
Logical relations for call-by-push-value models,
via internal fibrations in a 2-category

Pedro H. Azevedo de Amorim
Dept. of Computer Science

University of Oxford
Oxford, UK

pedro.azevedodeamorim@cs.ox.ac.uk

Satoshi Kura
Fac. of Ed. and Integrated A&S

Waseda University
Tokyo, Japan

satoshi.kura@aoni.waseda.jp

Philip Saville
Dept. of Informatics
University of Sussex

Brighton, UK
p.saville@sussex.ac.uk

Abstract—We give a denotational account of logical relations
for call-by-push-value (CBPV) in the fibrational style of Hermida,
Jacobs, Katsumata and others. Fibrations—which axiomatise the
usual notion of sets-with-relations—provide a clean framework
for constructing new, logical relations-style, models. Such models
can then be used to study properties such as effect simulation.

Extending this picture to CBPV is challenging: the models
incorporate both adjunctions and enrichment, making the appro-
priate notion of fibration unclear. We handle this using 2-category
theory. We identify an appropriate 2-category, and define CBPV
fibrations to be fibrations internal to this 2-category which strictly
preserve the CBPV semantics.

Next, we develop the theory so it parallels the classical setting.
We give versions of the codomain and subobject fibrations, and
show that new models can be constructed from old ones by
pullback. The resulting framework enables the construction of
new, logical relations-style, models for CBPV.

Finally, we demonstrate the utility of our approach with par-
ticular examples. These include a generalisation of Katsumata’s
JJ-lifting to CBPV models, an effect simulation result, and a
relative full completeness result for CBPV without sum types.

I. INTRODUCTION

This paper is about extending the denotational theory of
logical relations from effectful call-by-value languages to
Levy’s call-by-push-value [1], [2]. Logical relations are a
fundamental tool for proving metatheoretic properties of logics
and programming languages. We begin with a brief overview;
a more detailed account can be found in e.g. [3, §2.2].

In its simplest form, a logical relation R for a typed
programming language consists of a predicate RA Ď JAK
on the (set-theoretic) interpretation of each type A, such that
the predicate at complex types is determined inductively by
a logical relations condition. This condition typically encodes
the elimination rules of the corresponding type. This is partic-
ularly clear in operationally-motivated examples, where JAK
is a set of closed terms of type A. For product types A1 ˆA2,
for example, one typically requires that RA1ˆA2 consists of
those M such that the projections πipMq are elements of
RAi

for i “ 1, 2. The key property of logical relations—
which follows from the logical relations conditions—is that

PAdA was supported by the ERC Consolidator Grant BLAST, and the
ARIA programme on Safeguarded AI. SK was supported by JST ACT-X
Grant Number JPMJAX2104; JSPS Overseas Research Fellowships. PS was
partially supported by the Air Force Office of Scientific Research (award
number FA9550-21-1-0038).

they are determined by their base types: if the interpretation
JcK P JβK of every constant ˛ $ c : β is in the relation—
so that JMK P Rβ—then for every closed term N we have
JNK P RA. This fact, which is often proven by induction on
the terms, is called the basic lemma of logical relations.

Viewed in this way, logical relations are already a powerful
tool. For example, Sieber used a similar construction to show
that Plotkin’s parallel-or function [4] is not definable in the
standard domains model of PCF [5]. Moreover, a host of
sophisticated refinements have extended these ideas to reason
about subtle properties of rich languages (e.g. [6], [7], [8]).

Logical relations also fit into a very general denotational
story, originally due to Ma & Reynolds [9] and Mitchell &
Scedrov [10] and extended by many authors since (e.g. [11],
[3], [12], [13], [14]). The central technical aim of this paper
is to extend this story to call-by-push-value (CBPV) [1], [2].
Achieving this requires two main technical steps. First, defin-
ing an appropriate notion of ‘fibration for logical relations’
(cf. [15]) by restricting to fibrations which strictly preserve
the model structure. Second, showing that we can universally
construct new fibrations for logical relations from old ones.
The first step tells you how to define logical relations; the
second shows how to construct a wide variety of examples.

To explain these steps, and the obstructions to extending
this straightforwardly to CBPV, we begin by outlining the
story in two simpler cases, namely the simply-typed λ-calculus
(STLC) and Moggi’s monadic metalanguage λml [16]. We
assume some familiarity with (Grothendieck) fibrations and
their theory; for a detailed introduction see [13], [3].

A. Logical relations from fibrations for logical relations

First let us sketch how relations models—and, more gen-
erally, fibrations for logical relations—determine logical rela-
tions. The high-level picture is as follows. One starts with a
(category-theoretic) model M and constructs a relations model.
M, together with a functor p :

.
M Ñ M which strictly preserves

the model structure. The objects of M are thought of as objects
paired with relations, and the morphisms as maps preserving
those relations. Following Jacobs [13] and Hermida [3], we
encode this relation-like structure by asking for p to be a
fibration; we then say a fibration for logical relations is a
fibration which strictly preserves the model structure.

Within this framework the logical relations conditions are
embodied by the model structure of

.
M, the relations RA are

replaced by an interpretation JAK
.
M in

.
M, and the basic lemma

may be proven by induction—or, more abstractly, follows
from the initiality of the syntactic model. Indeed, choosing the
relation Rβ for each base type β above amounted to choosing
an interpretation of the base types in a relational model. So

long as the interpretation JβK
.
M of base types and constants

in
.
M lie above their interpretation JβKM in M—in the sense

that JβKM “ ppJβK
.
M

q—then, because p strictly preserves the

model structure, we get JAKM “ ppJAK
.
M

q for every type A.

Example I.1. Consider STLC with a single base type β,
together with its usual interpretation in the cartesian closed
category Set of sets and functions (see e.g. [17]). A natural
choice of relations model is the category Pred, which has
objects pairs pX,Xq consisting of a set X and a predicate
X Ď X , and morphisms pX,Xq Ñ pY, Y q given by functions
f : X Ñ Y preserving the relation: x P X ùñ fpxq P Y .
This category is cartesian closed, and the forgetful functor
p : Pred Ñ Set strictly preserves this structure (e.g. [15]).

Now choose a predicate Rβ Ď JβK on the interpretation
of β. This amounts to choosing pJβK, Rβq P Pred such that
ppJβK, Rβq “ JβK. Since p strictly preserves cartesian closed
structure, ppJMKPred

q “ JMKSet for every term M . Setting
JAKPred

:“ pJAKSet, RAq, the family tRA | A a typeu is
exactly a logical relation in the sense sketched above.

In recent years there has been extensive work extending
fibrational techniques to Moggi-style monadic models of call-
by-value (CBV) languages (e.g. [18], [19], [20], [21], [22],
[23]). The next example is a simple instance of this framework.

Example I.2. We extend Example I.1 from STLC to λml. A
semantic model is now a cartesian closed category equipped
with a strong monad [24] (for an overview, see [16], [25]). We
take the exception monad Ex :“ p´q `E on Set, where E is
a fixed set of exception names. Since Pred has coproducts,
which we denote

řn
i“1pXi, Xiq :“

`
řn

i“1Xi,
Àn

i“1 Xi

˘

, for
any subset E Ď E we get a (strong) exception monad

.
Ex :“

p´q ` pE,Eq which is strictly preserved by p : Pred Ñ

Set. Hence p preserves the interpretation of every monadic
metalanguage term and, as above, we may define a logical
relation: writing JAKPred

:“ pJAK, RAq for all types A, we
now get RTA :“ RA ‘ E.

B. Constructing fibrations for logical relations

We have seen that fibrations for logical relations encode
logical relations. But how do we construct them in practice?
There is a canonical way to do this. Building on Example I.1,
say a fibration p : E Ñ B is an STLC fibration if both E and
B are cartesian closed and p strictly preserves the cartesian
closed structure: this is the appropriate form of fibrations for
logical relations for STLC. One then observes the following.

Lemma I.3 (e.g. [3, §4.3.1]). Let p : E Ñ B be an STLC
fibration and F : C Ñ B be any product-preserving functor.
Then the pullback of p along F is also an STLC fibration.

In various levels of generality, this has been called scon-
ing (e.g. [10], [26], [3]), (Artin) glueing (e.g. [27], [28]), or
change-of-base (e.g. [13], [3]). The objects of the pullback P
are pairs pC P C, X P Eq such that FC “ ppXq. We think of
this as pairing C with a generalised ‘relation’ X . Thus, P is
the model obtained by ‘glueing’ the models C and E.

Example I.4. We define the category of binary predicates
BPred by pullback from the fibration p : Pred Ñ Set, as
shown below. The objects are triples pX,Y,R Ď X ˆ Y q and
morphisms pf, gq : pX,Y,Rq Ñ pX 1, Y 1, R1q are pairs of set-
maps preserving the relation: if px, yq P R then pfx, gyq P R1.

BPred Pred

Set ˆ Set Set

q
{

p

ˆ

Since q is an STLC fibration then—as in Example I.1—we
obtain a notion of (binary) logical relations for STLC.

This approach extends smoothly to the effectful setting. Let
us call a λml-model a pair pC, T q consisting of a cartesian
closed category C and a strong monad T (see e.g. [16],
[25]). To capture the situation of Example I.2, where p strictly
preserves the interpretations of terms, our notion of fibration
for logical relations for λml must also preserve the monadic
structure. Say that a λml-fibration from a λml-model p

.
C,

.
T q

to pC, T q is a fibration p :
.
C Ñ C which strictly preserves

both cartesian closed structure and monadic structure, so that
p ˝

.
T “ T ˝ p and for all X P

.
C we have:

pp
.
µXq “ µpX pp

.
ηXq “ ηpX pp

.
tXq “ tpX

The fibration p in Example I.2 is a λml-fibration. More
generally, say that a λml-model morphism pB, Sq Ñ pC, T q

is a strong monad morphism pF, γq such that F preserves
products. Here γ is a natural transformation FS ñ TF which
is compatible with the units, multiplications, and strengths
(cf. [29, §3.6]). We write λMLfo for the category of λml-
models and their morphisms. The superscript emphasizes that
we only require preservation of first-order structure.

Lemma I.3 now extends to the following observation, which
is essentially due to Katsumata [20], [15] (see also [23]).

Lemma I.5. For any λml-fibration p and λMLfo-morphism
pF, γq, the pullback below exists in λMLfo. Moreover,

.
B is

computed as the pullback in Cat and q is a λml-fibration.

p
.
B,

.
Sq p

.
C,

.
T q

pB, Sq pC, T q

q p

pF,γq

Katsumata’s JJ-lifting [20] is a special case of this result.
For any strong monad T on a cartesian closed category and T -
algebra pR, rq there is a canonical strong monad morphism σ

from T to the continuation monad p´ ñ Rq ñ R with result
type R. Setting pF, γq :“ pid, σq above yields JJ-lifting.

Lemma I.5 is a powerful tool for constructing new semantic
models. For example, it is at the heart of the characterisation of
the definable morphisms in an effectful CBV model in [23]. It
also provides a categorical framework for proving effect simu-
lation results, which show two different ways of modelling the
same effect satisfy a kind of bisimilarity property: see e.g. [30],
[15]. There it is crucial that the pullback exists even though
we only require preservation of first-order structure.

C. This paper: from λml to CBPV

This paper extends the theory outlined above from λml

to CBPV. As just outlined, this requires (1) a definition of
fibration for logical relations, and (2) a theorem showing
how to construct new models from old ones. Accordingly, we
provide a definition of CBPV fibrations (Section IV) and show
how to universally construct new models in a way paralleling
the two lemmas above (Theorem V.1). To validate the theory,
we show how to recover particular cases from the literature
and give a version of JJ-lifting for CBPV (Section V-A).
We also show how to extend Katsumata’s approach to effect
simulation [15] from λml to CBPV (Section VI).

