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Abstract—We introduce a quantitative relational Hoare logic
for quantum programs. Assertions of the logic range over a new
infinitary extension of positive semidefinite operators. We prove
that our logic is sound, and complete for bounded postconditions
and almost surely terminating programs. Our completeness result
is based on a quantum version of the duality theorem from
optimal transport. We also define a complete embedding into
our logic of a relational Hoare logic with projective assertions.

I. INTRODUCTION

Relational Hoare logics are program logics used to rea-
son about relationships between programs. Typically, their
judgments are of the form {P} S1 ∼ S2 {Q}, where S1

and S2 are programs, and P and Q are relational assertions,
traditionally known as pre- and postcondition. In this paper, we
consider the setting where S1 and S2 are quantum programs
in the pure qWhile language. In this setting, it is natural to
define validity based on quantum couplings. Indeed, there exist
several proof systems that support a rich set of proof rules and
are sound w.r.t. coupling-based notions of validity [1]–[3].
These proof systems have been used to reason about quantum
processes and quantum security. However, the proof-theoretic
foundations of these proof systems remain unexplored. In
particular, there is no prior account of the completeness of
these systems. The challenge with completeness arises from
the existential nature of coupling-based reasoning: validity of
a Hoare judgment {P} S1 ∼ S2 {Q} asserts the existence of
a suitable coupling, called witness coupling, between (output
states of) S1 and S2. Therefore, the completeness of the proof
system is intuitively equivalent to proving that the rules of
the proof system suffice to build all valid couplings between
two programs. Unfortunately, it seems difficult to establish a
direct argument of this kind. One reason is that proof rules
are compositional and allow to build couplings that respect
the structure of programs, so it seems plausible that the proof
rules are incomplete. In this paper, we do not attempt a direct
proof of completeness. Rather, we observe that one can achieve
completeness by leveraging a duality theorem for quantum
couplings. Our approach follows and generalises the work of
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Avanzini et al. [4] on completeness for probabilistic relational
Hoare logics.

Contributions: The main contribution of this paper is a
complete proof system for almost surely terminating programs
and positive semi-definite (PSD) assertions. The proof system
contains three parts. The first part is a minimalistic, standard,
set of rules—concretely, one left and right rule for each
construct, two-sided rules for skip and sequential composition,
and a rule of consequence w.r.t. the usual Löwner order ⊑ on
assertions. We prove that this set of rules is complete for split
postconditions, i.e. postconditions of the form Q1⊗I+I⊗Q2,
where Q1 and Q2 are unary assertions. The proof follows by
classic structural induction on programs—for technical consid-
erations that will be explained later, the proof also requires that
validity be defined using a new variant of quantum coupling,
called partial coupling, of independent interest. The second
part is a new structural rule, called the duality rule. The validity
of the (duality) rule is based on a quantum duality theorem,
akin to the celebrated Kantorovich-Rubinstein duality theorem
for the probabilistic setting. The main benefit of the rule is that
it allows to reduce a judgment of the form

{P} S1 ∼ S2 {Q}

to a judgment of the form

{P} S1 ∼ S2 {Q1 ⊗ I − I ⊗Q2}

where informally Q1 and Q2 are quantified universally over
all unary assertions such that Q1⊗I−I⊗Q2 ⊑ Q. Therefore,
the duality rules allow us to reduce the proof of a judgment
with an arbitrary postcondition to the validity of a judgment
with a split postcondition, for which the standard rules suffice.
The third part of the logic are two-sided proof rules. These
proof rules are important for the usability of the logic and are
present in prior works, but are not needed for completeness,
and will only be discussed briefly in the paper.

The second contribution of the paper is an alternative
interpretation of our proof system where assertions are drawn
from an infinite-valued generalization of PSD operators. The
logic remains sound for all postconditions and complete for
all bounded postconditions—provided one restricts the (dual)
rule to bounded postconditions. However, the main benefit
of this generalization is that it provides a means to unify
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projective assertions, used e.g. in [1], and positive semi-
definite operators. As an application, we provide a complete
embedding into our logic of a relational Hoare logic with
projective predicates.

Finally, we leverage our completeness theorems to char-
acterize some properties of interest. We give two character-
izations of program equivalence. The first characterization
is based on (finite-valued) positive semi-definite assertions
and uses tools from stable quantum optimal transport. The
second characterization is based on projective assertions (and
infinite-valued predicates). We also present characterizations
of quantum distance measures (trace distance and Wasserstein
semi-distance), diamond norm for programs, non-interference
and quantum differential privacy. Finally, as a contribution
of independent interest, we prove that the recently proposed
relational Hoare logic eRHL for probabilistic programs [4] is
complete for all bounded postconditions and AST programs.

Summary of contributions

In summary, the main contributions of the paper are:
• a sound and complete relational program logic for quan-

tum programs (Theorem VI.3, Theorem VI.7);
• a complete semantic embedding of quantum relational

Hoare logics using projective predicates using infinite-
valued predicates (Proposition VII.2);

• characterizations of observational equivalence (Theo-
rem VIII.1), trace distance and diamond norm (Propo-
sition VIII.3 and Theorem VIII.6), Wasserstein distance
(Theorem VIII.8), non-interference (Theorem VIII.13),
and quantum differential privacy (Theorem VIII.16);

• a proof of completeness for the eRHL relational program
logic for probabilistic programs (Proposition IX.2).

II. NOTATION AND PRELIMINARIES

We assume basic familiarity to quantum computing (see
standard textbook [5]) and set the scene with some notations.

a) Quantum states and maps: Let H be a Hilbert space.
We define D(H) and D1(H) to be the set of partial density
operators (i.e. positive semi-definite (PSD) operators with trace
≤ 1) and density operators (i.e. partial density operators with
trace 1) over H, respectively. Intuitively, D(H) represents the
subdistributions over pure states in H and D1(H) contains
only the full distributions. Furthermore, we write QC(H) and
QO(H) for the set of quantum channels (CPTP maps) and
quantum operations (trace-nonincreasing CP maps) over H.
We use the former to interpret all almost surely terminating
quantum programs and the latter to represent general quantum
programs. Obviously, QC(H) ⊊ QO(H).

b) Quantum predicates: We define S(H) and Pos(H)
to be respectively the closed subspaces (equivalently the
orthogonal projectors) and the PSD operators on H. Subspaces
can be used as a ‘discrete’ predicate: a state ρ ∈ D(H) satisfies
X ∈ S(H) if supp(ρ) ⊆ X . General PSD operators are used
as bounded quantitative predicates: the ‘extent’ to which ρ
satisfies P ∈ Pos(H) is defined to be tr(Pρ). Commonly
used predicates in the work include: the ‘symmetric’ predicate

Psym[H] = 1
2 (I + SWAP[H]) (we sometimes denote it as

=sym) where SWAP[H] =
∑
ij |ij⟩⟨ji|, and parameter H is

omitted if it is clear from the context; and the ‘anti-symmetric’
predicate P⊥

sym, i.e., the complement of the projector Psym,
P⊥
sym[H] = 1

2 (I − SWAP[H]). Note that both Psym[H] and
P⊥
sym[H] are in S(H⊗H).

c) Infinite-valued predicates: In this work, we introduce
a novel notion of possibly infinite-valued quantitative pred-
icates, denoted Pos∞(H), by allowing positive operators to
have an eigenspace corresponding to eigenvalue +∞. In other
words, any A ∈ Pos∞(H) has an eigenvalue decomposition
{(λi, Xi)}i where λi ∈ R+∞ ≜ [0,+∞], the non-zero
eigenspaces Xi are pairwise orthogonal, and

∑
iXi = I . As a

convention, we define (+∞) ·0 = 0 · (+∞) = 0, (+∞)+a =
a + (+∞) = +∞ for a ∈ R+∞, and +∞ ≤ +∞. We now
extend the definitions of various operations on PSD operators
to Pos∞(H). Firstly, for any |ψ⟩, the inner product ⟨ψ|A|ψ⟩ is
defined as ⟨ψ|A|ψ⟩ ≜

∑
i λi⟨ψ|Xi|ψ⟩. This definition allows

us to extend all the operations and constructions on PSD op-
erators that this work relies on to the infinite-valued case. For
example, the extended Löwner order is defined by A1 ⊑ A2

if for all |ψ⟩, ⟨ψ|A1|ψ⟩ ≤ ⟨ψ|A2|ψ⟩. We refer the reader to
the appendix for more details on the supported operations (see
Definition A.6). Finally, for X ∈ S(H) and A ∈ Pos∞(H),
we define X | A ≜ A+(+∞·X⊥) ∈ Pos∞(H). This will be
useful for enforcing assertion-based, projective preconditions
in the quantitative setting.

For compactness reasons, in this paper, we present the
technical development of our results in terms of the more
general infinite-valued predicates. The proofs of all theorems
and propositions are provided in the appendix of the full
version [6].

III. QUANTUM COUPLINGS

We review basic definitions and theorems of quantum cou-
plings and quantum optimal transport.

A. Basic Definitions and Duality Theorems

In probability theory, probabilistic couplings are a powerful
tool for reasoning about different ways of correlating two
distributions. A coupling of two distributions d1, d2 is a
joint distribution with d1, d2 as its respective marginals.
Quantum couplings are the quantum analogue of probabilistic
couplings; instead of (sub)distributions, they relate (partial)
density operators.

Definition III.1 (Quantum Coupling). Let ρ1 ∈ D(H1) and
ρ2 ∈ D(H2) be two partial density operators. A coupling
between ρ1 and ρ2 is a partial density operator ρ ∈ D(H1 ⊗
H2) such that tr2(ρ) = ρ1 and tr1(ρ) = ρ2. We write ρ :
⟨ρ1, ρ2⟩.

Strassen’s theorem [7] provides a necessary and sufficient
condition for the existence of a coupling with respect to a given
relation. Zhou et al. [8] lift Strassen’s theorem to the quantum
setting. Their theorem relates a quantum lifting (where for any
subspace X , a lifting ρ1X

#ρ2 is witnessed by couplings of



the form ρ : ⟨ρ1, ρ2⟩ such that supp(ρ) ⊆ X) to a universally
quantified property that reasons about ρ1 and ρ2 separately.
Their proof is based on semi-definite programming (SDP),
a common technique in quantum computing and information
theory. It turns out that the same technique can be generalized
to accommodate for a more general, ‘quantitative’ version of
liftings, as stated below.

Definition III.2 (Quantum Lifting with Defects). Let ρ1 ∈
D(H1) and ρ2 ∈ D(H2), and ϵ ∈ R+∞ be a defect. Let
X ∈ Pos(H1⊗H2). Then ρ ∈ D(H1⊗H2) is called a witness
of the lifting ρ1X#

ϵ ρ2, iff ρ : ⟨ρ1, ρ2⟩ and tr(Xρ) ≤ ϵ.

Note that for any subspace X , ρ1X#ρ2 iff ρ1(X⊥)#0 ρ2.

Theorem III.3 (Quantum Strassen’s Theorem with Defects).
For any ρ1 ∈ D(H1) and ρ2 ∈ D(H2) with tr(ρ1) = tr(ρ2),
for any defect ϵ ∈ R+∞ and for any X ∈ Pos(H1 ⊗H2), the
following are equivalent:

1) ρ1X
#
ϵ ρ2;

2) For any Y1 ∈ Pos(H1) and Y2 ∈ Pos(H2) such that
X ⊒ Y1 ⊗ I2 − I1 ⊗ Y2, tr(Y1ρ1) ≤ tr(Y2ρ2) + ϵ.

The setting of the primal and dual problems in the proof is
essentially the same as in [8], [9].

B. Partial Couplings

The following fact is a basic consequence of the definition
of quantum couplings.

Lemma III.4 (Trace Equivalence). Let ρ : ⟨ρ1, ρ2⟩. Then,
tr(ρ) = tr(ρ1) = tr(ρ2).

It follows that partial density operators can be coupled only
if they have the same trace. This basic fact is a limiting factor
for coupling-based relational Hoare logics. In particular, it
limits our ability to reason about pairs of non-trace-preserving
quantum operations (e.g. quantum programs with while loops).
To address this limitation, we draw ideas from [4] (⋆-
couplings) and [3] (quantum ⊥-memories) and introduce the
concept of partial couplings (see Proposition B.3 for precise
relationship between ⋆-couplings and partial couplings).

Definition III.5 (Partial Coupling). For ρ1 ∈ D(H1) and ρ2 ∈
D(H2), we say ρ ∈ D(H1 ⊗H2) is a partial coupling of ρ1
and ρ2, written ρ : ⟨ρ1, ρ2⟩p, if:

tr2(ρ) ⊑ ρ1, tr1(ρ) ⊑ ρ2, tr(ρ1) + tr(ρ2) ≤ 1 + tr(ρ).

The first two inequalities say that the coupling ρ is partial:
it represents a correlation between parts of the marginal state
ρ1, ρ2, and leaves another part of the states uncorrelated. The
last inequality is a requirement on the uncorrelated parts of the
marginal states. It can be decomposed into two inequalities:

tr(ρ1 − tr2(ρ)) ≤ 1− tr(ρ2), tr(ρ2 − tr1(ρ)) ≤ 1− tr(ρ1).

Explained using programming language terms, the first in-
equality says that the probability of the uncorrelated part
of the first system, tr(ρ1 − tr2(ρ)), should not exceed the
probability of non-termination in the second system, 1−tr(ρ2).

The meaning of the second inequality can be obtained by
symmetry.

Obviously, any coupling is a partial coupling, i.e., ρ :
⟨ρ1, ρ2⟩ implies ρ : ⟨ρ1, ρ2⟩p. In the case where ρ1, ρ2 are
density operators, any partial coupling is also a coupling, i.e.,
ρ : ⟨ρ1, ρ2⟩p implies ρ : ⟨ρ1, ρ2⟩ if tr(ρ1) = tr(ρ2) = 1.
Partial coupling is preserved under (sub-)convex combination
and scalar multiplication (see Proposition B.4). A variant of
duality theorem for partial coupling is established via SDP
(see Theorem B.5).

IV. QUANTUM OPTIMAL TRANSPORT

One of the applications of quantum coupling is to reason
about relational properties of quantum states and thus quantum
channels and operations. We first review the basic concept of
quantum optimal transport and then show how it can be used
to characterize the equivalence of quantum channels.

A. Basic Definitions

The optimal transport problem [10] is a classical optimiza-
tion problem. Its goal is to minimize the transportation cost of
goods from sources to sinks. The optimal transport problem
has a natural formulation based on probabilistic couplings. In
this section, we review a quantum version of optimal transport.
We mainly follow [9].

Definition IV.1 (Partial Quantum Optimal Transport (c.f. [9])).
For a given cost function C ∈ Pos∞(H1⊗H2) and two states
ρ1 ∈ D(H1), ρ2 ∈ D(H2), the quantum optimal transport

TC(ρ1, ρ2) ≜ min
ρ:⟨ρ1,ρ2⟩p

tr(Cρ),

where ρ is ranging over all partial couplings of ρ1 and ρ2.

The minimum can be attained because the set of par-
tial couplings is an non-empty, closed and convex set (see
Proposition C.1). Whenever ρ1 and ρ2 are (total) density
operators, every partial coupling is a coupling, and therefore,
TC(ρ1, ρ2) = minρ:⟨ρ1,ρ2⟩ tr(Cρ).

The basic properties of QOT have been systematically
studied, see [9] for a comprehensive review. For example, QOT
is jointly convex on its input (see Proposition C.2).

B. QOT under Data Processing

The original definition of QOT studies the relationship
between quantum states. In this work, we go one step further
and ask: can QOT be used to represent and evaluate the
relationship between quantum state transformers (i.e. quantum
channels or operations)? To answer this question, we study
how QOT evolves ‘under data processing’.

Definition IV.2. Let Ci, Co ∈ Pos∞(H1 ⊗ H2) be input
and output cost functions respectively. We say that a pair of
quantum operations (E1, E2) is contractive w.r.t. Ci and Co
iff TCo(E1(ρ1), E2(ρ2)) ≤ TCi(ρ1, ρ2) hold for all possible
inputs ρ1 ∈ D(H1) and ρ2 ∈ D(H2).

The following lemma shows that it is sufficient to check
contractivity on inputs ρ1 ∈ D1(H1) and ρ2 ∈ D1(H2).



Lemma IV.3 (Alternative Characterization). Given two quan-
tum operations E1 ∈ QO(H1), E2 ∈ QO(H2), input and out-
put costs Ci and Co, the following statement are equivalent:

1) (E1, E2) is contractive w.r.t. Ci and Co;
2) For all ρ1 ∈ D1(H1) and ρ2 ∈ D1(H2),

TCo
(E1(ρ1), E2(ρ2)) ≤ TCi

(ρ1, ρ2).

Whenever reasoning about two quantum channels, the con-
dition can be simplified as follows:

Lemma IV.4 (Contractivity for Quantum Channels). Suppose
E1 ∈ QC(H1), E2 ∈ QC(H2) are two quantum channels.
Then (E1, E2) is contractive w.r.t. Ci and Co if and only
if for every ρ ∈ D(H1 ⊗ H2), there exists a coupling
σ : ⟨E1(tr2(ρ)), E2(tr1(ρ))⟩ such that tr(Ciρ) ≥ tr(Coσ).

The next proposition establishes key properties of contrac-
tivity.

Proposition IV.5. Contractivity satisfies several desired prop-
erties for data processing:

1) Backward. (E1, E2) is contractive w.r.t. (E†
1 ⊗ E†

2)(C)
and C. Here, E† is the dual of E , which satisfies
tr(AE(B)) = tr(E†(A)B) for all linear operator A,B1.

2) Consequence. Suppose (E1, E2) is contractive w.r.t. C ′
i

and C ′
o, and C ′

i ⊑ Ci, Co ⊑ C ′
o, then (E1, E2) is

contractive w.r.t. Ci and Co.
3) Sequential composition. Suppose (E1, E ′

1) is contractive
w.r.t. Ci and Cm, and (E2, E ′

2) is contractive w.r.t. Cm
and Co, then (E2 ◦ E1, E ′

2 ◦ E ′
1) is contractive w.r.t. Ci

and Co.
Here, ◦ is the composition of two quantum operations, i.e., for
all ρ, (E1 ◦ E2)(ρ) ≜ E1(E2(ρ)).

The (Backward) property asserts that every pair of quantum
channels is contractive w.r.t. an output cost and its pre-image
under some form of relational pre-image. The (Consequence)
property states that one can strengthen the input cost or weaken
the output cost in the style of the rule of consequence. The
(Sequential composition) property states that contractivity is
compositional.

Additionally, our formulation of QOT under data processing
allows us to translate the previous duality result about quantum
states (Theorem III.3) to the following duality theorem about
quantum operations. Specifically, we show that contractivity
w.r.t. Ci and Co is equivalent to contractivity w.r.t. a split
output cost function. The duality theorem is carefully stated
to match our assumptions, in particular that Co is positive. It
is also restricted to the case that Co is finite.

Theorem IV.6 (Duality under Data Processing). Suppose E1
and E2 are quantum channels and costs Ci ∈ Pos∞ and
Co ∈ Pos (i.e., Co is finite). Then the following statements
are equivalent:

1For any super-operator E , its dual E† is another super-operator. Whenever
E is a quantum operation with Kraus operator {Ei}, then E† has Kraus
representation {E†

i }.

1) (E1, E2) is contractive w.r.t. Ci and Co;
2) for all (Y1, Y2, n) ∈ Y , (E1, E2) is contractive w.r.t.

Ci + nI and Y1 ⊗ I + I ⊗ (nI − Y2), where Y ≜
{(Y1, Y2, n) | n ∈ N; 0 ⊑ Y1; 0 ⊑ Y2 ⊑ nI;Co ⊒
Y1 ⊗ I − I ⊗ Y2}.

This formalization will be instrumental in reducing arbitrary
judgments to judgments with split postconditions.

C. Characterizing Equivalence

The symmetric and anti-symmetric predicates are standard
tools used to characterize equivalence of quantum states [1],
[2]: indeed, two states ρ1, ρ2 are equal iff there a (non-
quantitative) lifting of the form ρ1(=sym)

#ρ2. In this section,
by lifting this tool to the setting of QOT under data processing,
we give a complete characterization of equivalence between
quantum channels. This is a significant result: as we shall
see in Theorem VIII.1, it directly leads to the first complete
characterization of program equivalence in quantum relational
Hoare logics only using finite-valued PSD predicates.

Our starting point is the instantiation of QOT under data
processing with Co = Ci = P⊥

sym, studied in [9], [11]–[13].
For simplicity, we write T instead of TP⊥

sym
. It is clear that T

encapsulates some notion of equivalence: T (ρ, σ) = 0 if and
only if ρ = σ, given ρ, σ density operators. However, T cannot
fully capture equivalence under data processing, because it
is not contractive under general quantum channels [12], i.e.
T (E(ρ), E(σ)) ≤ T (ρ, σ) does not always hold for every E .
Indeed, it does hold for tensoring with an arbitrary quantum
state [9], i.e., E : ρ 7→ ρ⊗γ, but not for the partial trace. This
makes it difficult to completely reason about the equivalence
of data processing operations using the current definition of
T .

Fortunately, [12] proposed a stabilized version of T , defined
by Ts ≜ infγ T (ρ ⊗ γ, σ ⊗ γ) by extending (tensoring) with
an arbitrary auxiliary state γ, which satisfies several desired
properties such as joint convexity, and

• (Invariance under tensor product)

Ts(ρ⊗ γ, σ ⊗ γ) = Ts(ρ, σ).

• (Contractivity under data processing) For E ∈ QC,

Ts(E(ρ), E(σ)) ≤ Ts(ρ, σ).

Surprisingly, it turns out that Ts(ρ, σ) = T
(
ρ ⊗ I

2 , σ ⊗ I
2

)
.

The proof is technical and employs techniques like the Haar
measure; we leave the details to Appendix H, and provide
some intuition. Intuitively, this fact can be understood from
two perspectives: 1) the quantum marginal problem, such as
the monogamy of entanglement [14], implies that extending
the state can yield more couplings and therefore Ts(ρ, σ) ≤
T (ρ, σ) and 2) extending it by a maximally mixed qubit
is sufficient to produce all couplings that minimize optimal
transport on the cost function P⊥

sym, instead of ranging over
all γ. These properties give a complete criterion for checking
the equivalence of two quantum channels:



Proposition IV.7. Two quantum channels E1 and E2 are
equivalent if and only if for all density operators ρ1, ρ2,
Ts(E1(ρ1), E2(ρ2)) ≤ Ts(ρ1, ρ2).

While [12] already gives a precise characterization of Ts in
terms of QOT, as a semi-definite program, we rephrase it as
the following duality theorem:

Proposition IV.8 (Duality for Stabilized QOT). Given
ρ1, ρ2 ∈ D1(H) and ϵ ∈ R+, the following are equivalent:

1) Ts(ρ1, ρ2) ≤ ϵ;
2) For all Y1, Y2 ∈ Pos(H⊗H2) such that P⊥

sym[H⊗H2] ≥
2(Y1 ⊗ I − I ⊗ Y2), it holds that:

tr(tr2(Y1)ρ1) ≤ tr(tr2(Y2))ρ2) + ϵ.

This property is crucial for establishing a judgment char-
acterizing program equivalence (see Theorem VIII.1), as Ts
itself cannot be directly encoded within our program logic.
It additionally allows us to use a split postcondition and
thus make the judgment completely derivable (Theorem VI.6)
without first applying the duality rule.

V. QUANTUM PROGRAMS

We now present the syntax and semantics of the quantum
programs considered in this paper.

A. Syntax

We choose to use the quantum while-language defined in
[15], [16]. We assume a finite set qVar of quantum variables
and use q, q0, q1, q2, . . . to denote them. The finite-dimensional
state Hilbert space of a quantum variable q is denoted Hq .

A quantum register is a finite sequence of distinct quantum
variables. The state space of a quantum register q = q0 . . . qn
is then the tensor product Hq =

⊗n
i=0 Hqi .

Definition V.1 (Syntax [15]). The set qProgs of quantum
while-programs is defined by the following syntax:

S ::= skip | S1;S2 | q := |0⟩ | q := U [q] (1)
| if (□m ·M [q] = m→ Sm) fi (2)
| while M [q] = 1 do S od (3)

The constructs skip and sequential composition S1;S2 are
similar to their counterparts in the classical or probabilistic
while-programs. The initialization q := |0⟩ sets the quantum
register q to the basis state |0⟩. The statement q := U [q] means
that unitary transformation U is performed on the quantum
register q. The construct in (2) is a quantum generalization of
classical case statement. In the execution, measurement M =
{Mm} is performed on q, and then a subprogram Sm will be
selected according to the outcome of the measurement. The
statement in (3) is a quantum generalization of while-loop,
where the measurement M has only two possible outcomes: if
the outcome is 0, the program terminates, and if the outcome
1 occurs, the program executes the loop body S and then
continues the loop.

B. Semantics

For each quantum program S, we write var(S) ⊆ V for the
set of all variables q ∈ qVar appearing in S. The Hilbert space
of program S is the tensor product HS =

⊗
q∈var(S) Hq.

We interpret each program S denotationally as a complete
positive trace non-increasing map JSK ∈ QO(HS) as follows:

Definition V.2 (Denotational Semantics [15]). For any input
state ρ ∈ HS , we have:

1) JskipK(ρ) = ρ;
2) Jq := |0⟩K(ρ) =

∑
n |0⟩q⟨n|ρ|n⟩q⟨0|;

3) Jq := U [q]K(ρ) = UqρU
†
q ;

4) JS1;S2K(ρ) = JS2K(JS1K(ρ));
5) Jif(□m ·M [q] = m→ Sm)fiK(ρ)

=
∑
mJSmK(MmρM

†
m);

6) for loop while[M,S] ≡ while M [q] = 1 do S od:

Jwhile[M,S]K(ρ) =
∞⊔
k=0

Jwhile(k)[M,S]K(ρ),

where while(k)[M,S] is the k-fold iteration of the loop
while:

while(0)[M,S] ≡ abort,
while(k+1)[M,S]

≡ if M [q] = 0 → skip

□ 1 → S;while(k)[M,S] fi

for k ≥ 0,
⊔

stands for the least upper bound in the
CPO of partial density operators with the Löwner order
⊑ (see [16], Lemma 3.3.2), and abort is a program that
never terminates so that JabortK(ρ) = 0 for all ρ.

