ) if for each i = 1, . . . , n−1 there exist edge-
bijective morphism ξi : J ′

i → Ji for i = 0, . . . , n. If furthermore the following
diagram commutes we say that J ′ corresponds to J and write J ′

≪ J .

Li+1

ϕ′

i
//

ϕi

77
J ′

i

ξi
// Ji

Petri graphs can, as mentioned above, be seen as symbolic representations of
graph transition systems and also as representations of sets of abstract runs.

Definition 9 (Abstract runs of a Petri graph). Let (P, ι) with P = (G,N, µ)
be a Petri graph for a gts (R, G0). Furthermore let m0[t1〉 . . . [tn〉mn be a fir-
ing sequence of the net N and let ri = pN (ti) be the rules corresponding to the
transitions. We define morphisms ϕi = emi,µ(ti+1)|Li+1

: Li+1 → graph(mi),

where Li+1 is the left-hand side of rule ri+1. The sequence graph(m0) ⇛r1

graph(m1) ⇛r2
. . . ⇛rn

graph(mn) together with the morphisms ϕi is an ab-
stract run. We denote by RunA(P, ι) the set of all abstract runs of the Petri
graph (P, ι).

Each real run Jr = (G0 ⇒r1
G1 ⇒r2

. . .⇒rn
Gn) of the gts (R, G0) can be

considered as an abstract run where the ϕi : Li+1 → Gi represent the matches
of the left-hand sides of the rules ri.



Proposition 1. Let CG be an over-approximation for a gts G computed by
Algorithm 7. Then, for every real run Jr of the graph transformation system
there exists an abstract run J ∈ RunA(CG) such that Jr corresponds to J , i.e.,
Jr ≪ J .

An abstract run J for which there does not exist a real run corresponding
to J is called spurious. If, at the same time, it violates the property we attempt
to verify, it is called a counterexample or error trace.

We can now verify the gts by analyzing the Petri graph underlying the Petri
net. For instance, in order to show that no reachable graph contains a subgraph
Gs we add a new rule to the gts with Gs as left-hand side and an edge with
a new label Error in the right-hand side (see rule “Error” in Table 1). If we
can show that either no place labelled Error exists in the net or every such
place is not coverable (this can be done using coverability graphs or backward
reachability algorithms [1]), then we can deduce that this property holds.

However, if the approximation is too coarse, we might not be able to verify
the property. We have shown in [5] how to construct a sequence of subsequently
better unfolding—which however grow in size fairly rapidly—by forbidding fold-
ing steps up to depth k. Therefore we will now show how to successfully apply the
technique of counterexample-guided abstraction refinement in our framework.

4 Abstraction Refinement

In order to eliminate spurious runs, we will show that they are always caused
by the fact that certain nodes were merged. We will identify these nodes and
show how to avoid their being merged in the next iteration, thereby avoiding
this particular spurious run and all other abstract runs corresponding to it in
a sense made precise later. Merging of nodes is harmful since it might produce
new left-hand sides, thereby leading to additional rewriting steps.

4.1 Spurious Runs

For a given abstract run J = (graph(m0) ⇛r1
graph(m1) ⇛r2

. . . ⇛rn

graph(mn)) of the Petri graph with morphisms ϕi : Li+1 → graph(mi) we define
H to be the set of real runs corresponding to the prefixes of J . Furthermore let
Hi be the set of hypergraphs reachable after i steps in a real run Jr ∈ H. It
holds that H0 = {G0}.

An abstract run J is spurious if Hn = ∅. If the run is spurious, there exists
a k such that Hk 6= ∅, but Hk+1 = ∅ (and therefore also Hl = ∅ for l > k). It will
be shown in the following how to construct a new refined over-approximation
C′
G , which does not contain J and some other spurious runs corresponding to J .

Example: We illustrate the idea of a spurious abstract run with the run corre-
sponding to the firing of the highlighted transitions “Cross Location” and “Er-
ror” in Fig. 3. In fact, there is not real run in the original gts that corresponds
to it.



4.2 Relations on Nodes for Refining Abstract Runs

According to Algorithm 7 and Definition 8 it holds that Hk 6= ∅ and Hk+1 = ∅
if and only if for each G ∈ Hk there exists no edge-injective morphism η :
Lk+1 → G such that the following diagram commutes, where ξk is an edge-
bijective morphism derived from the correspondence property (see Definition 8).
In other words: there is no way to find a match of the left-hand side in G that
agrees with the abstract run.