The main technical obstacle is that we cannot simply define
a CBPV fibration to be a functor which is both a fibration and
preserves the CBPV model structure. Because CBPV is a rich
language, a CBPV model consists of an adjunction enriched
in presheaves over a certain category of values. Morphisms of
CBPV models, therefore, make use of enriched functors. So
the usual definition of fibration cannot be applied. Nor is it
straightforward to simply write a definition by hand, because
there are choices in how to define the universal property (see
Remark IV.8). To obtain a principled definition of CBPV
fibration, therefore, we must look elsewhere.

A natural first guess would be to use enriched fibrations.
However, it is not clear this works. First, morphisms of CBPV
models change the category of values, and hence the base
of enrichment, so it is not clear what enriching base one
should choose. Second, the theory of enriched fibrations [31],
[32], [33] is motivated by quite different concerns, namely the
correspondence with the Grothendieck construction.

Our solution is to turn to 2-category theory. 2-categories
axiomatise the structure formed by categories, functors, and
natural transformations. In particular, one can define a notion
of fibration internally to any 2-category. To define CBPV
fibrations, we first construct an appropriate 2-category (Sec-
tion IV-A) and then identify its internal fibrations. A CBPV
fibration is then such a fibration which also preserves the
CBPV model structure (Section IV-D). As we outline in
Section VIII, these steps—and indeed our main theorem—are
particular instances of a general approach that applies likewise
to models of STLC and λml. More generally, we conjecture
that fibrations for logical relations typically arise as internal
fibrations in an appropriate 2-category of models.

A benefit of our 2-categorical approach is that we can
employ the well-developed theory of internal fibrations. This

also provides canonical ways to construct important examples,
such as versions of the codomain and subobject fibrations.
To emphasise the value of this abstraction we also prove a
relative conservativity result using an adaptation of Lafont’s
argument [34], [17] (Section VII). This shows that, in the
language without sum types, function types are a conservative
extension of the first-order language. We view this as laying
the technical groundwork for future proofs of definability and
normalisation in the style of Fiore [35].

Related work: We believe this work represents the first
full denotational account of logical relations for CBPV. Un-
surprisingly, however, logical relations-style arguments have
been studied for CBPV as long as the language has existed.
Indeed, Levy uses a logical relations argument in [1, §3.3] (see
also [2, §2.3]), and the theory has been studied extensively
from an operational perspective. For example, building on the
work of [36] and prior work on higher-order mathematical
operational semantics [37], [38], Goncharov, Tsampas & Hen-
ning [39] give a theory of logical relations for CBPV which
includes sophisticated techniques such as step-indexing.

On the more denotational side, Kammar [40, Chapter 9]
gives a detailed semantic study of logical relations for CBPV,
and hence effect simulation, using algebra models. McDer-
mott [41] presents a denotational perspective for the more
sophisticated setting of graded CBPV. His account is slightly
more general than Kammar’s, in that he only asks for a
certain form of lifting (Definition 4.3.4, ibid.). Motivated by
this account, he also shows how to define logical relations in
the traditional style as relations on sets of terms (Figure 5.5,
ibid.). Azevedo de Amorim [42] presents logical relations for
reasoning about the soundness of his expected cost semantics
by phrasing it as an effect simulation property for a CBPV
metalanguage. These developments are particular examples of
our theory. In particular, our account covers not just algebra
models but the more general adjunction models as well.

Notation. We assume some basic enriched category theory,
as in e.g. [43, Chapter 6]. We write CÑ for the arrow category,
which has objects maps in C and morphisms commuting
squares, and SubC for the full subcategory of monomor-
phisms. In both cases we write cod for the codomain functor
into C. If p : E Ñ B is a fibration, we denote the products and
exponentials in E by ˚ and Ą. We assume throughout that all
fibrations are split. Finally, because we work with enrichment
in presheaf categories, size issues are relevant, especially in
Section VII. Following [44], we handle these by assuming a
hierarchy of universes of sets when required.

II. 2-CATEGORY THEORY

We assume the basics of 2-category theory, in particular
the definition of 2-categories, 2-functors, and transformations.
For a detailed introduction, see e.g. [45], [46]. To fix notation,
recall that a category is cartesian if it has finite products, and
a cartesian category is distributive if it has finite coproducts
and the canonical morphism rX ˆ inj1, X ˆ inj2s : pX ˆ

Bq ` pX ˆ Cq Ñ X ˆ pB ` Cq is invertible. A bicartesian

closed category (or biCCC) is a cartesian closed category with
finite coproducts. Cat is then the 2-category of categories.
CartCat and DistCat are the 2-categories of cartesian
categories and distributive categories, respectively; the 1-cells
are functors preserving the structure up to isomorphism. We
call such functors cartesian and bicartesian, respectively. The
2-cells are all natural transformations. We write CartCatst
and DistCatst for the sub-2-categories with the same objects
and functors strictly preserving the structure.

The 2-categories of 2-functors C Ñ D with strict (resp.
pseudo / lax / oplax) natural transformations and modifications
are denoted rC,Dsst, rC,Dsps, rC,Dslx and rC,Dsoplx, respec-
tively. Lax natural transformations are directed as follows:

FC FC 1

GC GC 1

Ff

σC

σf
σC1

Gf

A. Adjunctions and their morphisms
CBPV models are defined using adjunctions internal to a

2-category. We recall the definition.

Definition II.1. An adjunction in a 2-category C consists of
1-cells f : A Ô B : u together with 2-cells η : idA ñ u ˝ f
and ε : f ˝ u ñ idB satisfying the usual triangle laws.

An adjunction in Cat is an adjunction in the usual sense.
We shall also need morphisms between adjunctions. For this
we shall see adjunctions as certain 2-functors and then define
maps of adjunctions and their 2-cells as the corresponding
transformations and modifications (cf. [47], [48], [49]).

Let Adj be the 2-category freely generated by the data of an
adjunction, namely two objects ‚ and ˚, 1-cells f : ‚ Ô ˚ : u,
and 2-cells η : id‚ ñ u ˝ f and ε : f ˝ u ñ id˚ satisfying
the triangle laws. A 2-functor Adj Ñ C is then equivalently
an adjunction in C. It follows immediately that any 2-functor
preserves adjunctions.

Definition II.2. We write AdjpCqw for the 2-functor category
rAdj, Csw , where w P tst,ps, lx, oplxu. We call the 1-cells
strict / pseudo / lax / oplax adjunction morphisms and the
2-cells adjunction modifications.

A lax adjunction map pℓ : X Ô Y : rq Ñ pf : A Ô B : uq

consists of 1-cells m : X Ñ A and n : Y Ñ B with 2-cells
as shown below. The map is strict if α and β are identities.

X Y Y X

A B B A

ℓ

m α n

r

n
β

m

f u

The 2-cells α and β must be compatible with the units and
counits, in the sense that the following two diagrams commute:

nℓr n

fmr fun

nεℓ,r

αr

fβ

εf,un

ℓ mrℓ

ufℓ unℓ

ℓηℓ,r

ηf,uℓ βℓ

nα

(1)

B. Fibrations
We shall make extensive use of fibrations internal to a

2-category. These have been studied in great detail (e.g. [50],
[51]); for a readable introduction to the theory, see [52].

Definition II.3. Let C be a 2-category. A fibration in C is a
1-cell p : E Ñ B such that

1) For every X P C, the functor p ˝ p´q : CpX,Eq Ñ

CpX,Bq is a fibration in Cat, and
2) For every h : Y Ñ X the following defines a morphism

of fibrations, in the sense that cartesian liftings are
preserved (see e.g. [52, Definition 3.1.1]):

CpX,Eq CpY,Eq

CpX,Bq CpY,Bq

p´q˝h

p˝p´q p˝p´q

p´q˝h

An opfibration is (somewhat unfortunately) defined to be a
fibration in Cco. A bifibration is a 1-cell that is both a fibration
and an opfibration.

Fibrations in a 2-category inherit many of the properties
of fibrations in Cat. For example, it is immediate that the
identity is always a fibration and that fibrations are closed
under composition. An (op)fibration in Cat is exactly an
(op)fibration in the usual sense (see [53, Proposition 3.6]).

The next result shows that fibrations in the 2-category of
algebras for a 2-monad are exactly fibrations in the base which
preserve the structure. For an introduction to the powerful
theory of algebraic structure on categories via 2-monads,
see [54]. For the definition of algebras, see e.g. [55], [56].

Proposition II.4. 1) If T is a 2-monad on a 2-category C,
and pf, fq is a pseudomorphism of T -pseudoalgebras
such that f is a fibration in C, then pf, fq is a fibration
in T -Alg.

2) Right adjoint 2-functors preserve fibrations.
Hence, pf, fq is a fibration in T -Alg if and only if its

underlying map is a fibration.

This theorem covers CartCat,DistCat and similar cases.
To characterise fibrations in our particular example, we will
need some simple 2-categorical limits.

Definition II.5 (For details, see e.g. [57]). Let pA
f

ÝÑ C
g

ÐÝ Bq

be a cospan in a 2-category C. The comma object f Ó g is the
universal object with a 2-cell as shown below.

f Ó g B

A C

q

p g

f

λ

Comma objects in Cat are just comma categories. The pull-
back of g along f is defined analogously, except the square
must be filled by an identity.

It follows from the corresponding fact in Cat that fibrations
in any 2-category are closed under pullbacks.

Example II.6. The comma object pF ÓGq in DistCat is the
usual comma category. The product pA,B, jq ˆ pA1, B1, j1q is

F pA ˆ A1q
–

ÝÑ FA ˆ FA1 jˆj1

ÝÝÝÑ GB ˆ GB1 –
ÝÑ GpB ˆ B1q

and coproducts are given similarly.

Example II.7. In any 2-category with comma objects the
arrow object CÑ on C is defined to be the comma object
pidC Ó idCq. In Cat this is exactly the arrow category CÑ. The
definition of comma objects also gives a map cod : CÑ Ñ C;
by [57, Theorem 2.11] this is always an opfibration.

Example II.8. CartCat and DistCat do not have all
pullbacks. Indeed, the underlying 1-categories have products
but do not have all equalizers, so cannot have pullbacks; hence
the 2-categories cannot have them either. For example, the
two maps t˚u Ñ p0

–
ÝÑ 1q from the terminal category to

the walking isomorphism do not have an equalizer in either
category. However, if p is a fibration which strictly preserves
products then the pullback along any map exists in CartCat
(cf. [15, Proposition 6]). Similar remarks apply to DistCat
when p is also a bifibration and strictly preserves coproducts.

III. DENOTATIONAL MODELS OF CBPV
We refer to Levy’s extensive works [2], [58], [59] for

the syntax and semantics of CBPV. For definiteness, we use
‘book CBPV’, namely the basic language and complex values
described in Chapters 2 & 3 of [2]. In particular, we only ask
for finite sum types and finite product types.

There are several equivalent ways to phrase the data of
a CBPV model (see [1, Chapter 11] and [1, §15.1]), so we
make our choice explicit. The basic data is a locally indexed
adjunction. We refer to [2, §9.3] for the details on locally
C-indexed categories, locally C-indexed functors and locally
C-indexed transformations for a cartesian category pC,ˆ, 1q,
and write C-LInd for the 2-category these form. C-LInd is
equivalently the 2-category pC-Cat of categories enriched in
the presheaf category ppC,ˆ, 1q (see e.g. [60, §1.2]).