In the special case where JSK ∈ QC(HS), we say that S is
almost-surely terminating (AST), or simply write S ∈ AST.

VI. A QUANTUM RELATIONAL HOARE LOGIC

We now present qOTL, a quantum relational Hoare logic
similar to [2] extended with logical variables, and prove its
soundness. As we shall see in Section VI-B, this extension is
crucial to enabling our completeness results.

A. Definition

In qOTL, judgments are of the form

⊢ Z : {P} S1 ∼ S2 {Q}

where predicates P,Q ∈ Pos∞(HS1
⊗HS2

), i.e., are infinite-
valued positive semi-definite operators over HS1 ⊗ HS2 , pa-
rameterized over Z, and S1, S2 are programs. Validity of the
judgment is defined using partial couplings.

Definition VI.1 (qOTL Validity). The judgment ⊢ Z :
{P} S1 ∼ S2 {Q} is valid, written

⊨ Z : {P} S1 ∼ S2 {Q},

if for every z ∈ Z, and ρ ∈ D1(HS1
⊗ HS2

), there exists a
partial coupling σ for ⟨JS1K(tr2(ρ)), JS2K(tr1(ρ))⟩p such that

tr(Pzρ) ≥ tr(Qzσ).



We usually write P (resp Q) instead of Pz (resp Qz) when
there is no ambiguity.

Whenever S1, S2 are AST programs, the partial coupling σ
is a coupling (see Lemma D.3), which is consistent or similar
to previous works [1], [2].

Validity can be recast in terms of contractivity, which allows
us to investigate it from a QOT view.

Lemma VI.2. ⊨ Z : {P} S1 ∼ S2 {Q} if and only if for all
z ∈ Z, (JS1K, JS2K) is contractive w.r.t. P and Q.

Fig. 1 introduces a minimal set of proof rules of our logic.
Our set of proof rules contains so-called one-sided rules for
initialization, unitaries, conditionals and loops. We only show
left rules; there exists a similar right rule for each construct.
We note that the one-sided rules are the obvious counterparts
of the usual rules for quantum Hoare logic [15]; for instance,
the rule for while loops requires users to provide a loop in-
variant. Besides, our proof system features the usual two-sided
rules for skip and sequential compositions. Lastly, our proof
system features two structural rules. The (csq) rule is the rule
of consequence; it is based on Löwner order. The (duality) rule
is an application of the duality theorem, and is used to reduce
postconditions to universally quantified split postconditions.
Note that the rule requires that the postcondition Q is bounded,
i.e. Q ∈ Pos rather than Q ∈ Pos∞. In particular, our core
set of rules does not feature additional two sided-rules. We
discuss two-sided rules in Section VI-C.

Also, we showcase concrete examples in Appendix G.

B. Soundness and Completeness

Every derivable judgment is valid.

Theorem VI.3 (Soundness). If ⊢ Z : {P} S1 ∼ S2 {Q}, then
⊨ Z : {P} S1 ∼ S2 {Q}.

Conversely, one can prove completeness for bounded post-
conditions and AST programs. The proof is divided into two
main steps. First, we establish completeness result for split
postconditions, i.e., postconditions of the form Q1⊗I2+I1⊗
Q2. With this result in place, we can then leverage duality
to derive completeness for all AST programs, and bounded
postconditions.

The first step towards completeness is to show some form
of one-sided weakest precondition for AST programs.

Lemma VI.4 (One-Sided Weakest Preconditions). For every
AST program S, we have

⊢ Z : {(JSK† ⊗ I)(Q)} S ∼ skip {Q}.

The lemma is proved by structural induction on the program
S. One can then lift the results to the case of two programs.

Lemma VI.5 (Two-Sided Weakest Preconditions). For every
AST programs S1, S2, we have

⊢ Z : {(JS1K† ⊗ JS2K†)(Q)} S1 ∼ S2 {Q}.

Now we are ready to give our completeness result.

Theorem VI.6 (Completeness for Split Postconditions). For
every AST programs S1, S2, we have:

⊨ Z : {P} S1 ∼ S2 {Q1 ⊗ I + I ⊗Q2}

implies

⊢ Z : {P} S1 ∼ S2 {Q1 ⊗ I + I ⊗Q2}.

Using the duality theorem, we can then derive that qOTL
is complete for all terminating programs with finite postcon-
ditions.

Theorem VI.7 (Completeness for Terminating Programs).
For every AST S1, S2 programs and bounded predicate Q ∈
Pos(HS1

⊗HS2
), we have: ⊨ Z : {P} S1 ∼ S2 {Q} implies

⊢ Z : {P} S1 ∼ S2 {Q}.

Proof. The desired judgment follows from an application of
the duality rule and the provability of:

⊢ Z : {P} S1 ∼ S2 {Q} ⇐⇒
⊢ Z, (Y1, Y2, n) ∈ Y : {P + nI}

S1 ∼ S2 {Y1 ⊗ I + I ⊗ (nI − Y2)}

where Y is defined as in Theorem IV.6 with Ci = P and
Co = Q. Provability of the latter follows from completeness
for split postconditions.

C. Two-Sided Rules

This part considers two-sided rules. Such rules are not
needed for completeness. However, they allow to carry lock-
step reasoning about structurally similar programs, and typ-
ically lead to simpler and more intuitive derivations. For
example, it may be easier to establish the equivalence of two
loops using a two-sided loop rule rather than using twice a
one-sided loop rule, simply because a two-sided loop rule
may use the loop invariant that the two loop bodies preserve
state equivalence. However, it can be challenging to define
sound and expressive two-sided proof rules for control-flow
constructs. For instance, [2] uses two-sided rules that involve
measurement conditions and entailment between measurement
conditions—where these entailments are proved by semantic
means. In this section, we show that these rules remain
sound for infinite-valued predicates, and we further show
how our formalism yields some proof rules to reason about
measurement conditions.

Definition VI.8 (Measurement Condition and Entailment, c.f.
[2]). Suppose M = {M1, · · · ,Mk} and N = {N1, · · · , Nk}
are two measurements with the same output set. We say two
states ρ, σ ∈ D satisfy the measurement condition M ≈ N ,
written (ρ, σ) ⊨ M ≈ N , if for all i, tr(MiρM

†
i ) =

tr(NiσN
†
i ).

Let Γ and Γ ′ be sets of measurement conditions. We further
define the entailment relation of two programs S1, S2 between

Γ and Γ ′, written Γ
(S1,S2)

⊨ Γ ′, if for all ρ, σ ∈ D1 such that
(ρ, σ) ⊨ Γ , it holds (JS1K(ρ), JS2K(σ)) ⊨ Γ ′.



Two-sided rules: (skip) ⊢ Z : {P} skip ∼ skip {P} (seq)
⊢ Z : {P} S1 ∼ S′

1 {Q} ⊢ Z : {Q} S2 ∼ S′
2 {R}

⊢ Z : {P} S1;S2 ∼ S′
1;S

′
2 {R}

One-sided rules: (assign-L) ⊢ Z : {
∑
i(|i⟩q1⟨1⟩⟨0|)P (|0⟩q⟨1⟩⟨i|)} q := |0⟩ ∼ skip {P}

(apply-L) ⊢ Z : {(U ⊗ I2)
†P (U ⊗ I2)} q̄ := U [q̄] ∼ skip {P}

(if-L)
∀m. ⊢ Z : {Pm} Sm ∼ skip {Q}

⊢ Z : {
∑
m(Mm ⊗ I)†mPm(Mm ⊗ I)} if (□m ·M [q] = m→ Sm) fi ∼ skip {Q}

(while-L)
⊢ Z : {Q} S ∼ skip {(M0 ⊗ I)†P (M0 ⊗ I) + (M1 ⊗ I)†Q(M1 ⊗ I)}

⊢ Z : {(M0 ⊗ I)†P (M0 ⊗ I) + (M1 ⊗ I)†Q(M1 ⊗ I)} while M [q] = 1 do S od ∼ skip {P}

Structural rule: (csq)
P ⊒ P ′ ⊢ Z : {P ′} S1 ∼ S2 {Q′} Q′ ⊒ Q

⊢ Z : {P} S1 ∼ S2 {Q}

Logical rule: (duality)

⊢ Z, (Y1, Y2, n) ∈ Y : {P + nI} S1 ∼ S2 {Y1 ⊗ I + I ⊗ (nI − Y2)} S1, S2 ∈ AST

where Y ≜ {(Y1, Y2, n) | n ∈ N; 0 ⊑ Y1; 0 ⊑ Y2 ⊑ nI;Q ⊒ Y1 ⊗ I − I ⊗ Y2} Q ∈ Pos

⊢ Z : {P} S1 ∼ S2 {Q}
Fig. 1. Rules for qOTL

Checking the entailment relation involves the program con-
structions is highly nontrivial [2]. In fact, the proposed method
in [2] is based on the semantics of the programs. Here, we give
a complete characterization so that checking entailment itself
can be done using program logic.

Theorem VI.9. For AST programs S1, S2, and measurements
M = {M1, · · · ,Mk} and N = {N1, · · · , Nk}, the following
are equivalent:

1) ∅
(S1,S2)

⊨ M ≈ N ;
2) ⊨ (Y1, · · · , Yk, Z1, · · · , Zk, n) ∈ Yk : {nI}S1 ∼ S2{

(
∑
iM

†
i YiMi)⊗I+I⊗

[
nI−(

∑
iN

†
i ZiNi)

]}
where Yk = {(Y1, · · · , Yk, Z1, · · · , Zk, n) |
∀ i, 0 ⊑ Yi, 0 ⊑ Zi ⊑ nI, Yi ⊗ I − I ⊗ Zi ⊑ 0,

∀ j ̸= i, Yi ⊗ I − I ⊗ Zj ⊑ I}.
We further define measurement properties as side conditions

to set up two-sided rules for if and while. Our definition
unifies Def. 5.4 and 7.2 in [2] (see Proposition E.3).

Definition VI.10 (Measurement Property, c.f. [2]). Let M =
{M1, · · · ,Mk} and N = {N1, · · · , Nk} be measurements,
and let {Qj}mj=1 be a set of infinite-valued PSD predicates.
Then, we write Γ ⊨ Z : {P}M ≈ N{Qj} if for all ρ, σ ∈ D1

such that (ρ, σ) ⊨ Γ and z ∈ Z, if TP (ρ, σ) < +∞, there
exist couplings δj : ⟨MjρM

†
j , NjσN

†
j ⟩ for each j, such that:

TP (ρ, σ) ≥
∑
j

tr(Qjδj).

We can now defined two-sided rules in Fig. 2 and prove
their soundness.

Theorem VI.11 (Soundness of Two-Sided Rules). The extra
rules for qOTL in Fig. 2 are sound regarding the notion of
validity.

VII. INFINITE-VALUED AND PROJECTIVE PREDICATES

It might seem curious why we chose to present everything in
terms of infinite-valued predicates. What exactly do they buy
us? In this section, we answer this question by showcasing
the expressiveness of infinite-valued predicates, by showing
how it enables a complete semantic embedding of projector-
based quantum relational Hoare logics in qOTL. In the context
of qOTL, this gives us complete characterisations of non-
trivial properties like program equivalence, for free. In the
wider field of quantum program logics, this gives us a general
way of unifying the two types of predicates (projective and
quantitative) in the same logic.

A. Projective Predicates

Our logic, qOTL, follows a quantitative paradigm: we use
(generalised) positive semi-definite operators as predicates,
and reason about the ‘extent’ to which quantum states satisfy
those predicates by the expectations of the operators over the
states. The alternative approach, followed by [1], [17] and
parts of [2], uses subspaces (or equivalently projectors) as
assertions: a state ρ satisfies X ∈ S(H) if supp(ρ) ⊆ X . In
the setting of quantum relational Hoare logics, this corresponds
to a notion of validity as follows:

Definition VII.1 (Logic for Projective Predicates). We write
⊨pqRHL: {X} S1 ∼ S2 {Y }, where X,Y ∈ S(H1⊗H2), if for
any initial state ρ with supp(ρ) ⊆ X , there exists a coupling
σ : ⟨JS1K(tr2(ρ)), JS2K(tr1(ρ))⟩ such that supp(σ) ⊆ Y .

This formulation has several advantages compared to its
quantitative counterpart: the resulting logic often has simpler
rules, and several non-trivial properties have much simpler
formulations. Crucially, this is possible only because pqRHL
allows one to enforce projective preconditions, i.e., member-
ship of the initial state in a particular subspace. For example,



Extra rules: (if)
Γ ⊨ Z : {P}M ≈M ′{Rk} ∀ k, ⊢ Z : {Rk} Sk ∼ S′

k {Q}
Γ ⊢ Z : {P} if (□k ·M [q] = k → Sk) fi ∼ if (□k ·M ′[q] = k → S′

k) fi {Q}

(while)
⊨ Z : {P}M ≈M ′{Q0, Q1} ⊢ Z : {Q1} S ∼ S′ {P}

⊢ Z : {P} while M [q] = 1 do S od ∼ while M ′[q] = 1 do S′ od {Q0}

(seq+) Γ ⊢ Z : {P} S1 ∼ S′
1 {Q} Γ ′ ⊢ Z : {Q} S2 ∼ S′

2 {R} Γ
(S1,S

′
1)

⊨ Γ ′

Γ ⊢ Z : {P} S1;S2 ∼ S′
1;S2 {R}

Fig. 2. Extra two-side rules for qOTL.

equivalence between two programs S1, S2, or, equivalently, the
property that ∀ρ ∈ D(H).JS1K(ρ) = JS2K(ρ) can be expressed
as the judgement ⊨pqRHL {=sym} S1 ∼ S2 {=sym}, where im-
portantly, the precondition =sym forces the arbitrary initial state
ρ to satisfy tr2(ρ) = tr1(ρ). Unfortunately, similar constraints
on the initial state/coupling are not known to be expressible in
the bounded quantitative case. As a consequence, it takes much
more effort to characterise properties like program equivalence
using only positive semi-definite operators as predicates, as we
will later show in theorem VIII.1.

B. Enforcing Projective Preconditions Using Infinite-Valued
Predicates

It turns out that things are different when we allow infinite-
valued predicates. Consider a qOTL judgement of the form
⊨ {P} S1 ∼ S2 {Q} where P is of the form X|A =
∞ · X⊥ + A. For any initial coupling ρ, if supp(ρ) ⊆ X ,
then the judgement acts as if P = A; if supp(ρ) ⊈ X
however, then the judgement is rendered trivially true. In
other words, X|A is the same thing as a normal quantitative
precondition A constrained by a projective precondition X! A
direct consequence of this insight is a semantic embedding of
pqRHL in qOTL as follows:

Proposition VII.2. For AST programs S1, S2, and X,Y ∈
S(HS1

⊗HS2
) be projectors. The following holds:

⊨ {X | 0} S1 ∼ S2 {Y ⊥} ⇐⇒ ⊨pqRHL {X} S1 ∼ S2 {Y }.

Noting that the postcondition here is bounded, by the
completeness theorem (Theorem VI.7), we directly obtain a
complete embedding of the projector logic into our logic for
AST programs, as shown in the following theorem.

Theorem VII.3. For AST programs S1, S2, and X,Y ∈
S(HS1

⊗HS2
) be projectors, we can completely characterise

any property defined by the judgement ⊨pqRHL {X} S1 ∼
S2 {Y } in qOTL.

Therefore, as a corollary, we obtain a complete characterisa-
tion of program equivalence for AST programs – this has not
been achieved so far in existing quantitative quantum relational
Hoare logics [2], [3].

C. Wider Consequences

Infinite-valued predicates provide a general recipe for uni-
fying quantitative and projective quantum predicates. We have

seen how it works in the relational case; the same approach
also works in the non-relational case. Indeed, if we define a
quantum Hoare logic using projective predicates:

Definition VII.4. Let S be a qWhile program and X,Y ∈
S(HS). We define ⊨pqHL {X} S {Y } to mean ∀ρ ∈
D(HS). supp(ρ) ⊆ X =⇒ suppJSK(ρ) ⊆ Y .

A logic similar to [15] but using infinite-valued quantitative
predicates can also be defined:

Definition VII.5. Let S be a program and P,Q ∈ Pos∞(HS).
We define ⊨iqHL {P} S {Q} to mean ∀ρ ∈ D(HS). tr(Pρ) ≥
tr(QJSKρ).

Following a similar reasoning, we could conclude a seman-
tic embedding result:

Theorem VII.6. For an AST program S, and X,Y ∈ S(HS),
the following holds:

⊨pqHL {X} S {Y } ⇐⇒ ⊨iqHL {X | 0} S {Y ⊥}.

Note that this is not the first or the unique possible em-
bedding of pqHL in a quantitative quantum Hoare logic. In
fact, in the simple, non-relational case, the naive embedding
is complete [18]:

⊨pqHL {X} S {Y } ⇐⇒ ⊨qHL {X⊥} S {Y ⊥},

where qHL is a special case of iqHL where all predicates are
bounded. The advantage of our approach lies in its generality:
it works even when the naive embedding does not apply, as is
the case of (quantum) relational logics [2].

VIII. APPLICATIONS

We present more applications of our completeness results in
characterizing non-trivial relational properties, including quan-
tum non-interference, quantum differential privacy, as well as
an alternative characterization of equivalence that only needs
bounded predicates. Interestingly, most of these results are
direct consequences of completeness for split postconditions
and do not require the duality rule.

A. Program Equivalence

In the previous section, we showed how equivalence can be
characterized with the help of infinite-valued predicates. But
can we do it only with bounded quantitative predicates? This
question is of particular interest, for it allows us to obtain a



complete characterization of equivalence with a more minimal
extension to existing quantum relational Hoare logics [2]. We
show that this is indeed possible, and it relies on deep results
in QOT.

Theorem VIII.1. Let S1, S2 be AST programs acting on the
same Hilbert spaces, HS1

= HS2
= H. S1 and S2 are

semantically equivalent, i.e., JS1K = JS2K, if and only if,

⊢ (Y1,Y2, n) ∈ Y : {nI + P⊥
sym}

S1 ∼ S2{tr2(Y1)⊗ I + I ⊗ (nI − tr2(Y2))}. (4)

where Y = {(Y1, Y2 ∈ Pos(H ⊗ H2), n ∈ N) | 0 ⊑ Y1, 0 ⊑
2Y2 ⊑ nI, P⊥

sym[H⊗H2] ≥ 2(Y1 ⊗ I − I ⊗ Y2)}.

Proof. Immediate consequence of Theorem VI.6 and Propo-
sition IV.8.

Therefore, the fragment of qOTL using only finite-valued
predicates is complete for program equivalence for AST
programs.

B. Trace Distance and Diamond Norm

Another application of our completeness result for split
postconditions would be a notion of completeness with respect
to the diamond norm of quantum channels, which builds upon
the encoding of the trace distance – the quantum analogue
of the total variation distance. The diamond norm is closely
related to channel discrimination, as it quantifies the maxi-
mum probability of successfully distinguishing between two
quantum channels in a single-shot scenario with the help of
auxiliary systems. As such, it serves as the foundation in
reasoning about the robustness [19] and error analysis [20] of
quantum programs, particularly important in the current noisy
intermediate-scale quantum (NISQ) era and beyond [21]. We
first recall some relevant definitions and properties.

Definition VIII.2 (Trace Distance (see e.g. [22] Definition
9.1.2)). Let ρ1, ρ2 be density operators over H. Then their
trace distance is defined as TD(ρ, σ) ≜ 1

2∥ρ − σ∥1, where
∥ · ∥1 is the trace norm defined by ∥M∥1 = tr(

√
M†M).

Trace distance is also referred to as a quantum general-
isation of total variation distance, as it can be alternatively
characterised by the maximum (see Lemma 9.1.1 in [22]):
TD(ρ, σ) = max0⊑P⊑I tr(P (ρ− σ)).

We have the following characterization of the trace distance.

Proposition VIII.3 (Encoding of Trace Distance). The fol-
lowing are equivalent for all AST programs S1, S2 such that2

HS1
= HS2

:
1) TD(JS1K(ρ1), JS2K(ρ2)) ≤ tr(Φ1ρ1) + tr(Φ2ρ2) for all

z ∈ Z and ρ1X#ρ2, for some given subspace X;
2) ⊨ 0 ⊑ P ⊑ I : {X | (I + Φ1 ⊗ I + I ⊗ Φ2)} S1 ∼

S2 {P ⊗ I + I ⊗ (I − P )}.

We now introduce the notion of diamond norms of quantum
channels.

2We could also just ask all programs to be interpreted over H =
Hall variables, or over H = Hvar(S1)∪var(S2).

Definition VIII.4 (Diamond Norm, Definition 8 in [23]). Let
Φ : Mn(C) → Mm(C) be a linear transformation, where
Mn(C) denote the set of n×n complex matrices, and let idn :
Mn(C) → Mn(C) be the identity map. Then, the diamond
norm (also known as the completely bounded trace norm) of
Φ is given by ∥Φ∥⋄ = maxX;∥X∥1≤1 ∥(Φ⊗ idn)X∥.

The diamond norm induces the diamond distance. For
completely positive, trace non-increasing maps E1 and E2 with
domain Pos(H), their diamond distance could be written as

∥E1 − E2∥⋄ = max
ρ∈D1(H⊗H)

∥(E1 ⊗ I)(ρ)− (E2 ⊗ I)(ρ)∥1,

where I is the identity quantum channel on H. Now, consider
setting X = Psym[H ⊗ H], and Φ1 = Φ2 = cI/2 in
Proposition VIII.3, where c ≥ 0 is a constant. The property
we are trying to encode becomes

TD((JS1K ⊗ I)(ρ1), (JS2K ⊗ I)(ρ2)) ≤ c, ∀ρ1(=sym)#ρ2.

Noting that ρ1(=sym)#ρ2 iff ρ1 = ρ2, this gives an encoding
of the diamond distance between JS1K and JS2K, which we
formally stated as follows.

Proposition VIII.5 (Encoding of Diamond Norm). Let c ∈
R+. The following are equivalent for all AST programs S1, S2

such that H = HS1
= HS2

:
1) ∥JS1K − JS2K∥⋄ ≤ 2c;
2) ⊨ 0 ⊑ P ⊑ IH⊗H : {Psym[H ⊗ H] | (1 + c)I} S1 ∼

S2 {P ⊗ I + I ⊗ (I − P )}.

Theorem VIII.6 (Completeness with respect to Diamond
Norm). The qOTL is complete with respect to diamond norm,
for AST programs.

Comparison to [19], [20]: The program logic introduced
in [19], [20] provides a sound method for reasoning about
the upper bound of (Q,λ)-diamond norm between a noisy
program and its ideal counterpart. However, its completeness
remains unknown. Theorem VIII.6 can be extended to es-
tablish complete reasoning for the upper bound of (X, 1)-
diamond norm where X ∈ S(H) is a subspace.

C. Quantum Wasserstein Semi-Distance

The Wasserstein metric, also known as the earth mover’s
distance, is a measure of distance between two probability
distributions. It is important because it characterizes the mini-
mal cost required to transform one probability distribution into
the other in the context of optimal transport. Several quantum
generalizations of the Wasserstein metric have been proposed.
However, so far, these generalizations have only been shown to
satisfy the properties of a semi-distance for density matrices.
In this work, we adopt the following definition of the quantum
Wasserstein semi-distance discussed in [9].

Let ρ, σ ∈ D1(H) be two density operators. Their quantum
2-Wasserstein semi-distance W (ρ, σ) is defined as W (ρ, σ) =√
T (ρ, σ), where T (ρ, σ) = TP⊥

sym
(ρ, σ) is the QOT between

ρ and σ with the cost function P⊥
sym, see Section IV-C for

details.



Verifying properties of programs related to the above quan-
tum Wasserstein semi-distance can be easily encoded in our
logic. Specifically, we investigate the Lipschitz property of
programs with respect to the quantum Wasserstein semi-
distance. This property asserts that the quantum Wasserstein
semi-distance between a program’s outputs is bounded by the
quantum Wasserstein semi-distance between its inputs scaled
by a constant λ. This property can be directly encoded and
verified in our logic:

Proposition VIII.7 (Encoding of Quantum Wasserstein
Semi-Distance). Let λ > 0. The following are equivalent for
all AST programs S1, S2 such that HS1 = HS2 :

1) W (JS1K(tr2(ρ)), JS2K(tr1(ρ))) ≤ λ ·W (tr2(ρ), tr1(ρ))
for all ρ ∈ D(HS1

⊗HS2
);

2) ⊨ {λ2P⊥
sym} S1 ∼ S2 {P⊥

sym}.

Theorem VIII.8 (Completeness with respect to Quantum
Wasserstein Semi-Distance). The qOTL is complete with re-
spect to the Lipschitz property of quantum Wasserstein semi-
distance for AST programs.

D. Quantum Non-Interference

Another application of our logic involves characterizing
the concept of quantum non-interference. Intuitively, non-
interference refers to a critical property where the actions of
one group of agents in a computer system do not influence
the actions of another group of agents. This concept was later
extended to quantum settings in [24]. The key components
for defining quantum non-interference in their work include
quantum computer systems, a pseudo-distance for measuring
output distributions, and the degree of interference. We intro-
duce these notions as follows.

Definition VIII.9 (Definition 3.1 in [24]). A quantum system
is a 6-tuple S = ⟨H, ρ0, A,C, do,measure⟩, where

• H is a Hilbert space specifying the state space;
• ρ ∈ D(H) specifying the initial state;
• A is a set of agents;
• C is a set of commands;
• do = {Ea,c|a ∈ A and c ∈ C} is a set of trace-preserving

operations Ea,c which describes how states are updated
when agent a executes command c;

• measure = {Ma|a ∈ A} is a collection of sets of POVM
measurements, where each Ma is allowable for agent a.

The quantum non-interference influence is measured by
the following pseudo distance dM induced by POVM mea-
surements M. Let d(p, q) denote the total variation distance
between two probability distributions p and q over the sample
space X . For a density operator ρ and a POVM measurement
E = {Eλ|λ ∈ Λ}, we define the probability distribution pE,ρ
as pE,ρ(λ) = tr(Eλρ). The pseudo distance dM is formalized
as follows.

Definition VIII.10 (Definition 3.2 in [24]). The pseudo dis-
tance dM between two density operators ρ, σ ∈ D(H) induced

by a set of POVM measurements M is defined as

dM(ρ, σ) = sup
E∈M

d(pE(ρ), pE(σ)).

