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Abstract—It is well known that various problems in program
analysis and the verification of recursive programs can be
reduced to pushdown model checking. In this problem, we are
given as input a pushdown automaton (PDA), representing the
program, and a description of undesirable behaviors given by
an intersection of NFAs, and the problem is to decide if there
is a behavior of the PDA that belongs to the set of undesirable
behaviors. It is well-known that there is an algorithm for this
problem that runs in time O(n2k|Σ| + n3k), where n is the
maximum number of states of the PDA and the NFAs, Σ is the
common alphabet of these machines, and k− 1 is the number of
NFAs used to specify the violations. Despite the importance of
this problem, no better algorithm is known for it since the 1960s.

In this paper, we provide an explanation for this lack of
progress using the lens of fine-grained complexity theory. More
precisely, we prove that if the (combinatorial) 3k-clique hypothe-
sis is true, then there is no algorithm that solves pushdown model
checking in time O((n2k|Σ| + n3k))1−ε for any ε > 0. Hence,
our result implies that any better algorithm for pushdown model
checking than the existing ones would lead to a breakthrough for
the 3k-clique problem. Our lower bound applies even in the case
when all the machines are deterministic, and even when the PDA
is simply a deterministic one-counter machine. Furthermore,
using the same hypothesis, we also show that pushdown model
checking over constant-sized alphabets cannot be solved in time
faster than O(n3(k−1)−ε) for ε > 0.

Finally, we also investigate the possibility of an O(N3k−ε) time
algorithm for pushdown model checking where N is the total
bit size of the given input. We formulate a new hypothesis, the
2NPDA(k) hypothesis, that helps explain the lack of O(N3k−ε)
time algorithms for pushdown model checking. To corroborate
this hypothesis, we show a web of linear-time reductions between
the 2NPDA(k) hypothesis, pushdown model checking, and other
problems in language theory and automata theory.

For the purpose of open access, the author has applied a Creative
Commons Attribution (CC-BY) public copyright licence to any
Author Accepted Manuscript version arising from this submission.

I. INTRODUCTION

Many problems in program analysis, formal language theory
and verification of recursive programs are reducible to push-
down model-checking: given as input a PDA (over a constant-
sized stack alphabet) and a specification of bad behaviors given
as a set of NFAs, the goal is to check if there is a behavior
in the language of the PDA that lies in the intersection of
the languages of the NFAs. It is well-known that the model
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complexity of the problem, which treats the PDA as the input
and the NFAs as constant-sized, is O(n3) time, where n is the
number of states of the given PDA [18], [41], [32], [6], [19],
[31]. This cubic algorithm simply does a product construction
of the given NFAs with the PDA to get another PDA and then
performs reachability analysis on this latter PDA.

When we consider the combined complexity of the problem,
where both the PDA and the set of NFAs are considered part
of the input, the best algorithm runs in time O(n2k|Σ|+n3k)
where n is the maximum number of states in any of the given
NFAs and the PDA, Σ is the common input alphabet of all of
the machines and k−1 is the number of NFAs used to encode
the specification. This algorithm uses the algorithm from the
previous paragraph. Intuitively, it takes time O(n2k|Σ|) to do
the product construction of the NFAs with the given PDA to
get another PDA with O(nk) states, and then it takes O(n3k)
time to perform reachability analysis on this new PDA. Going
beyond constant-sized specifications is important in several
program analysis applications, such as checking set constraints
with regular annotations [27], pointer analysis [33], and model
checking for certain security properties [14].

Despite decades of research, no substantially better algo-
rithm is known for either problem. For model complexity,
the best current bound is O(n3/ log n) time [12]. No truly
subcubic algorithms are known; this is usually referred to as
the “cubic bottleneck” for program analysis [24]. Similarly,
for combined complexity, the trivial algorithm above is the
best known.

In this paper, we explain this lack of progress through
the lens of fine-grained complexity theory. This subfield of
complexity theory is one of its recent successes: it aims
to explain the absence of faster algorithms (than existing
ones) for various polynomial-time solvable problems: that is,
(∗) why a problem can be solved in time O(nc) but not
O(nc−ε) for any ε > 0. By identifying a small number of
relevant hypotheses and linking many open questions of the
kind (∗) with them, fine-grained complexity has provided tight
conditional lower bounds for problems in a variety of domains:
graph theory, stringology, formal language theory, databases,
data structures, and dynamic algorithms [39], [7].

We make the following contributions:
1) We prove that significantly faster algorithms for push-
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gorithms for the k-Clique problem (and thus refute a
well-established hypothesis).

2) We show that the hypothesis that pushdown model
checking problems require time n3k is closely related
(by linear-time inter-reductions) to another natural hy-
pothesis, on the time complexity of languages recog-
nized by two-way nondeterministic pushdown automata
with k heads (2NPDA(k), for short).

3) We give a language-theoretic consequence of our reduc-
tions: a new construction of hardest languages for the
class of languages recognized by 2NPDA(k), for each k.

1. Conditional lower bounds from k-Clique: One of the
most important hypotheses used in fine-grained complexity
theory is the so-called k-Clique hypothesis (k ≥ 3): For each
ε > 0, there is no algorithm that detects the existence of
cliques of size k in graphs on n vertices in time O(nωk/3−ε).
(Here ω is the matrix multiplication exponent: the infimum
of all c such that there is an O(nc) algorithm to multiply
two n× n matrices.) Closely related to this hypothesis is the
combinatorial k-Clique hypothesis which asserts that, for each
ε > 0, there is no combinatorial1 algorithm that solves k-
Clique in time O(nk−ε). These two hypotheses have been used
to show conditional lower bounds for a variety of problems
such as context-free language recognition and RNA fold-
ing [2], parsing tree adjoining grammars [9], Klee’s measure
problem [10], maximum-weight box problem in computational
geometry [5], etc. In fact, the best conditional lower bounds for
the model complexity of pushdown model checking, are based
on the 3-Clique hypothesis [11], [2], [28], [15]. However,
these lower bounds do not imply anything for the combined
complexity of pushdown model checking.

Our first main result is to provide a tight conditional lower
bound on the combined complexity of pushdown model check-
ing problem based on the clique hypotheses. We show that, un-
less the 3k-Clique hypothesis (resp. combinatorial 3k-Clique
hypothesis) is false, there is no (combinatorial) algorithm that
solves pushdown model checking in time O((n(ω−1)k|Σ| +
nωk)1−ε) (resp. in time O((n2k|Σ|+n3k)1−ε)). Hence, our re-
sult proves that, unless the combinatorial 3k-Clique hypothesis
is false, no algorithm can be better than the known algorithm
for this problem. In fact, our lower bound applies even to the
special case of the problem in which all the k − 1 NFAs are
DFAs, and the PDA is a deterministic one-counter machine.

Our proof (of Theorem 2 in Section III) generalizes the well-
known encoding of triangle finding using PDAs, but requires
several new ideas, in order to go beyond triangles. First, a large
input alphabet (with up to nk letters) enables us to “name”
k-cliques. With the help of a counter (counting up to nk),
we can uniquely store and retrieve a k-clique. We use the
counter along with the NFAs to find three k-cliques whose
nodes are all neighbors to each other. Our key trick here is to
use small automata (n states each) to increment and decrement
the counter all the way to these large numbers, as well as

1While the notion of combinatorial algorithms is not rigorous, these are
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check the neighborhood relation between nodes of different
k-cliques.

We then turn our attention to the case of pushdown model
checking when the input alphabet of all the machines is
constant-sized, i.e., when |Σ| is a constant. This is an important
special case: the complexity of language-theoretic problems is
often studied under this assumption. Because |Σ| is a constant,
we have that O(n2k|Σ| + n3k) = O(n3k), which is the best
known running time in this setting. For this case (handled in
Theorem 5 in Section IV), based on the 3k-Clique hypothesis,
we rule out the existence of O(nω(k−1)−ε) time algorithms.
Similarly, using the combinatorial 3k-Clique hypothesis, we
also prove that O(n3(k−1)−ε) time combinatorial algorithms
cannot exist for this problem. Since the alphabet size is fixed,
we can no longer use the trick of naming k-cliques. To go
beyond this, our construction initially uses linear-sized input
and stack alphabets in order to find three k-cliques whose
nodes are all neighbors to each other. For this purpose, various
specialized gadgets are constructed to store and keep track
of (multiple) k-cliques in the stack as well as to check that
nodes in different k-cliques are neighbors. We then carefully
encode the linear-sized alphabets into binary and convert the
original construction into one over constant-sized alphabets,
with only a logarithmic blowup in the state space. Note that
our results in this regime have a gap of O(n3+(3−ω)k) between
the upper and lower bounds in the general case and O(n3) in
the combinatorial case.

We also note that, for the special case of k = 2, that is,
the intersection non-emptiness problem for the language of
1 PDA and 1 NFA, a conditional lower bound follows from
a result in [1]. They consider the special case of the problem
in which the PDA is replaced by a straight-line program
(a context-free grammar that generates a single word only).
The problem is to decide whether a given NFA accepts this
compressed word. They prove that, unless the combinatorial
k-Clique hypothesis is false, there is no ε > 0 for which
there exists an algorithm for this problem running in time
O(min{pq3, Nq2}1−ε), where p is the size of the compressed
representation of the word (think the number of states in the
PDA), q is the number of states in the NFA, and N ≤ 2n. The
Nq2 term matches a decompress-and-solve algorithm which
is not available for general PDA. In the regime p = q = n,
this lower bound is of order n4.

2. New hypotheses: It is not known whether fast matrix
multiplication algorithms can be used for faster pushdown
model checking. Standard existing hypotheses appear to be
insufficient for explaining the hardness even for k = 1 (lan-
guage non-emptiness of pushdown automata). The best (non-
combinatorial) lower bound is Ω(nω) from k-Clique [2], and
it has been shown that the strong exponential-time hypothesis
(SETH), perhaps the most well-known hypothesis in fine-
grained complexity, cannot be used to beat this bound, unless
breakthrough results in circuit complexity appear [15]. Note
that the 3k-Clique hypothesis only asserts the non-existence of
algorithms with runtime as a function of the number of nodes
and not of the whole input. Intuitively, this cannot help explain
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whether pushdown model checking admits an algorithm with
runtime O(N3k−ε) where N is the overall bit size of the
input for the pushdown model checking: the input includes
all transitions in the machines, and their number could be
quadratic in the number of states.

Thus, new hypotheses may be required to explain the
absence of faster algorithms. Indeed, for k = 1 the recent
NFA acceptance hypothesis [8] gives an n3 lower bound for
pushdown model checking for dense PDAs.

For k > 1, we introduce (in Section V) a new 2NPDA(k)
hypothesis. It asserts that there is no ε > 0 for which some
algorithm running in time O(|w|3k−ε) can decide if a given
word w is accepted by a (fixed) two-way non-deterministic
pushdown automaton with k heads (2NPDA(k)). Intuitively,
a 2NPDA(k) is a machine (see [23], [26]) which has access
to a stack and its input is written on a read-only input tape.
This machine has k heads on the input tape using which it can
query the letters of k positions on the input tape. Based on this
query, it can update its state, the positions of these k heads
and also its stack content. It is a folklore result that there
is an algorithm for the 2NPDA(k) acceptance problem that
runs in time O(|w|3k) for any fixed 2NPDA(k). (For example,
Rytter [35] refers to Aho, Hopcroft, and Ullman [3], even
though only 2NPDA with k = 1 head are considered there.)
However, no faster algorithm is known for this problem. Based
on this lack of progress, we introduce this hypothesis as a
generalization of the 2NPDA hypothesis (k = 1) introduced
by Neal [30] and Heintze and McAllester [24]. Furthermore, if
k ≥ 2, 2NPDA(k) language recognition is not known to admit
even O(|w|3k/ log |w|) algorithms, unlike for k = 1 [12], [37].
To the best of our knowledge, algorithms with this complexity
are only known for the special case of loop-free automata [37];
see also related results in [35], [36].

As a way to strengthen the believability of this hypothesis,
we provide a web of linear-time reductions between the
2NPDA(k) language recognition problem and a variety of
other problems in language theory and program analysis, one
of which is the pushdown model checking problem. So, under
the 2NPDA(k) hypothesis, we show that there is no algorithm
running in time O(N3k−ε) for pushdown model checking.
Hence, this gives rise to a hierarchy of program analysis
problems, one for each k > 1, that go beyond the famous
cubic bottleneck that is established in the literature.

3. Consequences and applications: The lens of fine-
grained complexity provides some purely language-theoretic
consequences. Using our chain of linear-time reductions be-
tween 2NPDA(k) recognition and pushdown model checking,
we get that, for each k ≥ 1, there is a hardest 2NPDA(k) lan-
guage, that is, a fixed language L

(k)
0 recognized by a 2NPDA

with k heads such that for every 2NPDA(k) language L there
is a homomorphism h such that w ∈ L iff h(w) ∈ L

(k)
0 ,

for all non-empty words w. Previous constructions of hardest
languages used language-theoretic constructions [29], [34].

II. PRELIMINARIES

A. PDA and NFAs

A pushdown automaton (PDA) consists of a finite set of
control states and a stack into which it can push/pop elements.
Initially, the PDA begins in some designated initial control
state and reads the input word w one letter at a time. As it
reads each letter, its transition relation allows it to move from
one control state to another whilst pushing/popping elements
from its stack. At the end of reading w, if the machine is in
one of a designated set of final states and its stack content is
empty, then it is said to accept w. The language of the machine
is the set of all words that it accepts.

Formally, a PDA is a tuple P = (Q,Σ,Γ, δ, q0, F ) where
Q is a finite set of control states, Σ is the input alphabet, Γ
is the stack alphabet, δ ⊆ Q× (Σ∪ {ε})× Γ×Q× Γ∗ is the
transition relation, q0 is the initial state and F is a set of final
states. A transition of the form (p, a, α, q, β) dictates that, in
order for this transition to be used, the PDA must be at state
p, read the letter a (or read no letter if a = ε) and then it
must pop α from the stack, move to state q and push β into
the stack. Note that β could be ε, which means that the net
effect is simply popping α from the stack. Similarly, β could
also be of the form αζ for some letter ζ, which means that the
net effect is simply pushing ζ into the stack. We assume that
Γ contains a designated “end of stack” symbol Z0 such that
no transition of P replaces Z0 on the stack with a different
symbol, or pushes Z0 on the stack when the top of the stack is
not Z0, i.e., for any transition (p, a, α, q, β), β contains Z0 iff
α = Z0 and β = Z0γ for some γ ∈ (Γ\Z0)

∗. Throughout the
paper, we will assume that the stack alphabet Γ is of constant
size, i.e., |Γ| = O(1) unless specifically stated otherwise.

A configuration of the PDA is a pair (p, γ) where p is a
state and γ ∈ Γ∗ is the stack content. For any transition t =
(p, a, α, q, β), there is a step from a configuration of the form
(p, γα) to (q, γβ), which represents the changes made to the
stack as dictated by t. We will denote this step by (p, γα)

t−→
(q, γβ) or simply (p, γα)

a−→ (q, γβ) when only the component
a ∈ Σ ∪ {ε} of the transition t is important.

A transition (p, a, α, q, β) is called an ε transition if a = ε.
We say that a configuration (q, γ) can reach a configuration
(q′, γ′) by using ε transitions if there are configurations
(q0, γ0), (q1, γ1), . . . , (qk, γk) such that (q, γ) = (q0, γ0)

ε−→
(q1, γ1)

ε−→ (q2, γ2)
ε−→ . . . (qk, γk) = (q′, γ′).

The initial configuration is (q0, Z0). A run of the PDA on a
word w = w1w2 . . . wn ∈ Σ∗ is a sequence of configurations
of the form (q0, γ0), (q1, γ1), . . . , (qn, γn) such that (q0, γ0)
is the initial configuration and, for each i ≥ 0, there exist
configurations (q′i, γ

′
i), (q

′′
i , γ

′′
i ) such that (qi, γi) can reach

(q′i, γ
′
i) by ε transitions, (q′i, γ

′
i)

wi−→ (q′′i , γ
′′
i ) and (q′′i , γ

′′
i )

can reach (qi+1, γi+1) by ε transitions. A run is said to be
accepting if γn is empty and qn ∈ F . The language of a PDA
P , denoted by L(P ), is the set of all words that it accepts, i.e.,
the set of all words on which it has an accepting run. PDA
are known to accept exactly the set of context-free languages.

3



A one-counter automaton (OCA) is a PDA with a stack
alphabet containing only one letter (say α) apart from Z0.
Note that the content of a stack is then uniquely determined
by the number of times α appears in it. Hence, in this case the
stack can be thought of as a counter, where pushing/popping
α corresponds to incrementing/decrementing the counter, re-
spectively; and popping Z0 corresponds to testing whether the
counter is zero. Hence, the accepting condition for a run in an
OCA is that the state at the end is an accepting state and the
counter has reached the value 0.

A PDA is deterministic if its transition relation is a partial
function, i.e., δ is of the form Q× (Σ ∪ {ε})× Γ ⇀ Q× Γ∗

and, moreover, for each q ∈ Q, either δ(q, a, α) is defined for
all a ∈ Σ, α ∈ Γ and δ(q, ε, α) is undefined for all α ∈ Γ, or
δ(q, a, α) is undefined for all a ∈ Σ, α ∈ Γ but δ(q, ε, α) is
defined for all α ∈ Γ. A deterministic PDA (resp. deterministic
OCA) will be succinctly referred to as DPDA (resp. DOCA).

An NFA is a PDA in which there are no ε transitions
and no stack operations are performed, i.e., no push or pop
happens to the stack. (Formally, α = β = Z0 in all transitions
(p, a, α, q, β).) A DFA is an NFA for which the transition
relation is actually a function. NFAs and DFAs accept exactly
the set of regular languages.

B. Intersection Non-Emptiness problems

This paper focuses on the following class of problems, one
for each fixed k ≥ 1:

PDA∩NFAk−1 Intersection Non-Emptiness

Fix: Stack alphabet Γ.
Input: PDA P and k− 1 NFAs A1, . . . , Ak−1, all over
a common input alphabet Σ.
Decide: Is the intersection L(P ) ∩ L(A1) ∩ . . . ∩
L(Ak−1) non-empty?

When k = 1, this is simply checking if the given PDA
P has a non-empty language, which is the well-known PDA
non-emptiness problem.

In this paper, we let the stack alphabet Γ be fixed (as it is
in applications related to program analysis). In contrast, the
common input alphabet of the automata is provided as part
of the input, as it forms part of the description of the PDA
and each NFA. In applications, the input alphabet needs to
be rich enough to specify possible actions or events in the
system. In theory, it is often instructive to consider constant-
sized alphabets too, e.g., |Σ| = 2. Furthermore, there are
applications related to PDAs in which the underlying language
is fixed, which automatically fixes the alphabet as well.
For instance, for the CFL Reachability problem (which we
generalize and study as the CFL k-Intersection Reachability
problem in Section V-B in our paper), the underlying context-
free language (and hence the input alphabet) is fixed.

In general, the model checking problem may use multiple
NFAs to encode a specification. We give a small example
from the domain of model checking for security properties
[14], [13]. A program is modelled as a PDA, and security

properties as a set of NFAs. For example, a security property is
“a program should drop privileges from all its user IDs before
calling certain system functions.” This property is expressed
as multiple NFAs: one NFA tracking if certain system calls
have been made, and the others tracking which user IDs have
root privilege. The common alphabet consists of system calls,
which are executed by the program (PDA) and also cause the
property NFAs to change state. For example, a call to drop
root privilege from a user ID moves the corresponding NFA
to a state in which that user ID does not have root privilege.