We denote locally C-indexed categories in calligraphic font,
as C,D, Maps over c P C are denoted A ÝÑ

c
B and the

category of maps over c by Cc. The reindexing functor Cd Ñ

Cc induced by ρ : c Ñ d is denoted, in a slight departure from
Levy’s notation, by p´q Ÿ ρ.

Example III.1. For a biCCC C the locally C-indexed
category self C has objects as in C and hom-presheaves
pself CqCpA,Bq :“ CpC ˆ A,Bq.

Definition III.2. A locally C-indexed adjunction is an adjunc-
tion in C-LInd. This is a pair of locally C-indexed functors
F : C Ô D : U with locally C-indexed transformations
η : idC ñ UF and ε : idD ñ FU satisfying the usual triangle
equalities as composites in D1.

A CBPV model is a locally C-indexed adjunction which
also models the products, sums, and function types.

Definition III.3 (e.g. [58, §5]). Let C be a distributive
category and C be a locally C-indexed category.

1) C has (finite) products if for every finite family of objects
B1, . . . , Bn there exists an object

śn
i“1 Bi P C and

arrows πi :
śn

i“1 Bi ÝÑ
1

Bi inducing an isomorphism

CcpA,
śn

i“1 Biq –
śn

i“1 CcpA,Biq.
2) C has (C-indexed) powers if for every c P C and B P C

there exists an object c ñ B P C and an arrow eval :
pc ñ Bq ÝÑ

c
B inducing an isomorphism CbˆcpA,Bq –

CbpA, c ñ Bq.
3) C’s coproducts are (finitely) distributive in C if for all

a, b1, . . . , bn P C and A,B P C the following is invertible:

Caˆ
řn

i“1 bipA,Bq Ñ
śn

i“1 CaˆbipA,Bq

f ÞÑ
`

f Ÿ pida ˆ injiq
˘

i“1,...,n

A CBPV model is now defined by taking the appropriate
universally-defined structure for each CBPV construct.

Definition III.4 (e.g. [58, §5]). A CBPV model consists of
a distributive category C and a locally C-indexed adjunction
F : self C Ô C : U such that C has products and powers, and
the coproducts in C are distributive in C.

Value terms Γ $v V : A are interpreted as maps in C, i.e.
as elements of CpJΓK, JAKq. Computation terms Γ $c M : B
are interpreted in CpJΓK, U

q
B

y
q. Stacks Γ | B $k K : C are

interpreted in CJΓKp
q
B

y
,
q
C

y
q.

Remark III.5. Because we interpret computations in
CpJΓK, U

q
B

y
q rather than the isomorphic CJΓKpF1,

q
B

y
q,

the interpretation of force is invisible: it is the identity.
Operationally, this reflects the fact that forcing a term does
not change its behaviour.

For the sake of exposition, in this paper we will focus on
relatively simple classes of CBPV models. We refer to [58,
§4.4] and [2] for the details of these and many other models.

Example III.6 ([58, §7]). The syntax of CBPV forms a model.
For any signature S of value base types, computation base
types, and operations one may freely generate a theory and its
classifying syntactic model SynS .

Example III.7 (Algebra models). Let C be a biCCC and
T a strong monad on C. The category CT of T -algebras
becomes a locally C-indexed category EMpT q with maps
pA, aq ÝÑ

c
pB, bq the right-linear morphisms c ˆ A Ñ B.

The free–forgetful adjunction then becomes a CBPV model
FT : self C Ô EMpT q : UT .

Example III.8 (Storage). Let pC,ˆ, 1,ñ, 0,`q be a biCCC
and S P C be an object of “states”. The adjunction p´qˆS %

S ñ p´q defines a CBPV model self C Ô self C.

IV. CBPV FIBRATIONS

In this section we introduce CBPV fibrations. Our approach
closely follows the pattern for monadic models of CBV in the
style of Moggi [61], [16] pioneered by Katsumata [20], [14],
[15] and others (e.g. [19], [18], [21], [23]).

We begin by defining a 2-category of locally indexed
categories LInd (Section IV-A). This will play the role for

CBPV that CartCat plays for STLC: it collects together the
models of the basic judgements for contexts, so we can isolate
models of the full language as a sub-2-category. With this in
mind, we shall define locally indexed fibrations to be fibrations
internal to LInd (Section IV-B), and define a CBPV fibration
to be a morphism of locally indexed adjunctions which strictly
preserves the model structure and is componentwise a locally
indexed fibration (Section IV-D). Along the way we shall
also see that the general theory leads directly to a variety
of examples, in the form of locally indexed versions of the
codomain and subobject fibrations.

A. The 2-category LInd

We begin by defining the 2-category of locally indexed cat-
egories. The objects are pairs pC, Cq consisting of a cartesian
category C and a locally C-indexed category C.

We want morphisms between CBPV models which may
have different interpretations of values, so our 1-cells can’t just
be morphisms in C-LInd for a fixed C. Instead, observe that
any cartesian functor f : C Ñ D induces a product-preserving
functor f˚ :“ p´q ˝ f : pD Ñ pC and hence, by change of base
(e.g. [43, §6.4]), a 2-functor D-LInd Ñ C-LInd we also
denote by f˚. Explicitly, if D P D-LInd then f˚D has the
same objects but hom-presheaves defined by pf˚Dqc :“ Dfc.
Composition and identities are as in D, and reindexing along
ρ in f˚D is the reindexing along fpρq in D.

We may now define a locally indexed functor pf, F q :
pC, Cq Ñ pD,Dq to be a cartesian functor f : C Ñ D together
with a locally C-indexed functor F : C Ñ f˚D. This smoothly
handles reindexing: a map k P CcpC,C 1q is sent to a map
Fk P pf˚DqcpFC,FC 1q “ DfcpFC,FC 1q.

The 2-cells are defined similarly. Both change-of-base and
the passage from functors f between categories to functors
f˚ between presheaf categories are 2-functorial [62], [63] so
every natural transformation γ : f ñ g : C Ñ D defines
a strict natural transformation γ˚ : g˚ ñ f˚ : D-LInd Ñ

C-LInd. The component pγ˚qC at C P D-LInd is the identity-
on-objects C-LInd-functor which reindexes along γ:

pγ˚qCpcq :“ pg˚Cqc “ Cgc
p´q Ÿ γc

ÝÝÝÝÝÑ“ Cfc “ pf˚Cqc

We define a locally indexed 2-cell pf, F q ñ pg,Gq : pC, Cq Ñ

pD,Dq to be a natural transformation γ : f ñ g together
with a locally C-indexed transformation γ : F ñ pα˚qD ˝ G.
Concretely, γ is a family

`

γC : FC ÝÑ
1

GC
˘

CPC such that for
any k : C ÝÑ

c
C 1 in C the following diagram commutes:

FC FC 1

GC GC 1

F pkq

γC Ÿ !fc γC1 Ÿ !fc

Gpkq Ÿ γc

fpcq
(2)

Notation IV.1. We henceforth adopt the notation used in (2):
when writing a diagram in a locally indexed category, we
indicate the index by writing it in the centre of the shape.

Definition IV.2. We write LInd for the 2-category of locally
indexed categories, locally indexed functors, and locally in-
dexed transformations.

Remark IV.3. This definition is canonical: abstractly, LInd is
the 2-Grothendieck construction [64], [65] of the 2-functor K :
CartCatcoop Ñ 2-CAT which acts on objects by KpCq :“
C-LInd and on 1-cells and 2-cells by change of base.

B. Locally indexed fibrations

We now characterise the fibrations internal to LInd. We do
this using [57, Theorem 2.7], so we need to construct comma
objects. The following two constructions follow directly from
Remark IV.3 and the fact that, as in the 1-categorical setting,
the 2-Grothendieck construction for K : Ccoop Ñ 2-CAT has
those limits which exist in C and each KpAq and are preserved
by every Kpfq (cf. [53, §4]).

Construction IV.4. The comma object
`

f Ó g, F ÓG
˘

of a

cospan pA,Aq
pf,F q

ÝÝÝÑ pC, Cq
pg,Gq

ÐÝÝÝ pB,Bq in LInd is
defined as follows. The indexing category is the comma
object in CartCat (Example II.6). The objects in pF ÓGq

are triples
`

A P A, B P B, k : FA ÝÑ
1

GB
˘

, while maps
pA,B, kq ÝÑ

j
pA1, B1, k1q over j : fa Ñ gb are pairs

`

u : A ÝÑ
a

A1, v : B ÝÑ
b

B1
˘

such that following commutes:

FA FA1

GB GB1

F puq

k Ÿ !fa k1
Ÿ !fa

Gpvq Ÿ j

fpaq

Composition, identities, and reindexing are componentwise.
Similarly, the pullback of the cospan above exists in LInd

when the pullback AˆCB exists in CartCat, and is given by
restricting F ÓG to the pairs pA,Bq such that F pAq “ GpBq.

Construction IV.5. The product pC, Cq ˆ pD,Dq in LInd
is the pC ˆ Dq-indexed category C ˆ D with objects pairs
pC P C, D P Dq and hom-presheaves pC ˆDqpc,dq :“ Cc ˆDd.

Now, working through the condition in [57, Theorem 2.7]
yields the following. To simplify notation we elide the iso
pp1q – 1 given by the fact p is cartesian.

Proposition IV.6. A locally indexed functor pp, P q : pE, Eq Ñ

pB,Bq is a fibration in LInd if and only if p is a fibration and
P satisfies the following lifting property for any k : A ÝÑ

1
PY :

P pXq

A P pY q

u

P pvq

k Ÿ !

ppeq
ùñ

X

.
A Y

.
u

v

.
k Ÿ !

e

Thus, there exists
.
A P E and

.
k :

.
A ÝÑ

1
Y in E such that, for

any triangle in p˚B as on the left above, there exists a unique
lift .

u making the triangle on the right commute in E .

Definition IV.7. A locally indexed fibration / opfibration /
bifibration is a fibration / opfibration / bifibration in LInd.

Remark IV.8. A priori there are many possible choices
for defining locally indexed fibrations. If one were giving a
definition by hand, one might be tempted allow maps over any
index to have a cartesian lift, or specify that the unique arrow .

u
must be over 1. Because it is derived from the mathematical
theory, our definition is canonical and immediately satisfies
useful properties like closure under pullback.

We now use our mathematical framework to define locally
indexed versions of the core building blocks for constructing
new models, namely the codomain and subobject fibrations.
The construction of the codomain opfibration follows directly
from Construction IV.4 and Example II.7.

Construction IV.9. The locally indexed arrow category of
pC, Cq P LInd is the CÑ-indexed category with objects
arrows A ÝÑ

1
B in C1. There is a canonical locally indexed

codomain opfibration pcod, codq : pCÑ, CÑq Ñ pC, Cq.

This leads naturally to the subobject fibration.

Definition IV.10. We write SubpCq for the SubpCq-indexed
category obtained by restricting the objects of CÑ to arrows
A ÝÑ

1
B that are monic in C1. Since SubpCq is closed under

products, reindexing is as in CÑ.

In Cat, the codomain functor is a fibration if and only if
the base category C has pullbacks; then cod : SubC Ñ C is
also a fibration. A corresponding fact is true here.

Definition IV.11. A locally indexed category pC, Cq has
locally indexed pullbacks if C1 has pullbacks, and these are
preserved by p´q Ÿ !c for every c P C.

Lemma IV.12. Let pC, Cq be a locally indexed category.
The locally indexed codomain functor is a locally indexed
bifibration if and only if C has locally indexed pullbacks.
In this situation, the fibration structure restricts to make
pSubC,Sub Cq Ñ pC, Cq a fibration as well.