For each agent a ∈ A in a quantum system S , we write
da = dMa

for the pseudo distance defined by the set Ma of
POVM measurements.

Let G ⊆ A be a group of agents, D ⊆ A be a set of
commands. For a sequence of actions α = α1α2 · · ·αn ∈
(A×C)∗, we define a function purgeG,D for α that removes
the actions in D by the agents in group G. In other words,
purgeG,D(α) = α′

1α
′
2 · · ·α′

n, where α′
i = ϵ (the empty action)

if α′
i = (ai, ci) with ai ∈ G and ci ∈ D, and α′

i = αi
otherwise. The degree of (non-) interference is measured by
the pseudo distance dM between the state operated by the
original actions and the state operated by the purged actions.

Definition VIII.11 (Interference Degree, Definition 3.3 in
[24]). For a quantum system S = ⟨H, ρ0, A,C, do,measure⟩,
let G1, G2 ⊆ A be two groups of agents, and D ⊆ C be a
set of commands. Then, the degree that agents in G1 with
commands D interfere agents in G2 is

Int(G1, D|G2) = sup
α∈(A×C)∗,

a∈G2

{da(Eα(ρ0), EpurgeG1,D(α)(ρ0))}

If Int(G1, D|G2) = 0, we will denote this as G1, D : |G2.
For a quantum system S = ⟨H, ρ0, A,C, do,measure⟩ with

an initial state ρ0 = |0⟩⟨0|, we represent trace-preserving
operations Ea,c as corresponding AST programs Sa,c, and
sequence of actions α as AST programs Sα. The following
and theorem shows the quantum non-interference property can
be encoded and verified using our logic.

Proposition VIII.12 (Encoding of Quantum Non-Interfer-
ence). For a quantum system S = ⟨H, ρ0, A,C, do,measure⟩
with ρ0 = |0⟩⟨0|, let G1, G2 ⊆ A be two groups of agents, and
D ⊆ C be a set of commands. The following are equivalent:

• G1, D : |G2.
• ∀α ∈ (A× C)∗,

⊨ a ∈ G2, E = {Eλ|λ ∈ ΛE} ∈ Ma, T ⊆ ΛE :

{I} q := |0⟩;Sα ∼ q := |0⟩;SpurgeG1,D(α) {M},

where M =MT ⊗ I + I ⊗ (I −MT ) with MT =
∑
λ∈T Eλ.

Theorem VIII.13 (Completeness with respect to Quantum
Non-Interference). The qOTL is complete with respect to the
quantum non-interference property for AST programs.

E. Quantum Differential Privacy

Finally, with the help of infinite-valued predicates, we
can characterize a quantum version of differential privacy.
Differential privacy is a mathematical framework about pro-
viding statistical properties about datasets while preserving
private information of individual objects. The core intuition
behind differential privacy is that the output distributions of a
program should remain nearly indistinguishable when run on
two “neighboring” inputs, usually differing only by a single



element. This concept has been successfully extended to quan-
tum computing, resulting in the development of related but
distinct notions of quantum differential privacy. These notions,
as explored in works such as [25], [26], primarily differ in
how they define and characterize “neighboring inputs”. In this
paper, we adopt the following definition proposed in [25].

Definition VIII.14 (Quantum Differential Privacy, Definition
3 in [25]). Let ε, δ > 0 be constants. A quantum operation
E on an n-qubit system is (ε, δ)-differentially private, if for
every POVM M = {Mm}m∈Out(m), every set A ⊆ Out(m),
and every input ρ, σ that differs at most one qubit (i.e., there
exists i ∈ [n] that tri(ρ) = tri(σ)), it holds that Pr[E(ρ) ∈M
A] ≤ exp(ε) · Pr(E(σ) ∈M A) + δ, where Pr(ρ ∈M A) =∑
m∈A tr(Mmρ).

Let S be some quantum program that corresponds to
the quantum operation E . We could verify whether E , or
equivalently JSK, is (ε, δ)-differentially private in our logic,
as implied by the following proposition and theorem.

Proposition VIII.15 (Encoding of Differential Privacy). The
following are equivalent for all AST programs S1 on an n-
qubit system:

1) JSK is (ε, δ)-differentially private;
2) ⊨ i ∈ [n], 0 ⊑ M ⊑ I : {Pi,sym | (exp(ε) + δ)I} S ∼

S {M ⊗ I + exp(ε)I ⊗ (I −M)}.
Here Pi,sym = Psym[H[n]−i]⊗ (Ii⟨1⟩ ⊗ Ii⟨2⟩) for i ∈ [n].

Theorem VIII.16 (A Complete Characterization of Quantum
Differential Privacy). The qOTL is complete with respect to
the quantum differential privacy property for AST programs.

IX. PROBABILISTIC DUALITY

There is a variety of relational program logics for proba-
bilistic programs [4], [27]–[29]. Similar to the quantum case,
validity of these logics is based on probabilistic couplings,
their completeness has remained an open problem. Recent
work by Avanzini et al. [4] defines a quantitative relational
Hoare logic, called eRHL, and shows that it achieves com-
pleteness for non-trivial classes of properties. Their proof
of completeness leverages a notion of split post-condition
similar to ours. However, their work lacks a general complete-
ness theorem. We show that their logic is in fact complete
for bounded postconditions. Completeness follows from the
classic Kantorovich-Rubinstein duality. Our phrasing of the
theorem is stated w.r.t. positive functions c1 and c2, to match
the assumption that assertions in eRHL take positive values.

Theorem IX.1 (Kantorovich-Rubinstein Duality). Let µ, ν be
discrete probability distributions over X and Y respectively,
and let c : X × Y → [0,+∞) be a bounded function. Then

inf
θ∈Γ (µ,ν)

Eθ[c] = sup
(n,c1,c2)∈W

(Eµ[c1] + Eν [c2]− n)

where Γ (µ, ν) denotes the set of probabilistic couplings of µ
and ν and (n, c1, c2) ∈ W iff for every x ∈ X and y ∈ Y , we
have 0 ≤ c1(x), c2(y) and c1(x) + c2(y) ≤ c(x, y) + n.

It follows that every bounded post-condition is logically
equivalent to a universally quantified split post-condition—
where in the probabilistic setting a split post-condition is
simply the addition of two unary assertions on the first and
second state respectively. Therefore eRHL is complete for all
bounded postconditions.

Proposition IX.2. eRHL is complete for all AST programs
and bounded postconditions.

Note that completeness does not require adding a duality
rule, due to a difference of settings. Indeed, eRHL features a
very general rule of consequence, which allows using arbitrary
theorems from the theory of couplings.

Interestingly, [4] establishes a completeness theorem for
judgments of the pRHL logic, using Strassen’s theorem [7].
This is very similar in spirit to our use of the duality theorem.
In fact, Strassen’s theorem can be seen as a specialized variant
of the duality theorem for boolean-valued cost functions.
Furthermore, note that [4] uses the Kantorovich-Rubinstein
duality to prove that eRHL characterizes Kantorovich distance,
but fails to establish a link with completeness.

X. RELATED WORK AND DISCUSSION

A. Quantum Relational Hoare Logics

Our logic can be seen as a generalization of Barthe et al.’s
rqPD [2]. It differs with rqPD in three ways: we consider
possibly infinite-valued positive predicates (instead of finite-
valued and subunital ones), we consider an upper-bounding
instead of a lower-bounding semantics, and we allow for log-
ical variables. That said, rqPD can be semantically embedded
in our logic as follows:

Proposition X.1. Let S1, S2 be AST programs and 0 ⊑
P,Q ⊑ I be predicates. Then ⊨rqPD {P} S1 ∼ S2 {Q} iff
⊨ {I − P} S1 ∼ S2 {I −Q}.

Moreover, most of our proof rules are adapted from rqPD’s
rules, and it turns out that straightforwardly generalizing
rqPD’s one-sided rules to our setting is sufficient to achieve
completeness without needing two-sided rules with complex
semantic conditions like measurement conditions. Neverthe-
less, the said rules being still sound and potentially more
usable, we adapt them and further show that measurement
conditions can be reasoned about within our logic.

Barthe et al. [2] also discuss a logic using projective (instead
of quantitative) predicates similar to pqRHL, as well as an
incomplete embedding of that logic into rqPD. This work
achieves a complete embedding with the help of infinite-valued
predicates.

Another line of work [1], [3] is based on separable couplings
(instead of general couplings like in [2] and our work).
Unruh [1] defines the first sound relational program logic for
quantum programs based on projective predicates and sepa-
rable couplings. The primary motivation for using separable
couplings is that it is possible to prove soundness of a frame
rule. Li and Unruh [3] define an expectation-based variant
of [1]. The soundness of their logic is also proved with a



notion of validity based on separable couplings. Interestingly,
the motivation for using separable couplings in this case is
soundness—there is no frame rule in this logic. Neither of
these logics are known to be complete.

Comparing our logic to separable-coupling-based ones is
not the focus of our work. As already extensively discussed
by [2] and [3], while similar sets of proof rules can be sound
for both general-coupling-based and separable-coupling-based
notions of validity, it is unclear how these notions of validity
actually relate to each other. Moreover, it is unclear whether it
is possible to adapt ideas in our work (like Strassen’s theorem)
to obtain similar completeness results.

Finally, in [17], Yan et al. study approximative relational
reasoning by giving a logic similar to [2]’s projective logic, but
based on approximate couplings (where a ρ is an ϵ-coupling
of ρ1 and ρ2 if both TD(ρ1, tr2(ρ)) and TD(ρ2, tr1(ρ)) are
upper-bounded by ϵ, where TD is the trace distance). In
comparsion, while our logic is quantitative and completely
characterizes various distance metrics like the Wasserstein
semi-distance, we do require couplings to be exact. It would
indeed be interesting to explore how expressive our logic is
for approximative reasoning compared to their work.

B. Quantum Optimal Transport

Over the past decades, efforts have been made to gener-
alize the optimal transport problem to the quantum setting.
Early attempts [30] defined the cost between two quantum
states using the (probabilistic) Monge distance based on their
corresponding Husimi distributions, and then explored the
physical consequences including unitary evolution and deco-
herence [31]. More recent approaches have framed quantum
optimal transport in terms of expectations over couplings.
Specifically, given quantum states ρ1 and ρ2, they have studied
the expectation tr(Cρ) over possible ”couplings” ρ of ρ1 and
ρ2, for both general and specific types of costs:

[32] explored the QOT based on quantum coupling (Def-
inition III.1 but on continuous space), with the cost speci-
fied as energies involving position and momentum operators,
primarily for investigating applications in quantum mean-
field theory and its classical limits. Related results include
such as inequalities involving QOT and related potentials or
metrics [32], [33], Kantorovich type duality theorem [34], and
showing that QOT can be cheaper than the classical one [35].

Another approach [36], [37] examines QOT from a view of
changing one state to another, i.e, focusing on the properties
of quantum channels E that satisfy E(ρ1) = ρ2. It was
shown that there is a one-to-one correspondence between such
channels and the couplings of ⟨ρT1 , ρ2⟩, offering an alternative
definition of couplings. They further studied the cost function∑
i(Ri ⊗ I2 − I1 ⊗ RTi )

2, and established related entropic
and concentration inequalities [38], [39], with an application
showing the limitations of Variational Quantum Algorithms in
the presence of noise [38].

In addition to special cost functions, prior works have
systematically explored the general properties and associated
metrics or distances in quantum optimal transport (QOT)

[9], [40], [41]. For instance, [12] introduced a stable version
of QOT, as briefly summarized in Section IV. This line of
research aligns closely with our objectives, as we prioritize
the general relational properties of program states over specific
costs or physically oriented properties.

C. Reasoning about Program Equivalence

Outside of quantum relational Hoare logics, reasoning tech-
niques about equivalence between quantum programs/circuits
have been widely studied.

Several lines of works create axiomatizations of program
equivalence in the form of equational theories. Similarly to our
work, they look at notions of quantum computing with existing
and well-defined denotational semantics, with respect to which
they would prove properties like soundness and completeness.
However, they only focus on program equivalence and have
a very different goal of enabling equational reasoning. One
line of work stems from the categorical quantum mechan-
ics (CQM) programme [42]–[44] and leverages categorical
formalisms developed therein to produce string-diagrammatic
axiomatizations of quantum theory like the ZX calculus and
others [45]–[47]. Similarly to these calculi, [48] develop a
tool for reasoning about expressions formally written in Dirac
notation. Other works, including ours, have a specific focus
on quantum computing (CP and trace non-decreasing maps),
a proper subset of quantum theory (CP maps). In [49], Staton
presents an algebraic theory of qubit quantum computing and
proved that it completely axiomatizes a standard model of
quantum computation. Recently, [50] complements [49] by
giving an equational theory for unitary quantum circuits that
is complete for various gate sets, by extending Π , a model of
classical reversible computing.

Other works focus on models of quantum computation (e.g.
quantum concurrency) that do not yet have a readily available
notion of program equivalence. Quantum process calculi [51]–
[54], for instance, model quantum concurrency by extending
classical process calculi with quantum primitives. Several
notions of behavioural equivalence were then developed based
on bisimulation. However, as [53] points out, each of these
proposals is subtly different from the others, and there is not
yet a consensus on which is the right one. Compared to our
work, quantum bisimulation handles a richer programming
language, but once again only handles equivalence.

XI. CONCLUSION

We have defined a sound and complete relational proof
system for quantum programs. Our proof system achieves
completeness from the duality theorem of quantum optimal
theorem. In addition, with the help of infinite-valued pred-
icates, we have given a complete embedding of projective
assertions into our logic.
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APPENDIX A
DEFERRED PROOFS IN “NOTATIONS AND PRELIMINARIES” SECTION

We first briefly review some basic concepts and propositions in linear algebra and quantum computing.
Quantum States. The state space of a quantum system is described by a complex Hilbert space H, which we ususally assume

to be finite-dimensional. A pure state is a unit (column) vector in the Hilbert space. For example, an d-dimensional quantum
state in Cd has the form

v = (v0, v1, v2, . . . , vd−1)
⊺,

usually denoted as |v⟩ with the Dirac symbol |·⟩. The computational basis of Cd is denoted as {|i⟩}d−1
i=0 , where the j-th

coordinate of |i⟩ is 1 if j = i, and 0 otherwise. The inner product between states |u⟩ and |v⟩ is denoted as ⟨u|v⟩, which
is the standard inner product in the Hilbert space, where ⟨u| stands for the conjugate transpose of |u⟩. Let |u⟩ ∈ Cd1 and
|v⟩ ∈ Cd2 be two states. Their tensor product, written as |u⟩ ⊗ |v⟩, or |u⟩|v⟩ in short, is defined to as the following vector
|u⟩|v⟩ = (u0v0, u0v1, u0v2, . . . , ud1vd2)

⊺.
A quantum bit (or qubit for short), is a quantum state |ϕ⟩ = α|0⟩+ β|1⟩ ∈ C2, with |α|2 + |β|2 = 1. An n-qubit state is in

the Hilbert space of dimension 2n.
Let H be a d-dimensional Hilbert space. The (linear) operators on H are just d× d matrices. For an operator A, the trace

of A, tr(A) is defined as
∑d−1
j=0⟨j|A|j⟩. It can be shown that tr(AB) = tr(BA) and thus tr(UAU†) = tr(A) holds for linear

operators A,B and unitary operator U , meaning that the trace of an operator does not rely on the choice of basis. A density
operator ρ in H, is a positive semi-definite operator with trace 1. Applying the spectral decomposition theorem, we could write
it as ρ =

∑
i pi|ϕi⟩⟨ϕi|, meaning that it can be regarded as a distribution over pure states. We could also regard pure states

|ϕ⟩ as rank 1 density matrices |ϕ⟩⟨ϕ|. We call a positive semi-definite operator with trace no more than 1 a partial density
operator.

Quantum Operations. Evolutions on pure quantum states on H are described by the unitary operators U on H with UU† =
U†U = I . Given any state |ϕ⟩, the evolution of U gives U |ϕ⟩. A more general concept of quantum operations is quantum
channel, which could be seen as completely-positive and trace-preserving linear maps from the set of density operators in a
Hilbert space into another set of density operators in some Hilbert space. For a linear map E : D(H) → D(H), we say it is
completely positive if for all H′, the map E ⊗ I maps positive semi-definite operators on H ⊗ H′ to positive semi-definite
operators, and it is trace-preserving if tr(E(ρ)) = tr(ρ) for any density operator ρ.

In this work, we only consider projective measurements. For a projective measurement M = {Pi}, we require all the Pi’s
are projectors, and

∑
i Pi = I . Given any density operator ρ, after performing the projective measurement M = {Pi}, we will

observe the event i with probability tr(Piρ), with the post measured state PiρPi/ tr(Piρ).
An observable, or a quantum predicate, is a positive semi-definite operator on H. For an observable A, its spectral

decomposition can be written as A =
∑
λPλ, where Pλ is the projector onto the eigenspace corresponding to the eigenvalue

λ. The expection of A in a state ρ is given by
∑
λ tr(Pλρ) = tr(Aρ).

The notion partial trace is a special quantum operation that discard the state of a system. Formally, for the Hilbert space
H1 ⊗H2, we define partial trace over H1, written as tr1 as a mapping from Pos(H1 ⊗H2) to Pos(H2), that satisfies

tr1(A) =
∑
i

(⟨i| ⊗ I)A(|i⟩ ⊗ I)

where |i⟩ ranges over all computational basis of H1.
For more introductions and explanations of the above notions, we refer the readers to [5].
We now introduce some concepts that are useful in the study of quantum programs.
The Löwner order is a partial order of positive semi-definite operators, defined as follows: for A,B ∈ Pos(H), A ⊑ B if

and only if B −A is positive semi-definite.

Definition A.1 (Support). Let P ∈ Pos(H) be a positive semi-definite operator. Then, the support of P , denoted as supp(P ),
is the subspace of H that are spanned by the eigenvectors of P associated with non-zero eigenvalues.

Definition A.2. Let H be a Hilbert space, X and Y be its subspaces. The join of X and Y is defined as X∨Y = span{X ∪ Y },
where · represents the operation of taking the topological closure. The meet of X and Y is defined as X ∧ Y = X ∩ Y . The
orthogonal complement of X is X⊥ = {|ψ⟩ ∈ H||ψ⟩ ⊥ |ϕ⟩,∀|ϕ⟩ ∈ X}.

Here are some of the properties of the support that are needed for proofs in the subsequent parts.

Proposition A.3 (Properties of the Support). We have the following properties:
• Let P,Q ∈ Pos(H), then supp(P +Q) = supp(P ) ∨ supp(Q);
• Let X1 and X2 be subspaces of a Hilbert space H, then E(X1 ∨X2) = E(X1) ∨ E(X2) for any CP maps E .

Infinite-valued predicates.



In the following, we introduce the basic notions that are related to the infinite-valued predicates. We first formally define
the notion of infinite-valued predicates as follows.

Definition A.4 (Infinite-Valued Predicates). Given a Hilbert space H, A is called an infinite-valued predicate on H, if it has
a unique spectral decomposition {(λi, Xi)}i, where λi ∈ R+∞ are its eigenvalues, Xi’s are projections onto eigenspaces that
are pairwise orthogonal, with

∑
iXi = I .

The set of all infinite-valued predicates is denoted as Pos∞(H).

For the arithmetic operations related to the +∞, we make the conventions that (+∞) · 0 = 0 · (+∞) = 0, (+∞) + a =
a + (+∞) = +∞ for a ∈ R+∞, 0/0 = 0 (this is used in normalization of quantum states, i.e., ρ = tr(ρ)(ρ/ tr(ρ)) even if
ρ = 0), and +∞ ≤ +∞.

The following lemma enables us to represent the infinite-valued predicates as two parts, namely the “finite” and “infinite”
part.

Lemma A.5. For any A ∈ Pos∞(H), it can be uniquely represented as (PA, XA), written A ≜ (PA, XA), where PA ∈ Pos(H),
XA ∈ S(H) such that PAXA = 0, and we will write it as A = PA + (+∞ ·XA).

Proof. Suppose A =
∑
j λjXj . We set PA =

∑
j:λj<+∞ λjXj and XA =

∑
j:λj=+∞Xj . It is clear that PAXA = 0.

Now we prove the uniqueness. Suppose A could also be written as P ′
A + ∞ · X ′

A. We first prove XA = X ′
A. If not,

there must exist a non-zero vector |ψ⟩ ∈ XA ∩ X ′⊥
A , which satisfies ⟨ψ|A|ψ⟩ = ⟨ψ|PA|ψ⟩ + ∞⟨ψ|XA|ψ⟩ = +∞, and

⟨ψ|A|ψ⟩ = ⟨ψ|P ′
A|ψ⟩+∞⟨ψ|X ′

A|ψ⟩ = ⟨ψ|P ′
A|ψ⟩ < +∞, a contradiction. Then, we have PA = X⊥

AAX
⊥
A = X ′⊥

A AX ′⊥
A = P ′

A

as we desired.

Here we introduces some basic operations for infinite-valued predicates:

Definition A.6 (Operations of Infinite-Valued Predicate). The basic operations of infinite-valued predicates can be defined as
follows.

• The addition for two infinite-valued predicates A1, A2 is:

A1 +A2 ≜ (X⊥ (PA1 + PA2)X
⊥, X),

where X = XA1
∨XA2

.
• The tensor product for two infinite-valued predicates A1, A2 is

A1 ⊗A2 ≜ (PA1 ⊗ PA2 , X) ,

where X = (supp (PA1
)⊗XA2

) ∨ (XA1
⊗ supp (PA2

)) ∨ (XA1
⊗XA2

).
• For any |ψ⟩ ∈ H and A ∈ Pos∞(H) with spectral decomposition {(λi, Xi)}, the inner product ⟨ψ|A|ψ⟩ is defined as

⟨ψ|A|ψ⟩ ≜
∑
i

λi⟨ψ|Xi|ψ⟩.

• For a density operator ρ ∈ D(H), its expectation value on an infinite-valued predicate A is

tr(Aρ) ≜

{
tr(PAρ), if XAρ = 0

∞, otherwise

• For subspace X , X | A ≜ X ·A ·X + (+∞ ·X⊥), or equivalently, X | A ≜ ((X ∨X⊥
A )PA(X ∨X⊥

A ), X
⊥ ∨XA).

Lemma A.7 (Basic Properties of Operations of Infinite-Valued Predicates). We have the following properties for A,A1, A2 ∈
Pos∞(H):

• Scalar product cA for c ∈ R+∞ is defined such that for all |ψ⟩, ⟨ψ|cA|ψ⟩ = c⟨ψ|A|ψ⟩.
• Addition A1 +A2 such that for all |ψ⟩ ∈ H, ⟨ψ|(A1 +A2)|ψ⟩ = ⟨ψ|A1|ψ⟩+ ⟨ψ|A2|ψ⟩.
• Tensor product A1⊗A2 such that for all |ψ1⟩, |ψ2⟩, (⟨ψ1|⊗ ⟨ψ2|)(A1⊗A2)(|ψ1⟩⊗ |ψ2⟩) = (⟨ψ1|A1|ψ1⟩) · (⟨ψ2|A2|ψ2⟩).
• Let M be a linear operator with H as its domain, M†AM can be defined such that for all |ψ⟩, ⟨ψ|(M†AM)|ψ⟩ = ⟨ϕ|A|ϕ⟩

where |ϕ⟩ =M |ψ⟩.
• For P ∈ Pos with decomposition P =

∑
i ai|ψi⟩⟨ψi| (0 ≤ ai), the trace is tr(AP ) =

∑
i ai⟨ψi|A|ψi⟩. Note that the

value is unique for any decomposition.
• For E ∈ QO (more generally, CP maps) with Kraus operators {Ei}, E†(A) =

∑
iE

†
iAEi. Note that it is unique for

arbitrary Kraus operators.
• A1 = A2 if for all |ψ⟩, ⟨ψ|A1|ψ⟩ = ⟨ψ|A2|ψ⟩.



• A1 ⊑ A2 if for all |ψ⟩, ⟨ψ|A1|ψ⟩ ≤ ⟨ψ|A2|ψ⟩.

For readability, we postpone the proof of the above lemma to Appendix J.

Lemma A.8 (Algebraic Properties). In the following, let a, b, c ∈ R+∞, A,A1, A2 ∈ Pos∞, M,M1,M2, · · · ∈ L, and
P, P1, P2 · · · ∈ Pos. We have the following properties:

• 0A = 0, 1A = A, a(bA) = (ab)A;
• 0 +A = A+ 0 = A, A1 +A2 = A2 +A1, A1 + (A2 +A3) = (A1 +A2) +A3;
• 0⊗A = A⊗ 0 = 0, A1 ⊗ (A2 ⊗A3) = (A1 ⊗A2)⊗A3;
• A⊗ (cA1 +A2) = c(A⊗A1) + (A⊗A2); (cA1 +A2)⊗A = c(A1 ⊗A) + (A2 ⊗A);
• 0†A0 = 0, M†

2 (M
†
1AM1)M2 = (M1M2)

†A(M1M2); M†(cA1 +A2)M = c(M†A1M) +M†A2M ;
• (M1 ⊗M2)

†(A1 ⊗A2)(M1 ⊗M2) = (M†
1A1M1)⊗ (M†

2A2M2);
• tr(A(cP1 + P2)) = c tr(AP1) + tr(AP2); tr((cA1 +A2)P ) = c tr(A1P ) + tr(A2P );
• tr((A1 ⊗A2)(P1 ⊗ P2)) = tr(A1P1) tr(A2P2); tr((M†AM)P ) = tr(A(MPM†)).
• tr((A⊗ I)P ) = tr(A tr2(P )); tr((I ⊗A)P ) = tr(A tr1(P ));
• tr(A|ϕ⟩⟨ϕ|) = ⟨ϕ|A|ϕ⟩.
• A1 = A2 iff for all P ∈ Pos (or P ∈ D) such that tr(A1P ) = tr(A2P );
• A1 ⊑ A2 iff for all P ∈ Pos (or P ∈ D) such that tr(A1P ) ≤ tr(A2P );
• A1 ⊑ A2 implies M†A1M ⊑M†A2M ; A1 ⊑ A2 and A3 ⊑ A4 implies cA1 +A3 ⊑ cA2 +A4.