Furthermore, sometimes an alternative way of encoding a
single big specification (an NFA of size nk for some k) might
be to decompose it into a product of multiple smaller NFAs
(intersection of k NFAs, each of size n). There are NFAs
that cannot be decomposed in this manner, but, a priori, it
might have been possible that if the specification NFA has a
nice structure, it could be decomposed into that form and the
problem could have been solved faster than the general case.
Our results in the next section (Theorem 2) show that even
this restricted setting is as difficult as the original version.

If the number of NFAs, k, is unbounded (not fixed), then
intersection non-emptiness becomes complete for EXPTIME.
(Indeed, a T (n)-time Turing machine can be simulated by an
auxiliary pushdown automaton (AuxPDA) with O(log T (n))
bits of storage [16]. Language recognition for such an Aux-
PDA is reducible to the intersection non-emptiness of a usual
PDA with O(log T (n)) DFAs, each responsible for one cell
of the storage.) Shortest words in the intersection may in this
scenario be doubly exponentially long [4].

The main contributions of this paper are to provide condi-
tional lower bounds for the PDA ∩NFAk−1 intersection non-
emptiness problem under different settings, some of which
match the known upper bounds, suggesting that no improve-
ment over the known algorithm is possible. These conditional
lower bounds are based on popular hypotheses from the field
of fine-grained complexity theory. We now proceed to describe
these hypotheses and then our contributions.

C. The k-Clique hypothesis

This is one of the central hypotheses in fine-grained com-
plexity theory. Formally, the k-Clique hypothesis states that,
for each ε > 0, there is no algorithm that, given a graph
G on some n vertices, correctly decides if G has a clique
of size k in time O(nωk/3−ε). A similar hypothesis is the
so-called combinatorial k-Clique hypothesis, which states that
there is no combinatorial algorithm that solves k-Clique in
time O(nk−ε) for any ε > 0. As mentioned in the Introduction,
while the notion of combinatorial algorithms is not rigorous,
these are roughly taken to be algorithms that do not use fast
matrix multiplication techniques.

III. LOWER BOUNDS FOR PDA ∩NFAk−1 INTERSECTION
NON-EMPTINESS

Before we present our main result, which is a (conditional)
lower bound for PDA ∩NFAk−1 Intersection Non-Emptiness,
let us first recall the known upper bounds for this problem.
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Theorem 1 (Upper Bounds). The PDA ∩NFAk−1 intersec-
tion non-emptiness problem over an input alphabet Σ and with
n the maximum number of states among all the given machines
can be solved in time

• O(n2k|Σ|+ nωk) if the given PDA is an OCA;
• O(n2k|Σ| + n3k) if the given PDA is not an OCA or if

only combinatorial algorithms are allowed.

Proof. Let P be the given PDA and let A1, . . . , Ak−1 be
the given NFAs. The proof of the theorem follows from
two observations: First, PDA non-emptiness can be solved
in O(n3) time [6] and furthermore, if the PDA is an OCA,
then it can be solved in O(nω) time [22]. Second, for any
PDA P and any NFA A, in O(n4|Σ|) time, we can construct
a PDA with O(n2) states and the same stack alphabet as
P , such that this new PDA recognizes L(P ) ∩ L(A). This
is the usual Cartesian product construction between a PDA
and an NFA (see, e.g., Hopcroft, Motwani, and Ullman’s
textbook [25, Section 7.3.4]). Hence, by repeatedly doing the
product construction, in time O(n2k|Σ|), we can construct a
PDA with O(nk) states having the same stack alphabet as P
which recognizes L(P )∩L(A1)∩. . .∩L(Ak−1). Then, we can
perform a non-emptiness check on this PDA in time O(n3k)
or in time O(nωk) if it is an OCA.

The above algorithm has been known for almost 50 years,
and no polynomial improvements have been made for this
problem. We provide a conditional lower bound for this
problem, showcasing the difficulty of any improvement.

Theorem 2 (Lower Bounds). If the 3k-Clique hypothesis is
true, the PDA ∩NFAk−1 intersection non-emptiness problem
over an input alphabet Σ with n the maximum number of
states among all the given machines cannot be solved in time

• O((n(ω−1)k|Σ|+ nωk)1−ε) for any ε > 0;
• O((n2k|Σ|+ n3k)1−ε) for any ε > 0, if only combinato-

rial algorithms are allowed.
Both lower bounds already hold when the given PDA is a
DOCA and all the NFAs are DFAs.

This theorem provides a tight lower bound for combinatorial
algorithms: no improvements using such algorithms are pos-
sible unless the combinatorial 3k-Clique hypothesis is false.

Remark 3. Our lower bounds admit multivariate counter-
parts, where the number of states of PDA and NFAs has
different orders of magnitude. Suppose in the input to the
problem the PDA has at most p states and each NFA has at
most q states. The existing algorithm from Theorem 1 delivers
the upper bound O(s2|Σ| + s3), where s = pqk−1 is the
number of states in the product automaton. Thus, our lower
bound implies that there is no combinatorial algorithm for this
problem running in time

O
(
((pqk−1)2|Σ|+ (pqk−1)3)1−ε

)
for any ε > 0. Indeed, even in the regime p = q = n such an
algorithm would contradict Theorem 2. Similar conclusions

can be drawn from other lower bounds that we prove in this
paper. We will henceforth not make them explicit.

A. Proof idea of Theorem 2

The formal proof of the theorem is given in Appendix A.
Here we give the main ideas and intuitions behind the proof.

Recall: Triangle finding: The main idea behind this proof
is a generalization of the idea used to detect triangles, i.e., 3-
cliques in a graph by means of an OCA. Let us first recall
this idea. Let G be some graph and without loss of generality,
let the nodes of this graph be {0, 1, · · · , n− 1}. Furthermore,
we can assume that the graph contains no self-loops, since
removing self-loops does not destroy the property of having
a triangle. We can check for the existence of a triangle in
this graph by using the following DOCA M: First M reads a
letter corresponding to some node a, moves to a state labelled
by (a, 0) and increments the counter by a. Then it reads a
letter corresponding to some node b and moves from (a, 0)
to (b, 1) only if b is a neighbor of a. (Checking that b is a
neighbor of a can be hard-coded into the transitions of M.)
Then, from (b, 1), it reads a letter corresponding to some node
c and moves from (b, 1) to (c, 2) only if c is a neighbor of b.
Then, it reads some letter d and moves from (c, 2) to (d, 3)
only if d is a neighbor of c. Finally, from (d, 3), it reads any
letter, decrementing the counter by d. If the counter is 0 at the
end, then M accepts, otherwise it rejects.

Note that any triangle {a, b, c} in the graph can be converted
into an accepting path in M by inputting the sequence
a, b, c, a. On the other hand, any accepting path in M is of
the form: (a, 0), (b, 1), (c, 2), (d, 3), where (a, b), (b, c), (c, d)
are edges in G. Further the only updates that happen along the
way to the counter are an increment by a at the beginning,
and a decrement by d at the end. Recall that for a run to be
accepted, the counter must be 0 at the end, and so it follows
that d = a and so {a, b, c} is a triangle in G. Hence the
language of M is non-empty if and only if G has a triangle.

We will now expand upon this idea and prove the lower
bound for the general case. More precisely, given a graph G
on n nodes (without self-loops), we will use a DOCA M0, k−
1 many DFAs M1, · · · ,Mk−1 (where M0,M1, · · · ,Mk−1

will all have O(n) states) and an input alphabet of size O(nk)
to detect 3k cliques in graphs.

Finding three k-cliques: We can think of a 3k-clique as
3 different k-cliques C1, C2, C3 of size k each such that every
node in each Ci is connected to every node in each Cj for
i ̸= j, i.e., Ci ∪Cj for i ̸= j is a 2k-clique. Our construction
attempts to find such k-cliques in the following manner: First,
it finds a k-tuple of nodes C1 := (v0, . . . , vk−1), stores each
node of C1 in one of the machines and also stores C1 as
a whole in the counter of the OCA in a unique way. Some
questions arise at this point.

Q: How can we uniquely store a tuple of nodes of size k
as a single number?

A: We map each k-tuple of nodes (v0, . . . , vk−1) to the
number nk−1vk−1 + nk−2vk−2 + · · · + v0. Note that no two
tuples are mapped to the same number. ◁
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Q: The above representation can lead to numbers as high
as nk−1. However, each machine can only have O(n) states.
How can we increment a counter to that high a value?

A: For this purpose, we construct gadgets that serve as
a base-n counter over k digits. These gadgets will have two
important properties: First, each gadget Gi will have exactly
n states, one for each number from 0 to n−1, with transitions
which are either self-loops or only taking place between
successor states (modulo n). The second property is that,
for each Gi, a transition between successor states in Gi can
occur if and only if a run of length n traversing all the states
occurs in Gi−1. This means that if we execute the gadgets
G0, G1, . . . , Gi and at some point Gi stops at the state vi and
Gi−1, . . . , G0 all stop at the state 0, then we have executed a
path of length exactly nivi.

Formally, input letters of each gadget Gi are
{#0, . . . ,#k−1}. Each state j ∈ {0, 1, . . . , n − 1} in
Gi will stay at j if it reads any letter from #0, . . . ,#i−1,
move to j+1 if j < n−1 and it reads #i and finally move to
0 if j = n − 1 and it reads any letter from #i+1, . . . ,#k−1.
Each gadget initially has start state 0.

Suppose we now take k copies of our gadgets and execute
the first copy of G0, G1, . . . , Gk−1 until Gk−1 reaches some
state vk−1 and all the other gadgets reach 0. At this point,
suppose we stop the first copy by reading a special letter,
which can only be read when G0, . . . , Gk−2 are at the state 0.
(If read from any other state, they will move to a rejecting sink
state.) After reading this special letter, we “freeze” the value
vk−1 in Gk−1 (i.e., we will always remember this value in the
remaining copies of Gk−1) and then execute the second copy
of the gadgets G0, G1, . . . , Gk−2. Then, once the second copy
of Gk−2 reaches some state vk−2 and all the other gadgets
reach 0, we stop the second copy by reading another special
letter, freeze the value vk−2 in Gk−2 and move on to the
third copies of G0, G1, . . . , Gk−3 and so on. Hence, once
we have finished executing all the k copies, we must have
a run of length exactly nk−1vk−1 + nk−2vk−2 + · · ·+ v0 for
some vk−1, . . . , v0 that are stored in the last copies of the
gadgets. So, if we simply incremented the counter every time
a step is executed, at the end, the counter value will be exactly
nk−1vk−1 + nk−2vk−2 + · · ·+ v0. ◁

Having found this tuple C1 := (v0, . . . , vk−1), we now
check that it is a k-clique of the graph G.

Q: How can we verify that C1 is indeed a k-clique of G?
A: Recall that when the collection is found, each machine

stores one node of C1. Furthermore, we are allowed to have
an input alphabet of size nk. Hence, for each k-clique we will
have a letter in our input alphabet. Then, we force the ith

machine (which stores vi) to read one of these letters from its
current state only if the ith node in this letter is vi. (If it reads
some other letter, it will move to a rejecting sink state.) This
ensures that if all the machines successfully read some letter,
then C1 is a k-clique. ◁

Having now found a k-clique C1, we now find another k-
clique C2 such that C1∪C2 is a 2k-clique and store each node
of C2 in one of the machines.

Q: How can we find such a C2?
A: Each node of C1 is stored in some machine. Now, we

force the ith machine to read a letter corresponding to some
k-clique C2 only if the node stored in the ith machine is
a neighbor of every node in C2 and if it is indeed the case,
then the ith machine forgets its current node and starts storing
the ith node of C2. Note that since no self-loops are present
in G, if all the machines successfully read the same letter
corresponding to some k-clique C2, then we are guaranteed
that C1∩C2 = ∅, C1∪C2 is a 2k-clique and all the machines
now store nodes of C2. ◁

Having now found a k-clique C2, we now find another k-
clique C3 such that C2∪C3 is a 2k-clique by the same method
as before. Then, we once again find another k-clique C ′

1 such
that C3 ∪C ′

1 is a 2k-clique. Now, if we verify that C1 = C ′
1,

then we have successfully found a 3k-clique.
Q: How can we verify that C1 = C ′

1?
A: Recall that after having incremented the counter to

uniquely store C1, we have not modified it at all. Hence, the
current value of the counter is the encoding of C1. So, if we
decrement the counter by the encoding of C ′

1 and accept if
the counter is zero, then we could verify that C1 = C ′

1. ◁
Q: How do we decrement the counter by the value corre-

sponding to C ′
1?

A: Recall that to increment the counter to the value of C1,
we constructed k copies of the gadgets G0, . . . , Gk−1 and
executed them till the states in the last copy of each gadget
Gi stored the ith node of C1. Hence, if we execute the copies
of these gadgets in reverse, beginning with the ith machine
storing the ith node of C ′

1 and decrement the counter every
time we take a step, then this would decrement the counter
by exactly the value corresponding to C ′

1. ◁

This completes all the main ideas behind the proof of the
theorem. All the machines described above have O(n) states
(where the constant depends on k, but recall that k is also a
fixed constant) and the alphabet size is O(nk). Furthermore,
each of these machines can be constructed in time O(nk+1).

Now, suppose PDA ∩NFAk−1 intersection non-emptiness
can be solved in time O((n(ω−1)k|Σ| + nωk)1−ε) for some
ε > 0. Then, we can solve the 3k-Clique problem in
time O(nωk−ε) as follows: Given a graph G, first con-
struct the machines M0, . . . ,Mk−1 described above in time
O(nk+1) and then solve the PDA ∩NFAk−1 intersection non-
emptiness problem on this instance. The overall time taken is
O(|G|+ nk+1) +O((n(ω−1)k|Σ|+ nωk)1−ε) = O(nωk(1−ε)),
which contradicts the 3k-Clique hypothesis. Similarly, any
O((n2k|Σ| + n3k)1−ε) time algorithm for PDA ∩NFAk−1

intersection non-emptiness would contradict the combinatorial
3k-Clique hypothesis.

IV. PDA ∩NFAk−1 INTERSECTION NON-EMPTINESS -
THE CASE OF CONSTANT ALPHABETS

The reduction in the last section used an alphabet that
grew with the input graph. In this section, we turn our
attention to instances of the PDA ∩NFAk−1 non-emptiness
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problem where the input alphabet of the underlying machines
is fixed. More precisely, we fix an alphabet Σ in advance and
only consider instances of the PDA ∩NFAk−1 non-emptiness
problem over this fixed alphabet Σ. As a consequence of
Theorem 1, we get the following upper bound.

Corollary 4. The PDA ∩NFAk−1 non-emptiness problem
over a fixed input alphabet with n the maximum number of
states among all the given machines can be solved in time

• nωk if the given PDA is an OCA
• n3k if the given PDA is not an OCA or if only combina-

torial algorithms are allowed.

No polynomial improvement over this algorithm is known
in the literature. We now provide a lower bound that is almost
tight in the case of combinatorial algorithms and suggests that
big improvements over this algorithm are unlikely.

Theorem 5. If the 3(k − 1)-Clique hypothesis is true, the
PDA ∩NFAk−1 problem over a fixed input alphabet with n
the maximum number of states among all the given machines
cannot be solved in time

• O(nω(k−1)−ε) for any ε > 0.
• O(n3(k−1)−ε) for any ε > 0, if only combinatorial

algorithms are allowed.
Both lower bounds already hold when the given PDA is a
DPDA.

We note that the lower bound here is a factor of n3+(3−ω)k

away in the general case and a factor of n3 away in the
combinatorial case from the respective upper bounds.

A. Proof idea of Theorem 5

The formal proof of the theorem is given in Appendix B.
We now give the main ideas and intuitions behind the proof.

Let us fix a number 3(k−1). Let G be some graph (without
self-loops) over nodes {0, . . . , n − 1}. We will construct a
DPDA M0 and k − 1 many NFAs M1, . . . ,Mk−1 such that
G has a 3(k − 1)-clique if and only if there is a word w in
the intersection of the languages of all Mi. For the purposes
of presentation, we will first describe this construction with
linear-sized input and stack alphabets, i.e., the size of the input
and stack alphabets will not be a constant. Then, by a careful
analysis of the construction, we will convert it into one over
constant-sized input and stack alphabets with a logarithmic
blowup in the state space. We now proceed to the construction
with the linear-sized alphabets.

The very high-level idea behind these machines is similar
to the construction that we saw in Theorem 2. Intuitively, the
machines will first find a collection of k−1 vertices C1, check
that C1 is a (k − 1)-clique, then find a collection of k − 1
vertices C2 and check that every node in C1 is connected to
every node in C2. Then, they will check that C2 is a (k− 1)-
clique, find a collection of k − 1 vertices C3 and check that
every node in C2 is connected to every node in C3. Then they
will do a similar procedure with C3 and find another collection
C ′

1. Then they will finally check that C ′
1 = C1, which will

prove that C1 ∪ C2 ∪ C3 is a 3(k − 1)-clique. We stress that
while the high-level idea behind this construction and the one
given in Theorem 2 are the same, the actual implementation
details vary significantly. In particular, new ideas are needed
in order to store the cliques into the stack and circumvent the
large alphabet size of the construction from Theorem 2. We
will present these ideas now.

At any given point, each machine will store either a node of
the graph G in its state or store a special symbol ♢ denoting
that it is not storing any node. The intuition behind the NFAs
M1, . . . ,Mk−1 is that, at each point, each Mi will store one
of the nodes of the collection of k− 1 nodes that is currently
being examined, i.e., one of the nodes in either C1, C2, C3 or
C ′

1. The intuition behind the PDA M0 is two-fold. First, the
stack of M0 will help store the cliques C1, C2, C3, C

′
1 of G,

along with some store other information. Second, the states
of M0 should be thought of as a “scratchpad”, in that it will
help store some auxiliary information that will be needed for
the NFAs.

We will encode each node i ∈ {0, . . . , n− 1} by itself, i.e.,
the input and the stack alphabets will have as letters all the
numbers between 0 and n− 1. In addition to these letters, the
input alphabet will also have letters of the form {i : 0 ≤ i ≤
n − 1}. The intuition is that, whenever i is read as an input
letter, either the stack does not change or i will be pushed onto
the stack. Similarly, whenever i is read as an input letter, i will
be popped from the stack. Furthermore, the input alphabet will
have # and @ as two other additional letters.

We now describe the construction of the machines. We recall
that each machine will store either a node of the graph or ♢ in
its state at all times. The machines will work together in three
different parts and each part will itself comprise three different
sub-parts. We begin by describing the first part, whose goal is
to check if a collection of nodes C1 is a (k− 1)-clique and if
so, find another collection C2 such that every node in C1 is
connected to every node in C2. This is done in three sub-parts.

