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Abstract—Synchronous block-diagram languages have long
been formalized as fixpoints of equations defining stream func-
tions. We apply this approach to a compiler verified in an
interactive theorem prover, allowing us to restate its end-to-
end correctness theorem: if a program is accepted and has no
runtime errors, its input/output behavior is preserved in the
generated code. In a functional semantics, it is necessary to
model all possible behaviors, including erroneous ones. We show
that static typing and dependency analyses correctly rule out all
errors except those arising from logical and arithmetic operators.
Our definitions supplement existing formal ones, especially for
the reset operator, which is both useful in itself and a basis of
advanced control structures.

Index Terms—Interactive Theorem Proving, Denotational se-
mantics, Synchronous languages, Program correctness

I. INTRODUCTION

Dataflow synchronous languages, notably Lustre [26] and
Scade 6 [20], are used to specify safety-critical embedded
control software. They are sometimes called “block-diagram”
languages due to the graphical syntax often used in practice
where components are represented by labelled rectangles and
the connections between them by lines. They are, in fact,
functional languages that define mappings from streams of
inputs (values received from sensors or other components) to
streams of outputs (values sent to other components or actua-
tors), whose compilers produce code that executes in bounded
time and memory. The Vélus project [6] formalizes a standard
compilation scheme [2] and proves it correct in the Rocq
interactive theorem prover [22]. It generates Clight programs
that CompCert [3], [31] then compiles to assembly code. An
overall correctness theorem states that the input/output behav-
ior of the source stream semantics is reproduced step-by-step
by the imperative semantics of the generated assembly code.
It only applies, however, to well-behaved programs, defined
implicitly as those that satisfy the semantic rules. Since these
rules inherit the definitions of arithmetic and logical operations
from Clight, some of which are only partially defined, a
program is only well-behaved if it is free of run-time errors.
In this article, we present an alternative stream semantics, for
a core dataflow language with resettable function instances,
where errors and fixpoints are explicitly defined.1 This gives an
explicit characterization of well-behaved programs allowing us
to prove that the type systems and static analyses formalized in
the compiler eliminate many erroneous behaviors, and giving

1All definitions and proofs have been formalized in the Rocq interactive
theorem prover. They are available at https://velus.inria.fr/lics2025/.

a basis for reasoning about the remaining run-time errors. We
show that the stream semantics satisfies the relational rules
used in the compiler proof and thereby strengthen the overall
correctness theorem.

A. A Dataflow Synchronous Language

The dataflow synchronous language with resettable function
instances that we study is introduced here via an example
program. Its abstract syntax follows in section II-A and its
formal semantics is the subject of the rest of the article.

The example is the rising edge retrigger [38, §1.2.2],
which is typical of operators provided by libraries for control
applications. It comprises three functions. The first, called
countdown, maps two streams n and r to a stream t. The
comments show the result for example inputs.
node countdown(n : int; -- 4 4 4 4 4 5 5 · · ·

r : bool) -- F F F T F F T · · ·
returns (t : int) -- 4 3 2 4 3 2 5 · · ·
let
t = case r -- F F F T F F T

(true => n) -- 4 4 4 4 4 5 5
(false =>

n fby (t - 1)); -- 4 3 2 4 3 2 5
tel

A function, or node, is defined by a set of equations. Here there
is only one. The stream t takes its value from n initially and
whenever r is true, and otherwise decreases with rate 1. The
fby (“followed-by”) primitive [41] prepends the first value of
the stream at left, n, to the stream at right, t - 1.

