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Abstract—We prove that any perfect quantum
strategy for the two-prover game encoding a constraint
satisfaction problem (CSP) can be simulated via
a perfect classical strategy with an extra classical
communication channel, whose size depends only on
(i) the size of the shared quantum system used in
the quantum strategy, and (ii) structural parameters
of the CSP template. The result is obtained via a
combinatorial characterisation of perfect classical
strategies with extra communication channels and
a geometric rounding procedure for the projection-
valued measurements involved in quantum strategies.

A key intermediate step of our proof is to establish
that the gap between the classical chromatic number
of graphs and its quantum variant is bounded
when the quantum strategy involves shared quantum
information of bounded size.

I. INTRODUCTION

Two-prover games yield a convenient paradigm
for investigating the power and limits of com-
putation and information transfer. Some of the
most striking developments of modern theoretical
computer science—for instance, in hardness of
approximation (e.g., [Bel93], [Raz95], [BR95],
[FGL+96], [Kho02], [KMS18]) and in the theory of
complexity classes (e.g., [yCCL94], [BFL91])—are
most conveniently formulated as statements on the
expressive power of two cooperating provers/players
interacting with a verifier/referee.

Consider the scenario of a Referee challenging
two players—Alice and Bob—by asking each of
them a question involving a local set of variables
for some fixed predicate. Alice and Bob aim to
convince the Referee that the predicate is true.
Just like in a real questioning scenario, the replies
should be plausible (i.e., they should locally satisfy
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the predicate) and consistent with each other. In
this work, we focus on perfect strategies for the
cooperating players:

When can Alice and Bob convince the Referee, no
matter which questions the Referee chooses?

If the players are allowed to communicate freely
during the game, they can always win as long as
each question of the Referee admits some plausible
answer. At the other extreme, if no communication
is allowed, we expect a perfect strategy to exist
precisely when the predicate is true. After all, if
Alice and Bob are innocent, they should simply tell
the truth, and their replies will always sound both
plausible and consistent; if they are not innocent,
any strategy will have a weak point, which a
zelous Referee might use to spot implausibility or
inconsistency in the answers.

The study of two-prover games has also shown to
be central in quantum theory—specifically, to shed
light on the compatibility of quantum and classical
physics. At a high level, the idea is that, once
physics enters the picture, the “no communication”
assumption between Alice and Bob during the game
sets different restrictions on the type of correlations
exhibited by Alice’s and Bob’s answers, depending
on the physical theory we are adopting. Specifically,
in a quantum model of physics, the phenomenon
of entanglement might in principle be used by the
players to devise strategies resulting in answers
that are more correlated than those resulting from
any strategy admitted in a classical theory. More
precisely, a quantum strategy consists of a bipartite
quantum system shared by Alice and Bob, as well
as two families A and B of measurements, one for
Alice and one for Bob, with different measurements
associated with the possible questions the Referee
might ask. Upon receiving the questions, each of
the players performs the corresponding measure-
ment from A and B, respectively, on their part



of the shared quantum system. The outcomes of
the measurements determine their answers. Some
predicates admit a quantum strategy that outper-
forms any classical strategy. This has served as
theoretical evidence for the non-classical properties
of quantum physics—in particular, non-locality and
contextuality, see e.g. [Bel64], [CHSH69], [Mer90],
[BCT99], [BBT05].

The goal of this work is to investigate the extent
to which the correlation between Alice’s and Bob’s
answers achieved via quantum entanglement can be
simulated by introducing into the game a limited
amount of classical communication among the
cooperating players. To that end, we consider the
scenario where Alice and Bob, upon receiving the
questions from the Referee, are allowed to send
a classical message one to the other. Our main
contribution is to show that any perfect quantum
strategy can be converted into a perfect classical
strategy with a communication channel whose size
depends only on (i) the dimension of the Hilbert
space describing the shared system in the quantum
strategy, and (ii) the type of predicate.

It shall be convenient, in our analysis, to treat
the predicate describing a game as an instance of a
constraint satisfaction problem CSP(Y). Here, Y
is the template of the CSP, encoding all plausible
replies of the players to the Referee’s questions.
In a zero-communication game, the existence of a
perfect classical strategy means that the predicate
yields a YES-instance of CSP(Y). Moreover, it
was shown in [ABdSZ17] that a perfect quantum
strategy corresponds to a YES-instance of the
CSP parameterised by a certain infinite-domain,
quantised version YH of Y.

As the first step of our proof (in Section III), we
show combinatorially that a similar phenomenon
also appears for classical strategies with extra com-
munication channels. Specifically, the two scenarios
of Alice messaging Bob and Bob messaging Alice
are captured by two distinct modifications of Y,
which we denote by Y→k and Y←k, respectively,
with k representing the size of the message. As a
consequence, classical strategies with an extra com-
munication channel for a Y-predicate are equivalent
to classical strategies with no communication for a
Y→k-predicate and a Y←k-predicate, respectively.
Unlike the structure YH for the quantum case, such
structures are finite.

The second step of our proof (in Section IV) is
geometric, and consists in a rounding procedure that,
given a perfect quantum strategy on a d-dimensional
Hilbert space, produces a classical strategy that is

perfect when a message of suitable size (depending
on d and on Y, but crucially not on the instance)
is allowed. By virtue of the first step, this rounding
procedure can be performed at the template level
rather than at the game level, and is thus instance-
free. For example, showing that any perfect quantum
strategy can be simulated by a perfect classical
strategy with an “Alice to Bob” message of size
k amounts to building a relation-preserving map
between YH and Y→k.

The main technical challenge of the rounding
procedure is to show that the quantum version of any
structure Y has a finite classical chromatic number.
This corresponds to finding a finite colouring for
the infinitely many measurements admitted in a
quantum strategy. We give two different proofs of
this fact. One proof works for arbitrary CSPs, and
makes use of the compactness of the unitary group
in Cd×d to build a system of indicator frames that
“almost diagonalises” any projective measurement.
The second proof only applies to digraphs, and it
is based on a classic upper bound on the size of
sphere coverings by [Rog63]. The latter argument
allows simulating a perfect quantum strategy via
a classical communication channel whose size
asymptotically matches the dimension of the Hilbert
space describing the shared quantum system, in
the digraph case. We do not know whether this
fact is a coincidence or rather an instance of a
deeper correspondence between shared quantum
information and classical communication in the
context of non-local games. As a by-product of the
second step of our proof, in Section IV-C, we obtain
an upper bound on the gap between the classical
chromatic number χ and its d-dimensional quantum
version χd, by showing that χ(G) ≤ αd · χd(G)
for each graph G, where αd depends only on the
dimension d of the quantum system.

Related work: Our result finds its collocation
within a line of work in quantum communication
complexity aiming to quantify the communication
cost of classically simulating the correlations ob-
served in quantum theory. This direction was pion-
eered independently in [Mau92], [BCT99], [Ste00].
In particular, it was shown in [BCT99] that the
correlations produced by the two parties of a Bell
experiment through two-outcome projective meas-
urements on a single pair of qubits in a Bell state can
be simulated by classical strategies augmented with
eight bits of communication. Later, [Csi02] proved
that six bits are sufficient, and [TB03] reduced
the number to only one bit, which is optimal; see
also [BT03], where the latter result was extended
to a complete characterisation of the polytope
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of the admitted correlations arising from such
strategies. Moreover, [BCT99] gave a lower bound
(but no upper bound) on the number of classical
communication bits required in the case of a system
of arbitrarily many Bell states shared by the players.
It was later shown in [RT10] that two communica-
tion bits are sufficient (and, as proved in [VB09],
necessary) for exactly simulating the quantum
correlations arising in the case that both players
perform two-outcome measurements on a shared
quantum system described by a Hilbert space of
arbitrary dimension. In the latter work, the marginal
distributions produced by the classical protocol with
communication do not coincide with those coming
from the quantum measurements. The case of
multipartite—as opposed to bipartite—entanglement
was considered in [BDG14]; see also [Coa02],
[BBB+12], [ZCG19], [RQ23], [SLYS23] in the
same line of work.

We note that the number of measurement out-
comes in the protocols discussed above corresponds
to the size of the CSP template in our setting
(see Section II-B). Furthermore, in this line of
work, a classical protocol is typically said to
simulate a quantum measurement scenario if the
outputs it produces have exactly the same bivariate
distribution as those produced by the quantum
measurements—or if the correlations coincide, as
in [RT10]. The notion of simulation we explore
in the current work is less restrictive: We only
require that the classical distributions be perfect (i.e.,
satisfy all local constraints of the CSP) when the
quantum distributions are perfect. In fact, in order to
exactly simulate quantum correlations via classical
messages of finite size, Alice and Bob provably
need infinite shared randomness—as was shown
in [MBCC01], see also [BCP+14, §III.C]. We also
observe that the literature on classical simulation of
quantum correlations often considers measurement
scenarios on quantum systems prepared in some spe-
cific state (for example, a Bell state), while this work
captures quantum strategies involving a quantum
system prepared in an arbitrary state. Nevertheless,
it was shown in [ABdSZ17, Thm. 5] (generalising
results from [CMN+07], [Rob13], [MR16b]) that,
as far as perfect strategies are concerned, there is no
loss of generality in preparing the shared quantum
system in a maximally entangled state.