Lk+1
η

//

ϕk

33

G
ξk

// graph(mk)

For if there were such a match morphism η, we could rewrite G to G′ with
rule rk+1 corresponding to the transition transforming mk to mk+1. Because of
the construction of the Petri graph, where the right-hand side of ri+1 has been
attached during an unfolding step, we would then be able to find an edge-bijective
morphism ξk+1:G

′ → graph(mk+1) thus continuing the correspondence.
Such a situation is only possible if ξk is non-injective on some nodes of G,

i.e., these nodes were merged during construction of the over-approximation CG ,
which is the reason for the spurious run.

Example: In our running example (see Fig. 1 and 2) the nodes v1 and v2 as
well as w1 and w2 of the initial hypergraph have been merged by the over-
approximation, becoming v1,2 and w1,2. This led to the spurious abstract run
described above.

We will now show how to determine the node merges which caused the spuri-
ous run. Consider, for a fixed graph G and a morphism ξk, the set Θ of possible
equivalence relations ∼ on nodes for a graph G ∈ Hk such that, after merging
the nodes in each equivalence class, we can find an appropriate match of the
left-hand side Lk+1 in the graph G/∼. More formally, we demand the existence
of an edge-injective morphism η′ : Lk+1 → G/∼ such that the following diagram
commutes, where ξ′k : G/∼ → graph(mk) is obtained by quotienting ξk according
to ∼.

Lk+1
η′

//

ϕk

33

G/∼
ξ′

k
// graph(mk)

In order to characterize the smallest equivalence in Θ consider a node v of the
left-hand side and determine a set Qv of nodes in G which have to be fused into
one node which is the image of v under η′. Let v ∈ VLk+1

and let e be an edge
of Lk+1 with3 ci(e) = v for some i. For every edge e′ in G with ξk(e′) = ϕk(e)
we require that ci(e

′) ∈ Qv.
Consider the relation Q, where for each v ∈ VLk+1

all nodes in Qv are related

and the relation Q̂ which is the smallest equivalence containing Q.

3 Note that by ci(e) we denote the i-the node in the sequence c(e).



Proposition 2. The equivalence Q̂ constructed above is the smallest equivalence
contained in Θ.

Example: We consider again the abstract error trace J which can be obtained
by firing transitions “Cross Location” and “Error”. However, this error trace has
no real runs that correspond to it, which can be seen by computing the set H
of runs corresponding to prefixes of J . Here, the set H0 consists of the initial
hypergraph and the set H1 contains one graph G1. The next rule “Error” cannot
be applied to G1 in such a way that the corresponding diagram commutes and
therefore the set H2 is empty.

Fig. 4 shows the left-hand side of rule “Error”, G1 ∈ H1 and graph(m1), the
graph corresponding to the marking reached after one step. One notices that
no appropriate morphism η can be found unless the nodes w1 and w2 in G1

are merged. Therefore we have Qw′

1
= {w1, w2}, Qw′

2
= {w2} and the smallest

equivalence relation Q̂ relates the nodes w1 and w2 and no other nodes. Note
for instance that w2 must be contained in Qw′

1
since both are attached to the

unary edge labelled UP .

L L

UP

F
v1 w1 w2 v2

UP

F
w′

1 w′
2

L

L

UP

F

v1,2w1,2

η

ϕ

ξ

”real graph” G1 graph(m1) (graph generated by m1)left-hand side of rule ”Error”
L2

Fig. 4. Hypergraphs G1 ∈ H1, L2 and graph(m1) from the firewall example.

4.3 Elimination of Spurious Runs

The general idea for destroying spurious runs is to avoid the merging of nodes
from the same equivalence class of Q̂. For this reason we assign colours to the
nodes of the graphs contained in H and disallow the merging of nodes cor-
responding to nodes with the same colour. For reasons that will become clear
below a node may have several colours, i.e., a node v is associated to a set cols(v)
of colours.

For each G ∈ Hk we and each morphism ξk : G → graph(mk) we consider
the corresponding relation QG,ξk

. Then we assign colours to nodes in such a
way that there exists at least one pair v1, v2 of nodes such that v1 QG,ξk

v2 and
cols(v1) ∩ cols(v2) 6= ∅. There are several ways to do this and all of them will
help to eliminate the counterexample. In our implementation we choose a color
for each set of nodes Qv and assign it to all nodes contained in Qv.