A second node, actdef, illustrates the sampling opera-
tors when and merge. The declaration of x indicates that it is
only available when k is true. In the comments, the example
values of x are aligned with the true values of k as we consider
a synchronous semantics in which a program is ultimately
executed cyclically like a digital circuit.
node actdef(k : bool; -- F F T F T T F

x : int when k) -- 4 3 2
returns (y : int) -- 0 0 4 0 3 2 0
let
y = merge k -- F F T F T T F

(true => x) -- 4 3 2
(false => 0 when not k);-- 0 0 0 0

tel

The merge consumes a value from one stream, here k, to
determine from which of the branches to consume a value.
We will see that the synchronous semantics imposes a strict
alignment on the input streams, which is why the when not k

https://velus.inria.fr/lics2025/


in the second argument is necessary. In contrast, the case

operator in the countdown function consumes values from
all streams and uses the value from the first one to decide
which of the others to propagate.

A third node, with shortened name rer, defines the operator
itself: a rising edge on i (re)triggers n true values on o.
node rer(i : bool; -- F T T T F

n : int) -- 2 2 2 2 2
returns (o : bool) -- F T T F F
var r, c : bool; d : int when c;
let
r = i and (false fby (not i)); -- F T F F F
c = r or (false fby o); -- F T T T F
d = countdown((n, r) when c); -- 2 1 0
o = actdef(c, d) > 0; -- F T T F F

tel

There are three local variables: r, c, and d. The equation for r
detects a rising edge by comparing successive input values:

i F T T T F · · ·
false fby (not i) F T F F F T · · ·

. and . F T F F F F · · ·

The stream c is true only when an edge is detected or the
output was previously true. The equation for d uses an instance
of countdown to count backward from n to 0 from each rising
edge. The instance is applied to the streams for n and r filtered
according to c. The result d is thus also synchronized with
the instants when c is true. It is resynchronized with the input
streams using actdef to insert a 0 value whenever c is false.

The possibility to restart the count down is provided ex-
plicitly by the interface and definition of countdown. This
works well here, but, in libraries and larger programs, adding
and propagating such signals is tedious and inefficient. This
problem is solved in languages like Scade 6 by constructions
for modular reinitialization. For instance, we could declare:
node countdown(n: int) returns (t: int)
let

t = n fby (t - 1);
tel

and instantiate it within rer as a resettable node instance:
d = (restart countdown every (r when c))

(n when c);

The restart/every applies only to countdown and not to
its argument n when c. It transforms this stream function into
another one that “restarts” whenever the associated expression,
r when c, is true. Not only does this feature obviate the
need to propagate reset signals throughout programs, it is also
important for compiling state machines [19].

Resettable function instances can be programmed using
higher-order recursive stream functions [13], [27], as we
explain in section III-D. But as such functions cannot, in
general, be executed in bounded time and space, they are
rejected by compilers for embedded software. Instead, patterns
like resettable function instances are provided as primitives
that compilers treat specially. Specifying real-time systems in
a functional programming language which can be compiled

to embedded code is the essence of the dataflow synchronous
approach and guides the Rocq formalization.

B. Compiler Correctness

The correctness of the Vélus compiler is stated in the
following theorem [6], [9].

Theorem 1 (Vélus Compiler Correctness).

if compile G f = OK asm

and well-typed-inputs G f xs

and G ⊢ f(xs) ⇓ ys

then asm ⇓ ⟨Load(xs(i)) · Store(ys(i))⟩∞i=0

If the compilation of node f in program G successfully
produces an assembly program asm and the node semantics
associates a list of well-typed input streams xs to a list of
output streams ys , then the assembly program admits a trace
that endlessly alternates load and store events that correspond
to the values of the input and output streams.

The Rocq development includes a proof that the semantic
relation, G ⊢ f(xs) ⇓ ys , for a given G, f , and xs , is
deterministic [37, §3.4], but not that it has a solution. In
fact, there is no solution when the application of node f
to streams xs involves the use of a type cast, or arithmetic
or logical operator outside of its valid domain. Consider, for
instance, the following node.
node mayfail(r : bool) returns (s : int)
let

s = 42 / countdown(3, r);
tel

The semantic relation induced by this node is simply empty
if r contains the subsequence · · ·F · F · F · · · . This is one
way of resolving the mismatch between a source semantics of
functions mapping streams to streams, and generated code that
can trigger a processor exception. It is a choice that simplifies
(a) the semantic definitions, whose rules need not be complete;
(b) the compiler, which need not preserve errors; and (c) the
correctness proofs, which need only consider valid cases. It
complicates, however, reasoning formally about error freedom
or the applicability of the correctness theorem. Similar issues
occur in any pure functional language. In Haskell, for example,
the expression 42 ‘div‘ 0 does not reduce to a value, but
rather results in the message:

*** Exception: divide by zero

Partial definitions can be eliminated by redefining operators.
For example, integer division, z = x / y, could become

if (y == 0) { z = 0; } else { z = x / y; }

But we instead choose to define a new semantics that models
errors explicitly, thereby giving a means to prove their absence
prior to execution on an embedded platform. Note that we do
not redefine, in any way, the compile function.



C. Contributions and Overview

In this article, we present a new semantics for the language
introduced in the example program. The semantics is distin-
guished by its treatment of errors and fixpoints. The semantics
and associated theorems are formalized in the Rocq interactive
theorem prover. Such a formalization is difficult from a tech-
nical perspective, but the precision required by the tool yields
(i) a new definition of the fby operator that treats the subtleties
of properly handling errors in a fixpoint semantics, (ii) proofs
that link two existing functional definitions [27], [25] for
resettable node instances to the relational form introduced
more recently [7], (iii) a refinement to the merge operator used
in the functional definition of resettable node instances, (iv) a
proof that the new functional semantics satisfies the semantic
relations used to define compiler correctness for programs
without run-time errors, (v) a corollary that strengthens the
compiler correctness theorem, and (vi) a demonstration that
our framework can be used to reason about the correctness
of static analyses for excluding run-time errors. This work
contributes to the study of the domain-specific languages that
are used to program safety-critical embedded control software.
It is limited in that it does not treat block-based control
structures like hierarchical state machines.

Section II presents the syntax of the source language, its
relational semantics, and an existing Rocq formalization of
complete partial orders. Section III presents our functional
semantics, comparing it directly with the corresponding rules
of the relational semantics. The lemmas that formally relate
the two semantics are proved under the assumption that errors
cannot occur. We prove that all assumptions, except freedom
from run-time errors, are justified by dependency and typing
analyses. Section IV presents the improved compiler correct-
ness theorem and demonstrates the feasibility of justifying
the remaining assumption by a syntactic check. Section V
discusses related work.

II. BACKGROUND

Our goal is to express stream functions in an interactive
theorem prover, and to reason about them and their compi-
lation. This is done under two constraints: (i) the syntax of
programs must be represented explicitly, since it is transformed
by compilation functions, and (ii) recursive function defini-
tions must respect rules that ensure consistency. Section II-A
presents the abstract syntax of our language, which is defined
in Rocq in the standard way. Section II-B introduces the
existing relational semantics, though to facilitate comparison,
most of the rules are presented later together with those of
the new semantics. Section II-C presents a formalization of a
fixpoint operator that we exploit in our recursive definitions.

A. Syntax

The language that we study is the subset of Lustre/Scade
formalized in earlier articles on Vélus, with core dataflow
operators [9, §2], enumeration types, and resettable node
instances [7]. The example in the introduction contains all of

these features. For precision, we define the four levels of the
abstract syntax: expressions, equations, nodes, and programs.