Example IV.13. Suppose C is finitely complete. Then self C
has locally indexed pullbacks. Moreover, for any strong monad
T on C the locally C-indexed category EMpT q of T -algebras
also has locally indexed pullbacks.

C. The 2-category of CBPV models

With locally indexed fibrations in hand, it remains to define
a 2-category CBPVfo

lx of CBPV models. In this section we
isolate CBPVfo

lx as a sub-2-category of AdjpLIndqlx. In
Section IV-D we will combine this with Definition IV.7 to
define CBPV fibrations. We begin by defining preservation-
of-structure.

Definition IV.14. A locally C-indexed functor F : C Ñ D
preserves finite products if for any n P N the canonical map
xFπiyi : F p

śn
i“1Ciq ÝÑ

1

śn
i“1 F pCiq is an isomorphism

in D1. It preserves products strictly if all the structure is

preserved on the nose, so that F p
śn

i“1 Ciq “
śn

i“1 FCi,
Fπi “ πi, and F pxfiyiq “ xFfiyi. The definition of (strict)
preservation of powers is likewise.

The 1-cells in CBPVfo
lx are the ones we shall pull back

along in our lifting theorem (Theorem V.1), so we will only
ask for preservation of first-order structure. This matches the
situation for CBV, where one only needs preservation of
products to construct new models from old (recall Lemma I.5).

We have one more constraint to impose. A CBPV model
is special kind of object in AdjpLIndqlx: the domain of the
left adjoint is of the form self C and the adjunction is over a
single base. We therefore want 1-cells in CBPVfo

lx to be maps
in AdjpLIndqlx whose first component is determined by their
action on the values. For this we use the following lemma.

Lemma IV.15. The map C ÞÑ self C extends to 2-functors
CartCat Ñ LInd and DistCat Ñ LInd which preserve
products, comma objects, pullbacks, and fibrations whose
underlying functor is strict cartesian (resp. cartesian and
cocartesian). We denote these both by self.

We now give the definition for w P tlx, oplx,psu. The
objects of CBPVfo

w are CBPV models pC, C, F, Uq. A 1-cell
pC, C, F C , UCq Ñ pD,D, FD, UDq consists of

‚ A bicartesian functor h : C Ñ D,
‚ A locally C-indexed functor H : C Ñ h˚D, and
‚ Locally C-indexed transformations α and β,

such that H preserves products and
`

self h,H, pid,αq, pid,βq
˘

is a 1-cell in AdjpLIndqw . A 2-cell ph,H, α, βq ñ

ph1, H 1, α1, β1q is a pair
`

γ : h ñ h1, γ : H ñ H 1
˘

such
that pself γ, γq is a 2-cell in AdjpLIndqw .

In the lax case this means that 1-cells look like

self C C self C

self D D self D

pidC,F
C

q

self h

pidC,U
C

q

ph,Hq self h

pidD,F
D

q pidD,U
D

q

pid,αq pid,βq (3)

so for each c P C and C P C we have arrows

αc : pHF Cqc ÝÑ
1

pFDhqc βC : phUCqC ÝÑ
1

pUDHqC

natural in the sense of (2) and satisfying the compatibility
axioms (1) as composites over 1.

D. Defining CBPV fibrations

We can finally define CBPV fibrations as locally indexed
fibrations which strictly preserve structure. Note that we
require p to be a bifibration because of the sum types; this is
needed so that pullbacks along p exist in DistCat. Without
sum types, it would be sufficient to ask for just a fibration.

Definition IV.16. A CBPVfo
lx 1-cell ph,H, α, βq is strict if

1) h strictly preserves bicartesian structure,
2) H strictly preserves products and powers, and
3) ph,Hq is a 1-cell in AdjpLIndqst, i.e. α and β are both

the identity.

This is a CBPV (op)fibration if ph,Hq is a locally indexed
(op)fibration and h is a bifibration.

Example IV.17 (Recall Example III.6). Levy’s proof of [58,
Proposition 7.3] essentially shows that for any CBPV model
pC, C, F, Uq with an interpretation of the base types and
operations in a signature S there exists a strict CBPVfo

lx 1-
cell SynS Ñ pC, C, F, Uq extending the interpretation of S.
Moreover, this is unique up to isomorphism.

By Lemma IV.15, a CBPV fibration is a 1-cell in
rAdj,LIndsst which is componentwise a fibration.

Turning now to examples, one simple class of CBPV fibra-
tions comes via monad liftings. A particular instance of the
following result has been studied by Kammar [40, §9.2], who
constructs CBPV fibrations over Set using the free lifting.

Lemma IV.18. Let p : p
.
C,

.
T q Ñ pC, T q be a λml-fibration.

Then p extends to a fibration rp :
.
C

.
T Ñ CT , and this makes

pp, rpq : EMp
.
T q Ñ EMpT q a CBPV fibration.

A further set of examples corresponds to the classical fact
that, if C is a cartesian closed category with pullbacks, then
the codomain fibration over C is an STLC fibration. Our
corresponding result is the following.

Lemma IV.19. Let C be a cartesian category with pullbacks
and C be a locally C-indexed category with locally indexed
pullbacks, products, and powers. Then CÑ and Sub C both
have products and powers, and the codomain locally indexed
functors strictly preserve this structure.

Now, the p´qÑ operation is 2-functorial so from a CBPV
model pC, C, F, Uq we obtain a lifted locally CÑ-indexed
adjunction pCÑ, CÑ, FÑ, UÑq. Combining the preceding
lemma with the observation that pself CqÑ – self pCÑq in
CÑ-LInd, we obtain the following.

Proposition IV.20. Let pC, C, F, Uq be a CBPV model such
that C has pullbacks and C has locally indexed pullbacks.
Then the codomain functor pcod, codq : pCÑ, CÑq Ñ pC, Cq

is a CBPV fibration.

The only obstacle to applying a similar argument to the
subobject fibration is that the left adjoint F may not preserve
monics, and therefore may not restrict to a locally indexed
functor self pSubCq Ñ Sub C (right adjoints always preserve
monics). We expect this can be rectified by taking an appropri-
ate factorisation system, in the style of [18], [66], [19], [21].
For reasons of space, however, we content ourselves to the
case when F preserves monics. This turns out to be common:
for example, it applies to the storage model of Example III.8),
the erratic choice and continuation models of [58, §5.7], and
any algebra model over Set (see [67, p. 89-90]).

Corollary IV.21. In the situation of Proposition IV.20, if F1

also preserves monics then the codomain functor pcod, codq :
pSubC,Sub Cq Ñ pC, Cq is a CBPV fibration.

Example IV.22. Consider the model of Example III.8 in
the case where C has pullbacks. Since both the left and

right adjoints preserve monics, this lifts to a storage model
p´q˚S % S Ą p´q on SubC for any subobject S ↣ S. Then
the subobject locally indexed fibration is a CBPV fibration;
Corollary IV.21 is the case where S :“ pS

id
ÝÑ Sq.

V. A LIFTING THEOREM FOR CBPV MODELS

As we saw in Section I-B, for applications we want a
universal way to construct new fibrations for logical relations
from old ones. In this section we present our central technical
result, which shows this is possible for CBPV in a manner
paralleling that for STLC and λml (cf. Lemmas I.3 and I.5).

Theorem V.1. Let pp, P q be a CBPV fibration and ph,H, α, βq

be a CBPVfo
lx 1-cell. Then the pullback shown below exists

in CBPVfo
lx and pq,Qq is a CBPV fibration.

p
.
C,

.
C, F

.
C , U

.
Cq p

.
D,

.
D, F

.
D, U

.
Dq

pC, C, F C , UCq pD,D, FD, UDq

p
.
h,

.
H,

.
α,

.
βq

pq,Qq pp,P q

ph,H,α,βq

(4)

This theorem is an instance of a general fact about lax
transformations: see Section VIII. Here we sketch the concrete
construction. First, q and Q are defined as pullbacks in
DistCat and LInd respectively; these exist because p is strict
and a bifibration (Example II.8 and Construction IV.9).

.
C

.
D

C D

.
h

q
{

p

h

p
.
C,

.
Cq p

.
D,

.
Dq

pC, Cq pD,Dq

p
.
h,

.
Hq

pq,Qq
{

pp,P q

ph,Hq

(5)

An argument similar to that for cartesian closed structure
(e.g. [15, Proposition 6]) shows p

.
C,

.
Cq has products and

powers. We define the adjunction pself
.
C Ô

.
Cq and the 2-cells.

α and
.
β in (4) using the universal property of the fibrations.

Observe first that the following diagram commutes because
self is a 2-functor and pp, P q is a strict adjunction morphism:

self
.
C self

.
D p

.
D,

.
Dq

self C self D pD,Dq

self
.
h

self q

F
.
D

self p pp,P q

self h FD

For any pc,
.
dq P self

.
C we may therefore apply the universal

property of the fibration pp, P q to α
qpc,

.
dq

“ αc: For this, fix

any object pC,
.
Dq P

.
C (recall Construction IV.9) and apply the

universal property of the fibration to the arrow α
qpc,

.
dq

“ αc:

.
αcpF

.
D .
hcq pF

.
D .
hqc

.
D

pHF Cqc pFDhqc “ pPF
.
D .
hqc D

.
αc

1

pp,P q

αc

1

This definition extends to a locally indexed functor K :
self

.
C Ñ p

.
D,Dq, so we may use the universal property of

the pullback in (5) to define F
.
Cpc,

.
dq as the unique locally

indexed functor filling the next diagram:

self
.
C

self C p
.
C,

.
Cq p

.
D,

.
Dq

pC, Cq pD,Dq

self q F
.
C

K

FC

p
.
h,

.
Hq

pq,Qq
{

pp,P q

ph,Hq

The right adjoint U
.
C and 2-cell

.
β are constructed similarly.

Lifting via opfibrations. As a consequence of our general
theory (see Section VIII), Theorem V.1 has a dual, as follows.

Corollary V.2. Let pp, P q be a CBPV opfibration and
ph,H, α, βq be a CBPVfo

oplx 1-cell. Then the pullback (4)
exists in CBPVfo

oplx and pq,Qq is a CBPV opfibration.

Concretely the construction is similar to that outlined above,
except .

α and
.
β are defined using opfibration structure.

Remark V.3. Corollary V.2 is useful because in general a
monad morphism σ : S ñ T (see e.g. [68]) induces an oplax
adjunction morphism from the Eilenberg–Moore adjunction
of T to the Eilenberg–Moore adjunction of S [47]. In such
situations Corollary V.2 applies even though Theorem V.1 does
not. For a concrete example, see Example VI.1.

A. Examples

In this section we sketch some simple applications of our
theorem. We leave a detailed exploration of the models for
elsewhere: the aim is simply to show how our theorem yields a
framework for building CBPV models, just as previous results
do this for STLC and CBV models (cf. e.g. [10], [3], [21]).

Example V.4. We start with the storage model as in Exam-
ple III.8. There is a lax adjunction morphism from the storage
model p´q ˆ S % S ñ p´q on C to the storage model
p´q ˆ Cp1, Sq % Cp1, Sq ñ p´q on Set as follows. The
functors h and H are both given by Cp1,´q. The 2-cell α
is the isomorphism Cp1,´ ˆ Sq – Cp1,´q ˆ Cp1, Sq, and
βA : Cp1, S ñ Aq Ñ

`

Cp1, Sq ñ Cp1, Aq
˘

sends t to
λu P Cp1, Sq . eval ˝ xt, uy. The model in Set is easily lifted
to Pred: we take any subset S Ď Cp1, Sq and consider the
corresponding storage model on Pred (Example IV.22). Ap-
plying our construction, we get a CBPV model indexed by the
category

.
C with objects pairs

`

C P C, R Ď Cp1, Xq
˘

. Since
self commutes with pullbacks (Lemma IV.15), the locally
indexed category must also be self

.
C. The lifted left and right

adjoints
.
F and

.
U are defined by

.
F pC,Rq “ pC ˆ S,R ˆ Sq

and
.
F pC,Rq “ pS ñ C, S Ą Rq

Next we use the universal property of the syntactic model
(Example IV.17) to recover a definition of CBPV logical
relations in the syntactic style. More precisely, from purely
semantic reasoning we recover a version of the logical rela-
tions used by McDermott [41, p. 114].