As direct corollaries, for CP map E , E1, E2,
• tr(AE(P )) = tr(E†(A)P ); A1 ⊑ A2 implies E(A1) ⊑ E(A2);
• (cE1 + E2)(A) = cE1(A) + E2(A); E(cA1 +A2) = cE(A1) + E(A2);
• E2(E1(A)) = (E2 ◦ E1)(A); (E1 ⊗ E2)(A1 ⊗A2) = E1(A1)⊗ E2(A2).

For readability, we postpone the proof of the above lemma to Appendix J.

APPENDIX B
DEFERRED PROOFS IN “QUANTUM COUPLING” SECTION

Theorem B.1 (Theorem III.3). For any ρ1 ∈ D(H1) and ρ2 ∈ D(H2) with tr(ρ1) = tr(ρ2), for any defect ϵ ∈ R+∞ and for
any X ∈ Pos(H1 ⊗H2), the following are equivalent:

1) ρ1X
#
ϵ ρ2;

2) For any Y1 ∈ Pos(H1) and Y2 ∈ Pos(H2) such that X ⊒ Y1 ⊗ I2 − I1 ⊗ Y2, it holds that

tr(Y1ρ1) ≤ tr(Y2ρ2) + ϵ

Proof. If ϵ = +∞, then both (1) and (2) trivially hold. So we consider the case that ϵ ∈ R+, i.e., ϵ is finite.
• (1 =⇒ 2). Suppose ρ1X#

ϵ ρ2, let ρ : ⟨ρ1, ρ2⟩ be the witness such that tr(Xρ) ≤ ϵ. Then for any Hermitian Y1, Y2, if
X ≥ Y1 ⊗ I − I ⊗ Y2, we have tr(Y1ρ1) = tr((Y1 ⊗ I)ρ) ≤ tr((X + I ⊗ Y2)ρ) ≤ tr((I ⊗ Y2)ρ) + ϵ = tr(Y2ρ2) + ϵ,
where the second last step uses the assumption.

• (2 =⇒ 1). In this part of the proof, we write ⟨A,B⟩ to mean the Hilbert-Schmidt inner product ⟨A,B⟩ ≜ tr(A†B).
The original proof [8] considers a semi-definite program (Φ,A,B). The primal formulation is that of maximising ⟨A,Z⟩,
subject to Φ(Z) = B,Z ∈ Pos(H1 ⊗ H2), and the dual one is that of minimising ⟨B, Y ⟩ subject to Φ†(Y ) ≥ A, Y ∈
Herm(H1 ⊕H2), where:

A = I −X,B =

(
ρ1

ρ2

)
Φ(Z) =

(
tr2(Z)

tr1(Z)

)
Φ†(Y ) = Φ†

(
Y1 ·
· Y2

)
= Y1 ⊗ I2 + I1 ⊗ Y2

The above formulation can be shown to satisfy strong duality, meaning that the optima for the primal and dual problems
exist and are equal.
Then, let us consider for all Hermitians Y1 ∈ Herm(H1), Y2 ∈ Herm(H2) satisfying Y1 ⊗ I2 + I1 ⊗ Y2 ≥ I −X , observe
that

⟨B, Y ⟩ = tr(Y1ρ1 + Y2ρ2)

= tr(Y ′
2ρ2)− tr(Y ′

1ρ1) + tr(ρ1)

≥ tr(ρ1)− ϵ



where Y ′
2 = Y2 + nI , Y ′

1 = (n + 1)I − Y1 with sufficiently large n ∈ R+ (e.g., bigger than all singular values of Y1
and Y2) such that Y ′

2 and Y ′
1 are both positive. The second line is derived by using the assumption tr(ρ1) = tr(ρ2). By

condition (2) since Y ′
1 ⊗ I2− I1⊗Y ′

2 = I− (Y1⊗ I2+ I1⊗Y2) ⊑ I− (I−X) = X , we have tr(Y ′
2ρ2)− tr(Y ′

1ρ1) ≥ −ϵ,
and this leads to third line.
By strong duality, we have ⟨I − X,Zmax⟩ ≥ tr(ρ1) − ϵ, or equivalently, tr(Zmax) − tr(XZmax) ≥ tr(ρ1) − ϵ. Since
tr(Zmax) = tr(ρ1), we have tr(XZmax) ≤ ϵ, which says that Zmax is a witness of the lifting ρ1X#

ϵ ρ2.

Lemma B.2 (Lemma III.4). Let ρ : ⟨ρ1, ρ2⟩. Then, tr(ρ) = tr(ρ1) = tr(ρ2).

Proof. This is direct by noting tr(ρ) = tr(tr1(ρ)) = tr(ρ1) = tr(tr2(ρ)) = tr(ρ2).

Before proving the relationship between ⋆-coupling and partial coupling and its variant of Strassen’s theorem, i.e.,
Proposition B.3 and Theorem B.5, we first introduce some useful definitions:

• For any Hilbert space H, we additionally extend it to H⋆ with one-dimension denoted by |⋆⟩. Let P⋆ = |⋆⟩⟨⋆| the
projection of ⋆ space and P⊥

⋆ = I⋆−P⋆ the projection to original space. (To avoid ambiguity, we write I⋆ for the identity
of H⋆.)

• For any ρ ∈ D(H), we define the star-extension ρ⋆ ≜ (1− tr(ρ))|⋆⟩⟨⋆|+ ρ ∈ D1(H⋆). Obviously, P⊥
⋆ ρ

⋆P⊥
⋆ = ρ.

• For ρ1 ∈ D(H1) and ρ2 ∈ D(H2), we say ρ ∈ D(H⋆
1 ⊗ H⋆

2) is a ⋆-coupling of ρ1 and ρ2, written ρ : ⟨ρ1, ρ2⟩⋆, if
ρ : ⟨ρ⋆1, ρ⋆2⟩.

• For any A ∈ Pos(H1 ⊗H2), we define A⋆ ∈ Pos(H⋆
1 ⊗H⋆

2) as the embedding of A.
• For ρ ∈ D(H⋆

1 ⊗H⋆
2), we define the projection:

Π⊥
⋆ (ρ) = (P⊥

⋆ ⊗ P⊥
⋆ )ρ(P⊥

⋆ ⊗ P⊥
⋆ ) ∈ D(H1 ⊗H2).

• For any ρ ∈ D(H1 ⊗H2) such that ρ : ⟨ρ1, ρ2⟩p, define

ρ↑ =(1 + tr(ρ)− tr(ρ1)− tr(ρ2))| ⋆ ⋆⟩⟨⋆ ⋆ | +
(ρ1 − tr2(ρ))⊗ |⋆⟩⟨⋆|+ |⋆⟩⟨⋆| ⊗ (ρ2 − tr1(ρ)) + ρ.

Proposition B.3 (Relation to ⋆-coupling). For given ρ1 ∈ D(H1), ρ2 ∈ D(H2) and A ∈ Pos(H1 ⊗H2), we claim that:
1) Any ⋆-coupling provide a partial-coupling, i.e., Π⊥

⋆ (ρ) : ⟨ρ1, ρ2⟩p if ρ : ⟨ρ1, ρ2⟩⋆.
2) We can construct ⋆-coupling from a partial-coupling, i.e., ρ↑ : ⟨ρ1, ρ2⟩⋆ if ρ : ⟨ρ1, ρ2⟩p. In fact, Π⊥

⋆ (ρ
↑) = ρ.

3) If ρ : ⟨ρ1, ρ2⟩⋆, tr(A⋆ρ) = tr(AΠ⊥
⋆ (ρ)). As a consequence, if ρ : ⟨ρ1, ρ2⟩p, then tr(A⋆ρ↑) = tr(Aρ).

Proof. (1). Suppose ρ : ⟨ρ1, ρ2⟩⋆. Compute

tr2(Π
⊥
⋆ (ρ)) = tr2((P

⊥
⋆ ⊗ P⊥

⋆ )ρ(P⊥
⋆ ⊗ P⊥

⋆ ))

= P⊥
⋆ tr2((I⋆ ⊗ P⊥

⋆ )ρ(I⋆ ⊗ P⊥
⋆ ))P⊥

⋆

⊑ P⊥
⋆ tr2(ρ)P

⊥
⋆

= P⊥
⋆ ρ

⋆
1P

⊥
⋆

= ρ1

where we use the fact that tr2(ρ) = tr2((I⋆⊗P⋆)ρ(I⋆⊗P⋆)+(I⋆⊗P⊥
⋆ )ρ(I⋆⊗P⊥

⋆ )). Similarly, tr2(Π⊥
⋆ (ρ)) ⊑ ρ2. Furthermore,

observe that

tr(ρ) = tr((P⋆ ⊗ P⋆)ρ(P⋆ ⊗ P⋆)) + tr((I⋆ ⊗ P⊥
⋆ )ρ(I⋆ ⊗ P⊥

⋆ ))+

tr((P⊥
⋆ ⊗ I⋆)ρ(P

⊥
⋆ ⊗ I⋆))− tr((P⊥

⋆ ⊗ P⊥
⋆ )ρ(P⊥

⋆ ⊗ P⊥
⋆ ))

= tr((P⋆ ⊗ P⋆)ρ(P⋆ ⊗ P⋆)) + tr(ρ2) + tr(ρ1)− tr(Π⊥
⋆ (ρ))

Note that tr(ρ) = 1, 0 ≤ tr((P⋆ ⊗ P⋆)ρ(P⋆ ⊗ P⋆)), we have tr(ρ1) + tr(ρ2) ≤ 1 + tr(Π⊥
⋆ (ρ)).

All above implies that Π⊥
⋆ (ρ) : ⟨ρ1, ρ2⟩p.

(2). Suppose ρ : ⟨ρ1, ρ2⟩p. It is straightforward that :

tr2(ρ
↑) = (1 + tr(ρ)− tr(ρ1)− tr(ρ2))|⋆⟩⟨⋆|+

(ρ1 − tr2(ρ)) + tr(ρ2 − tr1(ρ))|⋆⟩⟨⋆|+ tr2(ρ)

= (1− tr(ρ1))|⋆⟩⟨⋆|+ ρ1

= ρ⋆1.



Similarly, tr1(ρ↑) = ρ⋆2. Thus, ρ↑ : ⟨ρ⋆1, ρ⋆2⟩, or equivalently, ρ↑ : ⟨ρ1, ρ2⟩⋆. Π⊥
⋆ (ρ

↑) = ρ is trivial by computation.
(3). Note that, A⋆ is preserved under the projection P⊥

⋆ ⊗ P⊥
⋆ , so :

tr(A⋆ρ) = tr(A⋆(P⊥
⋆ ⊗ P⊥

⋆ )ρ(P⊥
⋆ ⊗ P⊥

⋆ )))

= tr(AΠ⊥
⋆ (ρ)).

Proposition B.4 ((Sub-)convex Combination of Partial Coupling). Let {λi}i∈I be a subdistribution over index set I (i.e.,
0 ≤ λi ≤ 1 for all i, and

∑
i λi ≤ 1), and ρi ∈ D(H1), σi ∈ D(H2), and partial couplings δi : ⟨ρi, σi⟩p with indices from I .

Then ∑
i

λiδi :
〈∑

i

λiρi,
∑
i

λiσi

〉
p
.

As an corollary, for any ρ ∈ D(H1), σ ∈ D(H2) and 0 ≤ c ≤ 1, if δ : ⟨ρ, σ⟩p, then cδ : ⟨cρ, cσ⟩p.

Proof. First observe:

tr2

(∑
i

λiδi

)
=

∑
i

λi tr2(δi) ⊑
∑
i

λiρi;

tr1

(∑
i

λiδi

)
=

∑
i

λi tr1(δi) ⊑
∑
i

λiσi.

Further notice that,

tr
(∑

i

λiρi

)
+ tr

(∑
i

λiσi

)
=

∑
i

λi(tr(ρi) + tr(σi))

≤
∑
i

λi(1 + tr(δi)) =
∑
i

λi + tr
(∑

i

λiδi

)
≤ 1 + tr

(∑
i

λiδi

)
as {λi}i∈I is a subdistribution. This completes the proof.

Theorem B.5 (Quantum Strassen’s Theorem for Partial Coupling). For any ρ1 ∈ D(H1), ρ2 ∈ D(H2), A ∈ Pos(H1 ⊗H2)
and ϵ ∈ R+∞, the following are equivalent:

1) There exists partial-coupling ρ : ⟨ρ1, ρ2⟩p such that tr(Aρ) ≤ ϵ;
2) For any y1, y2 ∈ R+, Y1 ∈ Pos(H1), Y2 ∈ Pos(H2), such that y1 ≤ y2, Y1 ≤ y2I1, y1I2 ≤ Y2 and A ⊒ Y1⊗I2−I1⊗Y2,

it holds that:

y1(1− tr(ρ1)) + tr(Y1ρ1) ≤ y2(1− tr(ρ2)) + tr(Y2ρ2) + ϵ.

Proof. If ϵ = +∞, then both (1) and (2) trivially hold. So we consider the case that ϵ ∈ R+, i.e., ϵ is finite. We first introduce
the following condition:

3) There exists star-coupling ρ : ⟨ρ1, ρ2⟩⋆, i.e., ρ : ⟨ρ⋆1, ρ⋆2⟩, such that tr(A⋆ρ) ≤ ϵ.

• (1 ⇒ 3). Let ρ be the witness of (1), then ρ↑ : ⟨ρ1, ρ2⟩⋆ by Lemma B.3(2). According to Lemma B.3(3), tr(A⋆ρ↑) =
tr(Aρ) ≤ ϵ.
• (3 ⇒ 1). Let ρ be the witness of (3), then Π⊥

⋆ (ρ) : ⟨ρ1, ρ2⟩p by Lemma B.3(1). According to Lemma B.3(3), tr(AΠ⊥
⋆ (ρ)) =

tr(A⋆ρ) ≤ ϵ.
Thus, (1) is equivalent to (3). (3) says that, ρ⋆1A

⋆#
ϵ ρ⋆2, then by Theorem III.3, it is then equivalent to:

4) For any Z1 ∈ Pos(H⋆
1) and Z2 ∈ Pos(H⋆

2) such that A⋆ ⊒ Z1 ⊗ I2⋆ − I1⋆ ⊗ Z2, it holds that

tr(Z1ρ
⋆
1) ≤ tr(Z2ρ

⋆
2) + ϵ.

What remaining to be shown is (2) equivalent to (4).



• (4 ⇒ 2). Set Z1 = y1|⋆⟩⟨⋆|+ Y1 and Z2 = y2|⋆⟩⟨⋆|+ Y2. Obviously, Z1 ∈ Pos(H⋆
1) and Z2 ∈ Pos(H⋆

2). Observe that:

A⋆ − (Z1 ⊗ I2⋆ − I1⋆ ⊗ Z2)

= A− (y1|⋆⟩⟨⋆|+ Y1)⊗ (|⋆⟩⟨⋆|+ I2)

+ (|⋆⟩⟨⋆|+ I1)⊗ (y2|⋆⟩⟨⋆|+ Y2)

= (A− (Y1 ⊗ I2 − I1 ⊗ Y2)) + (y2 − y1)| ⋆ ⋆⟩⟨⋆ ⋆ |
+ (y2I1 − Y1)⊗ |⋆⟩⟨⋆|+ |⋆⟩⟨⋆| ⊗ (Y2 − y1I2)

⊒ 0.

So, tr(Z1ρ
⋆
1) ≤ tr(Z2ρ

⋆
2) + ϵ, or equivalently,

y1(1− tr(ρ1)) + tr(Y1ρ1) ≤ y2(1− tr(ρ2)) + tr(Y2ρ2) + ϵ.

• (2 ⇒ 4). For any Z1 ∈ Pos(H⋆
1) and Z2 ∈ Pos(H⋆

2) such that A⋆ ⊒ Z1 ⊗ I2⋆ − I1⋆ ⊗ Z2, by projecting it to P⋆ ⊗ P⋆,
P⊥
⋆ ⊗ P⋆, P⋆ ⊗ P⊥

⋆ and P⊥
⋆ ⊗ P⊥

⋆ , the Löwner preserves, and thus:

y1 − y2 ≤ 0 y1I2 − Y2 ⊑ 0 Y1 − y2I1 ⊑ 0

Y1 ⊗ I2 − I1 ⊗ Y2 ⊑ A

where Z1 =
( y1 ·

· Y1

)
and Z2 =

( y2 ·
· Y2

)
. Furthermore, observe that

tr(Z1ρ
⋆
1)− tr(Z2ρ

⋆
2)

= y1(1− tr(ρ1)) + tr(Y1ρ1)− (y2(1− tr(ρ2)) + tr(Y2ρ2))

≤ ϵ

by employing (2), and this completes the proof.

APPENDIX C
DEFERRED PROOFS IN “QUANTUM OPTIMAL TRANSPORT” SECTION

Proposition C.1. Given ρ1 ∈ D(H1) and ρ2 ∈ D(H2) where H1 and H2 are finite-dimensional Hilbert spaces, the set of
partial couplings S = {ρ | ρ : ⟨ρ1, ρ2⟩p} is a non-empty, closed and convex set.

Proof. For non-emptiness, given ρ1 ∈ D(H)1 and ρ2 ∈ D(H∈). We claim ρ = ρ1 ⊗ ρ2 ∈ S. It is direct to see that
tr2(ρ) ⊑ ρ1 and tr1(ρ) ⊑ ρ2. For the trace constraint, notice that tr(ρ) = tr(ρ1) tr(ρ2), tr(ρ1) ≤ 1, and tr(ρ2) ≤ 1, we have
(1− tr(ρ1))(1− tr(ρ2)) ≥, meaning that tr(ρ1) + tr(ρ2) ≤ 1 + tr(ρ) as we want.

For closeness, given ρi → ρ with ρi ∈ S, we show that ρ ∈ S. By definition, we know tr2(ρ
i) ⊑ ρ1, or equivalently, for

any σ ∈ D(H1), tr(ρiσ⊗ I) ≤ tr(ρ1σ). Fixed σ, the function tr((σ⊗ I)·) is linear and continuous. Therefore, by ρi → ρ we
know tr(tr2(ρ)σ) ≤ tr(ρ1σ). Since the above inequality holds for any σ ∈ D(H), we conclude that tr2(ρ) ⊑ ρ1. Similarly we
can prove tr1(ρ) ⊑ ρ2. By the continuity of the trace function, we can also conclude tr(ρ1) + tr(ρ2) ≤ 1 + tr(ρ). Therefore
we have ρ ∈ S.

For convexity, suppose σ1, σ2 ∈ S and λ ∈ (0, 1). Consider ρ = λσ1+(1−λ)σ2. From tr2(σ1) ⊑ ρ1 and tr2(σ2) ⊑ ρ1, we
know λ tr2(σ1) + (1− λ) tr2(σ2) ⊑ λρ1 + (1− λ)ρ1. Simplifying above, we get tr2(ρ) ⊑ ρ1. Similarly we have tr1(ρ) ⊑ ρ2.
From tr(ρ1) + tr(ρ2) ≤ 1 + tr(σ1) and tr(ρ1) + tr(ρ2) ≤ 1 + tr(σ2), we get tr(ρ1) + tr(ρ2) ≤ 1 + λ tr(σ1) + (1− λ) tr(σ2),
meaning tr(ρ1) + tr(ρ2) ≤ 1 + tr(ρ) and ρ ∈ S as we desired.

Proposition C.2 (Jointly Convexity of QOT). Let {λi}i∈I be a subdistribution over index set I , and ρi ∈ D(H1), σi ∈ D(H2)
with indices from I . For any cost function C, It holds that:

TC

(∑
i

λiρi,
∑
i

λiσi

)
≤

∑
i

λiTC(ρi, σi).

As a corollary, if {λi}i∈I is a distribution and σ ∈ D(H2), then TC
(∑

i λiρi, σ
)
≤

∑
i λiTC(ρi, σ).

Proof. Select δi : ⟨ρi, σi⟩p such that TC(ρi, σi) = tr(Cδi). By Proposition B.4,
∑
i λiδi :

〈∑
i λiρi,

∑
i λiσi

〉
p
, so

TC

(∑
i

λiρi,
∑
i

λiσi

)
≤ tr

(
C
∑
i

λiδi

)
=

∑
i

λi tr(Cδi) =
∑
i

λiTC(ρi, σ).

The following lemma demonstrates that for contractivity it suffices to consider only density operators, which appears useful
in the following proofs.



Lemma C.3 (Lemma IV.3). Given two quantum operations E1 ∈ QO(H1), E2 ∈ QO(H2), input and output costs , the
following statement are equivalent:

1) (E1, E2) is contractive w.r.t. Ci and Co;
2) For all ρ1 ∈ D1(H1) and ρ2 ∈ D1(H2),

TCo
(E1(ρ1), E2(ρ2)) ≤ TCi

(ρ1, ρ2).

Proof. (1 ⇒ 2) is trivial. For (2 ⇒ 1), by definition, it is sufficient to show that, for all ρ1 ∈ D(H1), ρ2 ∈ D(H2) and
ρ : ⟨ρ1, ρ2⟩p, there exists σ : ⟨E1(ρ1), E2(ρ2)⟩p such that :

tr(Coσ) ≤ tr(Ciσ).

Since ρ is a partial coupling, then ρ′1 ≜ tr2(ρ) ⊑ ρ1, ρ′2 ≜ tr1(ρ) ⊑ ρ2, 1 + tr(ρ) ≥ tr(ρ1) + tr(ρ2). Set tr(ρ) = c. If
c = 0, then tr(E1(ρ1)) + tr(E2(ρ2)) ≤ tr(ρ1) + tr(ρ2) ≤ 1, thus 0 : ⟨E1(ρ1), E2(ρ2)⟩p, and obviously tr(Ciρ) = tr(Co0) = 0.
If c > 0, by taking ρ′1/c and ρ′2/c in (2), there must exist a partial coupling

σ : ⟨E1(ρ′1/c), E1(ρ′2/c)⟩p

such that tr(Ci(ρ/c)) ≥ tr(Coσ). By Proposition B.4, cσ : ⟨ρ′1, ρ′2⟩p, and tr(Ciρ) ≥ tr(Co(cσ)), so it is sufficient to show
cσ : ⟨E1(ρ1), E2(ρ2)⟩p. First observe that,

tr2(cσ) = c tr(σ) ⊑ cE1(ρ′1/c) = E1(ρ′1) ⊑ E1(ρ1)

and similarly, tr1(cσ) ⊑ E2(ρ2). On the other hand,

1 + tr(cσ) = 1− c+ c(1 + tr(σ))

≥ 1− c+ c(tr(E1(ρ′1/c)) + tr(E2(ρ′2/c)))
= 1− c+ (tr(E1(ρ′1)) + tr(E2(ρ′2))).

Notice that tr(ρ1−ρ′1) ≥ tr(E1(ρ1−ρ′1)) since ρ′1 ⊑ ρ1 and E1 is a quantum operation, and similarly holds for ρ2, ρ′2, we get:

tr(E1(ρ′1)) + tr(E2(ρ′2))
≥ tr(E1(ρ1)) + tr(E2(ρ2))− (tr(ρ1) + tr(ρ2))

+ tr(ρ′1) + tr(ρ′2)

≥ tr(E1(ρ1)) + tr(E2(ρ2))− (1 + tr(ρ)) + 2 tr(ρ)

= tr(E1(ρ1)) + tr(E2(ρ2))− 1 + c

Combine these two inequalities, we obtain:

1 + tr(cσ) ≥ tr(E1(ρ1)) + tr(E2(ρ2)),

which completes the proof.

Lemma C.4 (Lemma IV.4). Suppose E1 ∈ QC(H1), E2 ∈ QC(H2) are two quantum channels. Then (E1, E2) is contractive
w.r.t. Ci and Co if and only if for every ρ ∈ D(H1 ⊗H2), there exists a coupling σ : ⟨E1(tr2(ρ)), E2(tr1(ρ))⟩ such that

tr(Ciρ) ≥ tr(Coσ).

Proof. (if) part. For all ρ1 ∈ D1(H1) and ρ2 ∈ D1(H2), set ρ : ⟨ρ1, ρ2⟩ which obtains tr(Ciρ) = TCi
(ρ1, ρ2). Then by

assumption, there exists a coupling σ : ⟨E1(tr2(ρ)), E2(tr1(ρ))⟩ (i.e., σ : ⟨E1(ρ1), E2(ρ2)⟩) such that:

TCo
(E1(ρ1), E2(ρ2)) ≤ tr(Coσ) ≤ tr(Ciρ) = TCi

(ρ1, ρ2).

Then by Lemma IV.3 we finish this part.
(only if) part. Since coupling is preserved under scaling, and by Lemma A.8, we only need to focus on ρ ∈ D1(H1 ⊗H2).

Choose σ : ⟨E1(tr2(ρ)), E2(tr1(ρ))⟩ which tr(Coσ) = TCo
(E1(tr2(ρ)), E2(tr1(ρ))). By assumption, we have:

tr(Coσ) = TCo
(E1(tr2(ρ)), E2(tr1(ρ))) ≤ TCi

(tr2(ρ), tr1(ρ)) ≤ tr(Ciρ).

Proposition C.5 (Proposition IV.5). The contractivity satisfies several desired properties for data processing:
1) Backward. (E1, E2) is contractive w.r.t. (E†

1 ⊗ E†
2)(C) and C. Here, E† is the dual of E , which satisfies tr(AE(B)) =

tr(E†(A)B) for all linear operator A,B.



2) Consequence. Suppose (E1, E2) is contractive w.r.t. C ′
i and C ′

o, and C ′
i ⊑ Ci, Co ⊑ C ′

o, then (E1, E2) is contractive w.r.t.
Ci and Co.

3) Sequential composition. Suppose (E1, E ′
1) is contractive w.r.t. Ci and Cm, and (E2, E ′

2) is contractive w.r.t. Cm and Co,
then (E2 ◦ E1, E ′

2 ◦ E ′
1) is contractive w.r.t. Ci and Co.

For any super-operator E , its dual E† is another super-operator. Whenever E is a quantum operation with Kraus operator {Ei},
then E† has Kraus representation {E†

i }. ◦ is the composition of two quantum operations, i.e., for all ρ, (E1◦E2)(ρ) ≜ E1(E2(ρ)).

Proof. (1) By Lemma IV.3, for any ρ ∈ D1(H1 ⊗H2), set σ = (E1 ⊗ E2)(ρ). By the property of dual map, we have:

tr((E†
1 ⊗ E†

2)(C)ρ) = tr(C(E1 ⊗ E2)(ρ)) = tr(Cσ).