Part 1, Sub-Part I: The Setup: In the first sub-part, we
will store k−1 nodes in the stack of M0 in a specific manner.
The PDA M0 begins this sub-part by remembering ♢ in its
initial state. Further each NFA Mi begins by remembering
some node xi in its state. (This can be thought of as non-
deterministically selecting a state for each Mi with some node
xi stored in that state; later on we will see how this restriction
can be removed). The goal of the first sub-part is to setup
the stack in a specific way so that each xi is pushed into
the stack exactly i − 1 times. This is done in the following
manner. Since x2 is stored in the state of M2, we can force
the input letter that is read at this point to be x2. Indeed, we
only have to create a copy of the current state and have exactly
one transition which leads from the original state to the copy
by reading x2. This will ensure that x2 is the only possible
input letter that could be read at this point. We also ensure
that upon reading x2, the PDA M0 pushes it onto the stack.
Similarly, since x3 is stored in the state of M3, we can force
the next two input letters to be x3, by adding two copies of
the current state of M3 and appropriate transitions. We can
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also ensure that the letter x3 is pushed into the stack twice.
In this way, we can ensure that each letter xi is pushed into
the stack i − 1 times. Once this sub-part is done, each Mi

will store the node xi in its state, M0 will store ♢ in its state,
and the stack of M0 (from the top) will contain k − 2 many
copies of xk−1, k − 3 copies of xk−2 and so on all the way
till one copy of x2. This completes the first sub-part.

Part 1, Sub-Part II: The Check: In the second sub-part,
we will use the special structure of the nodes x1, . . . , xk−1 that
are stored in the stack to check that these nodes indeed form a
(k−1)-clique. This is done in the following manner. Note that,
at the end of the first sub-part, the node x1 is stored in M1

and the node xk−1 is stored at the top of the stack. Using just
this information, we will devise a gadget that checks that x1

is a neighbor of xk−1 in the following way. Since x1 is stored
in M1, we can force the next input letter to be x1, similar to
how we did it in the first sub-part. Upon reading this input
letter, we can make M0 remember it in its state. (Hence at
this point, both M0 and M1 remember x1 and xk−1 is at the
top of the stack.) Now, we force the next input letter to be
the special letter #. Upon reading #, M1 will move to some
neighbor x′ of x1. (At this point, M0 stores x1, M1 stores x′

and the top of the stack stores xk−1.) We can now force the
next input letter to be x′ and we also force M0 to pop x′ from
the top of the stack. For both these things to simultaneously
happen, it must be the case that x′ = xk−1 and hence that
x1 and xk−1 are neighbors. (If this successfully happens, then
at this point, M0 stores x1, M1 stores x′ = xk−1 and the
stack now contains one fewer xk−1 at the top.) Now, we force
the input letter to be #, upon reading which M1 moves to
a state remembering ♢. From there, because M0 remembers
x1, we can force the input letter to be x1, upon reading which
M1 will move back to storing x1 and M0 will move back
to storing ♢. In this way, we have checked that x1 and xk−1

are neighbors and the only information that we lost along the
way was a copy of xk−1 at the top.

By the structure of the first sub-part, it follows that we now
have k − 3 more copies of xk−1 remaining in the stack of
M0. Hence, we can now reformulate the same gadget from
the above paragraph to check that x2 and xk−1 are neighbors,
x3 and xk−1 are neighbors and so on.

Note that, after exhausting all the copies of xk−1 from the
stack, we are left with k − 3 copies of xk−2. This is then
sufficient to check that xk−2 is a neighbor of x1, x2, . . . , xk−3.
Then we do the same check for xk−3, xk−4 and so on all the
way till x2. This ensures that x1, . . . , xk−1 is a (k−1)-clique.
Note that, at the end of this computation, each Mi stores xi

and M0 stores ♢. This completes the second sub-part.
Part 1, Sub-Part III: The Exploration: In the third sub-

part, we will find k − 1 more nodes y1, . . . , yk−1 and check
that each xi is connected with each yj . This is done in the
following manner. Initially, we read some node y1, store it in
the state of M0 and push it onto the stack. Since y1 is now
stored in M0, we can ensure that the next k input letters are
all y1 and also that all these k input letters are pushed onto the
stack. Then, by using the gadget from the second sub-part, we

can check that x1, x2, . . . , xk−1 are all neighbors of y1. By
construction of this gadget, at the end of this check, each Mi

will still store xi, M0 will store ♢ and the stack will contain
one copy of y1 (since we pushed k many copies of y1 and
only popped k − 1 many copies). We now repeat what we
did before to read another node y2 k times and ensure that
x1, . . . , xk−1 are all neighbors with y2. This will end with
the stack containing one copy of y2 and then one copy of y1.
Continuing this we can get y3, . . . , yk−1 such that each xi is a
neighbor of each yj , and the stack contains one copy of yk−1,
one copy of yk−2 and so on all the way till y1.

Now, by popping the nodes on the stack, we can ensure that
the next k − 1 input letters are yk−1, . . . , y2, y1 in that order.
While popping yi (which happens upon reading yi), we will
store yi in the state of Mi. Hence, at this point, each Mi

will store yi and M0 will store ♢. This completes the third
sub-part and also the first part.

Parts 2 and 3: At the beginning of the first part, we
started with a node xi in the state of each Mi. At the end of
the first part, we have ensured that x1, . . . , xk−1 is a (k− 1)-
clique, found k − 1 more nodes y1, . . . , yk−1 such that each
xi is a neighbor of each yj and stored each yi in Mi.

The second and third parts are obtained by repeating the
same procedure as the first part from where it stopped. More
precisely, in the second part, the machines will check that
y1, . . . , yk−1 is a (k − 1)-clique, find k − 1 more nodes
z1, . . . , zk−1 such that each yi is a neighbor of each zj and
then store each zi in Mi. Then, in the third part, the machines
will check that z1, . . . , zk−1 is a (k−1)-clique, find k−1 more
nodes x′

1, . . . , x
′
k−1 such that each zi is a neighbor of each x′

j

and store x′
i in each Mi.

Hence, at the end of the third part, each Mi stores
the node x′

i. By construction of the three parts, it
would then follow that if each x′

i = xi, then the
nodes x1, . . . , xk−1, y1, . . . , yk−1, z1, . . . , zk−1 together form
a 3(k − 1)-clique. So, under the assumption that in each
machine we store the same node at the end as the one that
we started off with, there is a word in the intersection of the
languages of all the machines if and only if the given graph
has a 3(k − 1)-clique. A natural question arises at this point.

Q: How can we get rid of this assumption?
A: Before we begin the first part, we add a zeroth part

(which we call the prologue) in which we read k − 1 nodes,
check that the ith node read is the same as the node in the
state of Mi and push each node onto the stack as we read it.
In this way, the prologue ensures that when we begin the first
part with nodes x1, . . . , xk−1, they are already on the stack.

Then we proceed to execute the first part, second part and
third part as mentioned above. Note that nowhere in any of
these parts did we ever need the stack to be empty to make
a transition. Hence, for the execution of these three parts, it
does not matter what stack content we began with, and so,
even with the addition of the zeroth part, the execution of
these three parts will be exactly the same as described before,
except for the following fact: At the end of the three parts,
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each Mi stores x′
i and the stack of M0 contains the same

content as the end of the prologue.
Now, we add another last part (which we call the epilogue)

which reads k − 1 letters and attempts to pop the node from
the stack corresponding to the input letter as it is read and
ensures that the ith letter that is popped is the same as the
node stored in Mk−i. This will ensure that the nodes that
were put in the stack during the prologue are the same as the
nodes x′

1, . . . , x
′
k−1, which is what we wanted to verify. ◁

This completes the construction of our reduction except for
the fact that we have linear-sized input and stack alphabets.

Q: How can we convert the linear-size alphabets into
constant alphabets?

A: The idea is to encode each node i using its binary
representation. So, now each node can be represented only by
0’s and 1’s. Furthermore, in the transitions, we replace pushing
the node i onto the stack with pushing its most significant
bit (msbf) representation onto the stack. Similarly, we replace
popping the node i from the stack with popping its least
significant bit (lsbf) representation from the stack. When this
encoding is done in a naive way, for each transition labelled
with some node, this would incur an extra logarithmic amount
of states. Overall, this would then give us an extra O(m log n)
states where m is the number of edges in the graph G. Since
m could be n2, this is not efficient enough for our reduction.

We now sketch how to circumvent this naive method with a
more efficient procedure resulting in only an extra O(n log n)
states. The crucial observation for this reduction in the state-
space is the following one, stated here informally: Every state
q storing a node i in each of the machines in our construction
obeys one of the following three conditions.

• It only allows to either read i or i as input (but not both):
In this case, we can only read i or i from that state. Hence,
we only need O(log n) more states to encode the node
i, i.e., we need O(log n) more states to check that we
are reading i or i and then we can non-deterministically
choose any of the outgoing transitions from that state.

• It allows for reading any letter from {i : 1 ≤ i ≤ n}
or {i : 1 ≤ i ≤ n} (but not both) and it goes to the
same state irrespective of which letter is read: In this
case even though we can read any node, the final state
reached is the same. Hence, we only have to ensure that
a valid binary representation of some node is read, i.e.,
some string in {0, 1}logn is read, which can be ensured
by having O(log n) more states. Once such a string is
read, we know that we can move to exactly one state.

• It only allows to read # as input: In this case we do
not need any more states, as we are only replacing the
encoding of the nodes i.

This means that for any state storing some node, we only
need O(log n) more states. The second observation for this
reduction is that the number of states which do not store any
node, i.e., store ♢, is only a function of k. Furthermore, any
state that stores ♢ has only one outgoing transition for each
node of the graph. This means that we can afford to spend
O(log n) states replacing each outgoing transition from these

states and in the end, we would end up spending O(n log n)
states for each state storing ♢. Since the overall number of
states storing ♢ is a function of k only, the total number of
states we introduce this way is still O(n log n) (because 3(k−
1) was a fixed constant to begin with). ◁

Finally, we end up with a construction in which each
of the machines have O(n log n) states and the input and
stack alphabets are constant-sized. Furthermore, all of these
machines can be constructed in time O(|G|+ n log n). Using
this, we can then show that if we can solve PDA ∩NFAk−1

in O(nω(k−1)−ε) time (resp. in O(n3(k−1)−ε) time) for some
ε > 0, then 3(k− 1)-clique can be solved in O(nω(k−1)−ε/2)
time (resp. in O(n3(k−1)−ε/2) time). This proves Theorem 5.

V. 2NPDA(k) AND EQUIVALENCES WITH PDA ∩NFAk−1

In the previous sections, we have shown lower bounds
for the PDA ∩NFAk−1 non-emptiness problem based on the
number of states of the underlying machines. However, this
does not preclude the possibility that an O(N3k−ε) time
algorithm exists for this problem (for some ε > 0), where N
is the total number of bits required to encode all the machines.
Note that N might be quadratic in the number of states.
In dense machines, the number of transitions is quadratic
in the number of states. Even when k = 1, i.e., PDA non-
emptiness, no algorithm is known that runs in time O(N3−ε)
for any ε > 0. Unfortunately, standard existing hypotheses
in fine-grained complexity theory seem to be insufficient for
explaining this hardness aspect. Furthermore, it is known
that, unless breakthrought results in circuit complexity appear,
perhaps the most well-known hypothesis of fine-grained com-
plexity theory (namely, the strong exponential-time hypothesis,
SETH) cannot be used to help explain this hardness [15].

Recently, a new NFA acceptance hypothesis was intro-
duced [8]. Assuming this hypothesis, no algorithm (combi-
natorial or otherwise) can solve PDA non-emptiness for dense
PDA in time O(n3−ε) for any ε > 0 where n is the number
of states [8]. However, even this result does not explain the
absence of O(N3−ε) time algorithms where N is the number
of bits of the input. Also, it is not clear how to extend (or
use) that hypothesis to also help explain the absence of faster
algorithms for the PDA ∩NFAk−1 non-emptiness problem.

In this paper we propose a new hypothesis, called the
2NPDA(k) hypothesis, on the computational complexity of the
2NPDA(k) language recognition problem (see below). Based
on this hypothesis, we prove that there can be no algorithm
running in time O(N3k−ε) for the PDA ∩NFAk−1 non-
emptiness problem. To corroborate this hypothesis, we pro-
vide reductions between the 2NPDA(k) language recognition
problem and other problems in language theory and program
analysis. We now move on to describing the 2NPDA(k)
language recognition problem and the associated hypothesis.

A. Two-Way Multihead Nondeterministic Pushdown Automata

A two-way k-head nondeterministic pushdown automaton
(2NPDA(k)) [23], [26] is a machine that consists of a finite set
of control states, a read-only input tape, a pushdown store, i.e.,
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a stack, and k heads that read the input tape. There is a single
initial control state and a subset of states marked as accepting.
Based on the control state, the top of the stack, and the letters
read by the heads, the machine can nondeterministically pick a
transition that updates its control state, replaces the top symbol
on the pushdown store with a (possibly empty) string, and
moves each head to the left or right. An input word w over the
machine’s input alphabet is placed on the input tape between
designated “end of tape” markers ◁ and ▷.

The machine starts from its initial state with an empty
pushdown store, and applies its transitions. A run on an input
word is a sequence of transitions starting from the initial state
consistent with the word. A run is accepting if it leads to an
accepting state; we say the word is accepted by the machine.
Without loss of generality, we can assume above that a word is
accepted in a final state with all heads scanning the right end
marker and the pushdown store being empty. The language of
the machine is the set of accepted words.

A 2DPDA(k) is a 2NPDA(k) machine in which the transi-
tion relation is deterministic: there is at most one outcome for
any state, top of stack, and letters being read by the heads.

A formal description of 2NPDA(k) machines, following
[23] and [26], is given in Appendix C-A. The following is
the central decision problem for us:

2NPDA(k) Language Recognition

Fix: 2NPDA(k) M .
Input: A word w.
Decide: Is w is accepted by M?

This actually specifies a family of decision problems, one
for each 2NPDA(k) machine M . When referring to a prob-
lem from this family, we write “M -language recognition”,
for any fixed machine M . We are now ready to state the
2NPDA(k) hypothesis, k ≥ 1.

2NPDA(k) Hypothesis

There is a fixed 2NPDA(k) machine M such that the M -
language recognition problem cannot be solved in time
O(|w|3k−ε) for any ε > 0.

This is an extension of the 2NPDA(1) hypothesis that was
introduced by Neal [30] and Heintze and McAllester [24].
They successfully used the 2NPDA(1) hypothesis to explain
the lack of sub-cubic algorithms for many problems in pro-
gram analysis.

Remark 6. The class of 2NPDA(k) problems has been
studied both in language theory and in complexity theory.
Ibarra [26] proved that the hierarchy is strict: for each k ≥ 1,
2NPDA(k) ⊊ 2NPDA(k+1). Miyano [29] showed that each
class has a hardest language. Cook [16, Corollary 1] showed
that the union of 2NPDA(k) problems for all k ≥ 1 precisely
captures the class PTIME.

B. Equivalences of 2NPDA(k) with other problems

We now show that the 2NPDA(k) language recognition
problem is linear-time equivalent to a collection of other
problems from program analysis and language theory. Let us
define a linear-time reduction from problem Π1 to problem Π2

as a linear-time algorithm f that takes as input an instance x
of Π1 and outputs an instance f(x) of Π2 such that x is a
yes-instance if and only if f(x) is. Problems Π1 and Π2 are
linear-time equivalent if there exist linear-time reductions from
Π1 to Π2 and from Π2 to Π1.

We first consider the following decision problem, where L
is a context-free language (CFL), i.e., a language L recognized
by some PDA.

CFL k-Intersection Reachability

Fix: CFL L.
Input: k NFAs A1, . . . , Ak over the same alphabet as L.
Decide: Does the intersection L(A1) ∩ . . . ∩ L(Ak)
contain a word from L?

Note that k ≥ 1 is fixed, L is fixed, and the common input
alphabet of the k NFAs is fixed.

The above definition actually specifies a family of problems,
one for each k ≥ 1 and each language L. When referring to a
problem from this family, we will write “(L,k)-intersection
reachability”. The problem of DCFL k-intersection reach-
ability for DFAs is the special case of CFL k-intersection
reachability when the language L is a DCFL, i.e., a context-
free language recognized by a deterministic PDA and all of the
NFAs A1, . . . , Ak are actually DFAs. The general case of the
problem will also be referred to as CFL k-intersection reach-
ability for NFAs. For NFAs, note the subfamily with k = 1 is
exactly the well-known CFL reachability problem [41].

Having introduced this problem, in the rest of this subsec-
tion, we show (informally speaking) that for each k ≥ 1 the
following problems are linear-time equivalent:

• 2NPDA(k) language recognition,
• DCFL k-intersection reachability for DFAs,
• CFL k-intersection reachability for NFAs,
• PDA ∩NFAk−1 intersection non-emptiness,
• DPDA ∩ DFAk−1 intersection non-emptiness.

Note that 2NPDA(k) language recognition is parameterised
not only by k but also by the automaton. Likewise, CFL k-
intersection reachability is also parameterised by the CFL.
Thus, we cannot prove that each problem from one family is
linear-time equivalent to the PDA ∩NFAk−1 intersection non-
emptiness problem for the same k. However, what we show is
that the hardest (most difficult) language recognition problem
for 2NPDA(k) is linear-time equivalent to the intersection non-
emptiness problem, as illustrated below in the formal version
of the above-mentioned equivalences.

Theorem 7 (Linear-Time Equivalences). Let k ≥ 1 be any
fixed number.

1) For every 2NPDA(k) M, there is a DCFL L and a
linear-time reduction from the M-language recognition
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problem to the (L, k)-intersection reachability problem
for DFAs.

2) For every CFL L, the (L, k)-intersection reachability
problem for NFAs (or DFAs) has a linear-time reduc-
tion to the PDA ∩NFAk−1 intersection non-emptiness
(or PDA ∩DFAk−1 intersection non-emptiness, respec-
tively). Moreover, the reduction produces a DPDA if L
is a DCFL and the first given NFA is a DFA.

3) There is a fixed 2NPDA(k) Mk such that
PDA ∩NFAk−1 intersection non-emptiness has a
linear-time reduction to L(Mk).

Note that by traversing through this sequence of equiva-
lences, it follows that there is a fixed 2NPDA(k) Mk such
that, for every 2NPDA(k) M, the M-language recognition
problem is linear-time reducible to the Mk-language recogni-
tion problem. Hence, this proves the existence of a “hardest”
2NPDA(k) language, in terms of time complexity.

It is known that there exist “level by level” reductions
between the PDA ∩NFAk−1 intersection non-emptiness prob-
lem to the deterministic time hierarchy within PTIME [38],
[40], [17]. It follows from Theorem 7 that 2NPDA(k) has
similar reductions.

The equivalences of Theorem 7 are with respect to linear-
time reductions. For measuring the computational complexity
relative to the number of states and transitions in the automata,
we can draw the following consequences:

Corollary 8. Fix k ≥ 1 and a finite alphabet Σ.
1) The 2NPDA(k) hypothesis is false if and only if there

exists ε > 0 for which the PDA ∩NFAk−1 Intersection
Non-Emptiness problem has an algorithm with running
time O(m3k−ε), where m is the maximum number of
transitions in the PDA and NFAs. The same holds for
the special case of the problem, DPDA ∩ DFAk−1.

2) There exists a deterministic context-free language L such
that, unless the 2NPDA(k) hypothesis is false, there
exists no ε > 0 for which the (L, k)-intersection reach-
ability problem for DFA has an algorithm with running
time O(n3k−ε), where n is the maximum number of
states in the DFAs.

We next prove the three claims of Theorem 7.

C. 2NPDA(k) language recognition reduces to DCFL k-
intersection reachability for DFAs

Let M be a 2NPDA(k) machine. For every w ∈ Σ∗, we
show how to construct a DPDA P and DFAs A1, . . . , Ak such
that w ∈ L(M) if and only if L(P )∩L(A1)∩. . .∩L(Ak) ̸= ∅.
In our construction, the DPDA P will be independent of the
input word w and determined solely by the automaton M;
thus, the DCFL L from the theorem statement will be chosen
as L = L(P ). The DFAs A1, . . . , Ak will be constructed in
time linear in the length of w.