e ::= c | C | x | ⋄ e | e ⊕ e | e+ fby e+ | e+ when C ( x )
| merge x ( C => e+ )+ | case e ( C => e+ )+

| f ( e+ ) | ( restart f every e ) ( e+ )

eq ::= x+ = e+ ; d ::= xckty ck ::= • | ck on C ( x )

n ::= node f ( d+ ) returns ( d+ ) var d* let eq+ tel

g ::= ( type ty = ( | C )+ )* n+

The expressions comprise primitive constants c, enumeration
constants C, variables x, unary operator applications ⋄, binary
operator applications ⊕, the synchronous and case opera-
tors presented earlier, node instances, and resettable node
instances. The primitive constants and most of the unary and
binary operators are defined directly by CompCert, with adap-
tations to test equality and inequality of enumeration values, to
provide a unary cast operator, and to accommodate for bool be-
ing an enumeration type in Vélus and an integer type in Clight.
The when and merge operators compare variable values with
enumeration constants; the standard syntactic sugar for bool
is used in the example. The merge and case operators
match exhaustively on enumerated types. Some expressions
allow lists of subexpressions and the corresponding semantic
operators are lifted directly to lists of streams.

Equations pair lists of variables and expressions. A node
declaration wraps a list of equations with declarations of
input, output, and local variables. The declarations include a
type and a clock type. Integer and floating-point types are
inherited from CompCert. Enumeration types are declared
with their constructors. A clock type is either •, representing
the base clock of a node, or ck on C(x), representing a
clock ck sampled when the variable x equals the enumeration
constant C. Finally, a program g (for ‘global’) is a list of
declarations of enumeration types and nodes.

B. Relational Semantics

The intuitive meaning of the examples was given by writing
streams of values next to variables, expressions, and equations,
leaving gaps to align values with cycles of the whole program.
The relational semantics formalizes this idea [8], [7].

The coinductive type family Stream A has one constructor,
cons, written · : A→Stream A→Stream A. The relational
semantics involves infinite sequences of synchronous values,

svalue := v | abs,

where v is an enumeration value, or an integer or floating-point
value from CompCert, and absence is represented explicitly.

The semantics of a node requires a history H that maps
each variable to a stream satisfying the constraints given by
its equations. For actdef, we have H(k) = F · F · T · F · · · ,
H(x) = abs · abs · 4 · abs · · · and H(y) = 0 · 0 · 4 · 0 · · · .

The constraints on streams and histories in Vélus are
encoded by a set of mutually inductive predicates that follow
the syntactic structure of programs. For a program G, a node



name f and a list xs of input streams, ys is a valid output of
the node only if G ⊢ f(xs) ⇓ ys , defined as,

G.f = n H(n.in) = xs H(n.out) = ys
∀eq ∈ n.eqs, G,H, (base-of xs) ⊢ eq

G ⊢ f(xs) ⇓ ys

where G.f maps the function name to its syntax. There must
exist a history H that associates input variables to xs and
output variables to ys , and that satisfies the node equations.

The rule for equations is parameterized by a global base
clock bs , which is a stream of booleans that reflects when
values are available relative to synchronous cycles of the whole
program. Within a node, the base clock is instantiated with
base-of xs , true only when at least one of the input streams
in xs is present. An equation x = e is satisfied if the dataflow
semantics of the expression e matches the value of x in H .

G,H, bs ⊢ e ⇓ H(x)

G,H, bs ⊢ x = e

For readability, we present equations having only a single
variable and expression. The generalization in Rocq to the
form x+ = e+ is tedious but conceptually simple.

Other rules associate each expression with a list of streams
defined by coinductive semantic operators, as shown below for
constants. The symbol ≡ represents stream equality.

s ≡ const bs JcK
G,H, bs ⊢ c ⇓ [s]

const (T · bs) v = v · const bs v
const (F · bs) v = abs · const bs v

We present the rules for other synchronous operators in sec-
tion III-C, together with the functional definitions since this
reduces repetition and aids comparison.

Compiler Correctness: The relational model is conve-
nient for reasoning about compiler correctness for two reasons.

First, it allows reasoning about mutually recursive stream
equations as conjunctions of predicates on environments asso-
ciating variable names to streams. Such predicates are readily
manipulated in an interactive theorem prover by induction,
introduction, and rule inversion. Essentially, we reason about
least fixpoints of equations without, until now, proving that
they exist. This is not completely satisfactory for a machine-
checked end-to-end proof. We should rather minimize and
simplify the assumptions in the main theorem so that its
interpretation is straightforward and so that its proof considers
all relevant details. For us, this means showing that the seman-
tic predicates are coherent and that the syntactic dependency
analysis implies the existence of a suitable fixpoint.