Finally, we point out that other ways of quan-
tifying the classical resources needed to simulate
non-classical effects of quantum systems have been
investigated in the literature. A primary example
is the so-called memory cost of contextuality—i.e.,
the size of a classical system needed to simulate

INPUT: σ-structure X
STRATEGY PHASE: Alice and Bob strategise
PROPER GAME PHASE:

[REF]: sends R ∈ σ and x ∈ RX to Alice
[REF]: sends x ∈ X to Bob
[ALICE AND BOB COMMUNICATE] (depending on

game rules)
[ALICE]: responds with y ∈ Y ar(R)

[BOB]: responds with y ∈ Y

SCORING: Alice and Bob win if
(i) y ∈ RY , and
(ii) ∀i ∈ [ar(R)], xi = x implies yi = y.

Figure 1: The X,Y game.

the certain predictions that can be obtained from
sequences of measurements on a quantum system,
see [KGP+11], [CGGX18].

II. GAMES AND STRATEGIES

Before embarking on the proof of our main
results, we give in this section a formal description
of the two-player games associated with CSP
instances, as well as the types of strategies that
we will be concerned with in this work.

Let σ be a (relational) signature; i.e., a finite
set of symbols R, each with an associated positive
integer ar(R) called the arity of R. A relational
structure with signature σ (in short, a σ-structure)
Y consists of a set Y called domain or universe, and
a relation RY ⊆ Y ar(R) for each symbol R ∈ σ.
Given two σ-structures X and Y, a homomorphism
from X to Y is a map f : X → Y preserving all
relations; i.e., f(x) ∈ RY for each tuple x ∈ RX,
where f is applied entrywise to the entries of x.
The existence of a homomorphism from X to Y is
denoted by the expression X → Y. CSPs can be
expressed as homomorphism problems for relational
structures. In particular, given a fixed σ-structure
Y (the template), the CSP parameterised by Y is
the set of σ-structures X (called instances of the
CSP) for which it holds that X → Y.

We will be looking at such homomorphism
problems through the lens of the aforementioned
two-prover games. Fig. 1 illustrates the X,Y
game associated with an instance X of CSP(Y).
Observe that the winning condition (i) corresponds
to plausibility—Alice’s reply should satisfy the
local constraint picked by the Referee—while
condition (ii) expresses consistency—Alice’s and
Bob’s replies should be consistent with each other.

A. Classical strategies—no communication

Suppose that Alice and Bob are not allowed
any communication during the proper game phase,

3



and cannot leverage non-classical effects resulting
from shared quantum information to devise stronger
strategies. A classical strategy consists then of a
function aR : RX → Y ar(R) for each R ∈ σ
encoding Alice’s answer, and a function b : X → Y
encoding Bob’s answer. The strategy is perfect if
it makes Alice and Bob win the game regardless
of the Referee’s questions; i.e., if aR(x) ∈ RY

for each x ∈ RX, and aR(x)i = b(xi) for each
x ∈ RX and each i ∈ [ar(R)].

We observe that the questions could be thought
of as being sampled according to some probability
distribution on the instance X. However, since we
shall only be concerned with perfect strategies, we
do not need to choose any explicit distribution.
Randomness could also be involved in Alice’s and
Bob’s replies: In both the classical and the quantum
settings (which we shall shortly describe formally),
the players could toss a coin before answering.
It is not hard to see that, if such a randomised
strategy achieves some winning probability, the
same winning probability can be achieved via a fully
deterministic strategy. Hence, we shall consider
deterministic strategies without loss of generality.

If X → Y (i.e., if X is a YES-instance of
CSP(Y)), Alice and Bob can agree on some
homomorphism f : X → Y in the strategy
phase, and then always respond according to f :
Alice replies f(x) = (f(x1), . . . , f(xar(R))) upon
receiving x ∈ RX, and Bob replies f(x) upon
receiving x ∈ X . Clearly, this strategy is perfect.
Conversely, it is not hard to check that, given a
perfect deterministic strategy, Bob’s answers yield
a homomorphism from X to Y. Therefore, we have
the following.

Fact 1. The set of instances X for which the X,Y
game admits a perfect classical strategy is CSP(Y).

B. Quantum strategies—no communication

Take now a Hilbert space H. We shall always
consider finite-dimensional Hilbert spaces, so H ∼=
Cd or H ∼= Rd for some d ∈ N. A projector
onto H is a linear map E : H → H such that
E2 = E∗ = E, where E∗ is the adjoint of
E. Let I and O denote the identity and zero
projectors onto H, respectively. For a finite set S, we
denote by PVMH(S) the set of projection-valued
measurements over H whose outcomes are indexed
by S. In other words, PVMH(S) consists of all sets
E = {Es}s∈S where each Es is a projector onto H
and, in addition,

∑
s∈S Es = I . In particular, the

latter condition implies that the projectors in E are
mutually orthogonal: EsEt = O when s ̸= t.

Consider two σ-structures X and Y. A quantum
strategy for the X,Y game consists of a Hilbert
space H, a unit vector ψ ∈ H⊗H (which describes
the state of the quantum system shared by Alice and
Bob at the beginning of the game), a measurement
A(x) ∈ PVMH(Y

ar(R)) for each R ∈ σ and each
x ∈ RX, and a measurement B(x) ∈ PVMH(Y ) for
each x ∈ X . Upon receiving x ∈ RX, Alice uses
A(x) to measure her part of the shared quantum
system; upon receiving x ∈ X , Bob uses B(x) to
measure his part of the system. This results in Alice
replying y and Bob replying y with probability
ψ∗(A

(x)
y ⊗B

(x)
y )ψ. Like in the classical case, the

strategy is perfect if the resulting answers always
satisfy the conditions (i) and (ii) of Fig. 1.

Let CSPH(Y) be the set of σ-structures X
such that a perfect quantum strategy for the X,Y
game exists. It was shown in [ABdSZ17] that
CSPH(Y) is in fact an (infinite-domain) classical
CSP, parameterised by a σ-structure YH that we
now describe. The domain of YH is PVMH(Y );
for each symbol R ∈ σ of some arity r, a tuple
(E(1), . . . ,E(r)) of PVMs belongs to RYH

if and
only if its elements are jointly measurable (i.e.,
all projectors commute), and the joint PVM is
supported inside RY. As we shall repeatedly use
in our proofs, this is equivalent to the existence
of a measurement F = {Fy}y∈RY ∈ PVMH(R

Y)
such that the equality

E(i)
y =

∑
y∈RY

yi=y

Fy (1)

holds for each y ∈ Y and each i ∈ [r]. Note that
F is uniquely determined, as Fy = E

(1)
y1 · · ·E(r)

yr .

Theorem 2 ([ABdSZ17]). CSPH(Y) = CSP(YH)
for each σ-structure Y and each Hilbert space H.

C. Classical strategies—Alice messages Bob

Consider again the game of Fig. 1. This time,
suppose that, after receiving her question x ∈ RX

from the Referee, Alice is allowed to send a
message to Bob, with the goal to provide him with
as much information about x as possible so that
their answers are consistent. Clearly, if the message
is allowed to encode the complete information about
x, Bob can always respond perfectly: He knows that
Alice will reply with some y ∈ RY upon receiving
x, as they agreed in the strategy phase. Then, he can
simply reply with yi whenever x = xi for some
index i, and with any answer otherwise. Hence,
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provided that Alice has some plausible reply at all,1

the players always win in this case.
The situation becomes more interesting if the

message is required to have a limited length,
independent of X. Suppose, for concreteness, that
Alice is only allowed to transfer log2 k classical bits.
In other words, she can send Bob one of k different
prescribed messages. In this setting, a (classical)
strategy consists of a function aR : RX → Y ar(R)

and a function mR : RX → [k] for each R ∈ σ,
as well as a function b : X × [k] → Y . Here, aR
encodes Alice’s reply to the Referee; mR encodes
her message to Bob; and b encodes Bob’s reply
(which depends on both the Referee’s question and
Alice’s message). The conditions making such a
strategy perfect are the obvious ones.

Let CSP→k(Y) denote the set of instances X
for which a perfect classical strategy with Alice
sending Bob one of k prescribed messages exists.
Quite surprisingly, we shall see in Section III
that, just like in the quantum case, CSP→k(Y)
is in fact a standard CSP, parameterised by a
certain combinatorial power of Y that we denote
by Y→k. Using this characterisation, we obtain
in Section IV our first main result, stating that any
perfect quantum strategy can be simulated by a
classical strategy with a suitably long “Alice to
Bob” message:

Theorem 3. For each σ-structure Y and each
Hilbert space H there exists some k ∈ N such
that CSPH(Y) ⊆ CSP→k(Y).