The input alphabet of the machines P , A1, . . . , Ak is the set
δ of transitions of the 2NPDA(k) M. The language L(P ) ∩
L(A1)∩. . .∩L(Ak) will consist of all accepting runs of M on

input w. Indeed, a sequence ρ = t1 . . . tn ∈ δ∗ is an accepting
run if and only if the following three conditions are satisfied:

• Transitions of ρ trace a path in the finite graph on the
states of M from the initial state to a final state.

• Stack movements prescribed by the sequence ρ are valid,
that is, the sequence of pushes and pops specified by
the sequence ρ constitutes a valid computation of the
underlying stack.

• For each i ∈ [1, k], the letters on the input tape that are
read by the ith head in the sequence ρ are compatible
with the input tape containing the word ◁w▷, where ◁
and ▷ are endmarker symbols.

In short, the DPDA P checks the first two conditions, and each
of DFAs Ai checks the third condition for i. Further details
are given in section C-B in the appendix.

D. CFL k-intersection reachability reduces to
PDA ∩NFAk−1 intersection non-emptiness

Let L be a fixed context-free language, i.e., L is recog-
nized by some fixed PDA P0. Given k NFAs, the (L, k)-
intersection reachability problem asks if there is a word
in L(A1) ∩ . . . ∩ L(Ak) that belongs to L. We will now
reduce the (L, k)-intersection reachability problem to the
PDA ∩NFAk−1 intersection non-emptiness problem.

The reduction first produces a PDA P for the language
L∩L(A1) = L(P0)∩L(A1) by utilising the standard product
construction (see, e.g., Hopcroft, Motwani, and Ullman’s text-
book [25, Section 7.3.4]). The set of control states of PDA P
is the Cartesian product of the sets of control states of P0 and
A1. Since P0 is fixed, the description size of P is linear in
the description size of A1.

The reduction then outputs the PDA P and NFAs
A2, . . . , Ak, which together form the input of PDA ∩NFAk−1

intersection non-emptiness. The correctness and running time
analysis of the reduction are immediate.

We remark that, if L is a DCFL and A1 is a DFA, then the
product PDA P is in fact a DPDA [20, Theorem 3.1].

E. PDA ∩NFAk−1 intersection non-emptiness reduces to
2NPDA(k) language recognition

The input to the PDA ∩NFAk−1 intersection non-emptiness
problem is a concatenation of the string encoding the PDA P
and strings encoding the NFAs A1, . . . , Ak−1, with delimiters
separating one from another. The encodings use a fixed
alphabet, which we denote by ∆; then the input is some
w ∈ ∆∗. In particular, all letters of the input alphabet of
P,A1, . . . , Ak−1, denoted by Σ, and of the stack alphabet
of P , denoted by Γ, are encoded by words from ∆∗. We
describe a fixed 2NPDA(k) Mk that accepts w ∈ ∆∗ if and
only if w encodes some PDA P and NFAs A1, . . . , Ak−1

that accept some word in common, i.e., if and only if
L(P ) ∩ L(A1) ∩ . . . ∩ L(Ak−1) ̸= ∅.

(The description of 2NPDA(k) Mk will only depend on k
but not on PDA P or NFAs A1, . . . , Ak−1. The reduction
is linear: in fact, it is just a matter of encoding the list
P,A1, . . . , Ak−1 as a word w ∈ ∆∗.)
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1: push (the encoding of) the bottom-of-stack symbol of A0 = P onto the stack
2: for i = 1 to k: do position head i to initial state of Ai−1

3: while true do
4: while ∗ do (* nondeterministic choice: skip or repeat *)
5: move head 1 to an outgoing ε-transition t0 in the encoding of A0

6: execute t0 in A0

7: for i = 1 to k do move head i to an outgoing transition ti−1 in the encoding of Ai−1

8: for i = 2 to k do check that t0 and ti−1 read the same input letter a ∈ Σ

9: for i = 1 to k do execute ti−1 in Ai−1

10: while ∗ do (* nondeterministic choice: skip or repeat *)
11: move head 1 to an outgoing ε-transition t0 in the encoding of A0

12: execute t0 in A0

13: if all of A0, A1, . . . , Ak−1 are accepting: then accept

Fig. 1: Pseudocode of a 2NPDA(k) Mk that that accepts w ∈ ∆∗ if and only if L(P ) ∩ L(A1) ∩ . . . ∩ L(Ak−1) ̸= ∅.

The idea is for Mk to guess a word in this intersection and
to simulate, on the fly, k accepting runs on this word in lock-
step: one in the PDA P and k−1 in the NFAs A1, . . . , Ak−1.
In a nutshell, Mk uses each one of its heads for keeping track
of the states of each machine in these accepting runs, and the
stack for storing the content of the stack of the PDA P . The
pseudocode in Figure 1 summarises the construction and is
meant to be seen as the program of the (fixed) 2NPDA(k)Mk.
For the convenience of notation, we denote A0 = P .

Details are provided in section C-D in the appendix.

F. Application: Hardest 2NPDA(k) Languages

We already observed that Theorem 7 proves the existence of
a “hardest” 2NPDA(k) language in terms of time complexity.
In particular, for each k there exists a fixed 2NPDA(k) Mk

such that L(M) has a linear-time reduction to L(Mk) when-
ever M is also a 2NPDA(k). We can strengthen this result by
replacing linear-time reductions with homomorphisms, giving
a new proof of the result of Miyano [29].

A classical result on the existence of “hardest” context-free
language is by Greibach [21], and for 2NPDA(1) such a lan-
guage was first obtained by Rytter [34]. Our hardest languages,
L(Hk) below, are different from those of Miyano [29].

Proposition 9. For each k there exists a fixed 2NPDA(k)
Hk over some alphabet Σk with the following property. For
every 2NPDA(k) M over a finite alphabet Σ there is a
homomorphism h : Σ∗ → Σ∗

k such that, for every w ∈ Σ+,
we have w ∈ L(M) if and only if h(w) ∈ L(Hk).

We do not provide the entire proof of this result as it rests
on an application of existing ideas, namely on a similar recent
argument for the case k = 1 [15, Section 8]. We provide an
outline of the proof, sketching the argument.

Conceptually, our hardest language L(Hk) is based on the
“circular” application of the three reductions of Theorem 7.
For a word w ∈ Σ∗, the homomorphism h embeds in
each morphic image h(a), a ∈ Σ, a description of the

entire 2NPDA(k) M, encoded using an appropriate but fixed
alphabet Σk. Roughly speaking, this enables the new fixed
2NPDA(k) Hk to simulate M, using the same approach as
pseudocode from Figure 1. Movements of each head of Hk

between “blocks” h(a), a ∈ Σ, will follow the movements
of the corresponding head of M between individual letters
a, a ∈ Σ, of the input word w. The stack of Hk will also
mimic the stack of M. Auxiliary movements and auxiliary
stack operations will be required for the simulation, which are
a bit tedious to describe but present no challenge.

A more sophisticated element of the construction is handling
of the endmarkers. Intuitively, since the left and right tape
delimiters ◁ and ▷ are not given to the morphism h, special
treatment of these two letters is required: the automaton Hk

“bounces back” to the main part of the tape upon hitting an
endmarker and uses a copy of the description of M embedded
in the first (or last) letter of the tape to continue the simulation.
Extra care is necessary to ensure that Hk can process the
additional information, namely that some of the heads of the
simulated automaton M are over the endmarker instead of the
first (respectively, last) letter of the input word. The technique
of [15, Section 8] can be used to this end. This completes the
proof outline, as well as a sketch of the construction of the
hardest language L(Hk).
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APPENDIX A
PROOF OF THEOREM 2

Let G be a graph (without self-loops) and 3k be a given
number. Without loss of generality, let {0, 1, . . . , n − 1} be
the vertices of G. We will now construct a DOCA M0 and
k many DFAs M1,M2, . . . ,Mk−1 over a common alphabet
Σ such that the intersection of M0,M1, . . . ,Mk−1 is non-
empty if and only if G has a 3k-clique.

The high-level idea behind the construction of these ma-
chines has been described in the main part of the paper and so
we concentrate here on the formal aspects. We will construct
each machine incrementally in three stages. In each stage,
we will introduce some specific machines and prove some
properties regarding each of them. We will then compose the
machines at each stage to get the desired final construction
(i.e., the final machines M0, . . . ,Mk−1).

Before we describe the three stages, we make a small
remark. In each of the three stages, we will actually construct
machines such that for each state q and each letter a, there
is at most one outgoing transition for the pair (q, a). Strictly
speaking, these do not correspond to deterministic machines,
because determinism mandates that there be exactly one

outgoing transition for the pair (q, a). However, it is easy to
see that any such machine can be converted into a language-
equivalent deterministic machine by adding a special sink state
to which all undefined outgoing transitions are diverted to. The
reason we do not add this sink state to all of the machines in
our construction is purely for expository purposes as it makes
the construction and proofs easier to state and prove. Having
made this remark, we now proceed to the first stage of the
construction.

First stage: Machines for storing a k-tuple by incrementing
the counter: In this stage, we will introduce machines which
will allow us to uniquely store a k-tuple of nodes as a
number in the counter of the DOCA. As mentioned in the
intuition in the main part of the paper, to every k-tuple
C = (v0, v1, . . . , vk−1) of nodes, we can uniquely assign a
number nk−1 · vk−1 + nk−2 · vk−2 + · · · + v0. In this stage,
we will construct machines which will first force the counter
of the DOCA to reach a value of the above form for some
collection of nodes vk−1, . . . , v0. (In the next stage, we will
check that this collection of nodes is indeed a k-clique).

Description of A0, . . . , Ak−1: We now proceed with the
formal aspects. We will construct a DOCA A0 and k−1 many
DFAs A1, . . . , Ak−1 in this first stage. The common set of
input letters for these machines will be #0,#1, . . . ,#k−1 and
@0,@1, . . . ,@k−1. Each machine Ai ∈ {A0, . . . , Ak−1} will
have the following set of states: For each s ∈ {0, . . . , n− 1}
and each ℓ ∈ {0, . . . , k − 1}, Ai will have a state (s, ℓ)+i.
Furthermore, for each s ∈ {0, . . . , n − 1}, Ai will also
have a state (s, done)+i. The + in the superscript in these
states denotes that these are the machines in the first stage
responsible for incrementing the counter and the i in the
superscript denotes the machine to which these states be-
long to. The intuition behind these states are that for each
ℓ ∈ {0, . . . , k−1}, the states (0, ℓ)+i, (1, ℓ)+i, . . . , (n−1, ℓ)+i

correspond to the (k − ℓ)th copy of the gadget Gi described
in the proof idea in the main part of the paper. The states
(0, done)+i, (1, done)+i, . . . , (n − 1, done)+i denote that we
have frozen the ith machine with the values 0, 1, . . . , n − 1
respectively.

Before we describe the transitions of each of these ma-
chines, we build some intuition. Each machine Ai will begin
at (0, k − 1)+i. Note that each state of Ai is of the form
(s, p)+i for some s ∈ {0, . . . , n−1} and some p ∈ {0, . . . , k−
1, done}. The first part s will be called the score of that state
and the second part p will be called the phase of that state. If
the phase is ℓ for some ℓ ∈ {0, . . . , k − 1}, then we say that
the state is active and otherwise, we say that it is done.

The transitions that we will construct will always satisfy
the following property: Suppose while reading a word, the ma-
chines A0, A1, . . . , Ak−1 reach states with scores s0, . . . , sk−1

at some point. Then the value of the counter of A0 at that point
will be exactly equal to

∑
0≤i≤k−1 n

isi. Furthermore, if some
machine Ai reaches a state of the form (si, done)

+i, then this
would intuitively mean that we have finished the increments
corresponding to the ni term in our representation, i.e., that
we have decided on picking the ith node to be si. Intuitively,
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then in order to complete our task, we must force each Ai

to reach a state of the form (si, done)
+i, i.e., we must force

each Ai to reach a done state. This we will do by first forcing
Ak−1 to reach a done state, then Ak−2, then Ak−3 and so on.

We will now formally describe the transitions. The machine
A0 will have the following transitions: For each active state
(s, ℓ)+0,

• If we read #0 and s < n − 1, then we increment the
counter by 1 and move to (s+ 1, ℓ)+0.

• If we read any one of #1,#2, . . . ,#k−1, and s = n−1,
then we increment the counter by 1 and move to (0, ℓ)+0.

• If we read @ℓ and ℓ > 0 and s = 0, then we move to
(0, ℓ− 1)+0.

• If we read @ℓ and ℓ = 0, then we move to (s, done)+0.
• In all the other cases, the transition is not defined.
Each machine Ai for i ≥ 1 will have the following

transitions: For each active state (s, ℓ)+i,
• If we read any one of #0, . . . ,#i−1, then we stay at

(s, ℓ)+i.
• If we read #i, and s < n−1, then we move to (s+1, ℓ)+i.
• If we read any one of #i+1, . . . ,#k−1, and s = n − 1,

then we move to (0, ℓ)+i.
• If we read @ℓ and ℓ > i and s = 0, then we move to

(0, ℓ− 1)+i.
• If we read @ℓ and ℓ = i, then we move to (s, done)+i.
• In all the other cases, the transition is not defined.

Furthermore, for each done state (s, done)+i, if we read any
one of #0, . . . ,#i−1,@0, . . . ,@i−1, we stay there and in any
other case, the transition is not defined.

This completes the description of all the machines. Recall
that the initial state of each machine Ai is (0, k − 1)+i. Note
that in every machine, for each state q and each letter a, there
is at most one state q′ to which the machine can move to while
reading the letter a from q. Hence, for every machine Ai and
every word w, there can be at most one run of machine Ai.

Properties of A0, . . . , Ak−1: We now prove some prop-
erties of these machines and show that they conform with the
intuitions given above. To this end, let us set up some notation.
Suppose there exist runs of the machines A0, . . . , Ak−1 on
some word w. We say that the runs are active with phase
k − 1− i for some 0 ≤ i ≤ k − 1 if at the end of the runs,

• The states of the machines A0, . . . , Ak−1−i are all active
with phase k − 1− i,

• The states of the machines Ak−i, . . . , Ak−1 are all done.
Finally, we say that this collection of runs is perfect if at the
end of each run for each machine, the phase of the state of
that machine is done.

Having stated these definitions, we state our first result. It
proves that the collection of runs that we get for any word w
is either active or perfect.

Lemma 10 (Incrementing Counter Soundness Lemma). Let
ρ = (ρ0, . . . , ρk−1) be a collection of runs of the machines
A0, . . . , Ak−1 along some word w. Then ρ is either active
or perfect. Furthermore, if s0, . . . , sk−1 are the scores of the

states of A0, . . . , Ak−1 at the end of ρ, then the value of the
counter of A0 at the end of ρ is

∑
0≤i≤k−1 n

isi.

Proof. This follows by an induction on the length of w. Note
that the collection for the empty word is active. Suppose we
have already shown this property for some word w and we
would like to show this for the word wa where a is some
letter. Let ρ be a collection of runs for w.

Suppose ρ is perfect. Then, since there are no outgoing
transitions from any done state of A0, it follows that reading
any letter at this point will not produce a run in A0 and so
there is nothing left to prove for the word wa.

Suppose ρ is active. Hence there is some i ≥ 0 such that at
the end of the runs in ρ,

• The states of the machines A0, . . . , Ak−1−i are all active
with phase k − 1− i,

• The states of the machines Ak−i, . . . , Ak−1 are all done.
Let sℓ be the score of the state of each Aℓ at the end of
reading w. By induction hypothesis, the value of the counter
of A0 after reading w is

∑
0≤ℓ≤k−1 n

ℓsℓ.
Suppose there is a first index e in {0, . . . , k − 1− i} such

that se < n − 1. Now let us consider all possible values that
the letter a can have.

• If a /∈ {#0,#1, . . . ,#e,@k−1−i}, then no transition at
Ae is possible, and in this case, there is nothing left to
prove for the word wa.

• Suppose a ∈ {#0, . . . ,#e−1}. Let a = #x for some
x ∈ {0, . . . , e − 1}. By assumption on e, the machine
Ax is at the state (n − 1, k − 1 − i)+x at the end of
reading w. However, from this state there is no outgoing
transition labelled by #x. Hence, in this case as well,
there is nothing left to prove for the word wa.

• Suppose a = #e. Then notice that the machines
A0, . . . , Ae−1 will move to (0, k − 1− i)+0, . . . , (0, k −
1− i)+(e−1), Ae will move to (se + 1, k − 1− i)+e and
all the other machines will remain where they are and the
counter will be increased by 1. Hence, in this case, we
get an active run with phase k − 1− i.
Notice that the scores of the machines before reading
a were n− 1 · · ·n− 1︸ ︷︷ ︸

e−1 times

, se, se+1, . . . , sk−1 and the scores

of the machines after reading a are 0 · · · 0︸ ︷︷ ︸
e−1 times

, se +

1, se+1, . . . , sk−1. Since the counter was incremented by
1 upon reading a, using the induction hypothesis we can
now conclude that the induction also carries over at this
step.

• Suppose a = @k−1−i. Note that in this case the
only way that transitions are defined for the machines
A0, . . . , Ak−2−i is if all of the scores j0, . . . , jk−2−i

are 0. In this case, the machines A0, . . . , Ak−2−i will
move to the states (0, k − 2 − i)+0, (0, k − 2 −
i)+1, . . . , (0, k − 2 − i)+(k−2−i), Ak−1−i will move to
the state (sk−1−i, done)

+(k−1−i) and the states of all the
other machines are unchanged. Hence, in this case, we
get an active run with phase k − 2 − i if k − 1 − i > 0
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or a perfect run if k− 1− i = 0. Note that the scores of
none of the states have changed and the counter value was
undisturbed. Hence, we can conclude that the induction
step also carries over at this step.

Suppose there is no index e in {0, . . . , k− 1− i} such that
se < n − 1. Hence, we have that s0 = s1 = · · · = sk−1−i =
n− 1. Note that if a ∈ {#k−i, · · · ,#k−1,@k−i . . . , ,@k−1},
Ak−i does not have a transition defined for the letter a at its
current state, because its current state is a done state. Further
suppose a = #e for some e ∈ {0, . . . , k − 1 − i}. Since the
score of the current state of Ae is n − 1, it follows that no
transition for a is defined at the current state of Ae. Finally,
suppose a ∈ {@0, . . . ,@k−1−i}. Since the phase of the current
state of Ak−1−i is k − 1 − i, it must be the case that a =
@k−1−i, since otherwise no transition for a is defined from
the current state of Ak−1−i. However, if k − 1− i > 0, then
the current state of the machine Ak−2−i has score n− 1 from
which no outgoing transition is defined for a. Hence k−1− i
must be 0, which means that the current state of A0 is still
active with phase 0 and the states of all the other machines
are done. In this case, reading a will make A0 move to (n−
1, done)+0 and all the other machines will remain where they
are. Since the counter value was undisturbed, the scores of
none of the states have changed and we get a perfect run, the
induction carries over in this case as well.

We now prove a lemma which acts as a sort of converse to
the above lemma. It shows that for any number 0 ≤ N =∑

0≤i≤k−1 n
isi < nk, there is a word w with which we

can force the counter value of A0 to reach exactly N whilst
simultaneously guiding all the machines to states with scores
s0, s1, . . . , sk−1.