Second, by assuming that errors do not occur, the very
many rule inversions in the compiler correctness proof only
yield interesting cases. With explicit errors, one would have to
continually, in each induction, in each compiler pass, preserve
an erroneous behavior or show that it cannot occur. The flip
side of our assumption is that the correctness proof does not
guarantee error preservation. This approach is only reasonable
if error freedom can be guaranteed on source programs in one
way or another.

C. Constructive Cpo Library

A Kahn network [29] is a set of processes that communicate
solely by reading and writing on unbounded queues; once
a process chooses to read a queue it must wait for data. A
process is modeled as a continuous function between tuples
of finite and infinite sequences, a network of processes is
modeled as the fixpoint of such functions, and, thanks to
closure under arbitrary composition and recursion, a network
is itself a process. C. Paulin-Mohring developed a library for
reasoning about constructive fixpoints and used it to formalize
this model in Rocq [36]. We recall the elements that are reused
in our functional definitions.

The library uses dependent records, in the manner of
type classes, to define partial orders, monotonic functions,
(ω-)complete partial orders, and continuous functions. The
definitions formalize standard concepts from denotational se-
mantics, which we recall here.

A preorder bundles any type with a reflexive and transitive
relation ⪯, and extends naturally to an equivalence relation,
x ≃ y iff x ⪯ y and y ⪯ x, and thus a partial order.

The type of monotonic functions between partial orders,
O1 →m O2, is for values that pair a function f :O1 →O2 with
a proof of its monotonicity: ∀x y, x ⪯ y implies f(x) ⪯ f(y).
Such values can be considered simply as functions that have
additional proof obligations and properties. The type itself is
partially ordered: f ⪯ g iff ∀x, f x ⪯ g x.

A complete partial order (cpo) extends a partial order O by
distinguishing a bottom element, ⊥:O, and defining a function
to calculate the least upper bound (lub) of any monotonic se-
quence, lub:(N→m O)→O. A monotonic sequence represents
successive approximations of type O, which the lub operation
combines into an ideal value.

The continuous functions between cpos, D1 →c D2, pair a
monotonic function f :D1 →m D2 with a proof that it is con-
tinuous: ∀h :N→m D1, f(lub(h)) ⪯ lub(f ◦h). The type itself
is a cpo: ⊥ := λ-.⊥D2

and lub := λf x.lubD2
(λn.f n x).

The point of all of this is to permit the definition of an oper-
ator on continuous functions FIXP:(D→c D)→c D, such that
FIXP f ≃ f (FIXP f), and an associated induction principle
which specifies that, for every admissible, that is, stable by
lub, property P , P ⊥ → (∀x, P x → P (f x)) → P (FIXP f).
This operator is essential for expressing infinite unfoldings
and also the process of converging to a solution for mutually
recursive definitions.

The cpo of streams, central to both Kahn networks and
our semantics, is based on the following coinductive type
family Streamϵ A with two constructors.

Streamϵ A := · : A→Streamϵ A→Streamϵ A
| ϵ : Streamϵ A→Streamϵ A

The first is the same as for standard streams, while the second
is a device [11] that permits a constructive and productive lub
computation. The partial order and equivalence relations on
streams are insensitive to finite sequences of ϵs. The infinite
sequence ϵω is the bottom element and the lub is defined by a
function that gradually widens its search along a sequence of



tl : Streamϵ A→c Streamϵ A

tl (a · x) ≃ x

tl ⊥ ≃ ⊥ (= ϵω)