It is then sufficient to show that σ : ⟨E1(tr2(ρ)), E2(tr1(ρ))⟩p, which is completed by noticing that:

tr2(σ) = tr2((E1 ⊗ E2)(ρ)) ⊑ E1(tr2(ρ)),
tr1(σ) = tr1((E1 ⊗ E2)(ρ)) ⊑ E2(tr1(ρ)),

1 + tr(σ) = tr(ρ) + tr((I ⊗ I)(E1 ⊗ E2)(ρ))
= tr((I ⊗ I + E†

1(I)⊗ E†
2(I))ρ)

≥ tr((E†
1(I)⊗ I + I ⊗ E†

2(I))ρ)

= tr(E†
1(I) tr2(ρ)) + tr(E†

2(I) tr1(ρ))

= tr(E1(tr2(ρ))) + tr(E2(tr1(ρ))).

First two hold since E1 and E2 are quantum operations, and furthermore, E†
1(I) ⊑ I and E†

2(I) ⊑ I , thus, 0 ⊑ (I − E†
1(I))⊗

(I − E†
2(I)) which then leads to the inequality of fifth line.

(2) By Lemma IV.3, for any ρ ∈ D1(H1 ⊗ H2), by assumption, there exists σ : ⟨E1(tr2(ρ)), E2(tr1(ρ))⟩p such that
tr(C ′

iρ) ≥ tr(C ′
oσ). Thus,

tr(Ciρ) ≥ tr(C ′
iρ) ≥ tr(C ′

oσ) ≥ tr(Coσ).

(3) For any ρ1 and ρ′1, and any partial coupling ρ : ⟨ρ1, ρ′1⟩p, by the first assumption, there exists a partial cou-
pling σ : ⟨E1(ρ1), E ′

1(ρ
′
1)⟩p such that tr(Ciρ) ≥ tr(Cmσ). From the second assumption there is a partial coupling

σ′ : ⟨E2(E1(ρ1)), E ′
2(E ′

1(ρ
′
1))⟩p, or equivalently, σ′ : ⟨(E1 ◦ E2)(ρ1), (E ′

1 ◦ E ′
2)(ρ

′
1)⟩p such that tr(Cmσ) ≥ tr(Coσ

′), which
concludes the proof by noticing tr(Ciρ) ≥ tr(Coσ

′).

Proposition C.6 (Split Cost). The contractivity can further be checked via splitting output cost. Formally, Suppose E1, E2 are
quantum channels. (E1, E2) is contractive w.r.t. C and Q1 ⊗ I + I ⊗Q2 if and only if

C ⊒ E†
1(Q1)⊗ I + I ⊗ E†

2(Q2).

Proof. The if part can be proved by combining Proposition IV.5 (1) and (2). For the only if part, by employing Lemma IV.4,
we have for all ρ ∈ D(H1 ⊗H2), there exists σ : ⟨E1(tr2(ρ)), E2(tr1(ρ))⟩ such that

tr(Cρ) ≥ tr((Q1 ⊗ I + I ⊗Q2)σ)

= tr(Q1 tr2(σ)) + tr(Q2 tr1(σ))

= tr(Q1E1(tr2(ρ))) + tr(Q2E2(tr1(ρ))
= tr((E†

1(Q1)⊗ I + I ⊗ E†
2(Q2))ρ).

Since this holds for all ρ, we must have: C ⊒ E†
1(Q1)⊗ I + I ⊗ E†

2(Q2).

Theorem C.7 (Theorem IV.6). Suppose E1 and E2 are quantum channels and costs Ci ∈ Pos∞ and Co ∈ Pos (i.e., Co is
finite). Then the following statements are equivalent:

1) (E1, E2) is contractive w.r.t. Ci and Co
2) for all (Y1, Y2, n) ∈ Y , (E1, E2) is contractive w.r.t. Ci + nI and Y1 ⊗ I + I ⊗ (nI − Y2), where Y ≜ {(Y1, Y2, n) | n ∈

N; 0 ⊑ Y1; 0 ⊑ Y2 ⊑ nI;Co ⊒ Y1 ⊗ I − I ⊗ Y2}.

Proof. As E1 and E2 are quantum channels, we employ Lemma IV.4 to interpret contractivity.
(1) says that for all ρ ∈ D(H1 ⊗H2) there is a σ : ⟨E1(tr2(ρ)), E2(tr1)(ρ)⟩ such that tr(Coσ) ≤ tr(Ciρ), or equivalently,

E1(tr2(ρ))Co#ϵ E2(tr1)(ρ)

where ϵ = tr(Ciρ).



(2) says that for all ρ ∈ D(H1 ⊗H2), positive Hermitians Y1, Y2 and n such that Y2 ⊑ nI (where such an n always exists
for any Y2) and Y1 ⊗ I − I ⊗ Y2 ⊑ Co, there exists a coupling σ : ⟨E1(tr2(ρ)), E2(tr1)(ρ)⟩ such that

tr(Ciρ) + n tr(ρ) ≥ tr((Y1 ⊗ I)σ) + n tr(σ)− tr((I ⊗ Y2)σ)

which, by noticing tr(σ) = tr(ρ) since E1 and E2 are quantum channels, is equivalent to

tr(Y1(E1 tr2(ρ))) ≤ tr(Y2(E2 tr1(ρ))) + tr(Ciρ).

The equivalence then follows from Theorem III.3.

Symmetric space is useful for describing equivalence of states, as studied in [8]:

Lemma C.8 (State Equivalence (e.g. [2] prop 3.2)). Let =sym be the projector 1
2 (I + SWAP). Then, for any ρ1, ρ2 ∈ D(H),

ρ1 = ρ2 ⇐⇒ ρ1(=sym)
#ρ2.

Proposition C.9 (Proposition IV.7). Two quantum channels E1 and E2 are equivalent if and only if for all density operators
ρ1, ρ2, Ts(E1(ρ1), E2(ρ2)) ≤ Ts(ρ1, ρ2).

Proof. The “only if” part holds directly by the contractivity of stable QOT under data processing [12].
For the “if” part, for any ρ ∈ D1(H), from the assumption, we have 0 ≤ Ts(ρ, ρ) ≤ T (ρ, ρ) = 0. Thus, Ts(E1(ρ), E2(ρ)) = 0,

or equivalently, T (E1(ρ) ⊗ I
2 , E2(ρ) ⊗

I
2 ) = 0, indicating E1(ρ) ⊗ I

2 = E2(ρ) ⊗ I
2 . Then, we know E1(ρ) = E2(ρ) for all ρ,

meaning that E1 = E2.

Proposition C.10 (Proposition IV.8). Given ρ1, ρ2 ∈ D1(H) and ϵ ∈ R+, the following are equivalent:
1) Ts(ρ1, ρ2) ≤ ϵ;
2) For all Y1, Y2 ∈ Pos(H⊗H2) such that P⊥

sym[H⊗H2] ≥ 2(Y1 ⊗ I − I ⊗ Y2), it holds that:

tr(tr2(Y1)ρ1) ≤ tr(tr2(Y2))ρ2) + ϵ.

Proof. By the property of Ts, we first observe:

Ts(ρ1, ρ2) = inf
τ :⟨ρ1⊗ I

2 ,ρ2⊗
I
2 ⟩
(P⊥
sym[H⊗H2]τ),

which implies that, (1) is equivalent to (ρ1⊗ I
2 )
(
P⊥
sym[H⊗H2]

)#
ϵ
(ρ2⊗ I

2 ). Employing Theorem III.3, (1) is further equivalent
to:

3) for all Y1, Y2 ∈ Pos(H⊗H2) such that P⊥
sym[H⊗H2] ≥ Y1 ⊗ I − I ⊗ Y2, it holds that:

tr
(
Y1

(
ρ1 ⊗

I

2

))
≤ tr

(
Y2

(
ρ2 ⊗

I

2

))
+ ϵ.

Notice that, tr(Yi(ρi ⊗ I
2 )) = tr(tr2(

Yi

2 )ρi) for i = 1, 2, direct substitutions of Y ′
i = Yi

2 translate (3) to (2).

APPENDIX D
DEFERRED PROOFS IN “A QUANTUM RELATIONAL HOARE LOGIC” SECTION

Lemma D.1 (Lemma VI.2). ⊨ Z : {P} S1 ∼ S2 {Q} if and only if for all z ∈ Z, (JS1K, JS2K) is contractive w.r.t. P and Q.

Proof. We employ Lemma IV.3 to interpret contractive.
(if) part. For all z ∈ Z, and ρ ∈ D1(HS1

⊗HS2
), by assumption we have:

TQ(JS1K(tr2(ρ)), JS2K(tr1(ρ))) ≤ TP (tr2(ρ), tr1(ρ)) ≤ tr(Pρ).

Set σ : ⟨JS1K(tr2(ρ)), JS2K(tr1(ρ))⟩p such that TQ(JS1K(tr2(ρ)), JS2K(tr1(ρ))) = tr(Qσ). Then tr(Qσ) ≤ tr(Pρ).
(only if) part. For all z ∈ Z, ρ1 ∈ D1(H1) and ρ2 ∈ D1(H2), set ρ : ⟨ρ1, ρ2⟩ such that TP (ρ1, ρ2) = tr(Pρ). By assumption,

there exists σ : ⟨JS1K(tr2(ρ)), JS2K(tr1(ρ))⟩p (i.e., σ : ⟨JS1K(ρ1), JS2K(ρ2)⟩p) such that:

TP (ρ1, ρ2) = tr(Pρ) ≥ tr(Qσ) ≥ TQ(JS1K(ρ1), JS2K(ρ2)).

Lemma D.2 (qOTL Validity Alternative). ⊨ Z : {P} S1 ∼ S2 {Q} if and only if for every z ∈ Z, ρ1 ∈ D(HS1
), ρ2 ∈ D(HS2

)
and partial coupling ρ : ⟨ρ1, ρ2⟩p, there exists a partial coupling σ : ⟨JS1K(ρ1), JS2K(ρ2)⟩p such that

tr(Pρ) ≥ tr(Qσ).



Proof. (if) part. For every z ∈ Z, ρ1 ∈ D(HS1
), ρ2 ∈ D(HS2

), select partial coupling ρ : ⟨ρ1, ρ2⟩p such that TP (ρ1, ρ2) =
tr(Pρ), by assumption there exists a partial coupling σ : ⟨JS1K(ρ1), JS2K(ρ2)⟩p such that

TQ(JS1K(ρ1), JS2K(ρ2)) ≤ tr(Qσ) ≤ tr(Pρ) = TP (ρ1, ρ2),

so (JS1K, JS2K) is contractive w.r.t. P and Q, then by Lemma VI.2.
(only if) part. For every z ∈ Z, by Lemma VI.2, (JS1K, JS2K) is contractive w.r.t. P and Q. For ρ1 ∈ D(HS1

), ρ2 ∈ D(HS2
)

and partial coupling ρ : ⟨ρ1, ρ2⟩p, select partial coupling σ : ⟨JS1K(ρ1), JS2K(ρ2)⟩p such that TQ(JS1K(ρ1), JS2K(ρ2)) = tr(Qσ),
then:

tr(Qσ) = TQ(JS1K(ρ1), JS2K(ρ2)) ≤ TP (ρ1, ρ2) ≤ tr(Pρ).

Lemma D.3 (qOTL Validity for AST Programs). Suppose S1 and S2 are AST programs. Then ⊨ Z : {P} S1 ∼ S2 {Q} if
and only if for every z ∈ Z, and ρ ∈ D(HS1

⊗HS2
), there exists a coupling σ : ⟨JS1K(tr2(ρ)), JS2K(tr1(ρ))⟩ such that

tr(Pzρ) ≥ tr(Qzσ).

Proof. Direct by Lemma VI.2 and Lemma IV.4.

Theorem D.4 (Theorem VI.3). If ⊢ Z : {P} S1 ∼ S2 {Q} then ⊨ Z : {P} S1 ∼ S2 {Q}.

Proof. By induction on the structural of the program, analogously to the soundness proof in [2].
(skip), (assign-L), (apply-L): By employing Lemma VI.2 and Proposition IV.5(1) and the denotational semantics.
(seq): By employing Lemma VI.2 and Proposition IV.5(3) and the denotational semantics.
(if-L): By employing Lemma VI.2 and Lemma IV.3, it remains to be shown that for all ρ ∈ D1 and σ ∈ D1,

TQ(JifK(ρ), σ) ≤ T∑
m(Mm⊗I)†mPm(Mm⊗I)(ρ, σ).

Set ρm = Em(ρ) =MmρM
†
m and pm = tr(ρm), so JifK(ρ) =

∑
m pmJSmK(ρm/pm). By assumption and Proposition C.2, we

have:

TQ(JifK(ρ), σ) = TQ(
∑
m

pmJSmK(ρm/pm), σ) ≤
∑
m

pmTQ(JSmK(ρm/pm), σ) ≤
∑
m

pmTPm
(ρm/pm, σ)

On the other hand, select δ : ⟨ρ, σ⟩ such that

T∑
m(Mm⊗I)†mPm(Mm⊗I)(ρ, σ) = tr((

∑
m

(Mm ⊗ I)†mPm(Mm ⊗ I))δ)

=
∑
m

pm tr(Pm((Mm ⊗ I)δ(Mm ⊗ I)†m/pm)).

Notice that, (Mm ⊗ I)δ(Mm ⊗ I)†m/pm is in fact a coupling of ⟨ρm/pm, σ⟩, so

tr(Pm((Mm ⊗ I)δ(Mm ⊗ I)†m/pm)) ≥ TPm
(ρm/pm, σ),

and this complete the proof.
(while-L): Let z ∈ Z and ρ be the initial joint state. Set σ0 = ρ, and inductively define

σ′
n+1 : ⟨JSK(tr2(E1(σn)/ tr(E1(σn)))), tr1(E1(σn)/ tr(E1(σn)))⟩p

as the partial coupling obtained by applying (IH) on initial state E1(σn)/ tr(E1(σn)), and σn+1 = tr(E1(σn))σn+1. For
simplicity, we write

R = ((M0 ⊗ I)†P (M0 ⊗ I) + (M1 ⊗ I)†Q(M1 ⊗ I)).

By (IH), we have tr(QE1(σn)/ tr(E1(σn))) ≥ tr(Rσ′
n+1), or equivalently, tr(QE1(σn)) ≥ tr(Rσn+1).

We first check tr2(σn) = (JSK ◦ E1)n(tr2(ρ)) by induction on n. The base case n = 0 is trivial. For n+ 1, observe that:

tr2(σn+1) = tr(E1(σn)) tr2(σ′
n+1)

⊑ tr(E1(σn))JSK(tr2(E1(σn)/ tr(E1(σn))))
= JSK(tr2(E1(σn)))
= (JSK ◦ E1)(tr2(σn)).



On the other hand,

1 + tr(σn+1) = 1 + tr(E1(σn)) tr(σ′
n+1)

≥ 1 + tr(E1(σn))(tr(JSK(tr2(E1(σn)/ tr(E1(σn)))))
+ tr(tr1(E1(σn)/ tr(E1(σn))))− 1)

= 1 + tr(JSK(tr2(E1(σn))))
= 1 + tr((JSK ◦ E1)(tr2(σn)))

These two together imply tr2(σn+1) = (JSK ◦ E1)(tr2(σn)) = (JSK ◦ E1)n+1(tr2(ρ)). Furthermore, tr1(σ
′
n+1) ⊑

tr1(E1(σn)/ tr(E1(σn))), or equivalently, tr1(σn+1) ⊑ tr1(E1(σn)).
Set σ =

∑
n E0(σn). Its convergence is ensured by realizing that

tr(σ) =
∑
n

tr(E0(tr2(σn))) =
∑
n

tr(E0((JSK ◦ E1)n(tr2(ρ))))

= tr(JwhileK(tr2(ρ))) ≤ tr(ρ).

Next, we check the inequality :

tr(Rρ) = tr(PE0(σ0) +QE1(σ0))
≥ tr(PE0(σ0)) + tr(Rσ1)

= tr(PE0(σ0)) + tr(PE0(σ1) +QE1(σ1))

=

k∑
n=0

tr(PE0(σn)) + tr(QE1(σk))

≥ tr(Pσ).

Thus, it is sufficient to check σ : ⟨JwhileK(tr2(ρ)), tr1(ρ)⟩p as follows:

tr2(σ) =
∑
n

E0(tr2(σn)) =
∑
n

E0(JSK ◦ E1)n(tr2(ρ))

= JwhileK(tr2(ρ)),
tr1(ρ) = tr1(E0(σ0) + E1(σ0))

⊒ tr1(E0(σ0)) + tr1(σ1)

= tr1(E0(σ0)) + tr1(E0(σ1) + E1(σ1))

⊒
k∑

n=0

tr1(E0(σn)) + tr1(E1(σn))

⊒ tr1(σ)

1 + tr(σ) = tr(tr1(ρ)) + tr(JwhileK(tr2(ρ))).

(csq): By employing Lemma VI.2 and Item 2.
(Strassen): By employing Lemma VI.2 and Theorem IV.6. Note that Q should be finite which is inherited from Theorem III.3.

Lemma D.5 (Lemma VI.4). For every AST program S, we have

⊢ Z : {(JSK† ⊗ I)(Q)} S ∼ skip {Q}.

Proof. By induction.
Case skip: direct from the definition and (skip).
Case q := |0⟩: direct from the definition and (assign-L).
Case q̄ := U [q̄]: direct from the definition and (apply-L).
Case S1;S2: Assume that for any Q we have ⊢ Z : {(JSiK† ⊗ I)(Q)} Si ∼ skip {Q} for i = 1, 2, we directly get from

(seq) since ((JS1;S2K†)⊗ I)(Q) = (JS1K† ⊗ I)[(JS2K† ⊗ I)(Q)] by Lemma A.8:

⊢ Z : {(JS1K† ⊗ I)[(JS2K† ⊗ I)(Q)]} S1 ∼ skip {(JS2K† ⊗ I)(Q)}
⊢ Z : {(JS2K† ⊗ I)(Q)} S2 ∼ skip {Q}

⊢ Z : {((JS1;S2K†)⊗ I)(Q)} S1;S2 ∼ skip {Q}



Case if : assume that for any Q and m we have ⊢ Z : {JSmK† ⊗ I(Q)} Sm ∼ skip {Q}. Then, it follows directly from
(if-L) that

⊢ Z : {
∑
m

(Mm ⊗ I)†[(JSmK† ⊗ I)(Q)](Mm ⊗ I)} if ∼ skip {Q}.

By Lemma A.8, knowing that ∑
m

(Mm ⊗ I)†[(JSmK† ⊗ I)(Q)](Mm ⊗ I)

=
∑
m

(E†
m ⊗ I)[(JSmK† ⊗ I)(Q)]

= ((
∑
m

E†
m ◦ JSmK†)⊗ I)(Q)

= ((
∑
m

JSmK ◦ Em)† ⊗ I)(Q)

= (JifK† ⊗ I)(Q)

then allows us to conclude that
⊢ Z : {(JifK† ⊗ I)(Q)} if ∼ skip {Q}

as required.
Case while: assume that for any Q we have ⊢ Z : {(JSK† ⊗ I)(Q)} S ∼ skip {Q}. Then, we get that

⊢ Z : {(JSK† ⊗ I)[(JwhileK† ⊗ I)(Q)]} S ∼ skip {(JwhileK† ⊗ I)(Q)}

Let P = (JSK† ⊗ I)[(JwhileK† ⊗ I)(Q)]. Then, by the (least) fixed point property of JwhileK, i.e., JwhileK = E0 + JwhileK ◦
(JSK ◦ E1), we obtain that

(JwhileK† ⊗ I)(Q) = [(E†
0 + (E†

1 ◦ JSK†) ◦ JwhileK†)⊗ I](Q)

= (E†
0 ⊗ I)(Q) + (E†

1 ⊗ I)(P )

by Lemma A.8. We thus obtain by (while-L) that

⊢ Z : {P} S ∼ skip {(E†
0 ⊗ I)(Q) + (E†

1 ⊗ I)(P )}

⊢ Z : {(E†
0 ⊗ I)(Q) + (E†

1 ⊗ I)(P )} while ∼ skip {Q}
which is the same as

⊢ Z : {(JwhileK† ⊗ I)(Q)} while ∼ skip {Q}

as required.

Lemma D.6 (Lemma VI.5). For every AST programs S1, S2, we have

⊢ Z : {(JS1K† ⊗ JS2K†)(Q)} S1 ∼ S2 {Q}

Proof. By using Lemma VI.4, its symmetric version and the rule (seq) we get:

⊢ Z : {(JS1K† ⊗ I)[(I ⊗ JS2K†)(Q)]} S1 ∼ skip {(I ⊗ JS2K†)(Q)}
⊢ Z : {(I ⊗ JS2K†)(Q)} skip ∼ S2 {Q}

(seq)
⊢ Z : {(JS1K† ⊗ JS2K†)(Q)} S1 ∼ S2 {Q}

as required by Lemma A.8.

Theorem D.7 (Theorem VI.6). For every AST programs S1, S2, we have:

⊨ Z : {P} S1 ∼ S2 {Q1 ⊗ I + I ⊗Q2}

implies
⊢ Z : {P} S1 ∼ S2 {Q1 ⊗ I + I ⊗Q2}

Proof. According to Lemma VI.2 and Proposition C.6, by assumption, it holds that

P ⊒ (JS1K†(Q1))⊗ I + I ⊗ (JS2K†(Q2))

= (JS1K ⊗ JS2K)†(Q1 ⊗ I + I ⊗Q2)



by employing Lemma A.8, and since S1, S2 are AST, so JS1K† and JS2K† are unital maps, i.e., JS1K†(I) = I and JS2K†(I) = I .
Then, by Lemma VI.5 and the (csq) rule, we can derive

P ⊒ (JS1K ⊗ JS2K)†(Q)
⊢ Z : {(JS1K ⊗ JS2K)†(Q)} S1 ∼ S2 {Q}

⊢ Z : {P} S1 ∼ S2 {Q}
where Q = Q1 ⊗ I + I ⊗Q2, as required.

Theorem D.8 (Theorem VI.7). For every AST S1, S2 programs and bounded predicate Q ∈ Pos(HS1 ⊗HS2), we have

⊨ Z : {P} S1 ∼ S2 {Q}

implies
⊢ Z : {P} S1 ∼ S2 {Q}

Proof. By Lemma VI.2 and Theorem IV.6, we know that

⊨ Z, (Y1, Y2, n) ∈ Y : {P + nI}S1 ∼ S2 {Y1 ⊗ I + I ⊗ (nI − Y2)}

where Y is defined as in Theorem IV.6 with Ci = P and Co = Q.
Follows from Theorem VI.6 the completeness for split post-conditions, we know that:

⊢ Z, (Y1, Y2, n) ∈ Y : {P + nI}S1 ∼ S2 {Y1 ⊗ I + I ⊗ (nI − Y2)}.

Finally by applying rule (duality), we have
⊢ Z : {P} S1 ∼ S2 {Q}.

Proposition D.9 (Proposition X.1). Let S1, S2 be AST programs and 0 ⊑ P,Q ⊑ I be predicates. Then

⊨rqPD {P} S1 ∼ S2 {Q} ⇐⇒ ⊨ {I − P} S1 ∼ S2 {I −Q}.

Proof. From [2], we know that ⊨rqPD {P} S1 ∼ S2 {Q} iff for all ρ ∈ D(HS1 ⊗ HS2), there exists a coupling σ :
⟨JS1K(tr2(ρ)), JS2K(tr1(ρ))⟩ such that

tr(Pρ) ≤ tr(Qσ).

Since S1, S2 ∈ AST, tr(ρ) = tr(σ), thus it is equivalent to

tr((I −Q)σ) ≤ tr((I − P )ρ),

which, according to Lemma D.3, it equivalent to ⊨ {I−P} S1 ∼ S2 {I−Q} in our logic. Since P,Q ⊑ I , so it is guaranteed
that I − P, I −Q ∈ Pos.

Proof of Proposition VII.2. (⇒) part. For any ρ ∈ D(HS1 ⊗HS2) such that supp(ρ) ⊆ X , by assumption and Lemma D.3,
we know that there exists a coupling σ : ⟨JS1K(tr2(ρ)), JS2K(tr1(ρ))⟩ such that

0 ≤ tr(Y ⊥σ) ≤ tr((X | 0)ρ) = 0,

the last equation is due to Lemma A.7 as tr(X⊥ρ) = 0. This asserts that supp(σ) ⊆ Y , which conclude that ⊨pqRHL {X} S1 ∼
S2 {Y }.

(⇐) part. By Lemma D.3, for any ρ ∈ D(HS1 ⊗ HS2), if tr(X⊥ρ) ̸= 0, then tr((X | 0)ρ) = +∞, by convention
then it holds. Otherwise, tr(X⊥ρ) = 0, so tr((X | 0)ρ) = 0 and supp(ρ) ⊆ X , by assumption, there exists a coupling
σ : ⟨JS1K(tr2(ρ)), JS2K(tr1(ρ))⟩ such that supp(σ) ⊆ Y , which leads to

tr(Y ⊥σ) = 0 ≤ tr((X | 0)ρ),

and this completes the proof.

Proposition D.10. For programs S1, S2, any Z, and Z-parameterised predicate P and Z-parameterised projector X ∈ S(HS1
⊗

HS2
), the following holds:

⊨ Z : {X | 0} S1 ∼ S2 {P} ⇐⇒ ⊨ Z : {X | 0} S1 ∼ S2 {supp(P )}.

As a corollary, if X ∈ S(HS1
⊗HS2

), then

⊨ Z : {X | 0} S1 ∼ S2 {Y | 0} ⇐⇒ ⊨ Z : {X | 0} S1 ∼ S2 {Y ⊥}.



Proof. For any z ∈ Z, and ρ ∈ D1(HS1
⊗HS2

), if tr(Xρ) ̸= 0, then tr((X | 0)ρ) = +∞, thus both LHS and RHS holds,
i.e., exists partial coupling σ of outputs such that tr((X | 0)ρ) ≥ tr(Pσ) and tr((X | 0)ρ) ≥ tr(supp(P )σ). Otherwise,
tr(Xρ) = 0, then tr((X | 0)ρ) = 0, then for any partial coupling σ of outputs, tr(Pσ) ≤ tr((X | 0)ρ) = 0 if and only if
tr(supp(P )σ) ≤ tr((X | 0)ρ) = 0, so LHS is equivalent to RHS.