Lemma 11 (Incrementing Counter Completeness Lemma ).
Let 0 ≤ N =

∑
0≤i≤k−1 n

isi < nk with 0 ≤ si ≤ n − 1 for
each si. Then, there is a word w satisfying the following prop-
erty: There is a collection of perfect runs ρ = (ρ0, . . . , ρk−1)
for the machines A0, . . . , Ak−1 along the word w, with the
counter of A0 reaching the value N and each Ai reaching
the state (si, done)

+i.

Proof. We prove this by induction on N . Note that for the
base case of N = 0, it can be easily verified that setting
w := @k−1,@k−2, . . . ,@0 satisfies the claim.

Suppose we have proved the claim for some N < nk − 1
and we want to prove it for N + 1. Let w be the word that
we obtain for N and let ρ = (ρ0, . . . , ρk−1) be the perfect
collection of runs that we get out of reading w from the
machines A0, . . . , Ak−1. For each i, let Σi denote the set
{#0, . . . ,#i}.

Since ρ is perfect, we claim that w has to be a word of
the form Σ∗

k−1@k−1Σ
∗
k−2@k−2 . . .Σ

∗
0@0. To see this, note the

following facts regarding our construction:
• For every i, the only transitions that take an active state

of Ai to a done state of Ai are the ones labelled by @i.
Hence, the word w must contain at least one occurrence
of @i for each i.

• For every i, once the machine Ai reaches a done
state, upon reading any letter a, it either stays at
the same state or has no transition for a (if a ∈
{#i, . . . ,#k−1,@i, . . . ,@k−1}). Hence, after the first
occurrence of @i, no more occurrences of #i or @i can
happen.

• For every i, if the machine Ai is at an active state and
reads @j for j < i, then transitions are undefined. This
combined with the fact that the only transitions that take
an active state of Ai to a done state of Ai are the ones
labelled by @i leads us to conclude that the occurrence
order of the letters not in Σk−1 must be of the form
@k−1,@k−2, . . . ,@0.

These three points combined together imply that w must be a
word of the form Σ∗

k−1@k−1Σ
∗
k−2@k−2 . . .Σ

∗
0@0. Hence, we

let w = wk−1@k−1wk−2@k−2 . . . w0@0 with each wi ∈ Σ∗
i .

Now note the following fact.

Fact: For every i and every j < i, the machine Aj

is at an active state with score 0 before and after
reading the prefixes of w which stop before and after
the letter @i in w respectively.

Indeed to see the truth of this fact, note that the only way for
a machine Aj to have a transition upon reading @i for some
i > j, is if Aj is at an active state with score 0. Furthermore
when Aj is at an active state with score 0 and it reads @i for
i > j then Aj continues to be at an active state with score 0.
This then immediately implies the above fact.

Now, let N =
∑

0≤i≤k−1 n
isi with each si between 0

and n − 1. Since N < nk − 1, there must be a smallest i
such that si < n−1. We now construct a new word w′ as w′ =
wk−1@k−1wk−2@k−2 . . . wi+1@i+1wiwi−1 . . . w0#i@i@i−1 . . .@0,
i.e., we push the letters @i,@i−1, . . . ,@0 to the very end and
insert a #i in between w0 and @i. We claim that w′ is the
required word for N + 1.

First, we have to show that each machine Aj has a run upon
reading w′, i.e., at no point while reading w′ does Aj reach a
state where a transition is undefined. Assuming the contrary,
suppose there is some machine Aj which upon reading w′,
reaches a point where no transition is defined. Since the prefix
of w′ up till the end of wi is exactly the same as w, it follows
that Aj has an undefined transition only after reading wi in
w′. Note that before wi, the letters @k, . . . ,@i+1 have already
appeared and by construction of Ak−1, . . . , Ai+1, it follows
that all these machines have already reached a done state by
the time wi is read. Furthermore, note that all the letters that
appear after wi in w′ belong to Σi ∪ {@i,@i−1, . . . ,@0}.
Since all done states in Ak−1, . . . , Ai+1 have a self-loop upon
reading any such letter it follows that j ≤ i.

By the above given fact, the machine Aj is always at
an active state with score 0 before reading the subwords
wi−1, wi−2, . . . , wj in w. By construction of Aj , the transi-
tions for reading any letter from Σk−1 is independent of the
phase of the active state, i.e., if an active state q with score
s moves to an active state q′ with score s′ upon reading any
letter from Σk−1, then any active state with score s will move
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to an active state with score s′ upon reading that same letter.
It follows then that Aj always has an outgoing transition at
each point whilst reading the subwords wi−1, . . . , wj in w′.

Now, let s be the score of the state of Aj obtained after
reading the prefix of w′ ending with wj . Note that this
must be the same as the score of the state of Aj obtained
after reading the prefix of w ending with wj . Now, notice
that in w, after reading wj , Aj only reads letters from
Σj−1 ∪ {@j ,@j−1, . . . ,@0}. Since none of these letters can
change the score of Aj it follows that s is the final score of
Aj after reading the complete word w. Note that by definition
of j, if j = i, then s < n− 1 and if j < i, then s = n− 1.

Now, notice that all active states of Aj do not change their
state after reading #ℓ for any ℓ < j. Since Aj was at a state
with score s after reading the prefix of w′ ending with wj ,
it continues to be at a state with score s after reading the
subwords wj−1, . . . , w0 in w′. Now, if j = i, then s < n− 1
and so Aj will move to an active state with score s+ 1 after
reading #i. On the other hand if j < i, then s = n − 1 and
so Aj will move to an active state with score 0 after reading
#i.

Now, suppose j = i. Hence after reading @i in w′, Aj will
move to a done state and continue to stay there while reading
the letters @i−1, . . . ,@0. On the other hand, suppose j < i.
Hence after reading @i,@i−1, . . . ,@j+1, it will continue to
remain at an active state with score 0. After reading @j , it will
move to a done state and continue to stay there while reading
the letters @j−1, . . . ,@0. It follows that in either case, Aj has
a run upon reading w′, which leads to a contradiction.

It then follows that we have a collection of runs ρ′ cor-
responding to the machines A0, . . . , Ak−1 reading the word
w′. Note that w′ contains exactly one occurrence of each @i.
Since reading the letter @i from any state in the machine Ai

either has no outgoing transition or moves it to a done state
and since every outgoing transition from a done state is to
itself, it follows that the collection ρ′ cannot be active. By the
Incrementing Counter Soundness Lemma (Lemma 10), ρ′ has
to be perfect.

Note that the number of letters seen from Σk−1 in w′ is
one more than the number of letters seen from Σk−1 in w.
Note that whenever A0 reads some letter from Σk−1, it either
increments its counter by 1 or has no transition corresponding
to that letter. Since the latter cannot happen with w′, it follows
that the value of the counter of A0 after reading w′ is N +1.
This completes the proof.

The proof of these two lemmas also finishes the first stage
of the reduction.

Second stage: Gadgets for finding 2k-cliques: In this stage,
we will construct gadgets which will help us find 2k cliques.
More precisely, we will construct a DOCA B0 and k − 1
DFAs B1, . . . , Bk−1 whose states taken together initially, we
will verify to be a k-clique. From there on, we will “hop” from
one k-clique to another, such that whenever we hop from one
k-clique S to another k-clique S′, we will ensure that S ∪ S′

is by itself a 2k-clique.

We now look at the formal aspects. The common set of input
letters for these machines will be as follows: For each k-clique
S of the given graph G, we will have a letter which we will
also denote by S. Further each machine Bi ∈ {B0, . . . , Bk−1}
will have the following set of states: For each s ∈ {0, . . . , n−
1} and p ∈ {check, α, β, γ, δ}, we will have a state (s, p)i.
As before, the part s will be called the score of the state and
the part p will be called the phase of the state.

We will now describe the transitions of each machine
Bi. For each state (s, check)i, if we read some letter S =
(v0, v1 . . . , vk−1) corresponding to some k-clique where vi =
s, then we move to (s, α)i. Further for any state (s, ℓ)i with
ℓ ∈ {α, β, γ}, if we read some letter S = (v0, v1, . . . , vk−1)
corresponding to some k-clique such that s is adjacent to every
node in S, then we move to (vi, ℓ

′)i where

• ℓ′ = β if ℓ = α
• ℓ′ = γ if ℓ = β
• ℓ′ = δ if ℓ = γ

As before, in all the other cases, no transition is defined.
The following proposition immediately follows from the

construction of each machine and from the fact that there are
no self-loops in the given graph G.

Proposition 12. For any i, the machine Bi, starting from some
state of the form (s, check)i and reading a word w, can reach
a state of the form (s′, δ)i if and only if w = S1, S2, S3, S4

for some k-cliques S1, S2, S3, S4 such that s is the ith node
of S1, s′ is the ith node of S4 and the ith node of S1, S2, S3

is adjacent to every node in S2, S3, S4 respectively.

As mentioned before, this gadget simply “hops” from one
k-clique to another. This intuition is made concrete by the
following lemma, which easily follows from the above propo-
sition.

Lemma 13 (Clique Finding Lemma). The machines
B0, . . . , Bk−1, starting from states of the form
(s0, check)

0, . . . , (sk−1, check)
k−1 and reading a word w

can reach states of the form (s′0, δ)
0, . . . , (s′k−1, δ)

k−1 if and
only if w = S1, S2, S3, S4, for some k-cliques S1, S2, S3, S4

such that S1 = (s0, . . . , sk−1), S4 = (s′0, . . . , s
′
k−1) and

S1 ∪ S2, S2 ∪ S3, S3 ∪ S4 are all 2k-cliques.

This completes the second stage of the reduction.
Third stage: Gadgets for retrieving a k-tuple by decrement-

ing the counter: In this stage, we will introduce gadgets which
will allow us to retrieve a k-tuple which is stored in the counter
and check that that tuple is the same as the one that is currently
stored in the states of the machines. These gadgets will simply
be the “reverse” of the gadgets introduced in the first stage.

Formally, we construct machines C0, . . . , Ck−1 as follows:
Let A0, . . . , Ak−1 be the machines introduced in the first stage.
Note that every state of every machine Ai is of the form q+i

for some q ∈ {0, . . . , n−1}×{0, . . . , k−1, done}. With this
observation, we now construct each Ci.
C0 is an OCA which has the same alphabet as A0.

For every state of the form q+0 in A0, C0 will have a
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state of the form q−0. Further, C0 has the following tran-
sitions: If (p+0, a, u, q+0) is a transition in A0 where u ∈
{−1, 0,+1}, then C0 has a corresponding “reverse” transition
(q−0, a,−u, p−0).

We can now construct each Ci for every i > 0 similarly.
Ci is a finite automaton which has the same alphabet as Ai.
For every state of the form q+i in Ai, Ci will have a state
of the form q−i. Further, Ci has the following transitions: If
(p+i, a, q+i) is a transition in Ai , then Ci has a corresponding
“reverse” transition (q−i, a, p−i).

We note that each machine Ci is deterministic. This is
because in each machine Ai, for each state q+i and each letter
a, we had at most one incoming transition to the state q+i

upon reading a. Hence, the machine C0 is a DOCA and the
machines C1, . . . , Ck−1 are all DFAs.

Note that any run in any machine Ci is the reverse of
some run in the machine Ai and vice versa. Hence, we can
define notions of reverse-perfect and reverse-active collections
of runs in Ci, as a collection of runs obtained by reversing
perfect and active collections of runs in Ai. This observation
combined with the Incrementing Counter lemmas (Lemma 10
and Lemma 11) that we proved in the first stage immediately
implies the following two lemmas.

Lemma 14 (Decrementing Counter Soundness Lemma).
Let ρ = (ρ0, . . . , ρk−1) be a collection of reverse-perfect
runs of the machines C0, . . . , Ck−1 along some word
w, when starting at some configurations of the form
((s0, done)

−0, N), (s1, done)
−1, . . . , (sk−1, done)

−(k−1).
Then N =

∑
0≤i≤k−1 n

isi.

Lemma 15 (Decrementing Counter Completeness Lemma).
Let 0 ≤ N =

∑
0≤i≤k−1 n

isi < nk with 0 ≤ si ≤
n − 1 for each si. Then, there is a word w satisfying the
following property: There is a collection of reverse-perfect
runs ρ = (ρ0, . . . , ρk−1) for the machines C0, . . . , Ck−1

along the word w, when starting at the configurations
((s0, done)

−0, N), (s1, done)
−1, . . . , (sk−1, done)

−(k−1).

This finishes the third stage of the reduction.
Putting the three stages together: Now we put the three

stages together and complete the reduction.
For each i, we have constructed three different machines

Ai, Bi, Ci. Let us now combine them together into one ma-
chine Mi in the following manner: Mi will have all the states,
letters and transitions of Ai, Bi and Ci. In addition, it will have
two fresh letters !, ? and the following transitions:

• From each state of Ai whose phase is done, i.e., each
state of the form (s, done)+i, upon reading the letter !,
we move to the state (s, check)i of Bi.

• From each state of Bi whose phase is δ, i.e., each state
of the form (s, δ)i, upon reading the letter ?, we move
to the state (s, done)−i of Ci.

Let the initial state of each Mi be (0, k − 1)+i and let
the final state of each Mi be (0, k − 1)−i. We now have the
following lemma, which is a result of the lemmas that we
proved in the previous stages.

Lemma 16. There is a word w such that w is accepted by
each Mi if and only if there is a 3k-clique in the graph G.

Proof. Suppose there is a 3k-clique S in the graph G. Hence,
there are three k-cliques S1, S2, S3 such that S1 ∪ S2, S2 ∪
S3, S3 ∪ S1 are each 2k-cliques. Let S1 = (s0, . . . , sk−1).

By the Incrementing Counter Completeness lemma
(Lemma 11), there is a word w1 such that each machine Mi,
starting from (0, k−1)+i can read the word w1 and reach the
state (si, done)

+i. Furthermore, at the end of reading w1, the
counter value of M0 will be N =

∑
0≤i≤k−1 n

isi.
Afterwards by reading !, each machine Mi will move from

(si, done)
+i to (si, check)

i. After that, by the Clique Finding
lemma (Lemma 13), upon reading the word w2 = S1S2S3S1,
each Mi will move to (si, δ)

i. Then, by reading ?, each
Mi will move to (si, done)

−i. Finally, by the Decrementing
Counter Completeness lemma (Lemma 15), there is a word w3

such that, after reading w3, each Mi will move to (0, k−1)−i,
which is the final state of Mi. Moreover, at the end of reading
w3, the counter value of M0 will be 0. Hence, the word w is
accepted by each Mi.

Now, suppose there is a word w that is accepted by each
Mi. By construction of Mi, it follows that w has to be of the
form w1!w2?w3 for some w1, w2, w3. Furthermore, for each i,
the words w1, w2 and w3 are read entirely in the parts of Mi

corresponding to Ai, Bi and Ci respectively. Now, we note
the following.

• For each i, the letter ! can only be read from a done
state of the machine Ai. This means that the collection of
runs of A0, . . . , Ak−1 on the word w1 must be a perfect
collection. Let (si, done)

+i be the state visited by Ai

after reading w1. By the Incrementing Counter Soundness
lemma (Lemma 10), the value of the counter of A0 at the
end of w1 is N =

∑
0≤i≤k−1 n

isi.
• For each i, reading the letter ! from (si, done)

+i leads to
the state (si, check)

i of Bi. Also, the letter ? could be
read only from states whose phase is δ. By the Clique
Finding lemma (Lemma 13), it follows that w2 must be
of the form S1S2S3S4 for some k-cliques S1, S2, S3, S4

such that the ith node in S1 is si, S1∪S2, S2∪S3, S3∪S4

are all 2k-cliques and Bi, upon reading w2 has a run from
(si, check)

i to (s′i, δ)
i where s′i is the ith node in S4.

• For each i, reading the letter ? from (s′i, δ)
i leads to the

state (s′i, done)
−i of Ci. Note that since Bi does not

modify the counter values, the counter value after reading
? is still N .
By assumption, w is accepted by each Mi and so this
means that each Ci, starting at (s′i, done)

−i, upon reading
w3, has a run which ends at (0, k − 1)−i. Moreover, the
run for C0 upon reading w3 must lead to the counter
value 0. By the Decrementing Counter Soundness lemma
(Lemma 14), it follows that N =

∑
0≤i≤k−1 n

is′i. Since
N =

∑
0≤i≤k−1 n

isi, it follows that si = s′i for each i
and so the clique S4 is actually S1.

This then implies that S1 ∪ S2 ∪ S3 is a 3k-clique and so
we are done.
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Running time of the reduction: Let us now analyse the
running time taken by the reduction. Note that each machine
in the first and third stages can be constructed in time O(nk2)
where n is the number of nodes of G. Each machine in the
second stage can be constructed in time O(nk+1). Finally,
putting Ai, Bi and Ci together to form Mi can be done in
O(nk) time. Since k is a constant, it then follows that the total
time taken to construct each Mi is O(nk+1).

Note that the number of states of each machine is bounded
by O(nk) and our alphabet size is bounded by O(nkk).
Since k is a constant, it follows that if we can solve the
PDA ∩NFAk−1 problem (even when the given machines are
only DOCA and DFAs) in time O((E(ω−1)k|Σ|+ Eωk)1−ε),
where E is the maximum number of states among all the
given machines and ε is any number strictly bigger than 0,
then we can solve the 3k-clique problem in time O(nωk−ε),
which would contradict the 3k-clique hypothesis. The same ar-
gument proves that combinatorial algorithms cannot solve the
PDA ∩NFAk−1 problem in time O(max(E2k|Σ|, E3k))1−ε)
for any ε > 0, unless the 3k-clique problem can be solved in
time O(n3k−ε) by a combinatorial algorithm. Hence, Theo-
rem 2 follows.

APPENDIX B
PROOF OF THEOREM 5

Let 3(k − 1) be a fixed number and G be a graph over
the nodes {0, . . . , n − 1} without self-loops. The high-level
construction of the machines M0, . . . ,Mk−1 has already been
discussed in the proof idea in the main part of the paper and
here we concentrate on the formal aspects. We will construct
the machine incrementally by using gadgets, each of which
will correspond to one specific sub-part or part mentioned in
the proof idea. Then we will finally put together all the sub-
parts and parts to get the final machines.

As mentioned in the proof idea, first we will use a linear-
sized alphabet and then describe how to replace it with one
that is of constant size. To this end, the input alphabet will
be {0, . . . , n− 1} ∪ {0, 1, . . . , n− 1} ∪ {#,@} and the stack
alphabet will be {0, . . . , n− 1} for all of the gadgets that we
will construct.

As mentioned before, each machine Mi will be constructed
by first constructing gadgets and then composing them to-
gether in a specific manner. We will be doing this quite often
(corresponding to each sub-part as well as the prologue and the
epilogue) and hence it can become quite repetitive. However,
this act of composing together gadgets is uniform throughout
and hence we define it formally here, so that it can be reused
(repeatedly) in the construction.

Gadgets and their composition: For the purposes of this
construction, a gadget to us will simply be any machine (PDA
or NFA) A whose states are of the form (x, c, s) where x ∈
{0, . . . , n − 1} ∪ {♢}, 0 ≤ c ≤ max(5, k) and s ∈ SA where
SA is some set called the auxiliary set. We will often denote
an element (x, c, s) with s ∈ SA as (x, c)s, which will be
called the superscript notation.

For a gadget A, its value is the largest value c such that a
state of the form (x, c)s appears in A. The value of A will be
denoted by val(A). A copy of A is another gadget B which
is exactly the same as the gadget A obtained by renaming the
set SA to some fresh set SB .