app : Streamϵ A→c Streamϵ A→c Streamϵ A

app (a · x) y ≃ a · y
app ⊥ y ≃ ⊥

map : (A→B)→Streamϵ A→c Streamϵ B

map f (a · x) ≃ (f a) ·map f x

map f ⊥ ≃ ⊥

zip : (A→B→C) →
Streamϵ A→c Streamϵ B→c Streamϵ C

zip f (a · x) (b · y) ≃ (f a b) · zip f x y

zip f ⊥ y ≃ f x ⊥ ≃ ⊥

filter : (A→ bool)→Streamϵ A→c Streamϵ A

filter p (a · x) ≃ a · filter p x if p a = T

filter p (a · x) ≃ ϵ filter p x ≃ filter p x if p a = F

filter p ⊥ ≃ ⊥

take : N→Streamϵ A→c Streamϵ A

take 0 x ≃ ⊥
take (n+ 1) (a · x) ≃ a · (take n x)

take n ⊥ ≃ ⊥

Fig. 1: Characteristic equations of primitive stream functions

approximated streams until it finds a non-ϵ element, and so on
corecursively, otherwise generating an infinite sequence of ϵs.
A stream of the form (ϵ∗ v ·)∗ϵω serves to model both a finite
stream and a failure to converge to an infinite stream. There
is no constructive procedure for determining whether or not a
stream is infinite, but one can still reason about this property
using the following two predicates.

is-cons x

is-cons (ϵ x) is-cons (a · x)
is-cons x infinite (tl x)

infinite x
========================

The is-cons x predicate indicates that there is at least one
non-ϵ element in the stream x, that is, ∃n a y, x = ϵn a · y.
The predicate infinite x indicates that x contains an infinite
number of non-ϵ elements. A single horizontal line represents
an inductive definition; double horizontal lines represent a
coinductive one.

To use the library, rather than define stream functions as
lambda-terms using Rocq’s built-in features, one constructs
them using tactics from library primitives and their associated
proofs of continuity. One then states and proves characteristic
equations giving alternate definitions, without proof content,
which are more readable and better suited for proof by
rewriting modulo partial order and equivalence relations.

Figure 1 presents the characteristic equations for the main
library primitives: tl drops the first element of a stream; app
concatenates the first value from one stream onto a second
stream; map lifts a function on values onto a stream of
values; zip is similar but is for functions on two values; filter
propagates or removes elements based on a predicate; and take
returns at most the first n values. These primitives encode
standard functions that we use in our semantic definitions.
The tactic-based definitions build on the following primitive,
which propagates ϵs.

scase : (A→Streamϵ A→c Streamϵ B)

→c Streamϵ A→c Streamϵ B

scase f (ϵ s) = ϵ (scase f s)

scase f (a · s) = f a s

For example, the tl function is defined as scase (λ x s. s).
The scase skips over ϵs, giving, in particular, tl ϵω ≃ ϵω, and
otherwise applies the anonymous function which drops the
head of the stream.

A similar insensitivity to ϵ is encoded in the partial order
and equivalence relations for Streamϵ A, shown below.

x ⪯ y

ϵ x ⪯ y
======

y = ϵn a · z x ⪯ z

a · x ⪯ y
====================

x ⪯ y y ⪯ x

x ≃ y

Together this means that the characteristic equation of a stream
function only has two cases, one for a finite number of ϵs
followed by a value and one for an infinite number of ϵs. It
explains why we can largely ignore ϵs in the remainder.

Kahn versus synchronous semantics: Unlike in a syn-
chronous semantics, absence is not modeled explicitly in a
Kahn semantics. Loosely speaking, the “synchronous traces”
from the example in section I-A become “Kahn traces” by
ignoring the spaces used to align the values into columns.
For actdef, we would have H(x) = 4 · 3 · 2 · · ·. Both
forms of dataflow semantics are useful. A Kahn semantics,
by virtue of its simplicity, is an ideal reference model. A
synchronous semantics provides a specification for compilers:
absence indicates that a value is neither calculated nor used
in a given cycle. Sometimes both semantics are presented
together and compared [21, §§3.1 and 3.2]. Here, we only
define a synchronous semantics, but informal comparisons
with the Kahn model are sometimes made.