Since, clearly, CSP(Y) ⊆ CSPH(Y), The-
orem 3 establishes a “sandwich” of CSPH(Y)
between two finite-domain CSPs corresponding to
classical strategies. Our proof of Theorem 3 does
not yield an explicit bound on k as a function of H
and Y. On the other hand, in the specific setting of
digraphs (i.e., relational structures having a single,
binary relation), we show that, asymptotically, k =
dimH + logχ(Y) is enough, where χ(Y) is the
chromatic number of Y (see Theorem 16). Hence,
for a fixed χ(Y), the number of communication
bits in the classical strategy matches the number
of shared qubits in the quantum strategy—we find
this fact quite fascinating. Our proof for this case
makes use of a geometric result by Rogers on the
number of caps needed to cover a real sphere in
arbitrary dimension [Rog63].

1For example, if Alice is sent a loop of X but Y has no loop,
she cannot give a plausible answer. Via Definition 6, it shall be
immediate to check when this happens.

D. Classical strategies—Bob messages Alice

What if the message is sent by Bob to Alice
instead? In this case, a strategy consists of a function
b : X → Y encoding Bob’s reply to the Referee,
a function m : X → [k] encoding Bob’s message
to Alice, and, for each R ∈ σ, a function aR :
RX× [k] → Y ar(R) encoding Alice’s answer to the
Referee after reading Bob’s message.

Although this scenario might look similar to the
previous one at first glance, it turns out that there
exist substantial differences. In sharp contrast to the
previous case, it is easy to find CSP instances for
which no amount of “Bob to Alice” communication
can make them win the game with certainty, even if
plausible answers are available for every question.

Example 4. Let X be an undirected edge x ↔
x′ and Y be a directed edge y → y′. Consider
the X,Y game. Suppose Bob receives x from the
Referee. If he answers y, Alice will never be able
to give a winning reply upon receiving the edge
x′ → x from the Referee, no matter what message
she receives. Similarly, if Bob answers y′, Alice
will not be able to find a convincing answer to the
question x→ x′.

We will denote by CSP←k(Y) the set of in-
stances X for which a perfect classical strategy with
Bob sending Alice one of k prescribed messages
exists. In this case, we obtain a similar character-
isation of CSP←k(Y) as the CSP parameterised
by a structure that we denote by Y←k. Through
this characterisation, we show that this dual mes-
saging protocol is also able to capture quantum
strategies, provided that the length of the message
is sufficiently long:

Theorem 5. For each σ-structure Y and each
Hilbert space H there exists some k ∈ N such
that CSPH(Y) ⊆ CSP←k(Y).

The “Bob messages Alice” protocol appears to
be weaker than the “Alice messages Bob” one. For
example, the explicit upper bound on k that we
obtain in the digraph case for the former protocol
(see Theorem 16) is only exponential in dim(H)
(however, see Remark 15).

III. CAPTURING CLASSICAL STRATEGIES WITH
EXTRA COMMUNICATION

In this section, we show that both “Alice to Bob”
and “Bob to Alice” perfect classical strategies can
be captured by suitable combinatorial powers of the
template Y. We explore the two cases separately.
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A. Alice messages Bob
We start by defining the combinatorial operation

capturing “Alice to Bob” strategies.

Definition 6. Let Y be a σ-structure and k a
positive integer. The k-fold Alice power of Y—in
symbols, Y→k—is the σ-structure on the universe
Y k such that, for every relation symbol R (say
of arity r), a tuple (x(1), . . . ,x(r)) belongs to
RY→k

if and only if there exists j ∈ [k] such
that (x(1)j , . . . , x

(r)
j ) ∈ RY.

In the case of graphs, Y→k corresponds to the k-
fold iteration of the Cartesian sum of Y with itself—
an operation introduced by Ore [Ore62] and also
known in the literature under the name of co-normal
product [FM13]. We shall prove the following.

Theorem 7 (Proved in Appendix B). For each
σ-structure Y and each k ∈ N, it holds that
CSP→k(Y) = CSP(Y→k).

Example 8. We illustrate Theorem 7 with two
examples, which the reader can easily verify.
• Let Kn be the clique on n vertices. Then

Kn
→k = Knk .

• Let NAEn (read “Not All Equal”) be the
structure on domain [n] having a single, ternary
relation containing all non-constant tuples.
Then NAE2

→k = NAE2k .

Clearly, the ability to transfer information will
never disadvantage Alice and Bob. Theorem 7
makes this immediate: The map y 7→ (y, y) is a
homomorphism from Y to Y→2, so CSP→1(Y) =
CSP(Y) ⊆ CSP(Y→2) = CSP→2(Y). More
generally,

CSP(Y) = CSP→1(Y) ⊆ CSP→2(Y) ⊆
⊆ CSP→s(Y) ⊆ · · ·

On the other hand, does—say—one bit of commu-
nication help? The next theorem states that, except
for degenerate cases, it does.

Recall that the core of a σ-structure Y—in
symbols, core(Y)—is a minimal (under inclusion)
induced substructure of Y that is homomorphically
equivalent to Y. It is easy to check that core(Y) is
unique up to isomorphism, and any endomorphism
is an automorphism [BKW17].

Theorem 9 (Proved in Appendix B). Given a σ-
structure Y, we have CSP→2(Y) = CSP(Y) if
and only if the domain of core(Y) has size ≤ 1.

B. Bob messages Alice
As noted in Section II, switching the direction

of the communication between Alice and Bob

significantly changes the power of the corresponding
strategies. This will be evident by looking at the
structure capturing strategies of the second type,
described below, which turns out to be substantially
different from the one of Section III-A. For example,
this time, the domain size of the template Y grows
linearly rather than exponentially in k. As we shall
see in Section IV, this fact will force the number
of communication bits necessary to simulate a
quantum strategy to be much larger in the “Bob to
Alice” case.

Definition 10. Let Y be a σ-structure and k a
positive integer. The k-fold Bob power of Y—in
symbols, Y←k—is the σ-structure on the universe
[k]×Y such that, for every relation symbol R (say
of arity r), a tuple ((i1, y1), . . . , (ir, yr)) belongs
to RY←k

if and only if for each ĩ ∈ [k] there
exists some tuple ỹ = (ỹ1, . . . , ỹr) ∈ RY such
that yj = ỹj whenever ij = ĩ. To spell it out, the
domain of Y←k consists of k copies of Y , and a
tuple belongs to a relation RY←k

if and only if,
for each i, its restriction to the i-th copy can be
extended to a tuple in RY.

This operation is a generalisation of the standard
join operation for undirected graphs. In particular,
when Y is an undirected graph with no isolated
vertices, Y←2 is exactly the join of two copies of
Y. Like in the case of CSP→k(Y), we now show
that CSP←k(Y) is a CSP for a certain template,
corresponding to the structure defined above.

Theorem 11 (Proved in Appendix B). For each
σ-structure Y and each k ∈ N, it holds that
CSP←k(Y) = CSP(Y←k).

Example 12. Recall the structures Kn and NAEn

from Example 8. The following straightforward
facts hold.

• Kn
←k = Knk.

• NAE2
←k = NAE2k.

• Let RBn (read “Rainbow”) be the structure
on domain [n] having a single, ternary relation
consisting of all tuples that contain three
distinct vertices. Then RB3

←k = RB3k.

Also in this communication setting, we have the
following chain of inclusions:

CSP(Y) = CSP←1(Y) ⊆ CSP←2(Y) ⊆
⊆ CSP←s(Y) ⊆ · · ·

However, does—say—one bit of communication
help the provers? Unlike in the “Alice to Bob” case,
not always. Consider the digraph D2 consisting of
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a single directed edge. Then D2
←k is homomorph-

ically equivalent to D2 for any k. In fact, we can
characterise the structures Y for which one bit of
communication gives Alice and Bob an advantage.

Theorem 13 (Proved in Appendix B). Given a σ-
structure Y, we have CSP←2(Y) = CSP(Y) if
and only if every relation in core(Y) is a Cartesian
product of some subsets of Y .

The condition in Theorem 13 is equivalent to the
fact that CSP(Y) = CSP(Y′) for some Y′ having
only unary relations [BKW17]. Such CSPs are trivi-
ally tractable, e.g. using the 1-minimality algorithm
from [BKW17]. As a consequence, for any CSP
that is not tractable in polynomial time, classical
strategies with extra communication provide an
actual advantage with respect to classical strategies
with no communication. The same fact was ob-
served for quantum strategies (over a Hilbert space
of dimension at least 3) in [Cia24, Cor.17].

Corollary 14. If CSP(Y) is not tractable in
polynomial time, then any additional communic-
ation gives Alice and Bob advantage. In other
words, in this case, CSP(Y) ⊊ CSP→2(Y) and
CSP(Y) ⊊ CSP←2(Y).

Remark 15. Alice messaging Bob usually appears
to be a better option for winning the game than
Bob messaging Alice. For example, as noted in Ex-
ample 4, if D2 is a single directed edge and K2 is a
single undirected edge, no amount of “Bob to Alice”
communication will allow them to win, while even
one bit of “Alice to Bob” communication is enough.
Indeed, it is easy to see that K2 → CSP→2(D2)
while K2 ̸→ CSP←k(D2) for any k ∈ N.