Initial states of a gadget A can only be states of the form
(x, 0)s for some x and s. Final states of a gadget A can only
be states of the form (x, val(A))s for some x and s. We will
always have the constraint that for any x, there is exactly one
initial and final state whose first entry is x. Hence, given x, we
can abuse notation, and, for example, say that we consider the
initial (resp. final) state x of a gadget A to mean the unique
initial (resp. final) state of A that has x as its first entry.

We say that we compose a finite sequence of gadgets
A1, A2, . . . , Aℓ to get another gadget B if B is constructed
from A1, . . . , Aℓ by taking all of their states and transitions
and adding the following new transitions: For each i < ℓ, from
each final state x of Ai we add a transition to the initial state
x of Ai+1 which reads the input letter @. The initial (resp.
final) states of B will be the initial (resp. final) states of A1

(resp. Aℓ). The composition B intuitively corresponds to first
executing A1, then A2 and so on all the way till Aℓ.

Having stated all the necessary definitions regarding gad-
gets, we now move on to the prologue construction.

1) Prologue: We now describe the gadgets for the prologue,
i.e., we will construct a PDA P0 and k − 1 many NFAs
P1, . . . , Pk−1 corresponding to the construction mentioned in
the prologue.

Each gadget Pi will have as its states (x, c, pi) where x ∈
{0, . . . , n−1}∪{♢} and c ∈ {0, . . . , k}. Note that in this case
the auxiliary set of Pi is simply {pi} and hence each state (in
the superscript notation) is of the form (x, c)pi .

The transitions of P0 are as follows: Upon reading some
node z from a state (♢, c)p0 with c < k − 1, it will push z
into the stack and move to (♢, c+1)p0 . Intuitively, this gadget
simply pushes k − 1 nodes into the stack.

The transitions of each Pi with i > 0 are as follows: Upon
reading some node z from a state (x, c)pi with c < k − 1, it
will move to (x, c + 1)pi if c ̸= i − 1 or if c = i − 1 and
x = z. Intuitively, the machine Pi will not really do anything
until the ith letter is read (which must be a node) and when
that happens, it will check that that node is exactly the node
stored in its state.

Recall our convention that for each element in x ∈
{0, . . . , n − 1} ∪ {♢}, there will be exactly one initial and
final state whose first entry is x. (In the case of Pi, the initial
state by convention is (x, 0)pi and the final state by convention
is (x, k−1)pi ). Now, from the construction of the gadgets, we
can deduce the following theorem.

Theorem 17 (The Prologue Theorem). Let w be some word.
Then, for all i, there is a run of Pi on w between some
initial state xi and some final state x′

i if and only if w =
x′
1x

′
2 . . . x

′
k−1, x0 = x′

0 = ♢ and for each i > 0, xi = x′
i

is a node. Moreover, in any such collection of runs, the only
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change in the stack of P0 is the pushing of x′
1, . . . , x

′
k−1 (in

that order).

Proof. Let us prove the right-to-left implication by construct-
ing a run for each Pi. Indeed, the machine P0 upon reading
x′
c moves from (♢, c − 1)p0 to (♢, c)p0 and pushes x′

c onto
the stack. The machine Pi upon reading xc works as follows:
If c < i, it moves from (xi, c − 1)pi to (xi, c)

pi . If c = i,
since xi = x′

i, it can move from (xi, c − 1)pi to (x′
i, c)

pi . If
c > i, it moves from (x′

i, c− 1)pi to (x′
i, c)

pi . This completes
the desired construction.

Let us now prove the other direction. Suppose for each i,
there is a run of Pi on w as promised. Note that any transition
from any state of the form (x, c)pi takes it to a state of the
form (x′, c + 1)pi for some x′ (Further in the case of P0, if
x is ♢, then x′ is ♢ as well). It then follows that |w| = k− 1
and x0 = x′

0 = ♢.
Note that there are no transitions reading #,@ and hence

each letter of w is a node. Now, the observation in the previous
paragraph means that, for each 1 ≤ i, c ≤ k, the machine Pi,
before and after reading the cth letter of w, will be in states of
the form (x, c−1)pi and (x′, c)pi for some x, x′. By definition
of the transitions, if c ̸= i, then x = x′ and if c = i then
x = x′ = xi, where xi is the ith letter of w. It then follows
that if (x′, k − 1)pi is the state with which Pi completes its
run, then x′ = x = xi.

Note that while reading the word w, P0 simply pushes each
letter onto the stack. It then follows that the only change
in the stack during the entire run of P0 is the pushing of
x′
1, x

′
2, . . . , x

′
k−1, in that order. This completes the proof.

Finally, we also note the following observation, which
follows immediately from the construction given above.

Proposition 18 (Size of Pi). The number of states in each Pi

is O(nk) and each Pi can be constructed in time O(nk).

2) Part 1: Now we will describe the gadgets for the first
part by first designing gadgets for each of the sub-parts of the
first part.

Sub-Part I: The Setup: Here, we will construct the
gadgets necessary to push copies of nodes into the stack. These
gadgets are similar to the gadgets from the Prologue with a
minor difference.

For each i ∈ {0, . . . , k − 1}, j ∈ {2, . . . , k − 1} we will
construct a machine Aj

i , which will have as its states (x, c)ai

for x ∈ {0, . . . , n − 1} ∪ {♢} and c ∈ {0, . . . , j − 1}. Now
the transitions of these machines are as follows.

For each j ∈ {2, . . . , k − 1}, the machine Aj
0 is a PDA,

which upon reading some node z from a state of the form
(♢, c)ai with c < j − 1, pushes z into the stack and moves to
(♢, c+1). Intuitively, this machine simply pushes j−1 nodes
into the stack.

For each i ∈ {1, . . . , k−1}, j ∈ {2, . . . , k−1}, the machine
Aj

i is an NFA, which upon reading some node z from a state
of the form (x, c)ai with c < j − 1, moves to (x, c + 1) if
i ̸= j or i = j and x = z. Intuitively, the machine Aj

i does
not really do anything unless i = j. If i = j, it will simply

check that the input consists of exactly j − 1 letters all of
which are exactly the same node that it had stored in its state
at the beginning.

The following lemma is easy to see from the construction of
the machines. Its proof is similar to the proof of the Prologue
theorem.

Lemma 19. Let w be some word and let j ∈ {2, . . . , k − 1}.
Then, for all i, there is a run of Aj

i on w starting from some
initial state xi and ending at some final state x′

i if and only
if w = xj−1

j , x0 = x′
0 = ♢ and for each i > 0, xi = x′

i

is a node. Moreover, in any such collection of runs, the only
change in the stack of P0 is the pushing of j−1 copies of xj .

Now, for each i, let us compose the gadgets A2
i , A

3
i , . . . , A

k
i

to get a new gadget Ai. The following theorem now follows
by using the definition of composition and repeatedly applying
the above lemma.

Theorem 20 (The Setup Theorem). Let w be some word.
Then, for all i, there is a run of Ai on w starting from some
initial state xi and ending at some final state x′

i if and only
if w = x2@x2

3@ . . .@xk−2
k−1, x0 = x′

0 = ♢ and for each i > 0,
xi = x′

i is a node. Moreover, in any such collection of runs, the
only change in the stack of P0 is the pushing of x2x

2
3 . . . x

k−2
k−1

(in that order).

Proof. Let us first prove the right-to-left implication. Suppose
w is of the form x2@x2

3@ . . .@xk−1
k , x0 = x′

0 = ♢ and for
each i > 0, xi = x′

i is a node. For each i, we can now construct
a run of Ai on w starting from the initial state xi and ending
at the final state x′

i as follows. Let wi = xi−1
i . By the previous

lemma, for each Aj
i with j ∈ {2, . . . , k}, there is a run of wi

starting from the initial state xi of Aj
i and ending with the

final state xi of Aj
i . By using the definition of composition of

the gadgets, it follows that we have a run of the desired form
for Ai.

Let us now prove the other direction. Suppose, for all i,
there is a run of Ai on w starting from some initial state xi

and ending at some final state x′
i. By definition of composition

of gadgets, w must be of the form w2@w3@ . . .@wk such that
for each j ∈ {2, . . . , k}, Aj

i has an accepting run on wi. Now,
using the definition of composition and the previous lemma,
we can conclude this side of the implication.

Finally, we observe that

Proposition 21 (Size of Ai). The number of states in each Ai

is O(nk2) and each Ai can be constructed in time O(nk2).

Sub-Part II: The Check: Here, we will construct the
gadgets necessary to check the neighborhood relation between
nodes. Given a node stored at the top of the stack and another
node which is stored in some NFA, the purpose of these
gadgets is to check whether these two nodes are neighbors.
The intuition behind these gadgets has been presented in the
proof idea section in the main part of the paper and so we
concentrate only on the formal aspects here.
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For each i ∈ {0, . . . , k − 1}, j ∈ {1, . . . , k − 1}, we will
construct a machine Bj

i which will have as its states (x, c)b
j
i

for x ∈ {0, . . . , n − 1} ∪ {♢} and c ∈ {0, 1, 2, 3, 4, 5}. Now
the transitions of these machines are as follows.

For each j ∈ {1, . . . , k − 1}, the machine Bj
0 is a PDA

which upon reading some letter ℓ from a state of the form
(x, c)b

j
i does the following:

• If x = ♢, c = 0 and ℓ is a node, then it moves to (ℓ, 1)b
j
i .

• If c = 1 and ℓ = #, then it moves to (x, 2)b
j
i .

• If c = 2 and ℓ = y for some node y, then it moves to
(x, 3)b

j
i only if it can pop ℓ from the stack.

• If c = 3 and ℓ = #, then it moves to (x, 4)b
j
i .

• If c = 4 and ℓ = x is a node, then it moves to (♢, 5)b
j
i .

For each i ∈ {1, . . . , k−1}, j ∈ {1, . . . , k−1}, the machine
Bj

i is an NFA which upon reading some letter ℓ from a state
of the form (x, c)b

i
j with x a node does the following: If i ̸= j

and c < 5, then it moves to (x, c+ 1)b
j
i . If i = j, then

• If c = 0 and ℓ = x is a node, then it moves to (x, 1)b
j
i .

• If c = 1 and ℓ = #, then it moves to (x′, 2)b
j
i where x′

is some neighbor of x in G.
• If c = 2 and ℓ = x, then it moves to (x, 3)b

j
i .

• If c = 3 and ℓ = #, then it moves to (x′, 4)b
j
i where x′

is some neighbor of x in G.
• If c = 4 and ℓ = x is a node, then it moves to (x, 5)b

j
i .

Now, for any two nodes x, y let N(x, y) be the word
x#y#x. The following lemma follows from an analysis of
the constructed gadgets.

Lemma 22. Let w be some word and let j ∈ {1, . . . , k − 1}.
Then, for all i, there is a run of Bj

i on w starting from some
initial state xi and ending at some final state x′

i if and only if
xj is a node and there is a neighbor z of xj such that w :=
N(xj , z), z is at the top of the stack of P0 at the beginning,
x0 = x′

0 = ♢ and for each i > 0, xi = x′
i is a node. Moreover,

in any collection of runs, the only change in the stack of P0

is the popping of z.

Proof. Let us first prove the right-to-left implication.
In this case, first notice that all the machines
Bj

i except for Bj
0 and Bj

j simply have the run
(xi, 0)

bji , (xi, 1)
bji , (xi, 2)

bji , (xi, 3)
bji , (xi, 4)

bji , (xi, 5)
bji

on the word w. The machine Bj
0 upon reading the

subword xj# has the run (♢, 0)b
j
0 , (xj , 1)

bj0 , (xj , 2)
bj0 .

From there it reads z and since z is at the top of
the stack, Bj

0 pops it and moves to (xj , 3)
bj0 . From

there it reads #xj and moves to (xj , 4)
bj0 , (♢, 5)b

j
0 .

Similarly, the machine Bj
j upon reading w has the run

(xj , 0)
bjj , (xj , 1)

bjj , (z, 2)b
j
j , (z, 3)b

j
j , (xj , 4)

bjj , (xj , 5)
bjj .

Hence, this direction of the claim is true.
Let us now prove the other direction. Note that for

any i /∈ {0, j}, any run of Bj
i must be of the form

(xi, 0)
bji , (xi, 1)

bji , . . . , (xi, 5)
bji with xi being a node. Hence

xi = x′
i is true for i /∈ {0, j}.

Now let us analyze the runs of Bj
0 on Bj

j on the word
w. By construction, it is easy to see that |w| = 5. Hence

w = a1a2a3a4a5 for some letters a1, a2, a3, a4, a5. Note that
if a1 ̸= xj or xj is not a node, then there is no transition from
(xj , 0)

bjj labelled by a1. Hence, a1 = xj , xj is a node and the
machines Bj

0 and Bj
j move to the states (xj , 1)

bj0 and (xj , 1)
bjj

respectively. Now, if a2 ̸= #, then there are no transitions
from either of these states. Hence, a2 = # and Bj

0 and Bj
j

move to the states (xj , 2)
bj0 and (z′, 2)b

j
j for some z′ which

is a neighbor of xj . For the same reasons as above, a3 must
be z′. Furthermore, Bj

0 attempts to pop the input letter from
the stack and so a3 must also be equal to z. Hence, z = z′

and so z and xj are neighbors. The machines now move to
the states (xj , 3)

bj0 and (z, 3)b
j
j . Now a4 must be # and the

machines now move to the states (xj , 4)
bj0 and (x′, 4)b

j
j for

some neighbor x′ of z. Finally, a5 must be xj and so x′ must
also be equal to xj and then the machines move to (♢, 5)b

j
0

and (xj , 5)
bjj , thereby completing the proof.

Now, for each j, first create k−j−1 many copies of Bj
i and

call them Bj,k−1
i , . . . , Bj,j+1

i . Then, for each i, we compose
all of these gadgets in the following order to get the gadget Bi:
B1,k−1

i , B2,k−1
i , . . . , Bk−2,k−1

i , B1,k−2
i , B2,k−2

i , . . . , Bk−3,k−2
i ,

B1,k−3
i , . . . , B1,2

i .
The intuition behind the composition is as follows: As-

sume that before we start executing the gadgets B0, . . . , Bk,
the stack of B0, from the top, contains the word
xk−2
k−1x

k−3
k−2 . . . x

2
3x2 for some nodes x2, . . . , xk−1 and each

NFA Bi stores the node xi (Note that this is guaranteed to us
by sub-part I). Then, we execute each Bi, which first executes
B1,k−1

i which ensures that x1 and xk−1 are neighbors and
pops the topmost xk−1. Then, Bi executes B2,k−1

i which
ensures that x2 and xk−1 are neighbors and pops the next
xk−1 and so on till Bk−2,k−1

i , which will ensure that xk−1

is a neighbor of every other node. At this point, the topmost
part of the stack contains k− 3 copies of xk−2. Now, Bi will
start executing B1,k−2

i which will ensure that x1 and xk−2

are neighbors, then B2,k−2
i , which will ensure that x2 and

xk−2 are neighbors and so on all the way up till B1,2
i . Hence,

in this way we would have ensured that x1, x2, . . . , xk−1 is
a (k − 1)-clique. This intuition is made more precise by the
next paragraph.

For any k− 1 nodes x1, . . . , xk−1, let N(x1, . . . , xk−1) be
the word

N(x1, xk−1)@N(x2, xk−1)@ . . . N(xk−2, xk−1)@N(x1, xk−2)

@N(x2, xk−2) . . . N(xk−3, xk−2) . . . N(x1, x2)

The following theorem follows by applying the definition
of composition to the machines Bi along with the previous
lemma. Its proof is similar to the proof of the Setup Theorem.

Theorem 23 (The Check Theorem). Let w be some word.
Then, for each i, there is a run of Bi on w starting from some
initial state xi and ending at some final state x′

i if and only if
for each i > 0, xi = x′

i is a node, w = N(x1, . . . , xk−1), the
word xk−2

k−1, x
k−3
k−2 . . . , x2 is at the top of the stack of P0 at the

beginning, x0 = x′
0 = ♢ and x1, . . . , xk−1 is a (k−1)-clique.

21



Moreover, in any such collection of runs, the only change in
the stack of B0 is the popping of xk−2

k−1, x
k−3
k−2, . . . , x2.

We conclude with a discussion on the number of states
and time taken to construct each Bi. Each Bi is obtained by
composing O(k2) many gadgets, each of which have O(n)
states and each of which can be constructed in O(|G|) time.
Hence, it follows that

Proposition 24 (Size of Bi). The number of states in each Bi

is O(nk2) and each Bi can be constructed in O(|G|k2) time.

Sub-Part III: The Exploration: Here, we will construct
the gadgets necessary to find k − 1 more nodes y1, . . . , yk−1

such that each node in the collection x1, . . . , xk−1 (which was
checked to be a (k − 1)-clique in sub-part II), is a neighbor
of each node in the collection y1, . . . , yk−1.

We will create four different types of gadgets for this sub-
part and then compose them all together. All these gadgets will
be similar to the gadgets that we have seen in the previous sub-
parts (and the prologue), but with slight modifications. We will
now describe the first type of gadgets, whose intuitive purpose
will be to simply push some node into the stack k + 1 times.

For each i ∈ {0, . . . , k − 1}, we will create a machine Di,
which will have as its states (x, c)di for x ∈ {0, . . . , n− 1}∪
{♢} and c ∈ {0, . . . , k}.

The machine D0 is a PDA which upon reading some node
z from a state of the form (x, c)d0 with c < k, pushes z into
the stack and

• Moves to (z, c + 1)d0 if x = ♢ and c = 0 or if x = z
and c > 0.

• Moves to (♢, c+ 1)d0 if x = z and c = k − 1.
Intuitively, this gadget remembers the first node that is read

and then ensures that the next k− 1 input letters are the same
as the first node. After ensuring this, it forgets the node that
it remembered. Further, each time it reads a node it simply
pushes it into the stack. Now, we move on to the description
of the NFAs.

For each i ∈ {1, . . . , k − 1}, the machine Di is an NFA
which upon reading some node z from a state of the form
(x, c)di with c < k − 1 moves to (x, c+ 1). Intuitively, these
gadgets do nothing except continue to remember the node that
they were remembering before.

The following lemma follows immediately from the con-
struction of these gadgets. Its proof is similar to the proof of
the Prologue theorem, but even easier.

Lemma 25. Let w be some word. Then, for each i, there is a
run of Di on w starting from some initial state xi and ending
at some final state x′

i if and only if w = yk for some node
y, x0 = x′

0 = ♢ and for each i > 0, xi = x′
i is a node.

Moreover, in any such collection of runs, the only change in
the stack of D0 is the pushing of k copies of y.

The second type of gadgets that we will construct will use
the Di’s that we just constructed and the Bj

i ’s from sub-part
II. To this end, for each i, we will construct a gadget Ei by
composing the gadgets Di, B

1
i , B

2
i , . . . , B

k−1
i . Intuitively, the

idea is that each NFA Ei will initially begin with some node
stored in its state. Then the gadget Di will serve the purpose
of pushing k many copies of some node y onto the stack.
Then, B1

i will ensure that this node y is a neighbor of the
node stored in the state of E1, B2

i will ensure that y is a
neighbor of the node stored in the state of E2 and so on. Let
us now state this formally.

Recall that for any two nodes x, y we had defined the
word N(x, y) = x#y#x. Given any node y and k − 1
many nodes x1, . . . , xk−1 let E(y, x1, . . . , xk−1) be the word
yk@N(x1, y)@N(x2, y)@ . . .@N(xk−1, y). From the defini-
tion of composition of gadgets and from the lemmas that we
have proved regarding the gadgets Di and Bj

i the following
lemma follows.