III. FUNCTIONAL SEMANTICS WITH ERRORS

The functional semantics of our dataflow language is de-
fined using the fixpoint combinator from the cpo library.
Section III-A presents the base definitions in which absence,
presence, and errors are explicit. Section III-B presents the
denotation of nodes as fixpoints of synchronous stream oper-
ators, which are themselves defined in section III-C and, for
the reset operator, in section III-D. For each stream operator,
we present both the original relational definition and our new
functional one, and state lemmas that relate the two under the
assumption that errors do not occur, since the stream type used
in the relational semantics cannot represent finite streams or



explicit errors. The assumption on finite streams is discharged
in section III-E. The elimination of most forms of explicit
error is described in section III-F.

A. Values

Our functional semantics associates an expression with
streams and a node with a function over streams. Unlike the
relational model, it is defined for all programs, meaning that
wrong behaviors must be represented. We categorize errors
into three classes. Typing errors, which result from incorrect
combinations of values, and which can be excluded by the type
system. Synchronization errors, which result from incorrect
combinations of absence and presence, and which can simi-
larly be excluded by the clock type system. Run-time errors,
caused by failures of logical or arithmetic operators, and
which require special treatment because they cannot always be
detected statically. The synchronous possibly erroneous values
include explicit cases for each error class:

sevalue := v | abs | errty | errsync | errrt.

We write simply err when the distinction between errty, errsync,
or errrt is unimportant. The type of streams in the functional
model is Streamϵ sevalue, which we abbreviate to Streamϵ.

A fourth error class is of a different nature. A program that
associates a variable or expression to a finite stream is said to
suffer from a causality error. Such errors are excluded by rea-
soning about instantaneous dependencies between equations.

A Streamϵ that is error-free and infinite, that is, without errs
and not ending in ϵω, can be converted to a Stream svalue for
use in the relational model. In Rocq, this conversion is defined
by coinduction on the proof of infinitude of the source stream.
This complicates our proofs but is conceptually trivial and the
conversion is implicit in later definitions.

To associate identifiers to streams in semantic defini-
tions, we use stream environments SEnv. They are defined
by the underlying library as an indexed product of cpos,
Πi:ident Streamϵ, but can be understood simply as functions
ident→Streamϵ. That is, they associate each variable to a
stream, with undefined variables mapped to ⊥. Node environ-
ments, that associate node identifiers to their denotations, are
defined similarly: FEnv := Πi:ident (SEnv→c SEnv). That is,
they associate a function name to a continuous function from
an environment defining the input variables to an environment
defining output and local variables.

B. Fixpoint Semantics of Nodes

As in Kahn networks [29, §3] and their formalization in
Rocq [36, §4.2], a node’s semantics is defined as a fixpoint
over its equations. The fixpoint for a node n is defined relative
to an environment envG : FEnv of node denotations and an
environment env I : SEnv mapping input variables to streams.
Formally, we have FIXP(denotN n envG env I), where

denotN n envG env I : SEnv→c SEnv :=

λ env . fold_right (denotEQ envG env I env) n.eqs⊥.

This function takes env , an approximation to an environment
from output and local variables to streams, and calculates
a new one by iterating over the equations. By folding over
an empty environment ⊥, where ∀x,⊥(x) = ϵω, rather than
from env , and assuming unique variable definitions in n.eqs,
the calculation with denotEQ amounts to

{x 7→ denotE envG env I env e | ∀ x = e ∈ n.eqs } : SEnv.