On the other hand, surprisingly, there are cases
where Bob messaging Alice is a better choice.
Consider two Boolean structures X and Y with
a single 4-ary relation RX = {(0, 0, 1, 1)} and
RY = {(0, 1, 1, 1), (1, 1, 1, 0)}. It is not hard to
verify that X → Y←2. In terms of strategy,
suppose Bob is allowed to send a single bit
(i.e., 0 or 1) to Alice. Bob always answers 1 to
the Referee and sends his input to Alice; Alice
responds with (1, 1, 1, 0) upon receiving 0 from
Bob, and (0, 1, 1, 1) otherwise, thus winning the
game. However, it is straightforward to check that
X ̸→ Y→k for any k ∈ N.

IV. QUANTUM VS. CLASSICAL STRATEGIES

In this section, we prove our main results—
Theorem 3 and Theorem 5—stating that any perfect
quantum strategy can be simulated by a perfect
classical strategy with an “Alice to Bob” or “Bob

to Alice” message whose size depends only on (i)
the dimension of the shared quantum system ap-
pearing in the quantum strategy, and (ii) structural
parameters of the template structure Y. We stress
that it is the lack of dependence of the message size
on the CSP instance to make our results non-trivial:
Any quantum measurement scenario in which a
player performs one of m different measurements
can be easily perfectly simulated by a classical
protocol augmented with log2m communication
bits, as noted in [BCT99, Thm. 1].

To prove our main results, we make use of the
characterisations given in Section III. It turns out
that the “Alice to Bob” protocol is substantially
more effective at simulating quantum strategies, as
the required message length is exponentially smaller
in this case. While the results hold for arbitrary
CSPs, we first consider the special case of digraphs—
i.e., structures having a unique relation of arity two.
This is for two reasons: First, the treatment in the
digraph case is simpler and still provides intuition
on the general case; second, for digraphs, we are
able to achieve an explicit and rather tight upper
bound on the amount of classical communication
needed to simulate quantum strategies. In particular,
in the “Alice to Bob” case, for a given template Y
the number of required communication bits matches
asymptotically the number of shared qubits in the
quantum strategy that is being simulated (see part
(i) of Theorem 16).

A. Binary case

We establish the following result, which is a
refinement of Theorem 3 and Theorem 5 for the
digraph case. We denote by χ(Y) the (classical)
chromatic number of Y—i.e., the minimum n ≥ 2
such that Y → Kn.

Theorem 16. For each digraph Y and each Hilbert
space H of dimension d it holds that
(i) CSPH(Y) ⊆ CSP→k(Y) with k = d +

logχ(Y) + o(d) + o(logχ(Y));
(ii) CSPH(Y) ⊆ CSP←k(Y) with k = χ(Y) ·

O(exp(d)).

The proof strategy can be summarised via the
chain of homomorphisms

YH → KH
n → Km → Y→k

for suitable choices of n and m. The first link in the
chain is covered by the fact that the map Y 7→ YH

is functorial for arbitrary relational structures—in
fact, as established in [ABdSZ17], the map is even
monadic.
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Proposition 17 ([ABdSZ17]). Let Y,Y′ be σ-
structures, and let H be a Hilbert space. Then
Y → Y′ implies YH → Y′H.

Observe that the above result also holds for Alice
and Bob powers (i.e., for “Alice to Bob” and “Bob to
Alice” classical strategies), as shown in Lemma 34
and Lemma 35, respectively.

For the second link in the chain of homomorph-
isms, we will need the following proposition, which
is the most technical part of the proof. In the
statement below, as well as in the statement of
Theorem 19, o(1) indicates a function of d that
approaches 0 as d→ ∞.

Proposition 18. Let H be a Hilbert space of
dimension d and let n ≥ 2 be an integer. Then
KH

n → Km with m = n(2 + o(1))d−1.

The proof of Proposition 18 relies on some addi-
tional facts. A classic geometric result from [Rog63]
provides a technique for covering spheres in Rd

with few sphere caps. It was noted in [Pro18] that
Rogers’ method allows colouring spheres with few
colours in such a way that monochromatic points
are at a distance other than 1. For each d ∈ N and
each 0 < ρ ∈ R, let S(ρ, d) denote the (d − 1)-
dimensional sphere in Rd of radius ρ.

Theorem 19 ([Rog63], [Pro18]). It is possible to
colour S(ρ, d) with (2ρ+ o(1))d−1 colours in such
a way that points at distance 1 have distinct colours.

A second result that shall be useful comes from
the analysis of the quantum minion from [Cia24].
We present it here in the simplified setting of cliques,
as we do not need the higher level of generality.
We say that a complex- or real-valued matrix M is
a frame if MM∗ is a diagonal matrix of trace 1.
Consider the infinite graph SC(d, n) whose domain
is the set of n×d complex frames, with two frames
M,M ′ forming an edge if and only if there exists
an (n2 − n)× d complex frame N such that

Mi =
∑
j ̸=i

N(i,j), M ′i =
∑
j ̸=i

N(j,i) (2)

for each i ∈ [n], where Mi denotes the i-th row
of M and N(i,j) denotes the (i, j)-th row of N .
Let also SR(d, n) denote the subgraph of SC(d, n)
induced by real-valued frames. The next result is a
consequence of [Cia24, Prop.22–Thm.24].

Lemma 20 ([Cia24]). For any Hilbert space H of
dimension d and any integer n ≥ 2, it holds that

KH
n → SC(d, n) → SR(2d, n).

We are now in a position to prove Proposition 18.

Proof of Proposition 18. Recall that d denotes the
dimension of the Hilbert space H, and consider the
sphere S(ρ, 2d) with ρ = 1√

2
. By Theorem 19,

there exists a colouring α of this sphere using
(
√
2+o(1))2d−2 colours such that points at distance

1 get distinct colours. By the choice of ρ, this
means that α is an orthogonal colouring—i.e., no
two points of the sphere are coloured with the
same colour when the corresponding vectors are
orthogonal. Take a frame M ∈ SR(2d, n), and
find some index i ∈ [n] such that the i-th row
of Mi is nonzero. Observe that such a row exists
as tr(MM∗) = 1. Let also v = Mi√

2∥Mi∥
, and

observe that v ∈ S(ρ, 2d). We assign to M the
pair (i, α(v)). We claim that this defines a proper
m-colouring of SR(2d, n)—where we implicitly
identify [m] with [n]× [(

√
2+ o(1))2d−2]. Suppose

that two frames M,M ′ ∈ SR(2d, n) are coloured
with the same colour (i, a). Let v and v′ be the
normalised i-th rows of M and M ′, respectively.
We have that α(v) = α(v′). Since α is a colouring,
it follows that v ̸⊥ v′; i.e., Mi ̸⊥M ′i . Suppose, for
the sake of contradiction, that M and M ′ are adja-
cent in SR(2d, n). This means that there exists an
(n2−n)×2d frame N satisfying (2). Since NN∗ is
diagonal, it follows that there exists some row N(k,ℓ)

of N appearing in both sums. But this implies that
k = i, ℓ = i, and k ̸= ℓ, a contradiction. Hence, the
map constructed above is a proper m-colouring of
SR(2d, n); i.e., SR(2d, n) → Km. Composing this
colouring with the homomorphisms of Lemma 20
yields the required colouring KH

n → Km.

We can now show that perfect quantum strategies
for digraphs can be turned into perfect classical
strategies with a small communication channel.

Proof of Theorem 16. First of all, we can assume
that Y is loopless, as otherwise both digraphs Y→k

and Y←k contain a loop and, hence, (i) and (ii)
trivially hold. Furthermore, if Y homomorphically
maps to a directed edge, CSP(Y) has bounded
width. In this case, it was shown in [Cia24, Cor. 25]
that X → YH is equivalent to X → Y, which
means that CSPH(Y) = CSP(Y). Thus, the
theorem also holds trivially in this case. Assume
from now on that Y ̸→ D2.

Write n = χ(Y). Using Proposition 17 and Pro-
position 18, we obtain

YH → KH
n → Km, (3)

with m = n(2 + o(1))d−1.
Take some k ∈ N. Pick a directed edge (y1, y2) ∈

RY and the subset S ⊆ {y1, y2}k consisting of
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all tuples in which the number of occurrences of
y1 is exactly ⌊k/2⌋. Thus, |S| =

(
k
⌊k/2⌋

)
, and for

any two distinct tuples t(1), t(2) ∈ S there exist
indices i, j ∈ [k] such that t(1)i = y1, t

(2)
i = y2 and

t
(1)
j = y2, t

(2)
j = y1. It follows that both (t(1), t(2))

and (t(2), t(1)) are in RY→k

.
By relaxing Stirling’s approximation of the cent-

ral binomial coefficient, we have |S| =
(

k
⌊k/2⌋

)
≥

2k−1
√
k

, which matches exactly for k = 1 and diverges
for k ≥ 2. Now, by picking k = ⌈log2m +
log2 log2m+ 2⌉, we get

|S| ≥ 2m log2m√
log2m+ log2 log2m+ 3

≥ m

We can then complete the chain of homomorphisms
in Eq. (3) with Km → Y→ log2 m+O(log logm),
which implies part (i) of the statement.