Example V.5. Let S be a single-sorted signature. Then there is
an associated free monad T on Set which supports these oper-
ations, and the algebra model FT : self Set Ô EMpT q : UT

is a sound model of CBPV with basic operations from S.
Explicitly, T sends a set X to the set of terms generated using
the basic operations with variables in X (cf. [58, Remark 7.2]).

Now define an interpretation of base types and operations in
pSet,SetT , FT , UT q by setting the interpretation of a value
type A to be the set of closed value terms of type A, and the
interpretation of a computation type A to be the set of closed
computations of type A. By the free property of SynS , this
extends to a strict map SynS Ñ

`

Set, EMpT q, FT , UT
˘

.
Finally, let

.
T be a lifting of T to Pred; for definiteness,

we choose the free lifting [40], [21]. Now apply Lemma IV.18
and Theorem V.1 to obtain a model p

.
C,

.
C,

.
F,

.
Uq as shown:

p
.
C,

.
C,

.
F,

.
Uq

`

self Pred Ô EMp
.
T q

˘

SynpSq
`

self Set Ô EMpT q
˘

pcod,codq

D!

Objects in
.
C consist of a value type A and a set VA of closed

value terms of type A. Objects in
.
C consist of a computation

type A and a set of CA of closed terms of type A, equipped
with

.
T -algebra structure. The action of the adjoints

.
F and

.
U

in the lifted model are as follows:
.
F pA, VAq “

`

FA,F
.
TVA

˘ .
UpB,CAq “

`

UB,U
.
TCA

˘

Since
.
T is the free lifting,

.
F pA, VAq consists of the type

FA and the smallest relation containing VA that is closed
under return and the operations in S. On the other hand,.
UpB,CAq consists of the type UB and the set CA with its
algebra structure forgotten; this reflects the fact that force is
invisible (recall Remark III.5). The action on products, sums,
and function types is exactly as given by McDermott.

Our final example is a version of Katsumata’s JJ-
lifting [20], adapted for CBPV models. Katsumata’s construc-
tion relies on the fact that for any strong monad T and
any T -algebra there is a canonical strong monad morphism
into the corresponding continuation monad. Because monad
morphisms induce adjunction morphisms contravariantly (Re-
mark V.3), this approach is not immediately available for
adjunction models. Our strategy, therefore, is to first pass from
our starting CBPV model to its corresponding algebra model,
and then ask for a lifting of that model via Lemma IV.18.

In the next example we focus on JJ-lifting but the con-
struction is parametric in this choice: the argument works
verbatim for any other lifting (e.g. the free lifting [40], [21],
codensity lifting [22] or the monadic lifting of [18], [19]).

Construction V.6 (JJ-lifting for CBPV). Let pC, C, F, Uq be
a CBPV model in which C is also cartesian closed. Write T for
the induced (strong) monad UF on C. By [2, §11.6.2] there
is a strict map into the algebra model

`

C, EMpT q, FT , UT
˘

for T . Now fix an STLC fibration p : E Ñ C and an object

R P E as a lifting parameter. Finally, let
.
T be the JJ-lifting

of T with this parameter. By Lemma IV.18, we obtain a CBPV
fibration

`

E, EMp
.
T q, F

.
T , U

.
T
˘

Ñ
`

C, EMpT q, FT , UT
˘

and
hence, by Theorem V.1, a lifted model as shown below:

p
.
C,

.
C,

.
F,

.
Uq

`

E, EMp
.
T q, F

.
T , U

.
T
˘

pC, C, F, Uq
`

C, EMpT q, FT , UT
˘

pp,p̃q
(6)

We call this the JJ-lifting of the starting model.

Example V.7. We construct the JJ-lifting of Levy’s model
of erratic choice [2, §5.5]. Thus, in our starting model the
category of values is Set and the adjunction is the Kleisli
resolution J : Set Ô Rel : K of the powerset monad P . To
lift P to Pred, we take as our lifting parameter the P-algebra
`

pt0, 1u, t1uq,T
˘

where pt0, 1u, t1u Ď t0, 1uq is an object of
Pred and the arrow T : Ppt0, 1uq Ñ t0, 1u maps p Ď t0, 1u

to 1 if 1 P p and 0 otherwise. Applying JJ-lifting, we obtain a
strong monad

.
P on Pred. This acts as

.
PpA,Rq :“ pPA,

.
PRq

where p P
.
PR if and only if for all f : X Ñ 2 satisfying

@x P R . fpxq “ 1 we have
ř

xPX fpxq ppxq “ 1. A direct
calculation then shows that p P

.
PR if and only if every x P p

is in R. Applying our JJ-lifting construction (6), the resulting
model is the Kleisli adjunction Pred Ô Pred .

P for
.
P .

VI. EFFECT SIMULATION

The effect simulation problem [15] is about relating different
interpretations of the same computational effect. For example,
one can give semantics to non-deterministic computation using
either the finite powerset monad or the list monad. The effect
simulation problem asks if these semantics are “the same”,
which one could state formally as asking if the sets of possible
elements denoted by the list and powerset semantics are the
same. Katsumata has studied this problem in detail for Moggi’s
computational λ-calculus [15]. As we shall see, the theory
we have developed thus far means we can readily extend
Katsumata’s approach from CBV to CBPV.

The key idea, which has deep roots in the history of logical
relations (e.g. [30, §2.2]), is that effect simulation is about con-
structing a non-standard model over the product of the models
we are trying to relate. Products of CBPV models are given
componentwise: for models

␣

pCi, Ci, Fi, Uiq
(

i“1,...,n
we get

a product model
`
śn

i“1Ci,
śn

i“1Ci,
śn

i“1Fi,
śn

i“1Ui

˘

. This
is because LInd has products and the 2-functor

śn
i“1p´q

lifts to a 2-functor on AdjpLIndqlx; since self also preserves
products, this restricts to a product on CBPVfo

lx.
Semantic effect simulation now arises from Theorem V.1 as

follows. We start with two CBPV models, which for brevity
we denote Ci :“ pCi, Ci, Fi, Uiq for i “ 1, 2, a CBPV fibration
pp, P q, and a (lax or oplax) CBPV model 1-cell as shown:

pE, E , F E , UEq

C1 ˆ C2 C1 ˆ C2

pp,P q

ph,H,α,βqˆid

The effect simulation model is then constructed by applying
Theorem V.1 or Corollary V.2.

Example VI.1. We relate the algebra models (Example III.7)
for the finite powerset monad Pfin and list L monad on Set.
Their categories of algebras are, respectively, the category
SLat of sup-semilattices and Mon of monoids. There is a
canonical strong monad morphism γ : L Ñ Pfin sending
a list to its set of elements. This gives rise to the oplax
adjunction morphism below, which in turn extends to an oplax
CBPV model morphism pid,K, γ, idq : EMpPfinq Ñ EMpLq

between the two algebra models.

Set SLat Set

Set Mon Set

Pfin

id

U

K id
γ

L U

Next consider the product model EMpLq2. We define a
CBPV fibration into this model. By [15, Proposition 6], the
category BPred of Example I.4 is a CCC with all coproducts.
It follows that the free monoid monad

.
L sends pX,Y,Rq P

BPred to
ř

nPωpX,Y,Rqn; since the fibration q : BPred Ñ

Set2 strictly preserves products and coproducts, this is a lifting
of L ˆ L. Hence, by Lemma IV.18, we get a CBPV fibration
pq, rqq :

`

BPred, EMp
.
Lq
˘

Ñ pSet, EMpLqq2.
Now we build our model for effect simulation. Applying

Corollary V.2, we pullback pq, rqq along pid,K, γ, idq ˆ id to
obtain a CBPV model pBPred,SLMLift ,

.
F,

.
Uq. The hom-

presheaves of SLMLift are constructed componentwise by
pullback so, in particular, the category SLMLift1 of arrows
over the terminal object arises as the pullback shown below.
BPredMon has objects triples pM,N,Rq such that M and
N are monoids and R is a submonoid of M ˆ N , and maps
given by pairs of monoid morphisms that preserve the relation.

SLMLift1 BPredMon

SLat ˆ Mon Mon ˆ Mon

{

.
F acts on objects as

.
F
`

X,Y,Rq “ pPfinX,LY,
.
R
˘

, where
for a finite set p Ď X and list l P LY , pp, lq P

.
R if and only

if (1) for every x P p there is an element y in l such that
px, yq P R, and (2) for every element y in l there’s an element
x P p such that px, yq P R. In this new model base types β
are interpreted as the diagonal relation pJβK ˆ JβK,“q over an
object JβK and the semantics of closed programs of type Fβ
are of the shape pγplq, lq for some list l.

VII. RELATIVE FULL COMPLETENESS

In this section we show how our 2-categorical perspective
leads relatively easily to a proof of relative full complete-
ness, which establishes semantically that—absent sum types—
function types are a conservative extension of the first-order
fragment. Our proof follows the classic Lafont argument [34]:
this argument is well-known, and has been applied in many
differing situations (e.g. [17], [69], [70], [71]). Thus, our

contribution here is not the proof strategy, but showing how
to construct the ingredients to feed into the proof. Indeed, as
several authors have noted [69], [70], the proof relies on:

1) A suitable “presheaf” model and a “nerve” construction;
2) The existence of certain comma objects (“glueing”).
In what follows we shall outline how each of these ingre-

dients arises for CBPV´, the fragment of CBPV without sum
types. The rest of the argument follows the classical pattern,
as in e.g. [17, §4.10] so, for reasons of space, we omit it.

Remark VII.1. We omit sum types here because of (1).
We want to have a map of models given by the Yoneda
embedding, but the Yoneda functor does not generally preserve
coproducts. There is a natural fix, namely to restrict to product-
preserving presheaves (see e.g. [72]), but this introduces extra
subtleties. Since this section is already both technical and
rather compressed, we leave this for elsewhere. We write
CBPV´,fo

lx for the 2-category of CBPV´ models and their
morphisms, defined analogously to CBPVfo

lx.

As well as being of interest in its own right, we view
the theory sketched here as a first step towards a semantic
account of Kripke relations of varying arity for full CBPV,
and thereby a characterisation of definability (cf. [12], [11],
[23]) and normalisation-by-evaluation in the style of [35]. This
would provide a completely-denotational counterpart to [73].

A. Presheaf locally indexed categories

We construct our presheaf models for CBPV´ using the
corresponding structure in LInd. The idea is to combine the
enriched presheaf construction available on each 2-category
C-LInd (see e.g. [60, §2.2 & §4.4]) with the presheaf
construction on Cat.

First, as a 2-category of categories enriched in a presheaf
category, each C-LInd has a pC-enriched presheaf construc-
tion: for every C P C-LInd there is a pC-category pC of pC-
functors Cop Ñ pC. This extends to a pseudofunctor P :
C-LInd Ñ C-LIND. The action on 1-cells is by left Kan
extension, which determines the action on 2-cells. Applying P
to C P C-LInd yields a presheaf-like locally indexed category,
but over the wrong base: it is still C-indexed. We therefore
apply change-of-base and define P as the composite

C-LInd P
ÝÑ C-LIND

y
ÝÑ pC-LIND

Using standard enriched category-theoretic techniques, to-
gether with Levy’s explicit identification of PpCq [1, p. 184],
we arrive at the following characterisation of this composite.