In order to catch “bad” mergings as early as possible, these colours have to
be distributed to the remaining graphs contained in H. Let us recall here that



according to Definition 3 for each real run Jr = (G0 ⇒r1
G1 . . . ⇒rk

Gk) from
H we have injective partial morphisms νi : Gi → Gi+1 for i = 0, . . . , k−1. Using
these partial morphisms we assign the colours of Gk to the remaining graphs Gi

contained in H. We start from Gk and proceed as follows: if a node v ∈ Gi+1 has
a colour then we also assign this colour to the node ν−1(v) if such a node exists.
In this way a node may obtain several colours, due to the branching structure
of the runs contained in H. We denote by cols(v) the set of colours of the node
v ∈ VGj

where Gj ∈ Hj .
We are now ready to give the algorithm for computing the refined over-

approximation.

Algorithm 10 (Refined approximated unfolding)

Input: A gts G, a set H of runs corresponding to prefixes of the counterexample
and a function cols assigning sets of colours to the nodes of the graphs in H.

Output: The refined over-approximation C′
G .

We start constructing the new over-approximation C′
G with the initial graph

G0. Unfolding steps will be performed as described in Algorithm 7.
For a folding step we disallow the merging of nodes corresponding to nodes in

H having the same colour. More specifically, consider the over-approximation C′
G ,

which is currently being constructed. Now for each run Jr = G0 ⇛r1
. . . ⇛rℓ

Gℓ

in H where ℓ < k check the following:

We consider all abstract runs J = graph(m0) ⇛r1
. . . ⇛rℓ

graph(mℓ) of the
current Petri graph C′

G for which Jr ≪ J and all edge-bijective morphisms
ξ:Gi → graph(mi) for i = 0, . . . , ℓ. Whenever there are two nodes v1, v2 in Gi

with cols(v1) ∩ cols(v2) 6= ∅ and ξ(v1) = ξ(v2), we have erroneously merged two
nodes in the approximation which should not have been merged. Consequently
this folding step is undone.

Previously rejected folding steps are recorded and are not any more consid-
ered by the algorithm.

In this way we will eliminate not only the spurious run but several more runs
which are characterized below (see Proposition 5).

Example: Fig. 5 depicts the hypergraph obtained for the firewall example after
the abstraction refinement procedure. As one can see, the “critical nodes” of the
hypergraph, namely the nodes w1 and w2, are now separated.

4.4 Correctness

In the following we will show that Algorithm 10 terminates and that the refined
over-approximation is correct and more exact then the previous one.

Let CG be an over-approximation with a spurious run J and let C′
G be the

corresponding refined over-approximation. In [3] it is shown that the algorithm
constructing the over-approximating Petri graph terminates. We modified the
algorithm by forbidding some of the folding steps and hence we have to reprove
termination for the new version of the algorithm.
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Fig. 5. Hypergraph obtained after abstraction refinement.

Proposition 3. The algorithm computing the refined over-approximation C′
G for

a given gts G and a (spurious) abstract run J of CG terminates.

Furthermore the new over-approximation is still a valid over-approximation
as before.

Proposition 4. Let C′
G be the refined over-approximation of the gts. Then, for

every real run Jr of the graph transformation system there exists an abstract run
J ∈ RunA(C′

G) such that Jr corresponds to J , i.e., Jr ≪ J .

In the following two propositions we will show that we have eliminated the
given spurious counterexample and have not added any new ones. First we should
answer the following question: what kind of runs have we eliminated by abstrac-
tion refinement? It is easy to see that in the refined over-approximation we have
lost the initial spurious counter-example J . In fact we have not only eliminated
J , but some more runs as described below.

Definition 11 (Correspondence with respect to runs). Let (P, ι) and
(P ′, ι′) be two Petri graphs for a gts (R, G0). Furthermore let J ∈ RunA(P, ι)
and J ′ ∈ RunA(P ′, ι′) be two abstract runs of these Petri graphs and let H be
the set of real runs considered earlier. We say that J ′ corresponds to J with
respect to H if J ′ corresponds to J and a run J ′′ ∈ H of maximal length weakly
corresponds to a prefix of J ′.

Using this definition we can now state and prove the following propositions.

Proposition 5. The refined over-approximation C′
G, constructed above does not

contain any run J ′ corresponding to the spurious run J of CG with respect to
H.

We can also show that no new spurious runs have appeared, which means
that the new approximation is strictly better than the old one.

Proposition 6. If the refined over-approximation C′
G contains a spurious run

J ′, then it corresponds to some spurious run J in CG.