As for part (ii), recall that we work now under the
assumption that Y ̸→ D2. This implies that there
exists some vertex in Y having both in-degree and
out-degree greater than zero. This means that Y←m

contains a clique of size m, so (3) can be completed
with Km → Y←m, and (ii) follows.

B. General case

We now generalise Theorem 16 to all CSPs, thus
proving the main results of this paper, which we
restate here for convenience.

Theorem 3. For each σ-structure Y and each
Hilbert space H there exists some k ∈ N such
that CSPH(Y) ⊆ CSP→k(Y).

Theorem 5. For each σ-structure Y and each
Hilbert space H there exists some k ∈ N such
that CSPH(Y) ⊆ CSP←k(Y).

To address the general case, we need a notion of
complete structures on arbitrary signatures. To that
end, we now introduce some terminology. Given
an integer r ∈ N, we let an r-pattern be a set of
partitions of the set [r]. For a signature σ, a σ-
pattern is a collection P = (PR)R∈σ, where each
PR is an ar(R)-pattern. Given two partitions π, π′

of [r], we write π ⪯ π′ (read: “π is at least as
fine as π′”) if each part in π is a subset of a part
in π′. Given a set S and a tuple s ∈ Sr, we let
πs be the partition of [r] consisting of the set of
equivalence classes of [r] modulo the equivalence
relation defined by i ∼ j if and only if si = sj . For
a σ-structure Y, we let ptn(Y) be the σ-pattern
(PR)R∈σ where, for each R ∈ σ, PR is the set of
partitions π of [ar(R)] such that π ⪯ πy for some
y ∈ RY.

Take a σ-pattern P = (PR)R∈σ and an integer
n ∈ N. We define the complete structure of size
n on pattern P as the σ-structure Kn,P having
domain [n] and relations RKn,P = {a ∈ [n]ar(R) |
πa ⪯ π for some π ∈ PR}, for each R ∈ σ. We
let the chromatic number of a σ-structure Y be

χ(Y) = min{n ∈ N | Y → Kn,ptn(Y)}.

Observe that χ(Y) is well defined, since it always
holds that Y → K|Y |,ptn(Y), as is witnessed by
the identity homomorphism. Furthermore, if Y is
a loopless digraph, χ(Y) is the standard (classical)
chromatic number of Y.

We shall prove the following intermediate result.

Proposition 21. There exists a function f : N→ N
such that, for any d ∈ N and any σ-structure Y, it
holds that YCd → Km,ptn(Y) with m = |Y |d ·f(d).

We first need to establish some geometric facts.
Let S be a finite set, and take two measurements
E,F ∈ PVMH(S). We say that E and F commute
if [Es, Fs̃] = O for each s, s̃ ∈ S, where Es (resp.
Fs̃) is the projector in E (resp. F) corresponding
to the outcome s (resp. s̃). (Recall that [E,F ] is
the commutator EF − FE.)

Given two commuting measurements E and F,
we can find a common basis of eigenvectors for
the projectors appearing in them. In such a basis,
there is an easy way to check whether the s-th
projector of E is equal to the s-th projector of F:
Simply evaluate both of them onto all vectors of
the basis and check if the outcomes always agree.
The next lemma argues that, in fact, any basis close
enough to being an eigenbasis also allows for exact
verification of whether the projectors coincide.

Lemma 22. Fix a finite set S, an integer d ∈ N, and
two commuting measurements E,F ∈ PVMCd(S).
The following statements are equivalent:
(i) E = F;
(ii) there exists an orthonormal basis {v1, . . . ,vd}

of Cd and a partition τ = {τs}s∈S of [d] such
that, for each s ∈ S and each j ∈ τs, it
holds that ∥Esvj∥ > α and ∥Fsvj∥ > α with

α =
√

1
2 (1 +

√
1− 1/d2).

Proof. The implication (i) ⇒ (ii) is obvious—just
take a common eigenbasis for the projectors in
E = F. To prove the converse implication, take
an orthonormal basis {v1, . . . ,vd} of Cd and a
partition τ = {τs : s ∈ S} of [d] satisfying the
condition of part (ii) of the statement. Let G be
the (unique) joint measurement of E and F, i.e.
G(s,s̃) = EsFs̃. For s ∈ S and j ∈ τs, consider the
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vector ws,j = (I−Fs)vj . Observe that the vectors
Fsvj and ws,j are orthogonal. Therefore,

1 = ∥vj∥2 = ∥Fsvj +ws,j∥2

= ∥Fsvj∥2 + ∥ws,j∥2 > α2 + ∥ws,j∥2,

whence we deduce that ∥ws,j∥ <
√
1− α2. Ob-

serve that

∥G(s,s)vj∥ = ∥EsFsvj∥ = ∥Es(vj −ws,j)∥
≥ ∥Esvj∥ − ∥Esws,j∥ > α− ∥ws,j∥

> α−
√
1− α2 =

√
d− 1

d
, (4)

which holds for each s ∈ S and each j ∈ τs. (The
first inequality is the reverse triangle inequality, and
the last equality follows from elementary algebra.)

Define the operator G̃ =
∑

s∈S G(s,s) and note
that it is a projector. We find

tr(G̃) =
∑
j∈[d]

v∗j G̃vj =
∑
s∈S

∑
j∈[d]

v∗jG(s,s)vj

=
∑
s∈S

∑
j∈[d]

∥G(s,s)vj∥2 ≥

≥
∑
s∈S

∑
j∈τs

∥G(s,s)vj∥2 >

>
∑
s∈S

∑
j∈τs

d− 1

d
= d

d− 1

d
= d− 1,

where the second equality holds since each
G(s,s) is a projector, the second inequality comes
from Eq. (4), and the second-to-last equality holds
since the set {τs : s ∈ S} partitions [d]. As a
consequence, tr(G) = d. It follows that G̃ = I .
Since G̃ =

∑
s∈S EsFs, this necessarily implies

that Es = Fs for each s ∈ S. Thus, E = F, as
required.

The next step is to show that there exists a
finite set B of “indicator” orthonormal bases in
Cd having the property that any measurement is
“almost diagonalised” in at least one of those bases.
To prove this, we use the compactness of the unitary
group in Cd×d.

We note that, at a high level, it is the finiteness
of B that allows any perfect quantum strategy to
be simulated via finitely many bits of classical
communication. Indeed, Alice and Bob will be able
to classically simulate their quantum strategy by
exchanging information on the eigenstructure of the
measurement that they perform upon receiving the
Referee’s question. Since finitely many bases are
sufficient to be “close enough” to diagonalise any
measurement, the information can be encoded in a
finite message.

Lemma 23. For each d ∈ N and each 1 > α ∈ R
there exists a finite set B of orthonormal bases
of Cd such that, given any finite set S and any
measurement E ∈ PVMCd(S), for at least one
basis {v1, . . . ,vd} ∈ B there exists a partition
τ = {τs}s∈S of [d] such that ∥Esvj∥ > α for each
s ∈ S and each j ∈ τs.

Proof. We can associate a unitary matrix M to
every PVM E onto Cd, by picking an orthonormal
basis diagonalising all projectors in E and viewing
them as the columns of M . Thus, the result directly
follows from the compactness of the unitary group
U(d).

We will need the next observation, whose proof
is deferred to Appendix B, showing that the pattern
of a structure is equal to that of its quantum version.

Proposition 24. For any σ-structure Y and any
Hilbert space H it holds that ptn(Y) = ptn(YH).

Proof of Proposition 21. Let B be a finite set
of orthonormal bases of Cd witnessing the
truth of Lemma 23 applied to d and α =√

1
2 (1 +

√
1− 1/d2). Pick a vertex E of YCd

; i.e.,
a measurement E ∈ PVMCd(Y ). Let n = |Y |. We
colour E with the pair ϑ(E) = (B, τ), where B
is a basis from B and τ is a partition of [d] in n-
many parts, satisfying the condition in Lemma 23.
Observe that there are at most nd such partitions
τ . Hence, letting f(d) be the size of B, ϑ yields
a function from the domain of YCd

to a subset of
[f(d)]× [nd], which we identify with a subset of
the vertex set of Km,ptn(Y).