Recall from e.g. [58, p. 84] that, for a locally C-indexed
category C, the category opGr C has objects pc P C, C P Cq

and morphisms pc, Cq Ñ pd,Dq pairs of a map ρ : d Ñ c in
C and f : C ÝÑ

d
D in C.

Definition VII.2. The presheaf locally indexed category
PpC, Cq :“ ppC, pCq is defined as follows. The objects of pC
are functors H : opGr Cop Ñ Set and maps τ : H ÝÑ

P
H 1 are

families of maps τc,C : P pcq ˆ Hpc, Cq Ñ H 1pc, Cq natural

in each argument. Composition, identities, and reindexing are
as in self ropGr Cop,Sets.

A short end calculation shows that ppC, pCq is equiva-
lently the locally pC-indexed category obtained by reindexing
self ropGr Cop,Sets along the cartesian functor π ˝ p´q : pC Ñ

ropGr Cop,Sets induced by the first projection π : opGr C Ñ

C. Moreover, if C and D are cartesian closed categories, and
f : C Ñ D preserves products, then f˚pself Dq P C-LInd has
products and C-powers. Hence pC has products and pC-powers.

B. Presheaf CBPV models

Since pseudofunctors preserve adjunctions, P sends a
CBPV model F : self C Ô C : U to a locally pC-indexed
adjunction Ppself Cq Ô PC in which the adjoints F ! and U !

are computed using the left Kan extension in pC-Cat. To make
this into a CBPV model, observe there exists an adjunction

rCop,Sets Ô ropGr pself Cqop,Sets

in which the left adjoint acts by P ÞÑ P p´ ˆ “q and
the right adjoint acts by H ÞÑ Hp´, 1q. Using the explicit
characterisation above, one sees this extends to a locally pC-
indexed adjunction L : self pC Ô Ppself Cq : R. The presheaf
CBPV model is then defined to be the composite adjunction

F ! ˝ L : self pC Ô Ppself Cq Ô PC : R ˝ U !

We also obtain a Yoneda map. The first component is
y : C Ñ pC. For the second component we need a locally
C-indexed-functor Y : C Ñ y˚pPCq. Another end calculation
shows that y˚pPCq is isomorphic to rCop, pCs in C-LIND,
so we define Y to be the pC-enriched Yoneda embedding:
Y pCq :“ C´p“, Cq. This extends to a pseudonatural transfor-
mation from the inclusion C-LInd ãÑ C-LIND to P (cf. [74,
Lemma 3.7]) so there exists a pseudo adjunction map in the
right square below; the left square is a strict adjunction map.

self rCop,Sets Ppself Cq ppC, pCq

self C self C pC, Cq

self y py,Y q self y

% %

–

%

Altogether, we have shown the next proposition.

Definition VII.3. A locally indexed functor pf, F q : pC, Cq Ñ

pD,Dq is full / faithful / fully faithful if both f and every
functor Fc : Cc Ñ Dfc are full / faithful / fully faithful. A
CBPV´,fo

lx 1-cell pf, F, α, βq is fully faithful if pf, F q is.

Proposition VII.4. For any CBPV model C there is a fully
faithful CBPV´,fo

ps 1-cell C Ñ pC into the presheaf CBPV
model. We denote this by Y .

Note that self f is fully faithful if f is. The final observation
about presheaves we need is the following.

Proposition VII.5. For any CBPV´,fo
lx morphism F : B Ñ C

there exists a CBPV´,fo
oplx 1-cell xF y : C Ñ pB and a

CBPV´,fo
oplx 2-cell Γ : Y ñ xF y ˝ F .

Indeed, for any locally indexed functor pf, F q : pB,Bq Ñ

pC, Cq we obtain xfy : C Ñ pB and xF y : C Ñ xfy˚p pBq

by taking xfyc :“ Cpf´, cq and xF ypCq :“ Cf´p“, Cq.
Note that xfy preserves products because f does. The rest of
the calculation essentially follows by unwinding the standard
fact—which holds equally in the enriched setting—that xfy is
the left Kan extension of y along f .

C. Completing the proof

Let SynS be the syntactic model over a signature S (recall
Example III.6). Also let FOSynS be the first-order syntactic
model, with function types omitted. Both these models are
free (Example IV.17) so there is a canonical strict map of
first-order CBPV´ models pi, Iq : FOSynS Ñ SynS . We
prove the following.

Theorem VII.6 (Relative full completeness). For any signa-
ture S, the locally indexed functor pi, Iq is fully faithful.

The remaining difficulty lies in seeing that for any
CBPV´,fo

oplx morphism pg,G, α, βq the following comma ob-
ject exists, i.e. CBPV models admit glueing:

G C

B C
pg,G,α,βq

λ

This follows from two facts. First, for any 2-category D, if
C has comma objects then rD, Csoplx also has such comma
objects, computed component-wise (cf. [75, Proposition 4.6]).
Since LInd has all comma objects, so does AdjpLIndqoplx.
Second, a small adaptation of the classical proof (e.g. [17])
shows this restricts to CBPVˆ

oplx: when C is a CBPV model
with locally indexed pullbacks, G is also a CBPV model.

The rest of the argument is as in the classical case
(see e.g. [17, §4.10] or [70, §3.2]), observing that composition
in CBPV´,fo

oplx reduces to (1) composition of the functors
in DistCat on the first component, and (2) on the second
component, composition in Cat at each index.

VIII. LIFTING THEOREMS FOR ARBITRARY SHAPES

In this final technical section we outline how Theorem V.1
and Corollary V.2 are special cases of a general result
which applies to any “shape” of model, including those for
λml and CBPV. The key idea is that, since CBPVfo

lx is
a sub-2-category of the functor 2-category AdjpLIndqlx “

rAdj,LIndslx, Theorem V.1 is a special case of a result about
pullbacks in 2-categories of the form rD, Cslx for some 2-
category D of “diagram shapes”. We state the general version
in Theorem VIII.1.

For the theorem we need to isolate a class of 1-cells
which will play the role of fibrations for logical relations,
i.e. fibrations which strictly preserve structure. We do this
in a style inspired by [76]. Fix a 2-category C and a wide,
locally-full sub-2-category Ct ; we call the 1-cells in Ct tight.
Further assume every fibration is tight. The statement is then
as follows.

Theorem VIII.1. In the situation just sketched, consider a
cospan pG

ϕ
ÝÑ H

κ
ÐÝ

.
Hq in rD, Cslx such that

1) κ is strict and each 1-cell component κd is tight;
2) For each d P D the pullback pϕdq˚pκdq of κd along ϕd

exists in C and is tight.

Then the 1-cells pϕdq˚pκdq form a strict, componentwise-tight
transformation, which is the pullback ϕ˚pκq in rD, Cslx.

Essentially, this says that to construct pullbacks of models
with additional structure encoded by a 2-functor it suffices to
construct pullbacks of the underlying ‘base’ model. The proof
is similar to that sketched in Section V.

Example VIII.2. We recover Theorem V.1 as follows. Take
D :“ Adj and C to be the sub-2-category of LInd with
objects pC, Cq given by a distributive category C and a locally
C-indexed category C with finite products and C-powers, such
that C’s coproducts are distributive. The 1-cells are LInd-
maps which preserve the products and coproducts. Say a 1-
cell pp, P q is tight if p is a bifibration—so pullbacks of p
exist in DistCat—and pp, P q is a locally indexed fibration
which strictly preserves the products, coproducts, and powers.
C satisfies the conditions of Theorem VIII.1, with the required
pullbacks computed as in LInd. Since self also preserves
pullbacks (Lemma IV.15), the pullback of a CBPV model is
still a CBPV model. So we obtain Theorem V.1. Corollary V.2
follows by instantiating the theorem with LIndco.

We obtain a version for λml by varying the “shapes”. By
[29, §3.6], applying the 2-Grothendieck construction to the 2-
functor CartCatop Ñ 2-CAT sending V to the 2-category
V-Actlx of V-actions and lax maps yields a 2-category Act
of actions. The objects are triples of a cartesian category V, a
category C, and a left action of V on C. 1-cells pV,C, ‚q Ñ

pW,D, ‹q are triples pf, F, ϕq where f : V Ñ W is cartesian,
F : C Ñ D, and ϕV,C : fpV q‹F pCq Ñ F pV ‚Cq is a natural
transformation compatible with the two actions. Act plays the
role for λml that LInd did for CBPV above. First, a monad
internal to Act (see [68]) is exactly a left action together
with a monad that is strong for the action (e.g. [25, §3]).
Second, using [57, Theorem 2.7], one sees the fibrations in
Act are 1-cells pf, F, ϕq such that both f and F are fibrations.
Finally, there is a 2-functor self : CartCat Ñ Act sending
a cartesian category V to the canonical V-action on itself.
This picks out the underlying structure of a λml model, and
preserves both fibrations and pullbacks (cf. Lemma IV.15).

Example VIII.3. Take D :“ Mnd to be the walking monad,
i.e. the 2-category freely generated by the data of a monad
(e.g. [48], [49]), and let C be the sub-2-category of Act with
objects pV,C, ‚q such that V is cartesian closed. Say a 1-cell
is tight if it is an Act-fibration which strictly preserves both
the cartesian closed structure and the action. Then consider a
cospan pself C self F

ÝÝÝÑ self B self p
ÐÝÝÝ self Eq where p is a fibration

which strictly preserves the cartesian closed structure. Since p
is tight and the pullback exists in Act, by Theorem VIII.1 this
becomes a pullback of λml models, which yields Lemma I.5.

ACKNOWLEDGMENTS

We are grateful to the Programming Languages Group in
Oxford for many constructive conversations, and to Nathanael
Arkor for important technical discussions. We also thank the
LICS 2025 reviewers for their useful suggestions.