APPENDIX E
DEFERRED PROOFS IN “TWO-SIDED RULES” SECTION

Theorem E.1 (Theorem VI.9). For AST programs S1, S2, and measurements M = {M1, · · · ,Mk} and N = {N1, · · · , Nk},
the following are equivalent:

1) ∅
(S1,S2)

⊨ M ≈ N ;
2) ⊨ (Y1, · · · , Yk, Z1, · · · , Zk, n) ∈ Yk : {nI}S1 ∼ S2

{
(
∑
iM

†
i YiMi) ⊗ I + I ⊗

[
nI − (

∑
iN

†
i ZiNi)

]}
where Yk =

{(Y1, · · · , Yk, Z1, · · · , Zk, n) | ∀ i, 0 ⊑ Yi, 0 ⊑ Zi ⊑ nI, Yi ⊗ I − I ⊗ Zi ⊑ 0,∀ j ̸= i, Yi ⊗ I − I ⊗ Zj ⊑ I}.

Proof. (1 ⇒ 2). By Lemma D.3 , for any ρ ∈ D(HS1
⊗ HS2

), set ρ1 = tr2(ρ) and ρ2 = tr1(ρ), σ1 = JS1K(ρ1) and
σ2 = JS2K(ρ2). By first assumption, we know that for all i, tr(Miσ1M

†
i ) = tr(Niσ2N

†
i ) and denote it by pi. Set the state

σ′
1 =


M1σ1M

†
1 0 · · · 0

0 M2σ1M
†
2 · · · 0

...
...

. . .
...

0 0 · · · Mkσ1M
†
k

 σ′
2 =


N1σ2N

†
1 0 · · · 0

0 N2σ2N
†
2 · · · 0

...
...

. . .
...

0 0 · · · Nkσ2N
†
k


and obviously, σ′

1 ∈ D(Hk ⊗ HS1
) and σ′

2 ∈ D(Hk ⊗ HS2
) where Hk is the k-dimensional Hilbert space. In other words,

σ′
1 =

∑
i |i⟩⟨i| ⊗Miσ1M

†
i and σ′

2 =
∑
i |i⟩⟨i| ⊗ Niσ2N

†
i . Consider the PSD A =

∑
i ̸=j(|i⟩⟨i| ⊗ IS1

) ⊗ (|j⟩⟨j| ⊗ IS2
) ∈

Pos((Hk ⊗HS1)⊗ (Hk ⊗HS2)). We claim that σ′
1A

#
0 σ

′
2, since we can construct coupling

σ′ =
∑
i

(|i⟩⟨i| ⊗Miσ1M
†
i )⊗ (|i⟩⟨i| ⊗Niσ2N

†
i )/pi,

which σ : ⟨σ′
1, σ

′
2⟩ and tr(Aσ′) = 0. By Theorem III.3, we know that for all Y ∈ Pos(Hk ⊗HS1

) and Z ∈ Pos(Hk ⊗HS2
)

such that A ⊒ Y ⊗ (Ik ⊗ IS2)− (Ik ⊗ IS1)⊗ Z, it holds that: tr(Y σ′
1) ≤ tr(Zσ′

2). Now, back to (2) which we aim to prove,
for any (Y1, · · · , Yk, Z1, · · · , Zk, n) ∈ Yk, set Y =

∑
i |i⟩⟨i| ⊗ Yi and Z =

∑
i |i⟩⟨i| ⊗ Zi, we check that:

Y ⊗ (Ik ⊗ IS1)− (Ik ⊗ IS2)⊗ Z =
(∑

i

|i⟩⟨i| ⊗ Yi

)
⊗

(∑
j

|j⟩⟨j| ⊗ IS2

)
−
(∑

i

|i⟩⟨i| ⊗ IS1

)
⊗
(∑

j

|j⟩⟨j| ⊗ Zj

)
=

∑
i

[(|i⟩⟨i| ⊗ Yi)⊗ (|i⟩⟨i| ⊗ IS2
)− (|i⟩⟨i| ⊗ IS1

)⊗ (|i⟩⟨i| ⊗ Zi)]−∑
i̸=j

[(|i⟩⟨i| ⊗ Yi)⊗ (|j⟩⟨j| ⊗ IS2)− (|i⟩⟨i| ⊗ IS1)⊗ (|j⟩⟨j| ⊗ Zj)]

=
∑
i

(|i⟩⟨i| ⊗ |i⟩⟨i|)⊗ (Yi ⊗ IS2
− IS1

⊗ Zi) +
∑
i ̸=j

(|i⟩⟨i| ⊗ |j⟩⟨j|)⊗ (Yi ⊗ IS2
− IS1

⊗ Zj)

⊑
∑
i ̸=j

(|i⟩⟨i| ⊗ |j⟩⟨j|)⊗ (IS1
⊗ IS2

)

= A

where, in the fourth and fifth line, we change the order of Hilbert space (Hk⊗HS1)⊗(Hk⊗HS2) → (Hk⊗Hk)⊗(HS1⊗HS2)
as they are isomorphic. Thus, it holds that tr(Y σ′

1) ≤ tr(Zσ′
2), or equivalently,

0 ≥ tr(Y σ′
1)− tr(Zσ′

2) = tr
((∑

i

|i⟩⟨i| ⊗ Yi

)(∑
i

|i⟩⟨i| ⊗Miσ1M
†
i

))
− tr

((∑
i

|i⟩⟨i| ⊗ Zi

)(∑
i

|i⟩⟨i| ⊗Niσ2N
†
i

))
=

∑
i

tr(YiMiσ1M
†
i )−

∑
i

tr(ZiNiσ2N
†
i )

= tr
(
(
∑
iM

†
i YiMi)σ1

)
− tr

(
(
∑
iN

†
i ZiNi)σ2

)
.

Note that tr(ρ) = tr(σ1) = tr(σ2) and set it as p. Let σ ≜ σ1 ⊗ σ2/p, realizing that σ : ⟨σ1, σ2⟩, and observe that

tr((nI)ρ) ≥ tr((nI)σ) + tr
(
(
∑
iM

†
i YiMi)σ1

)
− tr

(
(
∑
iN

†
i YiNi)σ2

)
= tr((nI)σ) + tr

(
((
∑
iM

†
i YiMi)⊗ IS2

)σ
)
− tr

(
(IS1

⊗ (
∑
iN

†
i ZiNi))σ

)
= tr

((
(
∑
iM

†
i YiMi)⊗ I + I ⊗

[
nI − (

∑
iN

†
i ZiNi)

])
σ
)



As ρ is arbitrary, so we finish the proof.
(2 ⇒ 1). For any ρ1 ∈ D1(HS1

) and ρ2 ∈ D1(HS2
), by Lemma D.3 and Lemma IV.3, choose ρ ≜ ρ1⊗ρ2 ∈ D(HS1

⊗HS2
)

which is a coupling of ⟨ρ1, ρ2⟩. For any i = 1, · · · k, select Yi = I , Zi = I , n = 1, Yj = 0 and Zj = 0 for all j ̸= i. It is then
obvious that (Y1, · · · , Yk, Z1, · · · , Zk, 1) ∈ Y , so by assumption, there exists a coupling σ : ⟨JS1K(tr2(ρ)), JS2K(tr1(ρ))⟩ (or,
equivalently, σ : ⟨JS1K(ρ1), JS2K(ρ2)⟩) such that

n tr(ρ) ≥ tr
(((∑

jM
†
j YjMj

)
⊗ I + I ⊗

[
nI − (

∑
jN

†
jZjNj)

]))
σ
)

= tr(((M†
iMi)⊗ I + nI − I ⊗ (N†

i Ni))σ)

= tr(M†
iMi tr2(σ))− tr(N†

i Ni tr1(σ)) + n tr(σ)

= tr(Mi(JS1K(ρ1))M
†
i )− tr(Ni(JS2K(ρ2))N

†
i ) + n tr(ρ),

since S1, S2 ∈ AST. Thus, for all i, tr(Mi(JS1K(ρ1))M
†
i ) ≤ tr(Ni(JS2K(ρ2))N

†
i ). Notice that∑

i

tr(Mi(JS1K(ρ1))M
†
i ) = tr(JS1K(ρ1)) = tr(ρ1) = tr(ρ2) = tr(JS2K(ρ2)) =

∑
i

tr(Ni(JS2K(ρ2))N
†
i ),

so it must be the case that tr(Mi(JS1K(ρ1))M
†
i ) = tr(Ni(JS2K(ρ2))N

†
i ) for all i, i.e., (JS1K(ρ1), JS2K(ρ2)) ⊨ M ≈ N , and

this completes the proof.

Definition E.2 (Measurement Property, c.f. [2]). Define Γ ⊨ Z : {P}M ≈ N{Qk} if for all ρ, σ ∈ D1 such that (ρ, σ) ⊨ Γ
and z ∈ Z, if TP (ρ, σ) < +∞, then there exists couplings δk : ⟨MkρM

†
k , NkσN

†
k⟩ such that:

TP (ρ, σ) ≥
∑
k

tr(Qkδk).

Proposition E.3. 1). M ≈ N ⊨rqPD A⇒ {Bm} if and only if M ≈ N ⊨ {I −A}M ≈ N{I −Bm}, where 0 ⊑ A,Bm ⊑ I .
2). ⊨pqRHL M ≈ N : X ⇒ {Ym} if and only if ⊨ {X | 0}M ≈ N{Y ⊥

m } where X,Ym ∈ S.

Proof. We first prove clause (1).
(if) part. By Def. 5.2 and 5.4 in [2], for any ρ ∈ D1(H1 ⊗ H2) such that ρ ⊨rqPD M ≈ N (if ρ is partial, then we just

normalize it and everything still holds since coupling, trace etc are all scalable), i.e., ∀ i, tr(Mi tr2(ρ)M
†
i ) = tr(Ni tr1(ρ)N

†
i ),

in other words, (tr2(ρ), tr1(ρ)) ⊨M ≈ N . By assumption, since A ⊑ I , so TI−A(tr2(ρ), tr1(ρ)) < +∞, there exists couplings
δi : ⟨Mi tr2(ρ)M

†
i , Ni tr1(ρ)N

†
i ⟩ such that

1− tr(Aρ) = tr((I −A)ρ) ≥ TI−A(tr2(ρ), tr1(ρ)) ≥
∑
i

tr((I −Bi)δi = 1−
∑
i

tr(Biδi),

that is, tr(Aρ) ≤
∑
i tr(Biδi), or equivalently, M ≈ N ⊨rqPD A⇒ {Bm}.

(only if) part. For any ρ1, ρ2 ∈ D1, select coupling ρ : ⟨ρ1, ρ2⟩ such that tr((I − A)ρ) = TI−A(ρ1, ρ2). Since (ρ1, ρ2) ⊨
M ≈ N , so ∀ i, tr(Mi tr2(ρ)M

†
i ) = tr(Ni tr1(ρ)N

†
i ) as tr2(ρ) = ρ1 and tr1(ρ) = ρ2, which implies ρ ⊨rqPD M ≈ N , by

assumption, there exists couplings δi : ⟨Mi tr2(ρ)M
†
i , Ni tr1(ρ)N

†
i ⟩ such that tr(Aρ) ≤

∑
i tr(Biδi), or equivalently,

TI−A(ρ1, ρ2) = tr((I −A)ρ) = 1− tr(Aρ) ≥ 1−
∑
i

tr(Biδi) =
∑
i

tr((I −Bi)δi)

as desired.
Now we prove clause (2).
(if) part. For any ρ1, ρ2 ∈ D1 (the case for partial state is similar just by normalize everything) such that ρ1X#ρ2. Let ρ

be the witness, thus supp(ρ) ⊆ X , in other words, tr((X | 0)ρ) = tr(0ρ) = 0 by Definition A.6, thus TX|0(ρ1, ρ2) = 0. By
assumption, there exists couplings δi : ⟨Miρ1M

†
i , Niρ2N

†
i ⟩ such that

0 = TX|0(ρ1, ρ2) ≥
∑
i

tr(Y ⊥
i δi),

so tr(Y ⊥
i δi) = 0, or equivalently, supp(δi) ⊆ Yi. So (Miρ1M

†
i )Y

#
i (Niρ2N

†
i ) for all i, i.e., ⊨pqRHL M ≈ N : X ⇒ {Ym}.

(only if) part. For any ρ1, ρ2 ∈ D1, if TX|0(ρ1, ρ2) = +∞, then it trivially holds. Otherwise, there exists a coupling
ρ : ⟨ρ1, ρ2⟩ such that tr((X | 0)ρ) < +∞, so supp(ρ) ⊆ X , thus ρ1X#ρ2, by assumption, (Miρ1M

†
i )Y

#
i (Niρ2N

†
i ), and

set δi as the witness. Thus, supp(δi) ⊆ Yi, or equivalently, tr(Yiδi) = 0. Thus,
∑
i tr(Y

⊥
i δi) = 0 ≤ TX|0(ρ1, ρ2), and this

completes the proof.

Theorem E.4 (Theorem VI.11). The extra rules for qOTL in Fig. 2 are sound regarding the notion of validity.



Proof. (assign) and (apply) are the same as applying the corresponding one-side rule twice on the left and right.
(seq+) We employ Lemma VI.2 and Lemma IV.3 to interpret judgements. For any z ∈ Z, ρ, σ ∈ D1 such that (ρ, σ) ⊨ Γ , by

first assumption, TP (ρ, σ) ≥ TQ(JS1K(ρ), JS′
1K(σ)), by entailment we know that (JS1K(ρ), JS′

1K(σ)) ⊨ Γ ′, then by the second
assumption, it holds that

TP (ρ, σ) ≥ TQ(JS1K(ρ), JS′
1K(σ)) ≥ TR(JS2K(JS1K(ρ)), JS′

2K(JS
′
1K(σ))) = TR(JS1;S2K(ρ), JS′

1;S
′
2K(σ)).

(if) For any z ∈ Z and ρ, σ ∈ D1 such that (ρ, σ) ⊨ Γ , if TP (ρ, σ) = +∞, then obviously TP (ρ, σ) ≥ TA(JifK(ρ), Jif ′K(σ)),
and then follows by Lemma VI.2. If TP (ρ, σ) is finite, by the first assumption, tr(MkρM

†
k) = tr(M ′

kσM
′†
k ) (follows by the

existence of coupling and let it by δk) and denote it by pk. By the second assumption,

tr(Rkδk) ≥ pkTRk
(MkρM

†
k/pk,M

′
kσM

′†
k /pk) ≥ pkTQ(JSkK(MkρM

†
k/pk), JS

′
kK(M

′
kσM

′†
k /pk)).

Sum it up over k, we have:

TC(ρ, σ) ≥
∑
k

tr(Rkδk)

≥
∑
k

pkTQ(JSkK(MkρM
†
k/pk), JS

′
kK(M

′
kσM

′†
k /pk))

≥ TQ(
∑
k

pkJSkK(MkρM
†
k/pk),

∑
k

pkJS′
kK(M

′
kσM

′†
k /pk)

= TQ(JifK(ρ), Jif ′K(σ)).

Where the first inequality follows from the first assumption, the third inequality is due to Proposition C.2 since {pk} is a
(sub)distribution. This completes the proof.

(while) Let E0(·) = M0(·)M†
0 , E1(·) = M1(·)M†

1 , E ′
0(·) = M ′

0(·)M
′†
0 , E ′

1(·) = M ′
1(·)M

′†
1 . Fix z ∈ Z. For any σ ∈

D1(HS1
⊗HS2

), let ρ = tr2(σ) and ρ′ = tr1(σ). It is trivial if tr(Pσ) = +∞. Otherwise, tr(Pσ) < +∞, so TP (ρ, ρ′) < +∞.
Set ρ0 = ρ, ρ′0 = ρ′, p0 = 1, so ρ0, ρ′0 ∈ D1, and Tp(ρ0, ρ′0) < +∞. We inductively construct ρn, ρ′n, σn, pn, qn as follows:

• Since ρn, ρ
′
n ∈ D1 and Tp(ρn, ρ

′
n) < +∞, by the first assumption, there exists σn : ⟨E0(ρn), E ′

0(ρ
′
n)⟩ and

σ′
n : ⟨E1(ρn), E ′

1(ρ
′
n)⟩ such that

TP (ρn, ρ
′
n) ≥ tr(Q0σn) + tr(Q1σ

′
n).

Let qn = pn tr(E0(ρn)) = pn tr(E ′
0(ρ

′
n)) and q = tr(E1(ρn)) = tr(E ′

1(ρ
′
n)).

• By the second assumption, we know that

TQ1
(E1(ρn)/q, E ′

1(ρ
′
n)/q) ≥ TP (JSK(E1(ρn)/q), JS′K(E ′

1(ρ
′
n)/q).

Select the partial coupling δn : ⟨JSK(E1(ρn)/q), JS′K(E ′
1(ρ

′
n)/q)⟩p such that TP (JSK(E1(ρn)/q), JS′K(E ′

1(ρ
′
n)/q) =

tr(Pδn). We set ρn+1 = tr2(δn)/ tr(δn) and ρ′n+1 = tr1(δn)/ tr(δn), pn+1 = pnq tr(δn). Obviously,

TP (ρn+1, ρ
′
n+1) ≤ tr(Pδn/ tr(δn)) = TP (JSK(E1(ρn)/q), JS′K(E ′

1(ρ
′
n)/q)/ tr(δn)

≤ TQ1(E1(ρn)/q, E ′
1(ρ

′
n)/q)/ tr(δn)

≤ tr(Q1σ
′
n/q)/tr(δn) = (pn/pn+1) tr(Q1σ

′
n)

≤ (pn/pn+1)TP (ρn, ρ
′
n)

< +∞.

Set σ =
∑
i piσi, it is sufficient to show 1) TP (ρ, ρ′) ≥ tr(Q0σ) and 2) σ is a partial coupling of the outputs of two whiles.

We first show (1) is true. First, by the construction above, we know that:

pnTp(ρn, ρ
′
n) ≥ pn(tr(Q0σn) + tr(Q1σ

′
n))

≥ tr(Q0(pnσn)) + pn(pn+1/pn)TP (ρn+1, ρ
′
n+1)

= tr(Q0(pnσn)) + pn+1TP (ρn+1, ρ
′
n+1).



Thus, we have:

TP (ρ, ρ
′) = p0TP (ρ0, ρ

′
0)

≥ tr(Q0(p0σ0)) + p1TP (ρ1, ρ
′
1)

≥ tr(Q0(p0σ0 + p1σ1)) + p2TP (ρ2, ρ
′
2)

· · ·

≥ tr
(
Q0

(∑
i

piσi

))
= tr(Q0σ)

To show σ is a partial coupling, we first observe that pnρn ⊑ (JSK ◦ E1)n(ρ) since:

pn+1ρn+1 = pnq tr(δn) tr2(δn)/ tr(δn) ⊑ pnqJSK(E1(ρn)/q) = (JSK ◦ E1)(pnρn) ⊑ · · · ⊑ (JSK ◦ E1)n+1(p0ρ0).

Similarly, pnρ′n ⊑ (JS′K ◦ E ′
1)
n(ρ′). Thus, we have:

pn+1 tr2(σn+1) = pn+1E0(ρn+1) = pn+1E0(tr2(δn)/ tr(δn))
⊑ pn+1E0(JSK(E1(ρn)/q)/ tr(δn)) = E0((JSK ◦ E1)(pnρn)))
⊑ E0 ◦ (JSK ◦ E1)n+1(ρ))

which leads to

tr2(σ) =
∑
n

pn tr2(σn) ⊑
∑
n

E0 ◦ (JSK ◦ E1)n(ρ)) = Jwhile[M,S]K(ρ).

and similarly, tr1(σ) ⊑ Jwhile[M,S]K(ρ′).
We further observe that

tr(ρ)− tr(Jwhile[M,S](ρ)K) = tr(ρ)−
∑
n

tr((E0 ◦ (JSK ◦ E1)n)(ρ))

= tr(ρ)− tr(E0(ρ))−
∑
n

tr((E0 ◦ (JSK ◦ E1)n+1)(ρ))

= tr(E1(ρ))− tr((JSK ◦ E1)(ρ))+

tr((JSK ◦ E1)(ρ))−
∑
n

tr((E0 ◦ (JSK ◦ E1)n)((JSK ◦ E1)(ρ)))

≥
∑
n

tr((E1 − JSK ◦ E1)((JSK ◦ E1)n(ρ))) + lim
n

tr((JSK ◦ E1)n(ρ))

≥
∑
n

((E1 − JSK ◦ E1)(pnρn)) + lim
n
pn

where the last inequality comes from 1). tr((I−JSK)α) ≤ tr((I−JSK)β) where I is the identity quantum channel, if α, β ∈ D
such that α ⊑ β; 2). pnρn ⊑ (JSK ◦ E1)n(ρ) as we proved above; 3). tr(pnρn) = pn. Similar result holds:

tr(ρ′)− tr(Jwhile[M ′, S′](ρ′)K) ≥
∑
n

((E ′
1 − JS′K ◦ E ′

1)(pnρ
′
n)) + lim

n
pn

From the fact that δn is a partial coupling, we have the following equivalent forms:

tr(JSK(E1(ρn)/q)) + tr(JS′K(E ′
1(ρ

′
n)/q)) ≤ 1 + tr(δn)

⇐⇒ tr((JSK ◦ E1)(ρn)) + tr((JS′K ◦ E ′
1)(ρ

′
n)) ≤ tr(E1(ρn)) + tr(E ′

1(ρ
′
n))− tr(E1(ρn)) + tr(E1(ρn)) tr(δn)

⇐⇒ 0 ≤ tr((E1 − JSK ◦ E1)(ρn)) + tr((E ′
1 − JS′K ◦ E ′

1)(ρ
′
n))− tr(E1(ρn)) + tr(E1(ρn)) tr(δn)

⇐⇒ tr(E1(pnρn))− pn+1 ≤ tr((E1 − JSK ◦ E1)(pnρn)) + tr((E ′
1 − JS′K ◦ E ′

1)(pnρ
′
n))

⇐⇒ (pn − pn+1)− tr(pnσn) ≤ tr((E1 − JSK ◦ E1)(pnρn)) + tr((E ′
1 − JS′K ◦ E ′

1)(pnρ
′
n))

since tr(pnσn) = pn tr(E0(ρn)) = pn(tr(ρn)− tr(E1(ρn)) = pn − tr(E1(pnρn)).



Combine these fact and back to what we aim to prove:

tr(Jwhile[M,S](ρ)K) + tr(Jwhile[M ′, S′](ρ′)K)

≤ tr(ρ) + tr(ρ′)−
∑
n

((E1 − JSK ◦ E1)(pnρn))−
∑
n

((E ′
1 − JS′K ◦ E ′

1)(pnρ
′
n))− 2 lim

n
pn

≤ 2−
∑
n

((pn − pn+1)− tr(pnσn))− 2 lim
n
pn

= 2 + tr(σ)− (p0 − lim
n
pn)− 2 lim

n
pn

= 1 + tr(σ)− lim
n
pn

≤ 1 + tr(σ).

Take these all together, σ is a partial coupling of ⟨Jwhile[M,S](ρ)K, Jwhile[M ′, S′](ρ′)K⟩ and this complete the proof.

APPENDIX F
DEFERRED PROOFS IN “APPLICATIONS”

Theorem F.1 (Theorem VIII.1). Let S1, S2 be AST programs acting on the same Hilbert spaces, HS1
= HS2

= H. S1 and
S2 are semantically equivalent, i.e., JS1K = JS2K, if and only if,

⊢ (Y1, Y2, n) ∈ Y : {nI + P⊥
sym}S1 ∼ S2{tr2(Y1)⊗ I + I ⊗ (nI − tr2(Y2))}.

where Y = {(Y1, Y2 ∈ Pos(H⊗H2), n ∈ N) | 0 ⊑ Y1, 0 ⊑ 2Y2 ⊑ nI, P⊥
sym[H⊗H2] ≥ 2(Y1 ⊗ I − I ⊗ Y2)}.

Proof. The if part is relatively easy, while, the only if part requires Proposition IV.7 that conclude from stable QOP [12].
(if part). Suppose Eqn. (4) holds. For any ρ ∈ D(H), select the input coupling as the witness of ρ(=sym)#ρ whose existence
is ensured by Prop 3.2 in [2], i.e., the coupling ρin : ⟨ρ, ρ⟩ such that tr(P⊥

symρin) = 0. By Eqn. (4), we know for any
(Y1, Y2, n) ∈ Y , there exists coupling σ : ⟨JS1K(ρ), JS2K(ρ)⟩ such that:

tr((tr2(Y1)⊗ I − I ⊗ tr2(Y2))σ)

≤ tr(P⊥
sym[H]ρ) = 0,

since tr(ρ) = tr(σ), or equivalently,

0 ≥ tr((tr2(Y1)⊗ I − I ⊗ tr2(Y2))σ)

= tr(2Y1(JS1K(ρ)⊗
I

2
))− tr(2Y2(JS2K(ρ)⊗

I

2
))

Since Y1, Y2 ∈ Pos(H ⊗ H2) are arbitrary (since we can always select sufficient large n ∈ N) such that P⊥
sym[H ⊗ H2] ≥

2(Y1 ⊗ I − I ⊗ Y2)}, according to Theorem III.3, we have:

(JS1K(ρ)⊗
I

2
)(=sym)#(JS2K(ρ)⊗

I

2
),

which, again by Prop 3.2 in [2], leads to JS1K(ρ)⊗ I
2 = JS2K(ρ)⊗ I

2 , or equivalently, JS1K(ρ) = JS2K(ρ). Since ρ is arbitrary,
we must have JS1K = JS2K.
(only if part). Since two programs are equivalent, by Proposition IV.7, we know that for any ρ1, ρ2 ∈ D1,
Ts(JS1K(ρ1), JS2K(ρ2)) ≤ Ts(ρ1, ρ2) ≤ T (ρ1, ρ2). Next, by Proposition IV.8, we know that for all Y1, Y2 ∈ Pos(H⊗H2) such
that P⊥

sym[H⊗H2] ≥ 2(Y1 ⊗ I − I ⊗ Y2), it holds that:

tr(tr2(Y1)JS1K(ρ1)) ≤ tr(tr2(Y2))JS2K(ρ2)) + T (ρ1, ρ2).