We are left to show that ϑ is a proper colouring.
Take a symbol R ∈ σ of some arity r, and
a tuple e = (E(1), . . . ,E(r)) ∈ RYCd

. Using
Proposition 24, we deduce that πe belongs to the
R-th entry of ptn(YCd

) = ptn(Y); i.e., writing
ptn(Y) = (PR)R∈σ, we have that πe ∈ PR. Let
c = (ϑ(E(1)), . . . , ϑ(E(r))); we will argue that
πc = πe, which implies that c ∈ RKm,ptn(Y) by
the definition of the complete structure. Suppose,
for the sake of contradiction, that πc ̸= πe. This
means that there exist two indices i, j ∈ [r] such
that E(i) ̸= E(j) but ϑ(E(i)) = ϑ(E(j)). Let (B, τ)
be the common colour of E(i) and E(j), with
B = (v1, . . . ,vd). By construction of ϑ, it must
hold that ∥E(i)

y vj∥ > α and ∥E(j)
y vj∥ > α for

each y ∈ Y and each j ∈ τy .
Recall from the definition of YH in Section II-B

that the two measurements E(i) and E(j) are com-
muting. We can then apply Lemma 22 to deduce
that E(i) = E(j), a contradiction.
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The next result, whose proof is deferred to Ap-
pendix B, shows that, just like in the binary case,
the structure Y→k contains arbitrarily large cliques
when k grows large. Upper-bounding the depend-
ence of k on the size of the complete structure will
require some additional care, though.

Proposition 25. Take a σ-structure Y and an
integer n ∈ N, and let ptn(Y) = (PR)R∈σ.
Then Kn,ptn(Y) → Y→k with k =

∑
R∈σ |PR| ·

Oar(R)(log2 n).

We can now finalise the proof of our main results.

Proof of Theorem 3. For n = χ(Y), it holds that
Y → Kn,ptn(Y). Using Proposition 17, Proposi-
tion 21, and Proposition 25, we obtain

YH → KH
n,ptn(Y) → Km,ptn(Y) → Y→k

for suitable m, k ∈ N. By virtue of Theorem 2
and Theorem 7, the above homomorphism is equi-
valent to the claim.

The proof of Theorem 5 requires a few more
steps. Indeed, the last link of the chain YH →
KH

n,ptn(Y) → Km,ptn(Y) → Y←k does not hold in
this case, as arbitrarily large complete structures can
be found in Bob powers of only certain structures
Y, unlike for Alice powers.2 Hence, we construct
the desired homomorphism YH → Y←k directly.

Proof of Theorem 5. By Theorem 2 and The-
orem 11, the claim is equivalent to the fact that
YH → Y←k.

Proposition 21 yields a homomorphism c from
YH to Km,ptn(Y) for some m. Moreover, it is not
hard to check that c is pattern-preserving, in the
sense that πe = πc(e) for each symbol R ∈ σ and
each tuple e ∈ RYH

. Define a non-zero selector
function s : PVMH(Y ) → Y which, for any
E ∈ PVMH(Y ), selects an arbitrary element s(E)
with Es(E) ̸= O. Let k = m|Y |, and consider the
function h : PVMH(Y ) → [k]× Y defined by

PVMH(Y ) ∋ E 7→ ((c(E), s(E)), s(E)) ∈ [k]× Y.

We claim that h is the required homomorphism
from YH to Y←k.

Fix any R ∈ σ of arity, say, r; pick a tuple
e = (E(1), . . . ,E(r)) ∈ RYH

and let F be their joint
measurement supported on RY. To confirm that the
tuple h(e) is in RY←k

, pick a pair (c̃, s̃) ∈ [m]×Y
and define the set I = {i ∈ [r] : c(E(i)) =
c̃ and s(E(i)) = s̃}. We claim that some tuple

2For the reader’s benefit, we have included in Appendix A a
characterisation of when this happens.

in RY agrees with s(e) on all coordinates in I .
The case I = ∅ is trivial. Otherwise, we note
that E(i)

s̃ =
∑

y∈RY :yi=s̃ Fy for each i ∈ I ,
as per Eq. (1). Recall that the projectors in F

are pairwise orthogonal. Furthermore, using that
πe = πc(e), we obtain that E(i)

s̃ is the same non-
zero projector for each i ∈ I . Therefore, there must
exist some ỹ ∈ RY such that Fỹ appears in the
summation of each of them. Hence, ỹ is such that
ỹi = s̃ = s(E(i)) for all i ∈ I and, thus, it witnesses
that h(e) ∈ RY←k

.

Remark 26. For clarity, the statements of The-
orem 3 and Theorem 5 do not specify any upper
bound on k. However, bounds can be obtained as
follows. Let f be the function from Proposition 21
and d = dimH. Then,3 the value of k in Theorem 3
is Optn(Y)(d logχ(Y)+ log f(d)), while the value
of k in Theorem 5 is ≤ |Y |d+1 · f(d).

C. The quantum vs. classical chromatic gap

Given a graph X and an integer d ∈ N, let
χd(X) be the quantum chromatic number of X
in dimension d; i.e., the minimum n ∈ N such
that X → KCd

n . The results proved in Section IV
can be used to bound the gap between quantum
and classical chromatic number of graphs in any
fixed dimension d. Since Kn → KCd

n , it is clear
that χd(X) ≤ χ(X) for each X. For d ≥ 3, the
following lower bound on the gap between χd and
χ was established in [Cia24, Cor.35–Ex.36].

Theorem 27. [Cia24] For each d ≥ 3 and each
n ≥ 3 there exists a graph X such that χd(X) ≤ n
but χ(X) ≥ 2n− 1.

To the best of the authors’ knowledge, prior
to the current work, it was an open question
whether the χd vs. χ gap is bounded or not.
Using Proposition 18, we answer in the affirmative.

Theorem 28. For each graph X and each d ∈ N,
it holds that χ(X) ≤ αd · χd(X), where αd =
(2 + o(1))d−1.

Proof. Suppose that χd(X) = n. Using Proposi-
tion 18, we obtain X → KCd

n → Kn·αd
, whence

the conclusion follows.

We point out that Theorem 28 implies that the
quantum vs. classical chromatic gap is bounded
when the dimension d of the Hilbert space describ-
ing the system measured in the quantum protocol

3By Optn(Y) we mean that the hidden constant can depend
on |PR| and ar(R) for all R ∈ σ.
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is fixed. On the other hand, since αd → ∞ when
d→ ∞, the theorem does not imply that the gap is
bounded when the dimension of the Hilbert space is
arbitrary. In fact, it was recently proved in [Cia25]
that, conditional to the existence of strongly pseudo-
telepathic label-cover or 3XOR instances, there exist
graphs X such that χd(X) = 3 for some d, but
χ(X) is arbitrarily large.4

We also point out that our definition of χd relies
on the notion of quantum strategies as described
in Section II-B, which is standard in the literature on
quantum CSPs (see e.g. [ABdSZ17]). In particular,
for such strategies, measurements corresponding to
adjacent vertices must commute. In the literature on
the quantum chromatic number, the commutativity
assumption is usually not enforced ([CMN+07],
[MR16a], [MR16b]; see also [PT15] for a present-
ation of several variants of the quantum chromatic
number). The non-commutative version of quantum
chromatic number in dimension d is clearly not
larger than χd, and examples of graphs for which
the two versions differ are known [Kar24].

V. FURTHER DIRECTIONS

In the current paper, we explored the connection
between classical strategies for CSPs with extra
communication channels and those assisted by
shared quantum entanglement. Another direction
for further research appears to be understanding the
complexity of the computational problem associated
with the former type of strategies:

How hard is it to check whether a perfect classical
strategy with extra communication exists?

For concreteness, we now discuss the case of
strategies of the type “Alice messages Bob”. The
same questions can be asked for “Bob messages
Alice” strategies.

Following the algebraic approach to CSPs, the
problem consists in understanding the structure
of the polymorphism clone Pol(Y→k), and its
connection with Pol(Y).5 Perhaps surprisingly,
whatever connection exists between the two clones,
it is not going to preserve clone (or minion6)
homomorphism, as the next example illustrates.

Example 29. Let Ra, for a ∈ {0, 1}, denote the
relation {0, 1}3\{(a, a, a)}. Consider the following

4When d ≤ 2, it follows from [Cia24, Cor.13] that YCd

is homomorphically equivalent to Y for each structure Y, so
χ2(X) = χ1(X) = χ(X) for every graph X.

5For the technical definitions, we refer the reader to [BKW17].
6Minion homomorphisms are sometimes referred to as height-

1 clone homomorphisms in the literature, see e.g. [BKW17],
[BOP18].

pair of Boolean structures: Y has two ternary
relations, R0 and R1, while Y′ is the extension
of Y with the additional ternary relation from
NAE2. It is known that Pol(Y) = Pol(Y′), and
the corresponding CSPs are both NP-complete
[BKW17].

Now, consider the Alice squares of both struc-
tures. Example 8 asserts that NAE2

→2 = NAE4,
which defines an NP-complete CSP. In particular,
this means that CSP(Y′→2

) is NP-complete. On
the other hand, both relations of Y→2 contain
a constant triple of (0, 1), which makes its CSP
trivial. This implies that no clone (or minion) homo-
morphism can exist from Pol(Y→2) to Pol(Y′

→2
),

because it would provide a reduction from an
NP-complete CSP to a tractable one [BOP18].
This example also illustrates that, while for many
structures it happens that CSP(Y) reduces to
CSP(Y→k) via gadget reductions, there exist NP-
complete structures whose Alice power is tractable.