REFERENCES

[1] P. B. Levy, “Call-by-push-value,” Ph.D. dissertation, Queen Mary and
Westfield College, University of London, 2001. [Online]. Available:
https://qmro.qmul.ac.uk/xmlui/handle/123456789/4742

[2] ——, Call-By-Push-Value. Springer Netherlands, 2003. [Online].
Available: https://doi.org/10.1007/978-94-007-0954-6

[3] C. A. Hermida, “Fibrations, logical predicates and indeterminates,”
Ph.D. dissertation, University of Edinburgh, 1993. [Online]. Available:
http://hdl.handle.net/1842/14057

[4] G. D. Plotkin, “LCF considered as a programming language,”
Theoretical Computer Science, vol. 5, no. 3, pp. 223–255, Dec. 1977.
[Online]. Available: https://doi.org/10.1016/0304-3975(77)90044-5

[5] K. Sieber, “Reasoning about sequential functions via logical relations,”
in Applications of Categories in Computer Science. Cambridge
University Press, Jun. 1992, pp. 258–269. [Online]. Available:
https://doi.org/10.1017/cbo9780511525902.015

[6] A. W. Appel and D. McAllester, “An indexed model of recursive
types for foundational proof-carrying code,” ACM Trans. Program.
Lang. Syst., vol. 23, no. 5, p. 657–683, Sep. 2001. [Online]. Available:
https://doi.org/10.1145/504709.504712

[7] A. M. Pitts, “Step-Indexed Biorthogonality: a Tutorial Example,”
in Modelling, Controlling and Reasoning About State, ser. Dagstuhl
Seminar Proceedings (DagSemProc), A. Ahmed, N. Benton, L. Birkedal,
and M. Hofmann, Eds., vol. 10351. Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2010, pp. 1–10.
[Online]. Available: https://drops.dagstuhl.de/entities/document/10.4230/
DagSemProc.10351.6

[8] D. Dreyer, A. Ahmed, and L. Birkedal, “Logical step-indexed logical
relations,” Logical Methods in Computer Science, vol. Volume 7, Issue 2,
Jun. 2011. [Online]. Available: https://doi.org/10.2168/lmcs-7(2:16)2011

[9] Q. M. Ma and J. C. Reynolds, “Types, abstraction, and parametric
polymorphism, part 2,” in Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1992, pp. 1–40. [Online]. Available:
https://doi.org/10.1007/3-540-55511-0 1

[10] J. C. Mitchell and A. Scedrov, “Notes on sconing and relators,” in
Computer Science Logic. Springer Berlin Heidelberg, 1993, pp. 352–
378. [Online]. Available: https://doi.org/10.1007/3-540-56992-8 21

[11] A. Jung and J. Tiuryn, “A new characterization of lambda definability,”
in Typed Lambda Calculi and Applications, M. Bezem and J. F.
Groote, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993,
pp. 245–257. [Online]. Available: https://doi.org/10.1007/BFb0037110

[12] M. Alimohamed, “A characterization of lambda definability in
categorical models of implicit polymorphism,” Theor. Comput. Sci.,
vol. 146, no. 1-2, pp. 5–23, Jul. 1995. [Online]. Available:
http://dx.doi.org/10.1016/0304-3975(94)00283-O

[13] B. Jacobs, Categorical Logic and Type Theory, ser. Studies in Logic and
the Foundations of Mathematics. Amsterdam: North Holland, 1999, no.
141.

[14] S. Katsumata, “A characterisation of lambda definability with
sums via JJ-closure operators,” in Computer Science Logic,
M. Kaminski and S. Martini, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 278–292. [Online]. Available: https:
//doi.org/10.1007/978-3-540-87531-4 21

[15] ——, “Relating computational effects by JJ-lifting,” Information
and Computation, vol. 222, pp. 228 – 246, 2013, 38th International
Colloquium on Automata, Languages and Programming (ICALP 2011).
[Online]. Available: https://doi.org/10.1016/j.ic.2012.10.014

[16] E. Moggi, “Notions of computation and monads,” Inf. Comput.,
vol. 93, no. 1, pp. 55–92, 1991. [Online]. Available: https:
//doi.org/10.1016/0890-5401(91)90052-4

[17] R. L. Crole, Categories for Types. Cambridge University Press, Jan.
1994. [Online]. Available: https://doi.org/10.1017/CBO9781139172707

[18] J. Goubault-Larrecq, S. Lasota, and D. Nowak, “Logical relations
for monadic types,” in Computer Science Logic. Springer Berlin
Heidelberg, 2002, pp. 553–568. [Online]. Available: https://doi.org/10.
1007/3-540-45793-3 37

[19] ——, “Logical relations for monadic types,” Mathematical Structures
in Computer Science, vol. 18, no. 06, p. 1169, Oct. 2008. [Online].
Available: https://doi.org/10.1017/S0960129508007172

[20] S. Katsumata, “A semantic formulation of JJ-lifting and logical
predicates for computational metalanguage,” in Computer Science
Logic. Springer Berlin Heidelberg, 2005, pp. 87–102. [Online].
Available: https://doi.org/10.1007/11538363 8

[21] O. Kammar and D. McDermott, “Factorisation systems for logical
relations and monadic lifting in type-and-effect system semantics,”
Electronic Notes in Theoretical Computer Science, vol. 341, pp. 239
– 260, 2018, proceedings of the Thirty-Fourth Conference on the
Mathematical Foundations of Programming Semantics (MFPS XXXIV).
[Online]. Available: https://doi.org/10.1016/j.entcs.2018.11.012

[22] S.-y. Katsumata, T. Sato, and T. Uustalu, “Codensity lifting of monads
and its dual,” Logical Methods in Computer Science, vol. 14, no. 4,
2018. [Online]. Available: https://doi.org/10.23638/LMCS-14(4:6)2018

[23] O. Kammar, S. Katsumata, and P. Saville, “Fully abstract models for
effectful λ-calculi via category-theoretic logical relations,” Proceedings
of the ACM on Programming Languages, vol. 6, no. POPL, pp. 1–28,
Jan. 2022. [Online]. Available: https://doi.org/10.1145/3498705

[24] A. Kock, “Strong functors and monoidal monads,” Archiv der
Mathematik, vol. 23, no. 1, pp. 113–120, dec 1972. [Online]. Available:
https://doi.org/10.1007/BF01304852

[25] D. McDermott and T. Uustalu, “What makes a strong monad?”
Electronic Proceedings in Theoretical Computer Science, vol. 360,
pp. 113–133, Jun. 2022. [Online]. Available: https://doi.org/10.4204/
EPTCS.360.6

[26] P. J. Freyd and A. S̆c̆edrov, Categories, allegories, transferred to digital
print. ed., ser. North Holland mathematical library. Amsterdam [u.a.]:
North-Holland, 2006, no. 39.

[27] G. Wraith, “Artin glueing,” Journal of Pure and Applied Algebra,
vol. 4, no. 3, pp. 345–348, Jun. 1974. [Online]. Available:
https://doi.org/10.1016/0022-4049(74)90014-0

[28] A. Carboni and P. Johnstone, “Connected limits, familial representability
and artin glueing,” Mathematical Structures in Computer Science, vol. 5,
no. 4, pp. 441–459, Dec. 1995, See also the corrigenda Corrigenda for
‘Connected limits, familial representability and Artin glueing’ at DOI
10.1017/S0960129503004080.

[29] M. Capucci and B. Gavranović, “Actegories for the working
amthematician,” 2022. [Online]. Available: https://doi.org/10.48550/
ARXIV.2203.16351

[30] R. Milner, “The formal semantics of computer languages and their
interpretations,” University of Oxford, Tech. Rep., 1974, available online
at cs.ox.ac.uk/files/3286/PRGX13.pdf.

[31] M. Shulman, “Framed bicategories and monoidal fibrations,” Theory
and Applications of Categories, vol. 20, no. 18, 2008. [Online].
Available: tac.mta.ca/tac/volumes/20/18/20-18.pdf

[32] C. Vasilakopoulou, “On enriched fibrations,” Cahiers de topologie
et géométrie différentielle catégoriques, vol. LIX, no. 4, 2018.
[Online]. Available: https://cahierstgdc.com/wp-content/uploads/2018/
10/Vasilakopoulou-LIX-4.pdf

[33] J. Moeller and C. Vasilakopoulou, “Monoidal Grothendieck
construction,” Theory and Applications of Categories, vol. 35, no. 31,
2020. [Online]. Available: www.tac.mta.ca/tac/volumes/35/31/35-31.pdf

[34] Y. Lafont, “Logiques, catégories et machines,” Ph.D. dissertation, Uni-
versité Paris VII, 1987.

[35] M. Fiore, “Semantic analysis of normalisation by evaluation for
typed lambda calculus,” in Proceedings of the 4th ACM SIGPLAN
International Conference on Principles and Practice of Declarative
Programming, ser. PPDP ’02. New York, NY, USA: ACM, 2002, pp.
26–37. [Online]. Available: http://doi.acm.org/10.1145/571157.571161

[36] D. Turi and G. Plotkin, “Towards a mathematical operational
semantics,” in Proceedings of Twelfth Annual IEEE Symposium on
Logic in Computer Science, 1997, pp. 280–291. [Online]. Available:
https://doi.org/10.1109/LICS.1997.614955

[37] S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, and
H. Urbat, Logical Predicates in Higher-Order Mathematical Operational
Semantics. Springer Nature Switzerland, 2024, pp. 47–69. [Online].
Available: https://doi.org/10.1007/978-3-031-57231-9 3

[38] S. Goncharov, S. Milius, S. Tsampas, and H. Urbat, “Bialgebraic
reasoning on higher-order program equivalence,” in Proceedings of the
39th Annual ACM/IEEE Symposium on Logic in Computer Science, ser.
LICS ’24. New York, NY, USA: Association for Computing Machinery,
2024. [Online]. Available: https://doi.org/10.1145/3661814.3662099

https://qmro.qmul.ac.uk/xmlui/handle/123456789/4742
https://doi.org/10.1007/978-94-007-0954-6
http://hdl.handle.net/1842/14057
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1017/cbo9780511525902.015
https://doi.org/10.1145/504709.504712
https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10351.6
https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10351.6
https://doi.org/10.2168/lmcs-7(2:16)2011
https://doi.org/10.1007/3-540-55511-0_1
https://doi.org/10.1007/3-540-56992-8_21
https://doi.org/10.1007/BFb0037110
http://dx.doi.org/10.1016/0304-3975(94)00283-O
https://doi.org/10.1007/978-3-540-87531-4_21
https://doi.org/10.1007/978-3-540-87531-4_21
https://doi.org/10.1016/j.ic.2012.10.014
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1017/CBO9781139172707
https://doi.org/10.1007/3-540-45793-3_37
https://doi.org/10.1007/3-540-45793-3_37
https://doi.org/10.1017/S0960129508007172
https://doi.org/10.1007/11538363_8
https://doi.org/10.1016/j.entcs.2018.11.012
https://doi.org/10.23638/LMCS-14(4:6)2018
https://doi.org/10.1145/3498705
https://doi.org/10.1007/BF01304852
https://doi.org/10.4204/EPTCS.360.6
https://doi.org/10.4204/EPTCS.360.6
https://doi.org/10.1016/0022-4049(74)90014-0
https://dl.acm.org/doi/10.1017/S0960129503004080
https://doi.org/10.48550/ARXIV.2203.16351
https://doi.org/10.48550/ARXIV.2203.16351
https://www.cs.ox.ac.uk/files/3286/PRGX13.pdf
tac.mta.ca/tac/volumes/20/18/20-18.pdf
https://cahierstgdc.com/wp-content/uploads/2018/10/Vasilakopoulou-LIX-4.pdf
https://cahierstgdc.com/wp-content/uploads/2018/10/Vasilakopoulou-LIX-4.pdf
www.tac.mta.ca/tac/volumes/35/31/35-31.pdf
http://doi.acm.org/10.1145/571157.571161
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1007/978-3-031-57231-9_3
https://doi.org/10.1145/3661814.3662099

[39] S. Goncharov, S. Tsampas, and H. Urbat, “Abstract operational methods
for call-by-push-value,” Proceedings of the ACM on Programming
Languages, vol. 9, no. POPL, pp. 1013–1039, Jan. 2025.

[40] O. Kammar, “An algebraic theory of type-and-effect systems,” Ph.D.
dissertation, University of Edinburgh, 2014. [Online]. Available:
http://hdl.handle.net/1842/8910

[41] D. McDermott, “Reasoning about effectful programs and evaluation
order,” Ph.D. dissertation, University of Cambridge, 2020. [Online].
Available: https://doi.org/10.48456/tr-948

[42] P. H. Azevedo de Amorim, “Denotational foundations for expected
cost analysis,” Proc. ACM Program. Lang., vol. 9, no. OOPSLA1, Apr.
2025. [Online]. Available: https://doi.org/10.1145/3720424

[43] F. Borceux, Handbook of Categorical Algebra, volume 2. Cambridge
University Press, Aug. 1994. [Online]. Available: https://doi.org/10.
1017/CBO9780511525865.008

[44] R. B. B. Lucyshyn-Wright, “V-graded categories and V-W-bigraded
categories: Functor categories and bifunctors over non-symmetric bases,”
2025. [Online]. Available: https://doi.org/10.48550/ARXIV.2502.18557

[45] T. Leinster, Higher Operads, Higher Categories. Cambridge University
Press, Jul. 2004, preprint available online at https://doi.org/10.48550/
arXiv.math/0305049.