Lemma 26. Let w be some word. Then, for each i, there is a
run of Ei on w starting from some initial state xi and ending
at some final state x′

i if and only if for each i > 0, xi = x′
i is

a node, there is a node y that is a neighbor of each xi such
that w = E(y, x1, . . . , xk−1) and x0 = x′

0 = ♢. Moreover,
in any such collection of runs, the stack content at the end
is exactly the same as the beginning, except for an additional
single copy of y at the top.

Before we move on to the third type of gadgets, we note the
size and time taken to construct each Ei. Each Ei is obtained
by composing Di, B

1
i , . . . , B

k−1
i . Di has O(nk) states and

can be constructed in O(nk) time. Each Bj
i has O(n) states

and can be constructed in O(|G|) time. It follows that

Proposition 27 (Size of Ei). Each Ei has O(nk) states and
can be constructed in O(nk + |G|) time.

The third type of gadgets is obtained by simply repeating
the second type for k− 1 times. Formally, we create a gadget
Fi, by first creating k − 1 copies of Ei and then composing
them all together. Note that we immediately have the following
theorem.

Theorem 28. Let w be some word. Then, for each i, there is a
run of Fi on w starting from some initial state xi and ending
at some final state x′

i if and only if for each i > 0, xi = x′
i is

a node, there are nodes y1, . . . , yk−1 that are all neighbors of
each xi, w = E(y1, x1, . . . , xk−1)@E(y2, x1, . . . , xk−1)@ . . .
@E(yk−1, x1, . . . , xk−1) and x0 = x′

0 = ♢. Moreover, in any
such collection of runs, the stack content at the end is exactly
the same as the beginning, except for an additional single copy
of the word yk−1 . . . y1 at the top.

We will now describe the fourth type of gadgets. Their job
is to pop the topmost k−1 letters on the stack and store them
in the NFAs. To this end, for each i ∈ {0, . . . , k−1}, we will
create a machine Hi, which will have as its states (x, c)hi for
x ∈ {0, . . . , n− 1} ∪ {♢} and c ∈ {0, . . . , k − 1}.

The machine H0 is a PDA which upon reading some z from
a state of the form (♢, c)h0 with c < k, pops z from the stack
and moves to (♢, c + 1)h0 . Intuitively, this gadget forces the
k− 1 input letters to be the topmost k− 1 letters in the stack.
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For each i ∈ {1, . . . , k − 1}, the machine Hi is an NFA
which upon reading some z from a state of the form (x, c)hi

with c < k moves to (x, c+1)hi if c ̸= k−1−i and otherwise
moves to (z, c + 1)hi . Intuitively, this gadget remembers the
(k− i+1)th input letter that is read in a sequence of k input
letters.

From the construction, we can now prove the following
lemma. The proof is similar to the proof of the Prologue
theorem.

Lemma 29. Let w be some word. Then, for each i, there is a
run of Hi on w starting from some initial state xi and ending
at some final state x′

i if and only if w = yk−1 . . . y1 for some
nodes yk−1, . . . , y1, the word w is at the top of the stack of H0

at the beginning, x0 = x′
0 = ♢ and for each i > 0, x′

i = yi.
Moreover, in any such collection of runs, the only change in
the stack is the popping of w.

Now, let us create the final gadget for this sub-part. For
each i, we compose the gadget Fi and Hi to get a new gadget
Li. From the statements for the gadgets Fi and Hi, we get
the following theorem.

Theorem 30 (The Exploration Theorem). Let w be some
word. Then, for each i, there is a run of Li on w starting
from some initial state xi and ending at some final state
yi if and only if for each i > 0, xi and yi are nodes,
w = E(y1, x1, . . . , xk−1)@E(y2, x1, . . . , xk−1)@ . . .
@E(yk−1, x1, . . . , xk−1)@yk−1 . . . y1, each node in
{y1, . . . , yk−1} is a neighbor of each node in {x1, . . . , xk−1}
and x0 = y0 = ♢. Moreover, in any such collection of
runs, the stack content at the end is exactly the same as the
beginning.

We conclude with a discussion on the number of states
and time taken to construct each Li. Each Li is obtained by
composing Fi and Hi. Each Fi has O(k) copies of Ei and so
by Proposition 27, it follows that each Fi has O(nk2) states.
and that Fi can be constructed in O(nk2 + |G|k) time. From
the construction of Hi, note that each Hi has O(nk) states
and can be constructed in O(nk) time. Hence, it follows that

Proposition 31 (Size of Hi). Each Li has O(nk2) states and
can be constructed in O(nk2 + |G|k) time.

This completes the third sub-part.
Now, we wrap up by combining the gadgets from the

three sub-parts into one big gadget. To this end, for each i,
we will create a gadget Xi by composing Ai, Bi and Li.
For any collections of nodes x1, . . . , xk−1 and y1, . . . , yk−1

we will define three words given by A(x1, . . . , xk−1) =
x1x2 . . . xk−1, B(x1, . . . , xk−1) = x2@x2

3@x3
4@ . . .@xk−2

k−1

and L(x1, . . . , xk−1, y1, . . . , yk−1) = E(y1, x1, . . . , xk−1)@
E(y2, x1, . . . , xk−1)@ . . .@E(yk−1, x1, . . . , xk−1)@yk−1 . . . y1.
Note that by the theorems that we have proved in
this section, any word that is accepted by all of the
Ai’s (resp. all of the Bi’s or all of the Li’s) must be
of the form A(x1, . . . , xk−1) (resp. B(x1, . . . , xk−1)
or L(x1, . . . , xk−1, y1, . . . , yk−1)). With this intuition,

we then define W (x1, . . . , xk−1, y1, . . . , yk−1) =
A(x1, ··, xk−1)@B(x1, ··, xk−1)@L(x1, ··, xk−1, y1, ··, yk−1).

Intuitively, the gadget Xi first executes Ai which begins
with a collection of k − 1 nodes x1, . . . , xk−1 and then sets
up the stack in a specific way. Then it executes Bi which
verifies that these nodes x1, . . . , xk−1 form a (k − 1)-clique.
Finally, it executes Li which finds another collection of nodes
y1, . . . , yk−1 such that every node in this new collection is a
neighbor of every node in {x1, . . . , xk−1}.

Now, from the Setup Theorem, the Check Theorem and the
Exploration Theorem, we have the following main result.

Theorem 32 (End of Part Theorem). Let w be some word.
Then, for each i, there is a run of Xi on w starting from
some initial state xi and ending at some final state yi if
and only if for each i > 0, xi and yi are nodes, w =
W (x1, . . . , xk−1, y1, . . . , yk−1), x1, . . . , xk−1 is a (k − 1)-
clique, each node in {y1, . . . , yk−1} is a neighbor of each
node in {x1, . . . , xk−1} and x0 = y0 = ♢. Moreover, in any
such collection of runs, the stack content at the end is exactly
the same as the beginning.

We conclude this part by a discussion on the size of Xi.
By propositions 21,24 and 31, it follows that

Proposition 33 (Size of Xi). Each Xi has O(nk2) states and
can be constructed in O(nk2 + |G|k) time.

Second and Third Parts: The second and third parts are
exactly like the first part. More precisely, for each i, we create
two more copies of Xi and call them Yi and Zi. Yi and Zi

are the gadgets for the second and the third part.
Intuitively, the first part Xi begins with a collection of nodes

x1, . . . , xk−1, verifies it to be a (k − 1)-clique and then finds
another collection y1, . . . , yk−1 such that each node in this
new collection is a neighbor of each node in {x1, . . . , xk−1},
then it ends with the nodes yi stored in the state of each of
the NFAs Xi. Now, if we compose Yi with Xi, Yi will verify
that y1, . . . , yk−1 is a (k − 1)-clique and then find another
collection of nodes z1, . . . , zk−1 such that each node in this
new collection is a neighbor of each node in {y1, . . . , yk−1}.
Furthermore, each NFA Yi will end with the node zi stored in
its state. Hence, if we now compose Zi with it, we can verify
that {z1, . . . , zk−1} is a (k − 1)-clique and also find another
collection of nodes {x′

1, . . . , x
′
k−1} such that each node in this

new collection is a neighbor of each node in {z1, . . . , zk−1}.
If we then check that each x′

i = xi (which will be done by
the Epilogue gadget) then we are guaranteed that the xi’s,
yi’s and zi’s together form a 3(k − 1)-clique. Hence, we will
first compose the Xi’,s Yi’s and Zi’s together and then finally
compose the Prologue and Epilogue gadgets.

For each i, let Mi be the gadget obtained by composing
Xi, Yi and Zi. By the End of Part theorem applied thrice we
get the following.

Theorem 34 (Main sub-parts Theorem). Let w be some word.
Then, for each i, there is a run of Mi on w starting from some
initial state xi and ending at some final state x′

i if and only if
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• For each i > 0, xi and x′
i are nodes and there

exists nodes y1, . . . , yk−1, z1, . . . , zk−1 such that w =
W (x1, . . . , xk−1, y1, . . . , yk−1)@W (y1, . . . , yk−1, z1, . . . , zk−1)
@W (z1, . . . , zk−1, x

′
1, . . . , x

′
k−1).

• The sets X := {x1, . . . , xk−1}, Y := {y1, . . . , yk−1} and
Z := {z1, . . . , zk−1} are all (k − 1)-cliques.

• Every node in X is connected to every node in Y , every
node in Y is connected to every node in Z and every node
in Z is connected to every node in X ′ = {x′

1, . . . , x
′
k−1}.

• x0 = x′
0 = ♢.

Moreover, in any such collection of runs, the stack content at
the end is exactly the same as the beginning.

This completes the main three parts of the reduction. Now
we move on to the Epilogue.

Epilogue: Recall that the Prologue gadget pushes in k −
1 nodes x1, . . . , xk−1 into the stack. If we start the gadget
Mi after the Prologue, then by the Main sub-parts theorem,
it will end with some node x′

i in each of its NFAs and the
stack content will remain the same at the end as it was in
the beginning, i.e., it will have the k− 1 nodes xk−1, . . . , x1.
Hence, to check if each x′

i = xi, we only need to pop the
stack one element at a time and check that the ith element
popped is the node stored in the (k− i)th NFA. Equivalently,
it suffices to check that the (k − i)th element popped is the
node stored in the ith NFA. This is what the Epilogue gadget
will accomplish now.

Formally, for each i ∈ {0, . . . , k − 1}, we will construct
a gadget P r

i , which will have as its states (x, c)p
r
i for x ∈

{0, . . . , n− 1} ∪ {♢} and c ∈ {0, . . . , k − 1}.
The transitions of P r

0 are as follows: Upon reading some z
from a state (♢, c)p

r
0 with c < k − 1, it will pop z from the

stack and move to (♢, c+1)p
r
0 . Intuitively, this gadget simply

pops k − 1 nodes from the stack.
The transitions of each P r

i with i > 0 are as follows: Upon
reading some z from a state (x, c)p

r
i with c < k − 1, it will

move to (x, c + 1)p
r
i if c ̸= k − i − 1 or c = k − i − 1 and

x = z. Intuitively, the gadget P r
i ensures that the (k − i)th

letter read is the same as the one stored in its state.
From the construction of the gadgets, the following theorem

immediately follows.

Theorem 35 (Epilogue Theorem). Let w be some word. Then,
for each i, there is a run of P r

i on w between some initial
state x′

i and some final state xi if and only if w = x′
k−1 . . . x

′
1,

x′
0 = x0 = ♢, for each i > 0, x′

i = xi is a node and the stack
of P r

0 at the beginning of the run contains the word w at the
top. Moreover, in any such collection of runs, the only change
in the stack of P r

0 is the popping of the word w.

Note that we immediately get the following bound on the
size of P r

i .

Proposition 36 (Size of P r
i ). Each P r

i has O(nk) states and
can be constructed in O(nk) time.

Now, it is time to construct the final machines Mi, which
we can obtain by composing Pi,Mi and P r

i . From the

Prologue, Main sub-parts and the Epilogue Theorems, we get
the following theorem, which establishes the correctness of
the reduction.

Theorem 37 (Correctness of the Reduction). Let w be some
word. Then, for each i, there is an accepting run of Mi on w
if and only if there exists a 3(k − 1)-clique in the graph G.

By propositions 18, 33 and 36, it follows that the number of
states of each Mi is O(nk2) and each Mi can be constructed
in O(nk2+ |G|k) time. Since k was a fixed constant to begin
with, it follows that

Proposition 38. Each Mi has O(n) states and can be
constructed in O(|G|) time.

We also note that the PDA M0 is deterministic, in the sense
that, for every state q and every letter a it has at most one
outgoing transition from q labelled by a. Note that this can be
naturally converted into a complete machine that has exactly
one outgoing transition for each letter, by adding sink states.
However, for the sake of brevity, we do not do it here.

A. Reducing the alphabet size

Now, we will show how to reduce the input and stack
alphabet size in the machines Mi so that it becomes one of
constant size. The intuitive idea has already been sketched
before in the proof idea section in the main part of the paper
and so we focus on the formal aspects here.

Note that in both the input and the stack alphabet, if we
remove the set of nodes {0, . . . , n−1}∪{0, . . . , n− 1}, then
we are left with a constant-sized alphabet. (In the case of the
stack alphabet, it is in fact exactly equal to {0, . . . , n−1} and
hence the PDA only pushes/pops nodes into the stack). Hence,
we only need to “compress” these nodes. To this end, for any
node ℓ, let msbf(ℓ) (resp. lsbf(ℓ)) be the most significant bit
first encoding of ℓ (resp. least significant bit first encoding of
ℓ) over {0, 1}. In this way, we can represent each node ℓ by
log n sized words over {0, 1}.

Now, we modify the machines M0, . . . ,Mk so that instead
of reading nodes, they read log n sized words over the alphabet
{0, 1} and interpret them as nodes. A naive way of doing this
would be to introduce a log n sized gadget for each transition
of each machine which replaces reading a node with reading
its corresponding log n sized msbf encoding. Furthermore,
whenever it wants to push some node into the stack, it pushes
the input as it is read, i.e., it pushes the msbf encoding and
whenever it wants to pop some node from the stack, it pops
the lsbf encoding of that node.

However, doing this the naive way would increase the
number of states by O(m log n) (with m being the number
of edges of G) which might be quadratic in n. It turns out
that by modifying this naive idea a bit more, we can arrive
at the desired machines with just an extra O(n log n) states.
The modification is simply to combine all the “naive gadgets”
going between any two pair of states into one “smart gadget”,
which saves a lot of states and allows us to reuse the gadgets.

24



We now describe this formally by first making a series of
observations regarding the gadgets that we have made.

Let p be some state in some machine Mi. Recall that p is
a 3-tuple, the first of which is either some node of the graph
G or the symbol ♢.

Now, by examining all the gadgets that we have constructed,
we have the following first observation.

Suppose there is some outgoing transition from p
that reads a for some node a. Then, all the outgoing
transitions only read letters from the set {y : 0 ≤
y ≤ n− 1}, i.e., they only read nodes of the graph
G. Further, one of the following always applies:

• Either, for each node y of the graph, there is
exactly one outgoing transition from p reading
y. Furthermore, all such outgoing transitions
lead to the same state.

• Or p stores some node x and there is exactly one
outgoing transition from p reading some node a.
Furthermore, a must be x.

• Or p stores ♢ and for each node y of the graph,
there is exactly one outgoing transition from p
reading y.

Moreover, if the underlying machine is the PDA
M0, then

• Either all the outgoing transitions from p do not
change the stack.

• Or all the outgoing transitions from p push the
input letter onto the stack.

Our second observation is a dual to the above observation
for letters of the form a.

Suppose there is some outgoing transition from p
that reads a for some node a. Then, all the outgoing
transitions only read letters from the set {y : 0 ≤
y ≤ n − 1}. Further, one of the following always
applies:

• Either, for each node y of the graph, there is
exactly one outgoing transition from p reading
y. Furthermore, all such outgoing transitions
lead to the same state.

• Or p stores some node x and there is exactly one
outgoing transition from p reading some node a.
Furthermore, a must be x.

• Or p stores ♢ and for each node y of the graph,
there is exactly one outgoing transition from p
reading y.

Moreover, if the underlying machine is the PDA
M0, then every outgoing transition from p reading a
letter of the form y, pops the node y from the stack.

Intuitively, these observations mean that whenever p stores
a node of the graph G, then we do not have to introduce
a separate gadget for every outgoing transition of p reading
a or a for some node a. Instead, we can club together all
these gadgets into one gadget that goes to the same state q.
Hence, for “most” states, we only need a log n sized gadget.

Regarding the other states, they all store ♢ and there are only
constantly many of them (where we use the fact that k is a
constant) and so we can afford to introduce a separate gadget
for each such state, which will only lead to an increase of
O(n log n) states overall. We now move on to the formal
aspects.

Let p be some state of some machine Mi. Suppose there
is at least one outgoing transition of p that reads some node
a. We now consider each of the three cases given by the first
observation.

Case 1: In this case, for each node y, we have exactly
one outgoing transition reading y of the graph and all of these
outgoing transitions move to the same state q (and we have
no other outgoing transitions). Intuitively, this means that it
does not matter which node is being read as long as we are
sure that the input being read is indeed a node (and not #
or @). With this in mind, we can replace all such outgoing
transitions with the following gadget between p and q. First,
we add log n many states p := (p, 0), (p, 1), . . . , (p, log n) = q
and then from state (p, i) we move to (p, i+1) upon reading
either 0 or 1. Furthermore, if the machine Mi is M0, i.e., the
PDA, then by the first observation

• Either all the outgoing transitions from p in M0 do not
alter the stack, in which case in the new gadget as well
no stack operations are performed.

• Or all outgoing transitions from p in M0 push the input
node that is read into the stack, in which case, in the
new gadget as well we push the input letter that is read,
i.e., while moving between (p, i) and (p, i+ 1) we push
either 0 or 1 if the input letter that is read is either 0 or 1
respectively. This ensures that every action of pushing a
node into the stack is replaced by the action of pushing
its msbf representation into the stack.
Case 2: In this case, p stores some node x and there is

exactly one outgoing transition of p and this transition reads
the node x. Let q be the state to which this transition goes
to. Intuitively, this means that we can only read the node x
from this state and so exactly one gadget between p and q
suffices here. With this in mind, we can replace this outgoing
transition with the following gadget between p and q. First,
we add log n many states p := (p, 0), (p, 1), . . . , (p, log n) = q
and then from state (p, i) we move to (p, i+1) upon reading
the (i+ 1)th bit in the msbf encoding of x. This ensures that
any way of using this gadget would be forced to read the msbf
encoding of x.

Furthermore, if the machine Mi is M0, i.e., the PDA, then
• Either the outgoing transition from p in M0 does not

alter the stack, in which case in the new gadget as well
no stack operations are performed.

• Or the outgoing transition from p in M0 pushes the input
node x into the stack, in which case, in the new gadget
as well we push the input letter that is read.
Case 3: In this case, p stores ♢. By the observation above,

for each node y, there is exactly one outgoing transition from
p reading y. Let qy be state to which this transition goes to.
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We now attach a gadget between p and qy by adding log n
many states p := (p, 0)y, (p, 1)y, . . . , (p, log n)y := qy and
then from state (p, i)y we move to (p, i + 1)y upon reading
the (i+ 1)th bit in the msbf encoding of y.

Furthermore, if the machine Mi is M0, i.e., the PDA, then
• Either the outgoing transition reading y from p in M0

does not alter the stack, in which case in the new gadget
as well no stack operations are performed.