As a consequence, methods more advanced than
clone or minion homomorphisms are needed to
answer the above question. A related direction is
to study the complexity of the promise problem
of distinguishing, for an instance X, whether
X ∈ CSP(Y) or X ̸∈ CSP→k(Y). This is
the promise CSP associated with the template
(Y,Y→k), in symbols PCSP(Y,Y→k) [AGH17],
[BG21], [BBKO21].

Example 30. It is not difficult to check that
PCSP(Y,Y→k) is not always tractable. For
example, if Y is the clique Kn, we have
from Example 8 that PCSP(Kn,Kn

→k) =
PCSP(Kn,Knk), which is known to be NP-
complete for n large enough [KOWŽ23].

On the other hand, there are cases in which
both Y and Y→k are NP-complete, but the
promise problem is not. For example, con-
sider the NP-complete structure 1-in-3 (i.e., the
Boolean structure having a single, ternary rela-
tion {(1, 0, 0), (0, 1, 0), (0, 0, 1)}). It is not hard
to check that 1-in-3→2 contains a copy of
NAE2 and it is NP-complete. However, the
chain 1-in-3 → NAE2 → 1-in-3→2 im-
plies that PCSP(1-in-3, 1-in-3→2) reduces to
PCSP(1-in-3,NAE2), which is tractable in poly-
nomial time [BG21].
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[BFL91] László Babai, Lance Fortnow, and Carsten Lund.
Non-deterministic exponential time has two-prover
interactive protocols. Computational complexity,
1:3–40, 1991.

[BG21] Joshua Brakensiek and Venkatesan Guruswami.
Promise constraint satisfaction: Algebraic structure
and a symmetric Boolean dichotomy. SIAM J.
Comput., 50(6):1663–1700, 2021.

[BKW17] Libor Barto, Andrei Krokhin, and Ross Willard.
Polymorphisms, and how to use them. In An-
drei Krokhin and Stanislav Živný, editors, The
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APPENDIX A
LARGE COMPLETE STRUCTURES IN BOB POWERS

This section is devoted to characterising struc-
tures Y that contain arbitrarily large complete
structures in their (sufficiently large) Bob power,
as mentioned in Footnote 2. We will capture such
structures through the following definition.

Definition 31. Let Y be a σ-structure and write
ptn(Y) = (PR)R∈σ. A vertex v ∈ Y is called
central in Y if, for each R ∈ σ and for each
V ∈ π ∈ PR, there is some tuple y ∈ RY such
that yp = v for each p ∈ V .

Example 32. Consider the structure Y with domain
Y = [7] and a single 4-ary relation RY =
{(1, 1, 2, 3), (4, 5, 1, 1), (6, 6, 7, 7)}. The vertex 1 is
central, but it does not appear in any constraint with
the maximal pattern {{1, 2}, {3, 4}} ∈ PR.

Proposition 33. For any σ-structure Y and any
n ∈ N, the following statements are equivalent:
(i) there exists some k ∈ N such that

Kn,ptn(Y) → Y←k;
(ii) there exists v ∈ Y that is central in Y.

Proof. For the direction (i) =⇒ (ii), pick k ∈ N
such that there exists a homomorphism h from
Kn,ptn(Y) to Y←k. Let h(1) = (s, v) ∈ [k] × Y .
We will argue that v is central in Y. Fix a relation
symbol R ∈ σ and a set V ∈ π ∈ PR. By the
definition of Kn,ptn(Y), there exists a tuple a ∈
RKn,ptn(Y) with ai = 1 for all i ∈ V and πa = π.
Applying the homomorphism h to a entrywise, we
deduce that there exists ỹ ∈ RY such that ỹi = v
for all i ∈ V , as required.

For the opposite direction, fix a central element
v ∈ Y . We claim that k = n is sufficient and the
homomorphism is

h : [n] ∋ i 7→ (i, v) ∈ [n]× Y.

Fix a symbol R ∈ σ and a tuple a ∈ RKn,ptn(Y) .
Write t = (h(a1), . . . , h(aar(R))), and observe that
πt = πa. We will argue that t ∈ RY←n

. For each
s ∈ [n], either the set S = {i ∈ [ar(R)] : h(ai) =
(s, v)} is empty, or it is equal to some V ∈ πa.
The former case is trivial. In the latter case, by
the definition of a central vertex, there exists some
ỹ ∈ RY with ỹi = v for each i ∈ V . Hence, ỹ is
the required witness for s.

APPENDIX B
OMITTED PROOFS

In this section, we present the proofs that have
been omitted from the main body of the paper.

Theorem 7. For each σ-structure Y and each k ∈
N, it holds that CSP→k(Y) = CSP(Y→k).

Proof. We begin by proving the right-to-left inclu-
sion for fixed (but arbitrary) k and Y. Suppose
that X maps to Y→k via a homomorphism h.
Alice and Bob fix one such homomorphism in the
strategising phase. In the game phase Alice, given
a tuple x ∈ RX, computes h(x). By the choice of
h, it must be the case that h(x) belongs to RY→k

,
and, by the definition of Y→k, there exists j so that
the j-th projection of h(x) belongs to RY. Alice
sends this projection to the Referee and sends j to
Bob. Bob receives x from the Referee, receives j
from Alice, and sends h(x)j to the Referee. Their
responses are consistent, so they win the game.

For the other inclusion: Fix X such that Alice
and Bob win the game on X, and let aR : RX →
Y ar(R), mR : RX → [k] (for R ∈ σ), and b :
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X × [k] → Y encode their strategy, as described
in Section II-C. We define a map h : X → Y k by
setting h(x)j = b(x, j). Let us verify that h is a
homomorphism from X to Y→k. Fix a symbol R ∈
σ and a tuple x ∈ RX. Let y = aR(x) be Alice’s
answer to x ∈ RX, and let j = mR(x) be Alice’s
message to Bob upon receiving x. Since the strategy
is perfect, the consistency requirement enforces
Bob’s answer b(xi, j) to equal yi for each i ∈
[ar(R)]. This means that the projection of h(x) on
the j-th coordinate is equal to y. As y ∈ RY by the
plausibility requirement, h is a homomorphism.

Theorem 9. Given a σ-structure Y, we have
CSP→2(Y) = CSP(Y) if and only if the domain
of core(Y) has size ≤ 1.

Before proving the theorem, we establish a simple
lemma.

Lemma 34. For every k ∈ N, if X → Y then
X→k → Y→k. In particular Y→k and core(Y)

→k

are homomorphically equivalent (and, thus, define
the same CSP).

Proof. For the first claim, it suffices to build a
homomorphism coordinatewise. The second claim
is then immediate.

In fact, one can show that the map Y 7→ Y→k is
an endofunctor on the category R(σ) of σ-structures.
Furthermore, the family {Y 7→ Y→k}k∈N defines
an N+-graded monad on R(σ). Earlier, [ABdSZ17]
established that the same holds for the quantum map
Y 7→ YCd

.

Proof of Theorem 9. Note that the condition
CSP→2(Y) = CSP(Y) is equivalent to
Y→2 → Y, since Y → Y→2 always holds.
Moreover, by Lemma 34, we can substitute Y with
core(Y), and the games do not change.

The implication from right to left is obvious now:
If |Y | ≤ 1 then Y→2 is isomorphic to Y and we
gain nothing by communication.

For the converse implication, we fix a core
Y and assume that Y→2 → Y. The first step
is to notice that every permutation of Y is an
isomorphism of Y: Indeed, fix such a permutation
σ and consider elements of Y→2 of the form
(y, σ−1(y)). Let Y′ be the substructure of Y→2

induced by these elements. Note that Y → Y′ (by
the first coordinate) and that Y′ → Y (since even
the larger structure Y→2 homomorphically maps
to Y, by assumption). Since Y and Y′ have the
same number of elements, and since Y is a core,
the structures need to be isomorphic. This, in turn,
implies that the number of tuples in the relations

of Y and Y′ needs to be the same. In particular,
if σ−1(y) ∈ RY then y ∈ RY. Applying σ twice
we find that y ∈ RY implies σ(y) ∈ RY; i.e., σ
is an isomorphism of Y.

As a consequence of the discussion above, if
a relation RY contains a constant tuple, then
it contains all constant tuples. Furthermore, if
every relation contains every constant tuple, then
core(Y) (which is equal to Y) is a single element,
and the conclusion follows. It remains to derive a
contradiction in the remaining case—when RY has
no constant tuples for some symbol R.

Let y ∈ RY have a minimal number of distinct
elements among the tuples of RY. Let (b, c) and
(d, e) be two different elements of Y→2 such that
h(b, c) = h(d, e). Note that these must exist just by
counting the domain sizes. Assume, without loss of
generality, that they differ on the first coordinate. We
choose two different elements that appear (perhaps
multiple times) in y and substitute the appearances
of the first one with b and of the second one with
d. The new tuple is still in RY by the symmetry
from the previous paragraph. Next we extend the
new tuple to a tuple y′ ∈ RY→2

. We conclude that
h(y′) ∈ RY has fewer distinct elements than y—a
contradiction. This finishes the proof.

Theorem 11. For each σ-structure Y and each
k ∈ N, it holds that CSP←k(Y) = CSP(Y←k).