[46] N. Johnson and D. Yau, 2-Dimensional Categories. Oxford University
Press, 2021, preprint available online at 10.48550/arXiv.2002.06055.

[47] D. Pumplün, “Eine Bemerkung über Monaden und adjungierte
Funktoren,” Mathematische Annalen, vol. 185, pp. 329–337, 1970.
[Online]. Available: http://eudml.org/doc/161964

[48] C. Auderset, “Adjonctions et monades au niveau des 2-catégories,”
Cahiers de Topologie et Géométrie Différentielle Catégoriques, vol. 15,
no. 1, pp. 3–20, 1974. [Online]. Available: http://eudml.org/doc/91131

[49] S. Schanuel and R. Street, “The free adjunction,” Cahiers de Topologie
et Géométrie Différentielle Catégoriques, vol. 27, no. 1, pp. 81–
83, 1986. [Online]. Available: https://www.numdam.org/item/CTGDC
1986 27 1 81 0/

[50] R. Street, “Conspectus of variable categories,” Journal of Pure and
Applied Algebra, vol. 21, no. 3, pp. 307–338, Jun. 1981. [Online].
Available: https://doi.org/10.1016/0022-4049(81)90021-9

[51] ——, Fibrations and Yoneda’s lemma in a 2-category. Springer
Berlin Heidelberg, 1974, pp. 104–133. [Online]. Available: https:
//doi.org/10.1007/bfb0063102

[52] F. Loregian and E. Riehl, “Categorical notions of fibration,” Expositiones
Mathematicae, vol. 38, no. 4, pp. 496–514, Dec. 2020. [Online].
Available: https://doi.org/10.1016/j.exmath.2019.02.004

[53] J. W. Gray, Fibred and Cofibred Categories. Springer Berlin
Heidelberg, 1966, pp. 21–83. [Online]. Available: https://doi.org/10.
1007/978-3-642-99902-4 2

[54] S. Lack, A 2-Categories Companion. Springer New York, Sep.
2009, pp. 105–191. [Online]. Available: https://doi.org/10.1007/
978-1-4419-1524-5 4

[55] A. Power, “A general coherence result,” Journal of Pure and Applied
Algebra, vol. 57, no. 2, pp. 165–173, Mar. 1989. [Online]. Available:
https://doi.org/10.1016/0022-4049(89)90113-8

[56] R. Blackwell, G. Kelly, and A. Power, “Two-dimensional monad theory,”
Journal of Pure and Applied Algebra, vol. 59, no. 1, pp. 1–41, Jul. 1989.
[Online]. Available: https://doi.org/10.1016/0022-4049(89)90160-6

[57] M. Weber, “Yoneda structures from 2-toposes,” Applied Categorical
Structures, vol. 15, no. 3, pp. 259–323, May 2007. [Online]. Available:
https://doi.org/10.1007/s10485-007-9079-2

[58] P. B. Levy, “Adjunction models for call-by-push-value with stacks,”
Electronic Notes in Theoretical Computer Science, vol. 69, pp.
248–271, 2003, cTCS’02, Category Theory and Computer Science.
[Online]. Available: https://doi.org/10.1016/S1571-0661(04)80568-1

[59] ——, “Call-by-push-value: Decomposing call-by-value and call-by-
name,” Higher-Order and Symbolic Computation, vol. 19, no. 4,
pp. 377–414, Dec. 2006. [Online]. Available: https://doi.org/10.1007/
s10990-006-0480-6

[60] G. M. Kelly, Basic Concepts of Enriched Category Theory. Reprints
in Theory and Applications of Categories, 2005. [Online]. Available:
http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf

[61] E. Moggi, “Computational lambda-calculus and monads,” in
Proceedings of the Fourth Annual Symposium on Logic in
Computer Science. IEEE Press, 1989, p. 14–23. [Online]. Available:
https://doi.org/10.1109/LICS.1989.39155

[62] S. Eilenberg and G. M. Kelly, Closed Categories. Springer
Berlin Heidelberg, 1966, pp. 421–562. [Online]. Available: https:
//doi.org/10.1007/978-3-642-99902-4 22

[63] G. S. H. Cruttwell, “Normed spaces and the change of base for enriched
categories,” Ph.D. dissertation, Dalhousie University, 2008, available
online at https://www.reluctantm.com/gcruttw/publications/thesis4.pdf.

[64] I. Baković, “Grothendieck construction for bicategories,” 2010. [Online].
Available: https://www2.irb.hr/korisnici/ibakovic/sgc.pdf

[65] M. Buckley, “Fibred 2-categories and bicategories,” Journal of Pure
and Applied Algebra, vol. 218, no. 6, pp. 1034–1074, Jun. 2014.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0022404913002065?via=ihub

[66] J. Hughes and B. Jacobs, “Factorization systems and fibrations,”
Electronic Notes in Theoretical Computer Science, vol. 69, pp.
156–182, Feb. 2003. [Online]. Available: https://doi.org/10.1016/
S1571-0661(04)80564-4

[67] F. E. J. Linton, Coequalizers in categories of algebras. Springer
Berlin Heidelberg, 1969, pp. 75–90. [Online]. Available: https:
//doi.org/10.1007/BFb0083082

[68] R. Street, “The formal theory of monads,” Journal of Pure and Applied
Algebra, vol. 2, no. 2, pp. 149 –168, 1972. [Online]. Available:
https://doi.org/10.1016/0022-4049(72)90019-9

[69] M. Hasegawa, “Categorical glueing and logical predicates for
models of linear logic,” Kyoto University. Research Institute for
Mathematical Sciences [RIMS], 1999. [Online]. Available: https:
//www.kurims.kyoto-u.ac.jp/„hassei/papers/full.pdf

[70] M. Fiore, R. Di Cosmo, and V. Balat, “Remarks on isomorphisms
in typed lambda calculi with empty and sum types,” in Proceedings
17th Annual IEEE Symposium on Logic in Computer Science, ser.
LICS-02. IEEE Comput. Soc, 2002, pp. 147–156. [Online]. Available:
https://doi.org/10.1109/LICS.2002.1029824

[71] M. Fiore and P. Saville, Relative Full Completeness for
Bicategorical Cartesian Closed Structure. Springer International
Publishing, 2020, pp. 277–298. [Online]. Available: https:
//doi.org/10.1007/978-3-030-45231-5 15

[72] P. Fu, K. Kishida, N. J. Ross, and P. Selinger, “On the Lambek
embedding and the category of product-preserving presheaves,” arXiv,
2022. [Online]. Available: https://doi.org/10.48550/arXiv.2205.06068

[73] A. Abel and C. Sattler, “Normalization by evaluation for call-
by-push-value and polarized lambda calculus,” in Proceedings of
the 21st International Symposium on Principles and Practice of
Declarative Programming, ser. PPDP ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3354166.3354168

[74] M. Fiore, N. Gambino, M. Hyland, and G. Winskel, “Relative
pseudomonads, Kleisli bicategories, and substitution monoidal
structures,” Selecta Mathematica, vol. 24, no. 3, pp. 2791–2830, Nov.
2017. [Online]. Available: https://doi.org/10.1007/s00029-017-0361-3

[75] S. Lack, “Limits for lax morphisms,” Applied Categorical Structures,
vol. 13, no. 3, pp. 189–203, Jun. 2005. [Online]. Available:
https://doi.org/10.1007/s10485-005-2958-5

[76] N. Arkor, J. Bourke, and J. Ko, “Enhanced 2-categorical structures, two-
dimensional limit sketches and the symmetry of internalisation,” arXiv,
2024. [Online]. Available: https://doi.org/10.48550/arXiv.2412.07475

[77] S. Mac Lane, Categories for the Working Mathematician, 2nd ed., ser.
Graduate Texts in Mathematics. Springer-Verlag New York, 1998,
vol. 5.

http://hdl.handle.net/1842/8910
https://doi.org/10.48456/tr-948
https://doi.org/10.1145/3720424
https://doi.org/10.1017/CBO9780511525865.008
https://doi.org/10.1017/CBO9780511525865.008
https://doi.org/10.48550/ARXIV.2502.18557
 https://doi.org/10.48550/arXiv.math/0305049
 https://doi.org/10.48550/arXiv.math/0305049
10.48550/arXiv.2002.06055
http://eudml.org/doc/161964
http://eudml.org/doc/91131
https://www.numdam.org/item/CTGDC_1986__27_1_81_0/
https://www.numdam.org/item/CTGDC_1986__27_1_81_0/
https://doi.org/10.1016/0022-4049(81)90021-9
https://doi.org/10.1007/bfb0063102
https://doi.org/10.1007/bfb0063102
https://doi.org/10.1016/j.exmath.2019.02.004
https://doi.org/10.1007/978-3-642-99902-4_2
https://doi.org/10.1007/978-3-642-99902-4_2
https://doi.org/10.1007/978-1-4419-1524-5_4
https://doi.org/10.1007/978-1-4419-1524-5_4
https://doi.org/10.1016/0022-4049(89)90113-8
https://doi.org/10.1016/0022-4049(89)90160-6
https://doi.org/10.1007/s10485-007-9079-2
https://doi.org/10.1016/S1571-0661(04)80568-1
https://doi.org/10.1007/s10990-006-0480-6
https://doi.org/10.1007/s10990-006-0480-6
http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1007/978-3-642-99902-4_22
https://doi.org/10.1007/978-3-642-99902-4_22
https://www.reluctantm.com/gcruttw/publications/thesis4.pdf
https://www2.irb.hr/korisnici/ibakovic/sgc.pdf
https://www.sciencedirect.com/science/article/pii/S0022404913002065?via=ihub
https://www.sciencedirect.com/science/article/pii/S0022404913002065?via=ihub
https://doi.org/10.1016/S1571-0661(04)80564-4
https://doi.org/10.1016/S1571-0661(04)80564-4
https://doi.org/10.1007/BFb0083082
https://doi.org/10.1007/BFb0083082
https://doi.org/10.1016/0022-4049(72)90019-9
https://www.kurims.kyoto-u.ac.jp/~hassei/papers/full.pdf
https://www.kurims.kyoto-u.ac.jp/~hassei/papers/full.pdf
https://doi.org/10.1109/LICS.2002.1029824
https://doi.org/10.1007/978-3-030-45231-5_15
https://doi.org/10.1007/978-3-030-45231-5_15
https://doi.org/10.48550/arXiv.2205.06068
https://doi.org/10.1145/3354166.3354168
https://doi.org/10.1007/s00029-017-0361-3
https://doi.org/10.1007/s10485-005-2958-5
https://doi.org/10.48550/arXiv.2412.07475

	Introduction
	Logical relations from fibrations for logical relations
	Constructing fibrations for logical relations
	This paper: from monadic metalanguage to CBPV

	2-category theory
	Adjunctions and their morphisms
	Fibrations

	Denotational models of CBPV
	CBPV fibrations
	The 2-category of locally indexed categories
	Locally indexed fibrations
	The 2-category of CBPV models
	Defining CBPV fibrations

	A lifting theorem for CBPV models
	Examples

	Effect Simulation
	Relative full completeness
	Presheaf locally indexed categories
	Presheaf CBPV models
	Completing the proof

	Lifting theorems for arbitrary shapes
	References
	Appendix A: The basic definitions of 2-category theory
	Appendix B: Locally indexed categories, functors, and transformations