• Or the outgoing transition reading y from p in M0 pushes
y into the stack, in which case, in the new gadget as well
we push the input letter that is read.

Now, suppose there is some outgoing transition from p that
reads some letter of the form a for some node a. Intuitively, the
gadgets here are exactly the same as the ones before, except
they will read the lsbf encoding of the node, rather than the
msbf encoding.

Formally, we now consider each of the three cases given by
the second observation.

Case 1: In this case, let q be the unique state to which
all outgoing transitions of p go to. We add log n many states
p := (p, 0), (p, 1), . . . , (p, log n) = q and then from state (p, i)
we move to (p, i+1) upon reading either 0 or 1. Furthermore,
if the machine Mi is M0, i.e., the PDA, then by the second
observation, all outgoing transitions from p in M0 pop the
input node that is read into the stack, in which case, in the
new gadget as well we pop the input letter that is read. This
ensures that every action of popping a node into the stack is
replaced by the action of popping its lsbf representation into
the stack.

Case 2: In this case, let p store some node x and let
q be the unique state to which the (only) outgoing transition
of p reading x moves to. We add log n many states p :=
(p, 0), (p, 1), . . . , (p, log n) = q and then from state (p, i) we
move to (p, i + 1) upon reading the (i + 1)th bit in the lsbf
encoding of x. Furthermore, if the machine Mi is M0, i.e., the
PDA, then by the second observation, the outgoing transition
from p in M0 pops x from the stack, in which case, in the
new gadget as well we pop the input letter that is read.

Case 3: In this case, for each node y, let qy be the state
that p moves to upon reading y. Between p and qy we intro-
duce log n many states p := (p, 0)y, (p, 1)y, . . . , (p, log n)y =
qy and then from state (p, i)y we move to (p, i + 1)y upon
reading the (i+1)th bit in the lsbf encoding of y. Furthermore,
if the machine Mi is M0, i.e., the PDA, then by the second
observation, this outgoing transition from p in M0 pops y
from the stack, in which case, in the new gadget as well we
pop the input letter that is read.

This completes our transformation. Call the new machines
as M′

0,M′
1, . . . ,M′

k−1. Given some word γ over the nodes,
let mbin(γ) (resp. lbin(γ)) denote the word obtained by re-
placing each node in γ with its msbf (resp. lsbf) representation.
The following proposition is immediate from construction.

Proposition 39. Let a be some node.
• There is a step of the form (p, γ)

a−→ (q, η) (resp.
(p, γ)

a−→ (q, η)) in M0 for some states p, q and

some stack content γ, η if and only if there is a run
of the form (p, lbin(γ))

mbin(a)−−−−−→ (q, lbin(η)) (resp.

(p, lbin(γ))
lbin(a)−−−−→ (q, lbin(η))) in M′

0.
• There is a step of the form p

a−→ q (resp. p a−→ q) in Mi

for some i > 0 and some states p, q if and only if there
is a run of the form p

mbin(a)−−−−−→ q (resp. p
lbin(a)−−−−→ q) in

M′
i.

Using this proposition it is then easy to see that

Theorem 40. There is a word accepted by all of the machines
M0,M1, . . . ,Mk−1 if and only if there is a word accepted
by all of the machines M′

0,M′
1, . . . ,M′

k−1.

Now, note that for each state p that does not store ♢, we
have added only log n more states. As for the states that do
store ♢, we have added n log n more states. However, note
that the number of states that store ♢ in each of the gadgets
presented in each of the parts is a constant (depending only on
k). By Proposition 38, it follows then that the total number of
states in each M′

i is O(n log n). Further, it also follows that
each machine M′

i can be constructed in time O(|G|+n log n).
It can also be verified that the PDA M′

0 is deterministic, once
again, in the sense that for every state q and every letter a,
there is at most one outgoing transition from q labelled by a.

Now, suppose we can solve the PDA ∩NFAk−1 problem
in time O(nω(k−1)−ε) for some ε > 0. Then, by doing the
above construction in O(|G|+n log n) time, we can reduce the
3(k−1)-clique problem to the PDA ∩NFAk−1 problem such
that all the machines in the instance have O(n log n) states. It
then follows that we could solve the original 3(k − 1)-clique
instance in time O(n log n+|G|+nω(k−1)−ε(log n)ω(k−1)−ε).
Since (log n)ω(k−1)−ε grows asymptotically slower than nε/2

for any ε > 0, it follows that we can solve the given 3(k−1)-
clique instance in time O(nω(k−1)−ε+ε/2) = O(nω(k−1)−ε/2),
which is a contradiction to the 3(k − 1)-clique hypothesis.
Similarly, we can argue for an O(n3(k−1)) lower bound for
combinatorial algorithms. Theorem 5 now follows.

APPENDIX C
2NPDA(k) AND LINEAR TIME EQUIVALENCES

A. Formal Description of 2NPDA(k) Machines

A 2NPDA(k) machine [23], [26] has the form A =
(Q,Σ,Γ, δ, q0, F ), where Q is a finite set of states, Σ are Γ
are finite alphabets of input and stack symbols, respectively,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and
a transition relation δ ⊆ Q×Σk×Γ×Q×Γ∗×{−1, 0,+1}k.
We assume Σ contains two designated “end of tape” symbols
◁ and ▷, and that a head cannot move left if it reads ◁ and
cannot move right it is reads ▷. We assume that Γ contains a
designated “end of stack” symbol Z0 such that any transition
(q, a⃗, Z0, q

′, γ, d) ∈ δ satisfies γ = Z0. Thus, no transition of
A replaces Z0 on the stack with a different symbol; also, no
transition pushes Z0 on the stack when the top of the stack is
not Z0.
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Informally, the 2NPDA(k) machine A has a finite control
(states from Q) and k reading heads. In a single transition, the
machine simultaneously reads k symbols (elements of Σ) from
the input tape and the top symbol (an element of Γ) from the
pushdown store. Based on the transition relation δ, 2NPDA
moves by changing the control state, replacing the top symbol
of the pushdown store by a finite string of symbols (possibly
the empty string), and moving each of its input heads at most
one symbol left or right (some heads can remain at the same
position).

Initially, the machine is in state q0, and its pushdown store
consists of the single symbol Z0. The input tape consists of a
word w ∈ (Σ\{◁,▷})∗ surrounded by a left marker ◁ and a
right marker ▷, and every head of the machine scans the left
marker ◁.

A configuration of the 2NPDA A is a triple
(q, w1σ1w2 . . . σkwk+1, γ), where q ∈ Q, wi ∈ Σ∗ for
each i ∈ {1, . . . , k + 1}, σ1 . . . σk is a permutation of
{1, . . . , k}, and γ ∈ Γ+. (In this description, we assume
that {1, . . . , k} ∩ Σ = ∅.) The configuration represents the
situation where the state is q, the word w1 . . . wk+1 is on the
input tape, the k heads are at positions on the input tape that
are preceded in the configuration by σ1 to σk. In other words,
if σi = ℓ, then the ℓth head of A observes the first letter of
the word wi+1 . . . wk+1. Intuitively, wi+1 is the word on the
input tape between the cell observed by the ith leftmost head
and the cell observed by the i+ 1st leftmost head (excluding
the latter). Notice that w1 = ε if and only if one if the heads
observes the leftmost cell; wk+1 is never empty.

We write c = (q′, s, γZ) → (q′, s′, γγ′) = c′ whenever
there is a transition (q, a⃗, Z, q′, γ′, d⃗) ∈ δ with the following
properties. In c each head, i, observes some letter ai such
that a⃗ = (a1, . . . , ak). In c′ each head moves by di positions,
where d⃗ = (d1, . . . , dk), compared to c. We require that the
scan position does not “fall off” the input word. Note that the
input tape is not changed, only the scan position may change.
We write →∗ for the reflexive and transitive closure of →.

The initial configuration of A on a word w ∈ (Σ\{◁,▷})∗
is the configuration (q0, σ1σ2 . . . σk◁w▷, Z0) where each
σi = i. An accepting configuration of A on a word
w ∈ (Σ \ {◁,▷})∗ is a configuration of the form
(q,◁wσ1σ2 . . . σk▷, Z0) where q ∈ F and each σi = i. A
run of the 2NPDA A on a word w ∈ (Σ \ {◁,▷})∗ is a
sequence of configurations C0, C1, . . . , Ck such that C0 is the
initial configuration of M on w and each Ci → Ci+1. A run
is said to be accepting if the last configuration of that run
is an accepting configuration. A word w ∈ (Σ \ {◁,▷})∗ is
accepted by A if there is an accepting run of A on the word
w. The language L(A) of A is the set of all accepted words
(in (Σ \ {◁,▷})∗).

B. 2NPDA(k) language recognition reduces to DCFL k-
intersection reachability for DFA

Let M be a 2NPDA(k). For every w ∈ Σ∗, we show how
to construct a DPDA P and DFA A1, . . . , Ak such that

w ∈ L(M) iff L(P ) ∩ L(A1) ∩ . . . ∩ L(Ak) ̸= ∅.

In our construction, the DPDA P will be independent of the
input word w and determined solely by the automaton M;
thus, the DCFL L from the theorem statement is chosen as
L = L(P ). The DFA A1, . . . , Ak will be constructed in time
linear in w.

The tape alphabet of the machines P , A1, . . . , Ak is the set
δ of transitions of the 2NPDA(k) M. The language L(P ) ∩
L(A1)∩. . .∩L(Ak) will consist of all accepting runs of M on
input w. Indeed, a sequence ρ = t1 . . . tn ∈ δ∗ is an accepting
run if and only if the following three conditions are satisfied:

• Transitions of ρ trace a path in the finite graph on the
states of M from the initial state to a final state.

• Stack movements prescribed by the sequence ρ are valid,
that is, the sequence of pushes and pops belongs to the
Dyck language over the alphabet Γ∪Γ−1, where Γ is the
stack alphabet of M.

• For each i ∈ [1, k], the letters on the input tape that are
read by the ith head in the sequence ρ are compatible
with the input tape containing word ◁w▷, where ◁ and
▷ are endmarker symbols.

In short, the DPDA P checks the first two conditions, and each
of the DFA A1, . . . , Ak checks the third condition for some i.
To complete the proof, it remains to describe the construction
of the machines P,A1, . . . , Ak and to analyse the running time
of the reduction.

Construction of DPDA P and DCFL L: The de-
terministic pushdown automaton P is determined by the
2NPDA(k) M. The set of its control states is equal to that
of M, call it Q. Every state q1 ∈ Q has outgoing transitions la-
belled with all input letters of the form (q1, a, Z, q2, γ

′, d) ∈ δ.
This way, the first condition in the list above is checked by P .
On letter (q1, a, Z, q2, γ

′, d), the DPDA P pops Z ∈ Γ from
the top of its stack, replacing it with γ′ ∈ Γ∗. This way, the
second condition in the list above is also checked by P . In
short, for each t = (q1, a, Z, q2, γ

′, d) ∈ δ the DPDA P has a
transition (q1, t, Z, q2, γ

′). The DPDA P ignores the symbol
a ∈ Σ and the head movements d prescribed by t.

To complete the description of P , we choose the initial
state and the set of final states the same as they are in M. As
already announced, L = L(P ) is the sought DCFL.

Construction of DFA A1, . . . , Ak: Let i ∈ [1, k]. The
deterministic finite automaton Ai verifies the third condition
in the list above for i. The set of control states of Ai is
{0, 1, . . . , |w|+1}, which we think of as possible positions of
the ith head of M over the input tape. The initial state is 0,
and the only final state is |w|+ 1, in line with the semantics
of 2NPDA(k).

Reading t = (q1, a, Z, q2, γ
′, d) ∈ δ from its input tape,

the DFA Ai ignores all components except a ∈ Σ and d ∈
{−1, 0,+1}k. In fact, in the vector d = (d1, . . . , dk) only di
is relevant, and all other components are ignored too. From
state j, where 1 ≤ j ≤ |w|, only transitions where a is equal
to the ith letter of the word w can depart. Similarly, for j = 0
and j = |w| + 1, the requirement is that a = ◁ and a = ▷,
respectively. Upon reading t as above, the automaton Ai moves
to the state j + di as long as this state exists.
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Running time of the reduction: The reader will readily
see that P and L are determined solely by M. The DFA
A1, . . . , Ak depend on w and have |w|+ 2 states each. Their
input alphabet is δ, which is again independent of w, and so all
of these machines can be constructed in linear time given w.

C. CFL k-intersection reachability reduces to
PDA ∩NFAk−1 intersection non-emptiness

Let the CFL L be fixed. Given k NFA, the (L, k) in-
tersection reachability problem asks if there is a word in
L(A1) ∩ . . . ∩ L(Ak) that belongs to L.

The reduction takes some fixed PDA P0 for the CFL L
and produces a PDA P for the language L ∩ L(A1) =
L(P0)∩L(A1) by utilising the standard product construction
(see, e.g., Hopcroft, Motwani, and Ullman’s textbook [25,
Section 7.3.4]). The set of control states of PDA P is the
Cartesian product of the sets of control states of P0 and A0.
Since P0 is fixed, the description size of P is linear in the
description size of A1.

The reduction outputs the PDA P and NFA A2, . . . , Ak,
which together form the input of PDA ∩NFAk−1 intersection
non-emptiness. The correctness and running time analysis of
the reduction are immediate.

We remark that, if L is a DCFL and A1 is a DFA, then the
product PDA P is in fact a DPDA [20, Theorem 3.1].

D. PDA ∩NFAk−1 intersection non-emptiness reduces to
2NPDA(k) language recognition

The input to the PDA ∩NFAk−1 intersection non-emptiness
problem is a concatenation of the string encoding the PDA P
and strings encoding the NFA A1, . . . , Ak−1, with delimiters
separating one from another. The encodings use a fixed alpha-
bet, which we denote by ∆; then the input is some w ∈ ∆∗. In
particular, all letters of the input alphabet of P,A1, . . . , Ak−1,
denoted by Σ, and of the stack alphabet of P , denoted
by Γ, are encoded by words from ∆∗. We describe a fixed
2NPDA(k) M that accepts w ∈ ∆∗ if and only if w encodes
some PDA P and NFA A1, . . . , Ak−1 that accept some word
in common: L(P ) ∩ L(A1) ∩ . . . ∩ L(Ak−1) ̸= ∅.

It will be clear that the description of 2NPDA(k) M only
depends on k but not on PDA P or NFA A1, . . . , Ak−1. The
reduction is linear: in fact, it is just a matter of encoding the
list P,A1, . . . , Ak−1 as a word w ∈ ∆∗.

The idea is for M to guess a word in this intersection on the
fly and to simulate k accepting runs on this word in lockstep:
one in the PDA P and k − 1 in the NFA A1, . . . , Ak−1. In a
nutshell, M uses one of its heads for each of these accepting
runs, and the stack for storing the content of the stack of the
PDA P . The pseudocode in Figure 1 (page 12) summarises
the construction and is meant to be seen as the program of the
(fixed) 2NPDA(k) M. For the convenience of notation, we
denote A0 = P . We now detail each step of the simulation.

Initialising the stack: The description of the PDA A0

contains the encoding of its bottom-of-stack symbol as a string
over ∆, which is separated from other parts of the input

word w of M by delimiters (also coming from ∆). At the
beginning of the simulation, M locates this encoding using
one of its heads and pushes it onto the stack. The head returns
to the left endmarker.

Positioning head i to the initial state of Ai: As already
mentioned, M uses one head per each of the machines
A0, A1, . . . , Ak−1. To keep track of the current control state
of Ai−1, the ith head of M is used. We can assume that the
string encoding the automaton Ai−1 — be that PDA P or
NFA Ai−1 — includes a list of the states of Ai−1, in which
the initial state comes first. The program of 2NPDA(k) M
moves the ith head right from the left endmarker, skipping
encodings of i−1 automata completely, and stopping over the
first element in the list of control states of the ith automaton,
Ai−1.

Guessing and executing transitions: This phase of the
simulation consists of the three for loops in the pseudocode
above, as well as two nondeterministic while loops handling
ε-transitions in the PDA A0. We discuss the for loops first.

In the first loop, moving each head of M to an outgoing
transition within the encoding of Ai−1 is non-deterministic:
ti−1 is guessed. The implementation is self-explanatory, except
for the following detail. As an invariant of the simulation, we
require that, in between iterations of the main while loop in
the pseudocode, head i of M is positioned over (the encoding
of) the current control state of Ai−1, call it qi−1, within the list
of all states of Ai−1. When the next transition ti−1 of Ai−1

is guessed, the 2NPDA(k) M must check that ti−1 departs
from qi−1. To this end, M first pushes the encoding of qi−1

on the stack. It then moves head i to the encoding of ti−1,
thus guessing ti−1. At this point M pops from the stack to
check the match of the control state. If the check fails, the
nondeterministic branch rejects.

In the second loop, the goal is to ensure that the guessed
transitions t0, t1, . . . , tk−1 all read the same input letter a ∈ Σ
from the input. Recall that letters of the alphabet Σ are
encoded by words over ∆. (In fact, this is why it is not
necessarily possible to guess a upfront and store it in the
control state of M.) To perform the check, each head of M
locates the encoding of the input letter within the description
of the corresponding transition ti−1. The heads then move in
synchrony to check equality of the letters. As above, if the
check fails, the nondeterministic branch of the computation
rejects.

In the third loop, the transitions t0, t1, . . . , tk−1 are exe-
cuted:

• For NFA A1, . . . , Ak−1, it suffices, using head i, to push
the encoding of the destination of the transition ti−1 onto
the stack, then locate the list of control states of Ai−1 and
guess the position of the destination in that list. After that,
the stack is popped to compare the destination as recorded
on the stack (which is popped) with the state in the list,
ensuring the invariant of the simulation.

• For PDA A0, we also need to simulate the operations on
the stack. Recall that the semantics of a PDA transition
dictates that a stack symbol Z ∈ Γ be popped from the
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top of the stack and replaced by a word γ′ ∈ Γ∗. Again
as previously, letters of the stack alphabet Γ are encoded
using words from ∆∗. To perform the stack operations,
the 2NPDA(k) M locates the encoding of Z and starts
popping the stack, checking that the symbols match the
encoding of Z. If the check fails, the nondeterministic
branch of computation rejects (because the guessed tran-
sition is not available from the current configuration).
Otherwise M proceeds to push the encoding of γ′. After
these stack operations, M goes on to update the current
control state, as in the case of NFA.

The for loops discussed above ensure that all of
A0, A1, . . . , Ak−1 synchronise on the input letters, i.e., in
effect M guesses k sequences of transitions that form k ac-
cepting runs. However, unlike the NFA A1, . . . , Ak−1, the
PDA A0 may have ε-transitions. These are taken care of by
the two nondeterministic while loops: with the help of head 0,
M can simulate an arbitrary sequence of ε-transitions taken
by A0 before and after Σ-transitions.

Checking acceptance: When M guesses the end of the
word in L(A0)∩L(A1)∩. . .∩L(Ak−1), it pushes the encoding
of the current control states of A0, A1, . . . , Ak−1 onto the
stack and then moves the heads to locate these states in the
corresponding lists of final states in the input word w ∈ ∆∗.
The stack is popped to verify that all these states are indeed
final. After that, one of the heads locates the encoding of
the bottom-of-stack symbol of A0 within w. By popping the
stack, M verifies that the simulated stack of A0 contains this
symbol only and, therefore, that A0 has reached an accepting
configuration. If all checks succeed, M accepts.
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