Proof. We begin by proving the right-to-left in-
clusion. Take a homomorphism h : X → Y←k

for some relational structure X. In the strategising
phase for CSP←k(Y), Alice and Bob agree on
fixing one such homomorphism h. In the game
phase, upon receiving a vertex x ∈ X from the
Referee, Bob computes h(x) = (s, y), where
s ∈ [k] and y ∈ Y . He sends y to the Referee
and s to Alice. Alice receives x ∈ RX from the
Referee and s from Bob. She then computes the set

S = {i ∈ [r] : ∃zi ∈ Y h(xi) = (s, zi)},

where r denotes arity of R. From the fact that
h is a homomorphism and by the definition of
Y←k applied to h(x) ∈ RY←k

, we deduce that
there exists some tuple y = (y1, . . . , yr) ∈ RY

consistent with h(x) on S (in the sense that for
i ∈ S, we have that h(xi) = (s, yi)), which Alice
sends to the Referee. Since Bob’s vertex x can only
be present in x on indices from S, their responses
are consistent and they win the game.

For the other inclusion: fix X such that Alice
and Bob can win CSP←k(Y). This means that
there exists a perfect strategy, which is encoded
by the functions h : X → [k] × Y given by
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h(x) = (m(x), b(x)) and aR : [k] × RX → RY

for each symbol R. Here, whenever Bob receives
the question x ∈ X from the Referee, he will
send Alice the message m(x) ∈ [k] and will play
b(x) ∈ Y ; whenever Alice receives the message
s ∈ [k] from Bob and the question x ∈ RX from
the Referee, she will play aR(s,x) ∈ RY.

We claim that h establishes the required homo-
morphism from X to Y←k. Fix a symbol R of
some arity r in the signature of X and Y, and a
tuple x ∈ RX. Given any s ∈ [k], we aim to use
Alice’s reply aR(s,x) as a witness for the fact that
h(x) ∈ RY←k

. Concretely, we need to prove that,
for each j ∈ [r] for which m(xj) = s, it holds
that b(xj) = aR(s,x)j . But this is precisely the
consistency condition characterising the existence
of a perfect strategy, and it is thus verified by
assumption.

Theorem 13. Given a σ-structure Y, we have
CSP←2(Y) = CSP(Y) if and only if every
relation in core(Y) is a Cartesian product of some
subsets of Y .

We will need the following simple lemma.

Lemma 35. For every k, if X → Y then X←k →
Y←k. In particular Y←k and core(Y)

←k are
homomorphically equivalent (and, thus, define the
same CSP).

Proof. For the first claim, the map (s, x) 7→
(s, h(x)) is a required homomorphism. The second
claim is then immediate.

Analogously to the Alice power, we observe
that the map Y 7→ Y←k is an endofunctor and,
moreover, gives rise to a graded monad.

Proof of Theorem 13. Note that the condition
CSP←2(Y) = CSP(Y) is equivalent to Y←2 →
Y, since it always holds that Y → Y←2. Moreover,
by Lemma 35, we can substitute Y with core(Y),
and the games do not change.

The implication from right to left is straightfor-
ward: If every relation in Y is a Cartesian product,
then let h : [2]×Y → Y be defined as h(s, y) = y.
To see that h is indeed a homomorphism from Y←2

to Y, consider any symbol R ∈ σ and any tuple
a ∈ RY←2

. Since RY is a Cartesian product, the
tuple h(a) also belongs to it.

For the left-to-right implication, fix a core Y and
a homomorphism h : Y←2 → Y. For each s ∈ [2],
let hs : Y ∋ y 7→ h(s, y) ∈ Y . Clearly, both hs are
endomorphisms of Y. Since Y is a core, they are
in fact automorphisms of Y.

Now, fix any R ∈ σ, say of arity r. We
will denote by π1..iR

Y the projection of the re-
lation onto coordinates (1, . . . , i), i.e. π1..iRY =
{(y1, . . . , yi) ∈ Y i | ∃yi+1, . . . , yr (y1, . . . , yr) ∈
RY}. Moreover, we define πiR

Y in a similar
manner. Fix any tuple y ∈ π1R

Y×· · ·×πrRY; we
claim that y ∈ RY. Since both hs are permutations,
there exists an integer M such that hM1 = hM2 = id.

We will argue using induction on i ∈ [r]
that (y1, . . . , yi) ∈ π1..iR

Y. The base
case i = 1 holds by the definition of y.
For the inductive step, suppose that the
claim holds for some i ∈ [r]. Observe that
hM−11 (y1, . . . , yi) ∈ π1..iR

Y and hM−12 (yi+1) ∈
πi+1R

Y. By the definition of Y←2, we have
((1, hM−11 (y1)), . . . , (1, h

M−1
1 (yi)), (2, h

M−1
2 (yi+1)))

∈ RY←2

. Therefore,(
hM1 (y1), . . . , h

M
1 (yi), h

M
2 (yi+1)

)
=

= (y1, . . . , yi+1) ∈ π1..i+1R
Y

since h is a homomorphism. Hence, the claim is true
by induction. It follows that y ∈ π1..rR

Y = RY.
We proved that RY is a Cartesian product.

Proposition 24. For any σ-structure Y and any
Hilbert space H it holds that ptn(Y) = ptn(YH).

Proof. Let σ be the signature of Y, and write
P = ptn(Y) = (PR)R∈σ and Q = ptn(YH) =
(QR)R∈σ . Fix a symbol R ∈ σ of some arity r. We
need to show that PR = QR.

For the left-to-right inclusion, pick some partition
π ∈ PR, and take y ∈ RY such that π ⪯ πy.
Take the tuple e = (E(1), . . . ,E(r)) of elements in
PVMH(Y ) defined by

E(i)
y =

{
I if yi = y
{0} otherwise.

Clearly, these PVMs commute, so they have
a unique joint measurement F. Observe that
whenever ỹ /∈ RY, there exists i ∈ [r] such that
ỹi ̸= yi. We have

Fỹ = E
(1)
ỹ1

· · ·E(r)
ỹr

= O,

so F is supported on RY, hence e ∈ RYH
.

Moreover, it is straightforward to check that πe =
πy. We deduce that π ⪯ πe ∈ QR, thus proving
that PR ⊆ QR.

For the other inclusion, start with a partition
π ∈ QR, and let this be witnessed by the fact that
π ⪯ πe for some e = (E(1), . . . ,E(r)) ∈ RYH

.
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Recall from Eq. (1) that their joint measurement
F ∈ PVMH(R

Y) satisfies

E(i)
y =

∑
y∈RY

yi=y

Fy

for each i ∈ [r] and each y ∈ Y . Choose y ∈ RY

such that dim(Fy) > 0. Since the projectors in F

are mutually orthogonal, if yi ̸= yj for some i, j ∈
[r], the projectors E(i) and E(j) must be different.
This means that πe ⪯ πy for each y ∈ RY such that
Fy is nontrivial. Since dim(H) > 0, at least one
such y exists. Hence, the chain π ⪯ πe ⪯ πy ∈ PR

holds, which means that QR ⊆ PR, thus concluding
the proof.

Proposition 25. Take a σ-structure Y and an
integer n ∈ N, and let ptn(Y) = (PR)R∈σ.
Then Kn,ptn(Y) → Y→k with k =

∑
R∈σ |PR| ·

Oar(R)(log2 n).

We will utilise the following combinatorial result.

Theorem 36 ([GSS96]). For any n, r ∈ N and any
finite set X there exists an n×m matrix over X
such that
• m = Θr,|X|(log2 n), and
• any subset of rows S ⊆ [n] of size r contains,

among its columns, all possible tuples in Xr.

Proof of Proposition 25. For each R ∈ σ and each
π ∈ PR, let MR,π be the matrix obtained from
Theorem 36 applied to n, ar(R), and X ⊆ Y ,
where X is defined as follows: We associate with
the matrix MR,π an arbitrary tuple y ∈ RY

such that π ⪯ πy, and let X = ∪i{yi}. Note
that |X| ≤ ar(R) = r, so MR,π has Or(log2 n)
columns. We claim that the rows of the matrix,
viewed as vertices of the structure (X; {y})→k,
induce a copy of Kn,({πy}).

Indeed, fix any r-ary tuple a of the rows of
MR,π such that πa ⪯ π. By the definition of MR,π ,
among the columns of a we can find any tuple in
Xr as long as its pattern is at most as fine as πa.
In particular, one of the columns is exactly y, so it
witnesses a ∈ (X; {y})→k.

Now, let M be the matrix obtained by concaten-
ating all MR,π’s. Note that the number of columns
is k =

∑
R∈σ |PR| ·Oar(R)(log2 n). Then, view the

rows of the matrix as the vertices of Y→k. We will
argue that these vertices induce Kn,ptn(Y) in Y→k.

Fix a symbol R ∈ σ of arity, say, r. Fix any
r-ary tuple a of the rows of M such that πa ∈ PR.
Recall that, in this case, a ∈ Y→k just by looking
at the columns originating from MR,πa . Hence, the
proof follows.
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