We remark that the considered abstraction refinement approach can also be
implemented in the case of any number of spurious counterexamples by iter-
atively refining the abstraction. Naturally, due to undecidability and the fact
that gtss are in general Turing-complete, there is no guarantee that it will ever
terminate.



5 Implementation and Experimental Results

In this section we consider examples of gtss and compare the experimental
results obtained by refining the approximation by forbidding folding steps up to
a certain depth (see [5]) and counterexample-guided abstraction refinement as
presented in this paper. It is shown that for practical purposes the new technique
is usually more efficient.

The algorithm was implemented in C++ under Linux and the computer
parameters are 2*Xeon 2.4 GHz, 2 GB RAM.

For case studies we have chosen two distributed systems: the running example
of this paper (firewall example) and a system of public and private servers (for
a description of the second example see [11]). If we compare the results in Ta-
bles 2 and 3 it can be seen that in the case of counterexample-guided abstraction
refinement we have an advantage both in runtime for computing the approxima-
tion and in the size of the over-approximations, which are consequently easier to
analyze. The difference is especially pronounced for versions II, which use larger
start graphs.

The efficiency of the abstraction refinement approach can be explained by the
fact that we forbid to merge only those parts of the unfolding which are respon-
sible for the spurious counterexample. This means that the over-approximation
remains rather compact compared to the depth-based (or k-covering) approach,
where we are not allowed to merge all items having depth smaller than k. Note
that for the firewall example it was not possible to verify the properties using
the depth-based approached.

example k (depth) nodes edges transitions time (sec) verified

Public/private servers I 0 1 9 13 0.05 no

Public/private servers I 1 2 19 34 0.72 yes

Public/private servers II 0 1 10 14 0.05 no

Public/private servers II 1 1 11 16 0.07 no

Public/private servers II 2 3 31 63 7.16 yes

Firewall I 0 2 8 13 0.05 no

Firewall I 1 6 25 50 2.4 no

Firewall I 2 10 51 148 138.18 no

Firewall II 0 2 8 13 0.14 no

Firewall II 1 8 39 82 13.7 no

Firewall II 2 14 79 242 858.4 no

Table 2. Verification results (abstraction refinement by forbidding folding steps up to
a certain depth k, i.e., by computing k-coverings).



example nodes edges transitions time (sec) verified

Public/private servers I 2 16 25 0.67 yes

Public/private servers II 2 17 26 0.68 yes

Firewall I 4 11 17 0.16 yes

Firewall II 4 12 18 0.33 yes

Table 3. Verification results (counterexample-guided abstraction refinement).

6 Conclusion

In this paper we have shown how counterexample-guided abstraction refinement
can be applied to the analysis of dynamically evolving graphical structures in
a fully automatic way. In this case we are not concerned with the abstraction
of data values, but rather with graphs that are abstracted by merging nodes
and edges, using the concept of graph morphisms. Hence, abstraction refine-
ment can in this case be described by exploiting commutativity or rather non-
commutativity of morphisms as described in Section 4. Also, since we are dealing
with the approximation of graph structures rather than data values, no theorem
prover is needed in order to determine the initial abstraction, instead we use
techniques for approximated unfolding developed in [3].

Apart from smaller case studies we have used our approximated unfolding
technique to verify a mutual exclusion protocol [9] and to verify insertion of
elements into red-black trees [2]. We are currently working on an encoding of
simple pointer programs into graph rewriting which will enable us to directly
verify operations on pointer structures.

Research concerned with the verification of dynamically evolving graph struc-
tures which can be used to model distribution and mobility is fairly recent.
There are contributions coming from the area of dataflow analysis such as
shape analysis [16] as well as work directed more specifically towards the anal-
ysis of graph transformation systems [14, 13, 17, 9]. We believe that introducing
counterexample-based abstraction refinement is an important step in order to
make such verification techniques usable in practice. We also think that some of
the techniques presented here can be employed in fairly general settings.

Compared to shape analysis [16, 12] which is also concerned with over-approx-
imation techniques for graphical structures and which represents these structures
as models of a 3-valued logic, we follow a different approach where graphs are
represented directly and graph morphisms are used as a convenient abstraction
mechanism. Furthermore we approximate with Petri nets, which enable us to talk
about multiplicities of edges and can be conveniently analyzed using a variety
of existing Petri net tool.

Acknowledgments: We would like to thank Tobias Heindel, Paolo Baldan and
Andrea Corradini for many interesting discussions on the topics of this paper.
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