If n ∈ N such that 0 ⊑ 2Y2 ⊑ nI , then we have:

Ttr2(Y1)⊗I+I⊗(nI−tr2(Y2))(JS1K(ρ1), JS2K(ρ2)) = n+ tr(tr2(Y1)JS1K(ρ1))− tr(tr2(Y2))JS2K(ρ2))
≤ n+ T (ρ1, ρ2) = TnI+P⊥

sym
(ρ1, ρ2)

where we use the fact that S1, S2 are AST programs. The rest is straightforward Lemma IV.3 and Lemma VI.2.

Proposition F.2 (Encoding of Trace Distance). The following are equivalent for all AST programs S1, S2 such that3 HS1
= HS2

:
1) TD(JS1K(ρ1), JS2K(ρ2)) ≤ tr(Φ1ρ1) + tr(Φ2ρ2) for all z ∈ Z and ρ1X#ρ2;
2) ⊨ 0 ⊑ P ⊑ I : {X | (I + Φ1 ⊗ I + I ⊗ Φ2)} S1 ∼ S2 {P ⊗ I + I ⊗ (I − P )}.

3We could also just ask all programs to be interpreted over H = Hall variables, or over H = Hvar(S1)∪var(S2).



Proof. Firstly, (2) is equivalent to saying that for all ρ : ⟨ρ1, ρ2⟩, P there exists a coupling σ such that

tr((X | (I + Φ1 ⊗ I + I ⊗ Φ2))ρ) ≥ tr((P ⊗ I)σ) + tr((I ⊗ (I − P ))σ)

= tr(Pσ1) + tr(σ)− tr(Pσ2)

where σ1 = JS1K(ρ1) and σ2 = JS2K(ρ2). Because S1, S2 are AST, this is in turn equivalent to saying that for all ρ, z and P ,

tr((X | (I + Φ1 ⊗ I + I ⊗ Φ2))ρ)− tr(ρ) ≥ tr(P (ρ1 − ρ2)),

which is equivalent to saying that

TD(ρ1, ρ2) = max
0⊑P⊑I

tr(P (ρ1 − ρ2)) ≤ tr((X | (I + Φ1 ⊗ I + I ⊗ Φ2))ρ)− tr(ρ).

Now, if ρ1X#ρ2 does not hold, then tr(X⊥ρ) > 0 for any ρ, In this case, tr((X | (I + Φ1 ⊗ I + I ⊗ Φ2))ρ) = +∞ and
the inequality trivially holds. Thus, we only need to consider the case when ρ1X#ρ2. In this case, we only need to consider
any coupling ρ with tr(ρX⊥) = 0 (by our assumption, such ρ must exist). This gives

TD(ρ1, ρ2) = max
0⊑P⊑I

tr(P (ρ1 − ρ2)) ≤ tr(Φ1ρ1) + tr(Φ2ρ2)

as we desired.

Proposition F.3 (Proposition VIII.7). Let λ > 0. The following are equivalent for all AST programs S1, S2 such that HS1 =
HS2

:
1) W (JS1K(tr2(ρ)), JS2K(tr1(ρ))) ≤ λ ·W (tr2(ρ), tr1(ρ)) for all ρ ∈ D(HS1

⊗HS2
);

2) ⊨ {λ2P⊥
sym} S1 ∼ S2 {P⊥

sym}.

Proof. By definition, we know that the second condition is equivalent to: for every ρ ∈ D(HS1 ⊗ HS2), there is a coupling
σ : ⟨JS1K(tr2(ρ)), JS2K(tr1(ρ))⟩ such that

λ2 tr(ρP⊥
sym) ≥ tr(σP⊥

sym).

Note that σ only depends on tr2(ρ), tr1(ρ). Thus, for fixed ρ1 and ρ2 we can write the second condition equivalently as

min
ρ:⟨ρ1,ρ2⟩

max
σ:⟨JS1K(ρ1),JS2K(ρ2)⟩

λ2 tr(ρP⊥
sym)− tr(σP⊥

sym) ≥ 0.

This can be simplified to
λ2 min

ρ:⟨ρ1,ρ2⟩
tr(ρP⊥

sym) ≥ min
σ:⟨JS1K(ρ1),JS2K(ρ2)⟩

tr(σP⊥
sym),

which is equivalent to the first condition by definition.

Proposition F.4 (Proposition VIII.12). For a quantum system S = ⟨H, ρ0, A,C, do,measure⟩ with ρ0 = |0⟩⟨0|, let G1, G2 ⊆ A
be two groups of agents, and D ⊆ C be a set of commands. The following are equivalent:

• G1, D : |G2.
• ∀α ∈ (A× C)∗,

⊨ a ∈ G2, E = {Eλ|λ ∈ ΛE} ∈ Ma, T ⊆ ΛE :

{I} q := |0⟩;Sα ∼ q := |0⟩;SpurgeG1,D(α) {M},

where M =MT ⊗ I + I ⊗ (I −MT ) with MT =
∑
λ∈T Eλ.

Proof. By the definition of validity, the second condition can be equivalently written as the following.
∀α ∈ (A× C)∗, a ∈ G2, E = {Eλ|λ ∈ ΛE} ∈ Ma and T ⊆ ΛE , we have

tr(ρI) ≥ tr(σ(MT ⊗ I + I ⊗ (I −MT ))),

which could be simplified to
tr(MT (σ1 − σ2)) ≤ 0,

with σ1 = tr2(σ) = Eα(|0⟩⟨0|), and σ2 = tr1(σ) = EpurgeG1,D(α)(|0⟩⟨0|). Now, notice that ∀T ⊆ ΛE tr(MT (σ1 − σ2)) ≤ 0 is
equivalent to

max
T

(pE,σ1
(T )− pE,σ2

(T )) ≤ 0,

we can rewrite the second condition as ∀α ∈ (A× C)∗, a ∈ G2,

da

(
Eα(|0⟩⟨0|), EpurgeG1,D(α)(|0⟩⟨0|)

)
≤ 0.



Thus, it is equivalent to G1, D : |G2 by definition.

Proposition F.5 (Proposition VIII.15). The following are equivalent for all AST programs S on an n-qubit system:
1) JSK is (ε, δ)-differentially private;
2) ⊨ i ∈ [n], 0 ⊑M ⊑ I : {Pi,sym|(exp(ε) + δ)I} S ∼ S {M ⊗ I + exp(ε)I ⊗ (I −M)}.

Here Pi,sym = Psym[H[n]−i]⊗ (Ii⟨1⟩ ⊗ Ii⟨2⟩) for i ∈ [n].

Proof. We first notice that, by definition 1) states that for all measurement M , set A, and ∀ρ, σ, if ∃i ∈ [n] such that
tri(ρ) = tri(σ), then

Pr[E(ρ) ∈M A] ≤ exp(ε) · Pr(E(σ) ∈M A) + δ.

This is equivalent to say ∀M,A, ρ, σ and ∀i ∈ [n], if tri(ρ) = tri(σ), then the above inequality holds.
Now consider some arbitrary fixed i ∈ [n], and any ρ and σ with a coupling ρ0 : ⟨ρ, σ⟩. If tri(ρ) ̸= tri(σ), then

tr(P⊥
i,symρ0) > 0, and thus tr(ρ0(Pi,sym|(exp(ε) + δ)I)) = +∞, meaning that it is always valid in this case. Therefore,

we only need to consider the case where tri(ρ) = tri(σ). In this case, we consider the case supp(ρ0) ⊑ Pi,sym without loss
of generality (otherwise the validity condition holds directly). The condition is for any M satisfying 0 ⊑M ⊑ I ,

exp(ε) + δ ≥ tr(JSK(ρ)M) + exp(ε)(1− tr(JSK(σ)M)),

which could be simplified to
tr(JSK(ρ)M) ≤ exp(ε) tr(JS1K(σ)M) + δ.

Note that when M goes over all 0 ⊑M ⊑ I , it exactly goes over all POVMs
∑
m∈AMm, we know that the second condition

is then equivalent to the first as we want.

We need the following proposition about the projector onto the symmetric subspace.

Proposition F.6 (Adapted from Proposition 3.2 in [55]). ρ1 = ρ2 if and only if ρ1(=sym)#ρ2, where =sym stands for the
space of supp(Psym).

Proposition F.7 (Proposition VIII.5). Let c ∈ R+. The following are equivalent for all AST programs S1, S2 such that
H = HS1

= HS2
:

1) ∥JS1K − JS2K∥⋄ ≤ 2c;
2) ⊨ 0 ⊑ P ⊑ IH⊗H : {Psym[H⊗H] | (1 + c)I} S1 ∼ S2 {P ⊗ I + I ⊗ (I − P )}.

Proof. This is direct by applying Proposition VIII.3 with X = Psym[H⊗H], Φ1 = Φ2 = cI/2, and the definition of diamond
distance for completely positive and trace non-increasing linear maps.

APPENDIX G
CONCRETE EXAMPLES

A. An Example of Program Equivalence (by Duality Rules)

Example G.1 (Example 1.1 in [55]). Let q be a qubit quantum variable, M be the computational basis measurement, and
M′ be the measurement in the basis |±⟩ = |0⟩±|1⟩√

2
. Consider the following two programs:

S1 ≡ q := |0⟩; q := H[q];Q1,

S2 ≡ q := |0⟩;Q2; q := H[q].

Here
Q1 ≡ if (□0 · M[q] = 0 → q := X[q];□1 · M[q] = 1 → q := H[q]) fi,

and
Q2 ≡ if (□0 · M′[q] = 0 → q := Z[q];□1 · M′[q] = 1 → q := H[q]) fi

In the following, we will prove S1 and S2 are equivalent using one-sided rules.
In simple words, we want to show that {P⊥

sym} S1 ∼ S2 {P⊥
sym}. Using the duality rule as is stated in theorem VIII.1, we

need to prove the following
⊢ (Y1,Y2, n) ∈ Y : {nI + P⊥

sym}
S1 ∼ S2{tr2(Y1)⊗ I + I ⊗ (nI − tr2(Y2))}.

where Y = {(Y1, Y2 ∈ Pos(H⊗H2), n ∈ N) | 0 ⊑ Y1, 0 ⊑ 2Y2 ⊑ nI, P⊥
sym(H⊗H2) ⊒ 2(Y1 ⊗ I − I ⊗ Y2)}.



To present our proof in a compact way, using rule R to infer the judgment Γ ⊢ Z : {A} P1 ∼ P2 {B} will be written as:

{A}
• P1 ∼ P2 (R)

{B}
The proof is as follows.

{
nI + P⊥

sym

}
{A1} (csq)

• q := |0⟩;∼ skip; (assign-L)
{A2}
• skip;∼ q := |0⟩; (assign-R)
{(HB1H)⊗ I + I ⊗B2}
• q := H[q];∼ skip; (apply-L)
{B1 ⊗ I + I ⊗B2}
•Q1;∼ skip; (if-L)
{tr2(Y1)⊗ I + I ⊗B2}
• skip;∼ Q2; (if-L)
{tr2(Y1)⊗ I + I ⊗ (nI −H tr2(Y2)H)}
• skip;∼ q := H[q]; (apply-R)
{tr2(Y1)⊗ I + I ⊗ (nI − tr2(Y2))}

Fig. 3. Verification of example G.1

Here we denote B1 = ⟨1| tr2(Y1)|1⟩|0⟩⟨0|+ ⟨−| tr2(Y1)|−⟩|1⟩⟨1|, B2 = nI−⟨−| tr2(Y2)|−⟩|−⟩⟨−|−⟨1| tr2(Y2)|1⟩|+⟩⟨+|,
A1 = (⟨0|HB1H|0⟩+ ⟨0|B2|0⟩)I , and A2 = (HB1H)⊗ I + ⟨0|B2|0⟩I . The detailed proof of Q1 and Q2 is as follows.

In the proof, for Q1, we have M0 = |0⟩⟨0|, M1 = |1⟩⟨1|.

For the branch with measurement result 0, we have:

{(X tr2(Y1)X)⊗ I + I ⊗B2}
• q := X[q];∼ skip (apply-L)
{tr2(Y1)⊗ I + I ⊗B2}

For the branch with measurement result 1, we have:

{(H tr2(Y1)H)⊗ I + I ⊗B2}
• q := H[q];∼ skip; (apply-L)
{tr2(Y1)⊗ I + I ⊗B2}

Fig. 4. Verification of Q1 in example G.1

In the proof, for Q2, we have M ′
0 = |+⟩⟨+|, M ′

1 = |−⟩⟨−|.
Finally, we need to show that nI + P⊥

sym ⊒ A1 and apply the csq rule. This can be directly proved as follows:

Proposition G.2. Denote B1 = ⟨1| tr2(Y1)|1⟩|0⟩⟨0| + ⟨−| tr2(Y1)|−⟩|1⟩⟨1|, B2 = nI − ⟨−| tr2(Y2)|−⟩|−⟩⟨−| −
⟨1| tr2(Y2)|1⟩|+⟩⟨+|, A1 = (⟨0|HB1H|0⟩ + ⟨0|B2|0⟩)I , and A2 = (HB1H) ⊗ I + ⟨0|B2|0⟩I , where (Y1, Y2, n) ∈ Y with
Y = {(Y1, Y2 ∈ Pos(H⊗H2), n ∈ N) | 0 ⊑ Y1, 0 ⊑ 2Y2 ⊑ nI, P⊥

sym(H⊗H2) ⊒ 2(Y1⊗ I− I⊗Y2)}. Then nI+P⊥
sym ⊒ A1.

Proof. Since P⊥
sym(H⊗H2) ⊒ 2(Y1 ⊗ I − I ⊗ Y2), we know for any ρ,

tr(ρP⊥
sym(H⊗H2)) ≥ tr(2ρ(Y1 ⊗ I − I ⊗ Y2)).

Specifically, taking ρ of the form ρ0 ⊗ |Φ⟩⟨Φ| where |Φ⟩ = 1√
2
(|00⟩+ |11⟩), we get

tr(ρ0P
⊥
sym(H)) ≥ tr(ρ0(tr2(Y1)⊗ I − I ⊗ tr2(Y2))),



For the branch with measurement result 0, we have:

{tr2(Y1)⊗ I + I ⊗ (nI − ZH tr2(Y2)HZ)}
• skip;∼ q := Z[q]; (apply-R)
{tr2(Y1)⊗ I + I ⊗ (nI −H tr2(Y2)H)}

For the branch with measurement result 1, we have:

{tr2(Y1)⊗ I + I ⊗ (nI − tr2(Y2))}
• skip;∼ q := H[q]; (apply-R)
{tr2(Y1)⊗ I + I ⊗ (nI −H tr2(Y2)H)}

Fig. 5. Verification of Q2 in example G.1

meaning that
P⊥
sym(H) ⊒ (tr2(Y1)⊗ I − I ⊗ tr2(Y2)).

It suffices to prove that, for any density matrix ρ, we have

tr(ρ(nI + P⊥
sym)) ≥ tr(ρA1).

By simplifying the above inequality, we only needs to prove

2 tr(ρP⊥
sym) ≥ ⟨1| tr2(Y1)|1⟩+ ⟨−| tr2(Y1)|−⟩ − ⟨−| tr2(Y2)|−⟩ − ⟨1| tr2(Y2)|1⟩.

Note that, for σ = 1
2 (|1⟩⟨1| ⊗ |−⟩⟨−|+ |−⟩⟨−| ⊗ |1⟩⟨1|), we have

⟨1| tr2(Y1)|1⟩+ ⟨−| tr2(Y1)|−⟩ − ⟨−| tr2(Y2)|−⟩ − ⟨1| tr2(Y2)|1⟩ = 2 tr(σ(tr2(Y1)⊗ I − I ⊗ tr2(Y2))).

Note that σ is in the symmetric subspace, we know tr(ρP⊥
sym) ≥ tr(σP⊥

sym) = 0 for any ρ, giving that tr(ρP⊥
sym) ≥

tr(σP⊥
sym) ≥ tr(σ(tr2(Y1)⊗ I − I ⊗ tr2(Y2))) as we desired.

B. Applications of Two-sided Rules

Using theorem VIII.1, we need to prove the following

⊢ (Y1,Y2, n) ∈ Y : {nI + P⊥
sym}

S1 ∼ S2{tr2(Y1)⊗ I + I ⊗ (nI − tr2(Y2))}.

where Y = {(Y1, Y2 ∈ Pos(H⊗H2), n ∈ N) | 0 ⊑ Y1, 0 ⊑ 2Y2 ⊑ nI, P⊥
sym(H⊗H2) ⊒ 2(Y1 ⊗ I − I ⊗ Y2)}.

For simplicity, using rule R to infer the judgment Γ ⊢ Z : {A} P1 ∼ P2 {B} with measurement conditions or side
conditions Γ will be written as

{A}{SC : Γ}
• P1 ∼ P2 (R)

{B}
The proof can be found in fig. 6, For simplicity, we write

B = nI + ⟨1| tr2(Y1)|1⟩|0⟩⟨0| ⊗ I − ⟨1| tr2(Y2)|1⟩I ⊗ |+⟩⟨+|
+ ⟨−| tr2(Y1)|−⟩|1⟩⟨1| ⊗ I − ⟨−| tr2(Y2)|−⟩I ⊗ |−⟩⟨−|,

and c = 1
2 (⟨1| tr2(Y1)|1⟩ + ⟨−| tr2(Y1)|−⟩ − ⟨−| tr2(Y2)|−⟩ − ⟨1| tr2(Y2)|1⟩). We also use proposition G.2 for applying the

csq rule in the first line.
To apply the rule (if), we need to first verify the measurement condition M ≈ M′ and the measurement property M ≈

M′ ⊨ {B}M ≈ M′{A00, A11} before applying the (if) and (seq+) rule at Q1;∼ Q2;. For the measurement condition, it can
be proved by using theorem VI.9 as follows. As the theorem states, we only need to prove

{nI} q := |0⟩; q := H[q];∼ q := |0⟩;
{
(
∑
iM

†
i YiMi)⊗ I + I ⊗

[
nI − (

∑
iM

′†
i ZiM

′
i)
]}

where Y2 = {(Y0, Y1, Z0, Z1, n) | ∀ i, 0 ⊑ Yi, 0 ⊑ Zi ⊑ nI, Yi⊗ I − I ⊗Zi ⊑ 0,∀ j ̸= i, Yi⊗ I − I ⊗Zj ⊑ I}. By applying
the rules (apply) and (assign), we only need to prove

⟨+|Z0|+⟩+ ⟨−|Z1|−⟩ ≥ ⟨0|Y0|0⟩+ ⟨1|Y1|1⟩,



{
nI + P⊥

sym

}
{cI}(csq)

• q := |0⟩;∼ q := |0⟩; (assign)
{(H ⊗ I)B(H ⊗ I)}
• q := H[q];∼ skip; (apply-L)
{B} {SC : M ≈ M′}
•Q1;∼ Q2; (if)
{tr2(Y1)⊗ I + I ⊗ (nI −H tr2(Y2)H)}
• skip;∼ q := H[q]; (apply-R)
{tr2(Y1)⊗ I + I ⊗ (nI − tr2(Y2))}

Fig. 6. Verification of example G.1 using two-sided rules

For the if branch with measurement result being 0, we have

{A00 ≡ X tr2(Y1)X ⊗ I + I ⊗ (nI − ZH tr2(Y2)HZ)}
• q := X[q];∼ q := Z[q]; (apply)
{tr2(Y1)⊗ I + I ⊗ (nI −H tr2(Y2)H)}

For the if branch with measurement result being 1, we have

{A11 ≡ H tr2(Y1)H ⊗ I + I ⊗ (nI − tr2(Y2))}
• q := H[q];∼ q := H[q]; (apply)
{tr2(Y1)⊗ I + I ⊗ (nI −H tr2(Y2)H)}

Fig. 7. Verification of the if in example G.1 using two-sided rules

which is a direct result by using Yi ⊗ I − I ⊗ Zi ⊑ 0 on the states |0⟩|+⟩ for i = 0 and |1⟩|−⟩ for i = 1, respectively. With
the measurement condtion, we verify the measurement property as follows. By definition, we need to prove for all ρ, σ such
that (ρ, σ) ⊨ M ≈ M′, if TB(ρ, σ) < +∞, then there exist couplings δ0 : ⟨M†

0ρM0,M
′†
0 σM

′
0⟩ and δ1 : ⟨M†

1ρM1,M
′†
1 σM

′
1⟩,

such that
TB(ρ, σ) ≥ tr(A00δ0) + tr(A11δ1).

As B,A00 and A11 are split, the above inequality can be simplified to

tr(B(ρ⊗ σ)) ≥ ⟨0|ρ|0⟩ tr(A00|0⟩⟨0| ⊗ |+⟩⟨+|) + ⟨1|ρ|1⟩ tr(A11|1⟩⟨1| ⊗ |−⟩⟨−|),

with ⟨0|ρ|0⟩ = ⟨+|σ|+⟩ and ⟨1|ρ|1⟩ = ⟨−|σ|−⟩, as implied by (ρ, σ) ⊨ M ≈ M′. Thus, the inequality further simplifies to
0 ≥ 0 as all terms are cancelled.

APPENDIX H
STABILIZED QUANTUM OPTIMAL TRANSPORT COST

In this section, we briefly review the proof of

Ts(ρ, σ) = T (ρ⊗ I

2
, σ ⊗ I

2
)

in [12] for completeness.
We begin with a decomposition of the projector onto the asymmetric subspace.

Lemma H.1 (Identity (1) in [12]). We have

Pasym(d1 ⊗ d2) = Pasym(d1)⊗ Psym(d2) + Psym(d1)⊗ Pasym(d2).

The following lemma is a special case of the Schur-Weyl duality. Suppose X ∈ D(Cd ⊗ Cd), and let Σd be the following
UU -twirling channel

Σd(X) =

∫
Ud

(U ⊗ U)X(U† ⊗ U†)dU,



where the integral is with respect to the Haar measure on group Ud of d× d unitary matrices. Then, we have:

Lemma H.2 (Theorem 10 in [56]).

Σd(X) = Tr[XPsym(d)]
Psym(d)

Tr[Psym(d)]
+ Tr[XPasym(d)]

Pasym(d)

Tr[Pasym(d)]
,

where Psym(d) = (I − Fd)/2 is the projector onto the symmetric subspace, and Pasym(d) = I − Psym(d).

Proposition H.3. The channel Σd is self-dual with respect to the Hilbert-Schmidt inner product.

Proof. For any A and B, we have

tr[A†Σd(B)] = tr[A†
∫
Ud

(U ⊗ U)B(U† ⊗ U†)dU ]

=

∫
Ud

tr[A†(U ⊗ U)B(U† ⊗ U†)]dU

=

∫
Ud

tr[(U† ⊗ U†)A†(U ⊗ U)B]dU

=

∫
Ud

tr[(U ⊗ U)A†(U† ⊗ U†)B]dU

= tr[Σd(A
†)B].

Proposition H.4. Using the above notations, we have

(idd1 ⊗ idd1 ⊗Σd2)(Pasym(d1 ⊗ d2)) = Pasym(d1 ⊗ d2).

Proof. This can be verified directly by using lemma H.1 and lemma H.2.

Theorem H.5 (Theorem 3.3 in [12]). For d1-dimensional quantum density matrices ρ1 and σ1, and d2-dimensional quantum
matrices ρ2 and σ2, we have

T (ρ1 ⊗ ρ2, σ1 ⊗ σ2) ≥ T

(
ρ1 ⊗

I2
2
, σ1 ⊗

I2
2

)
.

Proof. Let τA1A2B1B2
be an optimal coupling state that gives the value T (ρ1 ⊗ ρ2, σ1 ⊗ σ2). Equivalently speaking, we have

T (ρ1 ⊗ ρ2, σ1 ⊗ σ2) = Tr [τA1B1A2B2
Pasym(d1 ⊗ d2)] ,

with τA1A2 = ρ1 ⊗ ρ2, and τB1B2 = σ1 ⊗ σ2. By proposition H.4 and proposition H.3, we have

T (ρ1 ⊗ ρ2, σ1 ⊗ σ2) = Tr [τA1B1A2B2Φ(Pasym(d1 ⊗ d2))] = Tr [Φ(τA1B1A2B2) Pasym(d1 ⊗ d2)]

where Φ is the idd1 ⊗ idd1 ⊗Σd2 channel. Using lemma H.1, we have

Φ(τA1B1A2B2) = trA2B2 [τA1B1A2B2(I ⊗ Psym(d2))]⊗
Psym(d2)

Tr[Psym(d2)]

+ trA2B2
[τA1B1A2B2

(I ⊗ Pasym(d2))]⊗
Pasym(d2)

Tr[Pasym(d2)]
.

Therefore, we could write
XA1B1

= trA2B2
[τA1B1A2B2

(I ⊗ Pasym(d2))]

and
YA1B1

= trA2B2
[τA1B1A2B2

(I ⊗ Psym(d2))],

with
XA1B1

+ YA1B1
= trA2B2

[τA1B1A2B2
].

Then, we have

Tr [Φ(τA1B1A2B2
) Pasym(d1 ⊗ d2)] = Tr

[(
XA1B1

⊗ Psym(d2)

Tr[Psym(d2)]

)
Pasym(d1 ⊗ d2)

]
+Tr

[(
YA1B1

⊗ Pasym(d2)

Tr[Pasym(d2)]

)
Pasym(d1 ⊗ d2)

]
= Tr [XA1B1 Pasym(d1)] + Tr [YA1B1 Psym(d1)] .



The last step is by using lemma H.1 and the orthogonality of Pasym and Psym.
Now, define the state

τ̃A1B1A2B2
= XA1B1

⊗ Psym(2)

Tr[Psym(d2)]
+ YA1B1

⊗ Pasym(2)

Tr[Pasym(2)]
.

Note that τ̃A1B1A2B2
is a density operator of dimension d1 × d2 × 2 × 2. We claim it is a coupling state of ρ1 ⊗ I/2 and

σ1 ⊗ I/2, this is because
τA1A2 = XA1 ⊗ I/2 + YA1 ⊗ I/2 = ρ1 ⊗ I/2,

and
τB1B2

= XB1
⊗ I/2 + YB1

⊗ I/2 = σ1 ⊗ I/2.

From a similar argument as above, we know

Tr [τ̃A1B1A2B2 Pasym(d1 ⊗ 2)] = Tr [XA1B1 Pasym(d1)] + Tr [YA1B1 Psym(d1)]

Therefore, we know

T (ρ1 ⊗ ρ2, σ1 ⊗ σ2) = Tr [τ̃A1B1A2B2 Pasym(d1 ⊗ 2)] ≥ T (ρ1 ⊗ I/2, σ1 ⊗ I/2) ,

as T (ρ1 ⊗ I/2, σ1 ⊗ I/2) is the minimum value of Tr
[
τ ′A1B1A2B2

Pasym(d1 ⊗ 2)
]

over all coupling states τ ′A1B1A2B2
.

From theorem H.5, we could immediately get Ts(ρ, σ) = T (ρ⊗ I2
2 , σ ⊗ I2

2 ). This is because

T (ρ⊗ I2
2
, σ ⊗ I2

2
) ≥ inf

γ
T (ρ⊗ γ, σ ⊗ γ) ≥ T (ρ⊗ I2

2
, σ ⊗ I2

2
).

The first inequality is by the definition of inf , and the second is by applying theorem H.5.

APPENDIX I
KANTOROVICH-RUBINSTEIN DUALITY

We first review the Kantorovich duality theorem in the theory of optimal transport.

Theorem I.1 (Kantorovich Duality, Theorem 5.10 in [57]). Suppose(X , µ) and (Y, ν) are two Polish spaces. Let c : X ×Y →
R+∞ be a lower semi-continuous function such that there exists some real-valued upper semi-continuous functions a ∈ L1(µ)
and b ∈ L1(ν), with

c(x, y) ≥ a(x) + b(y),∀(x, y) ∈ X × Y.

Then, we have
min

π∈Γ (µ,ν)

∫
X×Y

c(x, y)dπ(x, y) = sup
ψ∈Cb(X ),
ϕ∈Cb(X );
ψ−ϕ≤c

(

∫
Y
ϕ(y)dν(y)−

∫
X
ψ(x)dµ(x)),

where Cb denotes the set of continuous bounded functions, and L1 is the Lesbegue space of exponent 1.

Here, a Polish space refers to a topological space that is separable and completely metrizable. With the above theorem, we
have:

Theorem I.2 (Kantorovich-Rubinstein Duality). Let µ, ν be discrete probability distributions over X and Y respectively, and
let c : X × Y → [0,+∞) be a bounded function. Then

inf
θ∈Γ (µ,ν)

Eθ[c] = sup
(n,c1,c2)∈W

(Eµ[c1] + Eν [c2]− n)

where Γ (µ, ν) denotes the set of probabilistic couplings of µ and ν and (n, c1, c2) ∈ W iff for every x ∈ X and y ∈ Y , we
have 0 ≤ c1(x), c2(y) and c1(x) + c2(y) ≤ c(x, y) + n.

Proof. We first note that a countable set with the discrete topology is always a Polish space, and bounded functions on the
discrete space is always continuous. Now, by applying theorem I.1 with ψ = −b1 and ϕ = b2, we have

inf
θ∈Γ (µ,ν)

Eθ[c] = sup
(b1,b2)∈B

(Eµ[b1] + Eν [b2]),

where (b1, b2) ∈ B iff b1 and b2 are bounded functions, and for every x ∈ X and y ∈ Y , we have b1(x) + b2(y) ≤ c(x, y).
We now show

sup
(b1,b2)∈B

(Eµ[b1] + Eν [b2]) = sup
(n,c1,c2)∈W

(Eµ[c1] + Eν [c2]− n).



Since b1 and b2 are bounded, there exists some integer m satisfying |b1(x)| ≤ m and |b2(y)| ≤ m. We can then write
c1(x) = b1(x) +m and c2(y) = b2(y) +m with n = 2m, getting 0 ≤ c1(x) and 0 ≤ c2(y). This gives

sup
(b1,b2)∈B

(Eµ[b1] + Eν [b2]) ≤ sup
(n,c1,c2)∈W

(Eµ[c1] + Eν [c2]− n).

For the other direction, observe that for fixed n, c is bounded and c1(x) + c2(y) ≤ c(x, y) + n, we can know c1 and c2 is
bounded. Therefore, write b1 = c1 and b2 = c2 − n gives the desired result.

APPENDIX J
POSTPONED TECHNICAL PROOFS

In this section, we give proofs of the lemmas that are omitted in the previous part of the appendix.

Lemma J.1 (Lemma A.7). We have the following properties for A,A1, A2 ∈ Pos∞(H):
• Scalar product cA for c ∈ R+∞ is defined such that for all |ψ⟩, ⟨ψ|cA|ψ⟩ = c⟨ψ|A|ψ⟩.
• Addition A1 +A2 such that for all |ψ⟩ ∈ H, ⟨ψ|(A1 +A2)|ψ⟩ = ⟨ψ|A1|ψ⟩+ ⟨ψ|A2|ψ⟩.
• Tensor product A1⊗A2 such that for all |ψ1⟩, |ψ2⟩, (⟨ψ1|⊗ ⟨ψ2|)(A1⊗A2)(|ψ1⟩⊗ |ψ2⟩) = (⟨ψ1|A1|ψ1⟩) · (⟨ψ2|A2|ψ2⟩).
• Let M be a linear operator with H as its domain, M†AM can be defined such that for all |ψ⟩, ⟨ψ|(M†AM)|ψ⟩ = ⟨ϕ|A|ϕ⟩

where |ϕ⟩ =M |ψ⟩.
• For P ∈ Pos with decomposition P =

∑
i ai|ψi⟩⟨ψi| (0 ≤ ai), the trace is tr(AP ) =

∑
i ai⟨ψi|A|ψi⟩. Note that the

value is unique for any decomposition.
• For E ∈ QO (more generally, CP maps) with Kraus operators {Ei}, E†(A) =

∑
iE

†
iAEi. Note that it is unique for

arbitrary Kraus operators.
• A1 = A2 if for all |ψ⟩, ⟨ψ|A1|ψ⟩ = ⟨ψ|A2|ψ⟩.
• A1 ⊑ A2 if for all |ψ⟩, ⟨ψ|A1|ψ⟩ ≤ ⟨ψ|A2|ψ⟩.

Proof. In the following, let A =
∑
i λiXi, where Xi is the projection onto the corresponding eigenspace. We will also write

A as A = PA +∞XA, where PA =
∑
λi<+∞ λiXi is the “finite” component of A, and XA =

∑
λi=+∞Xi is the “infinite”

space of A. Similarly, we write A1 =
∑
i λ

(1)
i X

(1)
i = PA1 +∞ ·XA1 and A2 =

∑
i λ

(2)
i X

(2)
i = PA2 +∞ ·XA2 .

• For the scalar product cA, we define it as cA =
∑
i cλiXi. By the definition of inner product, it is direct that ⟨ψ|cA|ψ⟩ =

c⟨ψ|A|ψ⟩.
• For the addition operation, we define it as A1 + A2 = X⊥(PA1 + PA2)X

⊥ +∞ ·X , where X = XA1 ∨XA2 . We now
verify that ⟨ψ|A1 + A2|ψ⟩ = ⟨ψ|A1|ψ⟩ + ⟨ψ|A2|ψ⟩. If ⟨ψ|A1 + A2|ψ⟩ < +∞, then we know |ψ⟩ ∈ X⊥, meaning that
X⊥|ψ⟩ = |ψ⟩. Then, by the definition of X , we know ⟨ψ|A1|ψ⟩ < +∞ and ⟨ψ|A2|ψ⟩ < +∞. Thus, in this case the
condition holds. Now, consider the case when ⟨ψ|A1 + A2|ψ⟩ = +∞. Then, we know ⟨ψ|X|ψ⟩ > 0. We claim either
⟨ψ|X1|ψ⟩ > 0 or ⟨ψ|X2|ψ⟩ > 0, because otherwise |ψ⟩ ∈ X⊥

1 ∩X⊥
2 , contradicting ⟨ψ|X|ψ⟩ > 0.

• For the tensor product, we define it as PA1 ⊗ PA2 +∞ ·X , where X = (supp (PA1)⊗XA2) ∨ (XA1 ⊗ supp (PA2)) ∨
(XA1 ⊗XA2). We now verify that it satisfies the property. For any |ψ1⟩ and |ψ2⟩, first suppose that ⟨ψ1|⟨ψ2|A1 ⊗
A2|ψ1⟩|ψ2⟩ = 0. We know that X|ψ1⟩|ψ2⟩ = 0 and ⟨ψ1|⟨ψ2|PA1

⊗ PA2
|ψ1⟩|ψ2⟩ = 0. Therefore, without loss of

generality we can assume ⟨ψ1|PA1
|ψ1⟩ = 0. From X|ψ1⟩|ψ2⟩ = 0, we know XA1

|ψ1⟩ = 0, meaning that ⟨ψ1|A1|ψ1⟩ = 0
as we want.
Now, consider the case 0 < ⟨ψ1|⟨ψ2|A1⊗A2|ψ1⟩|ψ2⟩ < +∞. By definition, we know X|ψ1⟩|ψ2⟩ = 0, ⟨ψ1|PA1 |ψ1⟩ ≠ 0,
⟨ψ2|PA2 |ψ2⟩ ̸= 0, We first claim ⟨ψ1|A1|ψ1⟩ ̸= 0, and ⟨ψ2|A2|ψ2⟩ ̸= 0. If not, without loss of generality, we assume
⟨ψ1|A1|ψ1⟩ = 0. It gives |ψ1⟩ ∈ (supp(PA1

) ∨XA1
), meaning that X|ψ1⟩|ψ2⟩ = 0. We then know ⟨ψ1|⟨ψ2|A1 ⊗

A2|ψ1⟩|ψ2⟩ = 0, a contradiction. We then claim ⟨ψ1|A1|ψ1⟩ < +∞, and ⟨ψ2|A2|ψ2⟩ < +∞. Suppose for simplicity that
⟨ψ1|A1|ψ1⟩ = +∞, we know XA1

|ψ1⟩ ≠ 0. Combined with ⟨ψ2|A2|ψ2⟩ ≠ 0. we conclude that projecting |ψ1⟩|ψ2⟩ onto
the space XA1 ⊗ supp (PA2)∨XA1 ⊗XA2 is non-zero, meaning ⟨ψ1|⟨ψ2|A1⊗A2|ψ1⟩|ψ2⟩ = +∞, a contradiction. Since
both ⟨ψ1|A1|ψ1⟩ and ⟨ψ2|A2|ψ2⟩ are non-zero and finite, a direct computation will give the equation we want.
For the case when ⟨ψ1|⟨ψ2|A1 ⊗ A2|ψ1⟩|ψ2⟩ = +∞, we know X|ψ1⟩|ψ2⟩ ≠ 0. Suppose ⟨ψ1|A1|ψ1⟩ < +∞, and
⟨ψ2|A2|ψ2⟩ < +∞. we could conclude XA1

|ψ1⟩ = XA2
|ψ2⟩ = 0, giving X|ψ1⟩|ψ2⟩ = 0, a contradiction. Thus,

without loss of generality, we can assume ⟨ψ1|A1|ψ1⟩ = +∞. We then claim ⟨ψ2|A2|ψ2⟩ ̸= 0. Otherwise we will get
X|ψ1⟩|ψ2⟩ = 0. We then conclude ⟨ψ1|A1|ψ1⟩⟨ψ2|A2|ψ2⟩ = +∞ as we want.

• MAM† can be defined as MPAM
†+∞·supp(MXM†). For any |ϕ⟩ =M |ψ⟩, if ⟨ϕ|A|ϕ⟩ < +∞, we know that X|ϕ⟩ =

0, meaning that ⟨ψ|MXM†|ψ⟩ = 0 Thus, ⟨ψ|MAM†|ψ⟩ = ⟨ψ|MPAM
†|ψ⟩ < +∞, and by definition ⟨ψ|MAM†|ψ⟩ =

⟨ψ|MPAM
†|ψ⟩ = ⟨ϕ|A|ϕ⟩ as we want. If ⟨ϕ|A|ϕ⟩ = +∞, we know that X|ϕ⟩ ≠ 0, or equivalently, XM†|ψ⟩ ≠ 0,

meaning ⟨ψ|MAM†|ψ⟩ = +∞ as we want.



• For P ∈ Pos, define tr(AP ) = tr(PAP ) if XAP = 0, and +∞ otherwise. If P =
∑
i ai|ψi⟩⟨ψi| with ai ≥ 0. We first

notice that it suffices to consider the set of j with aj > 0 as 0 ·+∞ = 0. We then notice that supp(P ) = spani {|ψi⟩}.
Thus, if tr(AP ) < +∞, then XA|ψi⟩ = 0 for any i, with tr(AP ) = tr(PAP ) =

∑
i ai⟨ψi|PA|ψi⟩ as we want. If

tr(AP ) = +∞, then XA ∩ spani {|ψi⟩} ≠ 0, meaning that there must be some i with ⟨ψi|A|ψi⟩ = +∞. Then, we know∑
i ai⟨ψi|A|ψi⟩ = +∞ as we want.

• For a CP map E† and A = PA +∞XA, define E†(A) = X⊥E(PA)X⊥ +∞X , where X = supp(E(XA)). For E with
Kraus operators Ei, we know X can be written as X = supp(

∑
iE

†
iXAEi) = ∨i supp(E†

iXAEi). By definition, we
know in this case E†(A) can be written as

∑
iE

†
iAEi as we desired.

• We first prove that XA1 = XA2 . If not, let |ψ⟩ be a normalized state in XA1 ∩ X⊥
A2

. We know XA2 |ψ⟩ = 0 but
XA1

|ψ⟩ = |ψ⟩. This means ⟨ψ|A1|ψ⟩ = +∞ but ⟨ψ|A2|ψ⟩ < +∞, a contradiction. Now, given that XA1
= XA2

, we
know that for any |ψ⟩ ∈ X⊥

A1
⊇ (supp(PA1

) ∨ supp(PA2
)), ⟨ψ|PA1

|ψ⟩ = ⟨ψ|PA2
|ψ⟩, meaning that PA1

= PA2
as we

desired.
• We extend the Löwner order of positive semi-definite operators to infinite-valued positive semi-definite operators as

follows: for A,B ∈ Pos∞(H), we say A ⊑ B if for any |ψ⟩, ⟨ψ|A|ψ⟩ ≤ ⟨ψ|B|ψ⟩. By the definition of trace, it is clear
that A ⊑ B if for any ρ, tr(Aρ) ≤ tr(Bρ). It is clear that it satisfies reflexivity and transitivity. For antisymmetry, it
follows from the previous property. Thus it is a partial order.

Lemma J.2 (Lemma A.8). In the following, let a, b, c ∈ R+∞, A,A1, A2 ∈ Pos∞, M,M1,M2, · · · ∈ L, and P, P1, P2 · · · ∈
Pos. We have the following properties:

• 0A = 0, 1A = A, a(bA) = (ab)A;
• 0 +A = A+ 0 = A, A1 +A2 = A2 +A1, A1 + (A2 +A3) = (A1 +A2) +A3;
• 0⊗A = A⊗ 0 = 0, A1 ⊗ (A2 ⊗A3) = (A1 ⊗A2)⊗A3;
• A⊗ (cA1 +A2) = c(A⊗A1) + (A⊗A2); (cA1 +A2)⊗A = c(A1 ⊗A) + (A2 ⊗A);
• 0†A0 = 0, M†

2 (M
†
1AM1)M2 = (M1M2)

†A(M1M2); M†(cA1 +A2)M = c(M†A1M) +M†A2M ;
• (M1 ⊗M2)

†(A1 ⊗A2)(M1 ⊗M2) = (M†
1A1M1)⊗ (M†

2A2M2);
• tr(A(cP1 + P2)) = c tr(AP1) + tr(AP2); tr((cA1 +A2)P ) = c tr(A1P ) + tr(A2P );
• tr((A1 ⊗A2)(P1 ⊗ P2)) = tr(A1P1) tr(A2P2); tr((M†AM)P ) = tr(A(MPM†)).
• tr((A⊗ I)P ) = tr(A tr2(P )); tr((I ⊗A)P ) = tr(A tr1(P ));
• tr(A|ϕ⟩⟨ϕ|) = ⟨ϕ|A|ϕ⟩.
• A1 = A2 iff for all P ∈ Pos (or P ∈ D) such that tr(A1P ) = tr(A2P );
• A1 ⊑ A2 iff for all P ∈ Pos (or P ∈ D) such that tr(A1P ) ≤ tr(A2P );
• A1 ⊑ A2 implies M†A1M ⊑M†A2M ; A1 ⊑ A2 and A3 ⊑ A4 implies cA1 +A3 ⊑ cA2 +A4.

As direct corollaries, for CP map E , E1, E2,

• tr(AE(P )) = tr(E†(A)P ); A1 ⊑ A2 implies E(A1) ⊑ E(A2);
• (cE1 + E2)(A) = cE1(A) + E2(A); E(cA1 +A2) = cE(A1) + E(A2);
• E2(E1(A)) = (E2 ◦ E1)(A); (E1 ⊗ E2)(A1 ⊗A2) = E1(A1)⊗ E2(A2).

Proof. We prove the above properties as follows:

• For 0A = 0, 1A = A, a(bA) = (ab)A, it follows directly from the definition.
• For 0+A = A+0 = A, A1+A2 = A2+A1, A1+(A2+A3) = (A1+A2)+A3, it follows from the definition of addition

of infinite-valued predicates. For instance, to prove A+0 = A, we have, for any |ψ⟩, ⟨ψ|A+0|ψ⟩ = ⟨ψ|A|ψ⟩+⟨ψ|0|ψ⟩ =
⟨ψ|A|ψ⟩. Then the claim follows directly by noting that A1 = A2 if for any |ψ⟩, ⟨ψ|A1|ψ⟩ = ⟨ψ|A2|ψ⟩.

• For 0⊗A = A⊗ 0 = 0, A1 ⊗ (A2 ⊗A3) = (A1 ⊗A2)⊗A3, it follows from the definition.
• For A⊗ (cA1 +A2) = c(A⊗A1) + (A⊗A2); (cA1 +A2)⊗A = c(A1 ⊗A) + (A2 ⊗A), it follows from the definition.
• To prove 0†A0 = 0, we notice that for any |ψ⟩, ⟨ψ|0†A0|ψ⟩ = ⟨ϕ|A|ϕ⟩ = 0 = ⟨ψ|0|ψ⟩ for |ϕ⟩ = 0|ψ⟩ = 0. Then

we know 0†A0 = 0 as we want. The propositions M†
2 (M

†
1AM1)M2 = (M1M2)

†A(M1M2) and M†(cA1 + A2)M =
c(M†A1M) +M†A2M can be proved similarly.

• To prove (M1 ⊗M2)
†(A1 ⊗ A2)(M1 ⊗M2) = (M†

1A1M1) ⊗ (M†
2A2M2), it follows from the definition and the fact

that XM†
1A1M1

= supp(M†
1XA1M1). Actually, (M1 ⊗M2)

†(A1 ⊗ A2)(M1 ⊗M2) = (M†
1PA1M1) ⊗ (M†

2PA2M2) +

supp((M1⊗M2)
†)X(M1⊗M2)), where X = (supp (PA1)⊗XA2)∨(XA1 ⊗ supp (PA2))∨(XA1 ⊗XA2). (M

†
1A1M1)⊗

(M†
2A2M2) = (M†

1PA1
M1) ⊗ (M†

2PA2
M2) + ∞Y , where Y =

(
supp

(
M†

1PA1
M1

)
⊗ supp(M†

2XA2
M2)

)
∨(

supp(M†
1XA1

M1)⊗ supp
(
M†

2PA2
M2

))
∨
(
supp(M†

1XA1
M1)⊗ supp(M†

2XA2
M2)

)
. It can be shown that X = Y

by using the properties E(X1 ∨X2) = E(X1) ∨ E(X2) and E(supp(ρ)) = supp(E(ρ)).



• For tr(A(cP1 + P2)) = c tr(AP1) + tr(AP2), if c = 0 then it is direct. In the following, we assume c > 0. if XAP1 =
XAP2 = 0, then the equation is direct by definition. Suppose XAP1 ̸= 0, which means tr(AP1) = +∞. In this case,
we have XA(cP1 + P2) ̸= 0, meaning the left hand side is also +∞. The case XAP2 ̸= 0 and tr((cA1 + A2)P ) =
c tr(A1P ) + tr(A2P ) can be proved similarly.

• For tr((A1 ⊗ A2)(P1 ⊗ P2)) = tr(A1P1) tr(A2P2), if XA1
P1 = XA2

P2 = 0, then it is direct by computation. Now, by
symmetry consider the case XA1

P1 ̸= 0, which means tr(A1P1) = +∞ (the case XA2
P2 ̸= 0 can be proved similarly).

If tr(A2P2) = 0, then P2 ∈ (supp(PA2) ∨XA2)
⊥. In this case, XA1⊗A2P1 ⊗ P2 = 0, and tr((A1 ⊗ A2)(P1 ⊗ P2)) =

tr((PA1 ⊗ PA2)(P1 ⊗ P2)) = 0. If tr(A2P2) ̸= 0, then XA1⊗A2P1 ⊗ P2 ̸= 0, and both left and right hand sides takes
+∞ as we desired.
For tr((M†AM)P ) = tr(A(MPM†)), we note that supp(M†XAM)P = 0 is equivalent to M† supp(XA)MP = 0,
and the latter can be written as supp(XA)MPM† = 0. Then, the property follows directly from definition.

• For tr((A ⊗ I)P ) = tr(A tr2(P )), we note that A ⊗ I = PA ⊗ I + XA ⊗ I . Thus, XA tr2(P ) = 0 if and only if
XA⊗IP = 0. Then, the equation follows directly from the definition. tr((I ⊗ A)P ) = tr(A tr1(P )) can be proved in a
similar way.

• For tr(A|ϕ⟩⟨ϕ|) = ⟨ϕ|A|ϕ⟩, it is direct by definition.
• For A1 = A2 iff for all P ∈ Pos (or P ∈ D) such that tr(A1P ) = tr(A2P ), the “if” part can be proved using the

previous property and the proposition that A1 = A2 if for all |ψ⟩, ⟨ψ|A1|ψ⟩ = ⟨ψ|A2|ψ⟩. The “only if” part is direct by
definition.

• For A1 ⊑ A2 iff for all P ∈ Pos (or P ∈ D) such that tr(A1P ) ≤ tr(A2P ), the “if” part can be proved by limiting P to
be rank-1 projectors |ψ⟩⟨ψ|. For the “only if” part, consider the spectral decomposition of P =

∑
i ai|ψi⟩⟨ψi|. We have

tr(A1P ) = tr(A1

∑
i ai|ψi⟩⟨ψi|) =

∑
i ai⟨ψi|A1|ψi⟩, and tr(A2P ) = tr(A2

∑
i ai|ψi⟩⟨ψi|) =

∑
i ai⟨ψi|A2|ψi⟩. Since

A1 ⊑ A2, we have ⟨ψi|A1|ψi⟩ ≤ ⟨ψi|A2|ψi⟩ for every i. The result then follows directly.
• For A1 ⊑ A2 implies M†A1M ⊑ M†A2M , let |ψ⟩ be any state. Then, a direct computation gives ⟨ψ|M†A1M |ψ⟩ =

⟨ϕ|A1|ϕ⟩ ≤ ⟨ϕ|A2|ϕ⟩ = ⟨ψ|M†A2M |ψ⟩, where |ϕ⟩ = M |ψ⟩. Thus, M†A1M ⊑ M†A2M follows by definition. For
A1 ⊑ A2 and A3 ⊑ A4 implies cA1+A3 ⊑ cA2+A4, consider any |ψ⟩, A1 ⊑ A2 implies ⟨ψ|A1|ψ⟩ ≤ ⟨ψ|A2|ψ⟩. Similarly
we have ⟨ψ|A3|ψ⟩ ≤ ⟨ψ|A4|ψ⟩. Therefore we know ⟨ψ|cA1+A3|ψ⟩ = c⟨ψ|A1|ψ⟩+⟨ψ|A3|ψ⟩ ≤ c⟨ψ|A2|ψ⟩+⟨ψ|A4|ψ⟩ =
⟨ψ|cA2 +A4|ψ⟩, and the result follows by definition.

• For tr(AE(P )) = tr(E†(A)P ), we write E(P ) =
∑
j EjPE

†
j . Then, we have tr(AE(P )) = tr(A

∑
j EjPE

†
j ) =∑

j tr(AEjPE
†
j ) =

∑
j tr(E

†
jAEjP ) = tr(E†(A)P ). For A1 ⊑ A2 implies E(A1) ⊑ E(A2), write E(A) =

∑
j E

†
jAEj .

We now for any j, E†
jA1Ej ⊑ E†

jA2Ej , thus
∑
j E

†
jA1Ej ⊑

∑
j E

†
jA2Ej as we want.

• For (cE1 + E2)(A) = cE1(A) + E2(A) take any P ∈ Pos, we have tr(P (cE1 + E2)(A)) = tr((cE1 +
E2)†(P )(A))c tr(E†

1(P )A) + tr(E†
2(P )A) = tr(PcE1(A)) + tr(PE2(A)) = tr(P (cE1 + E2)(A)). Then the result follows.

For E(cA1 +A2) = cE(A1) + E(A2), write E(A) =
∑
j EjAE

†
j . We then have E(cA1 +A2) =

∑
j Ej(cA1 +A2)E

†
j =

c
∑
j EjA1E

†
j +

∑
j EjA2E

†
j = cE(A1) + E(A2) as we want.

• E2(E1(A)) = (E2 ◦ E1)(A) is by definition. For (E1 ⊗ E2)(A1 ⊗A2) = E1(A1)⊗ E2(A2), let A1 = PA1
+∞XA1

, A2 =
PA2

+∞XA2
, and A1⊗A2 = PA1

⊗PA2
+∞X , where X = (supp (PA1

)⊗XA2
)∨(XA1

⊗ supp (PA2
))∨(XA1

⊗XA2
).

Then, (E1⊗E2)(A1⊗A2) = (E1⊗E2)(PA1 ⊗PA2)+∞Y , where Y = supp((E1⊗E2)(X)) and E1(A1)⊗E2(A2) = (E1⊗
E2)(PA1⊗PA2)+∞Z, where Z = (supp (E1(PA1))⊗ E2(XA2))∨(E1(XA1)⊗ supp (E2(PA2)))∨(E1(XA1)⊗ E2(XA2)).
It is clear that Y = Z by using the properties E(X1 ∨X2) = E(X1) ∨ E(X2) and E(supp(ρ)) = supp(E(ρ)).
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