The semantics of an expression e is, in the general case, a
tuple of streams, denotE e envG env I env : (Streamϵ)

|e|. The
tuple type family, here, depends on the number of streams
defined by the expression. This dependence is necessary as
each tuple type of a given size is a distinct cpo whose bottom
element and partial order distribute over the individual streams.
That is, (e0, . . . , en) ⪯ (e′0, . . . , e

′
n) means ∀0≤i≤n ei ⪯ e′i

and, similarly, ⊥ = (ϵω, . . . , ϵω).
The definition of denotE follows the inductive structure of

expressions. For variables, it consults env I for inputs and env
for locals and outputs. For node instances, it applies the
corresponding function from envG. Otherwise, it recursively
calculates the streams for subexpressions and applies one of
the synchronous operators defined in the next section.

Finally, the semantics of a program G is the fixpoint of the
node denotations, denotG := FIXP(denotG G) : FEnv, where

denotG G : FEnv→c FEnv :=

λ envG f env I . FIXP(denotN (G.f) envG env I).

This definition permits mutually recursive function definitions.
We will exploit this feature to define resettable node instances,
even if the compiler rejects such programs since they do not
always execute in bounded space and time.

C. Synchronous Stream Operators

Every form of expression is associated with a synchronous
stream operator that defines its semantics. For each operator,
we present both the relational definition used in compiler
correctness proofs and our new functional version. We sketch
the correctness conditions and proofs that link them.

a) Constants: The coinductive rule for constants was
presented as an example in section II-B. It introduces absent
values according to a base clock. The functional rule is
identical as it never produces an error.

b) Binary operators: The relational and functional rules
for binary operators are presented in figure 2. The relational
rule is defined as a coinductive relation between two input
streams and an output stream. The functional rule is defined
using zip, see figure 1, which maps a function over the ele-
ments of two input streams; internally it propagates ϵs so that
if either input stream ends in ϵω then so does its output. The
relational rule requires input elements to be simultaneously
absent or present, since no other cases are defined; if they
are not, the functional rule produces an errsync. The relational
rule also only holds when the underlying CompCert semantics
is defined, v1 ⊕ v2 = Some v; if this is not the case, the
functional rule produces errrt. It would be possible, with an
extra test, to distinguish type errors, errty, from run-time errors,



LIFT xs ys rs

LIFT (abs · xs) (abs · ys) (abs · rs)
===============================

LIFT xs ys rs v1 ⊕ v2 = Some v

LIFT (v1 · xs) (v2 · ys) (v · rs)
=================================

lift : Streamϵ →c Streamϵ →c Streamϵ

lift := zip (λ abs, abs → abs
| v1, v2 → (match v1 ⊕ v2 with

| Some v → v
| None → errrt)

| err, _ | _, err → err
| _, _ → errsync)

Fig. 2: Binary operator: ⊕

WHENC cs xs rs

WHENC (abs · cs) (abs · xs) (abs · rs)
==================================

WHENC cs xs rs

WHENC (C · cs) (v · xs) (v · rs)
=============================

WHENC cs xs rs C ̸= C ′

WHENC (C ′ · cs) (v · xs) (abs · rs)
===============================

whenC : Streamϵ →c Streamϵ →c Streamϵ

whenC := zip (λ abs, abs → abs
| C, v → v
| C ′, v → abs
| err, _ | _, err → err
| _, _ → errsync)

Fig. 3: Sampling operator: when

errrt, but we did not find this useful. Finally, the functional rule
propagates errors from the inputs.

Lemma 1. For all streams xs and ys , if lift xs ys is infinite
and error-free then LIFT xs ys (lift xs ys).

c) Sampling: The when operator, whose rules appear
in figure 3, is parameterized by an enumerated constant C
and takes two inputs, a condition stream and an argument
stream. As before, the input streams must be synchronous,
otherwise the relational rule does not hold and the functional
rule produces errsync. When the condition stream matches the
parameter, the head of the argument stream is propagated.
When it does not, an abs is produced. The overall effect is
to filter the argument stream based on the condition stream,
while maintaining the synchronization of all streams.

Lemma 2. For all streams cs and xs , if whenC cs xs is infinite
and error-free then WHENC cs xs (whenC cs xs).

In a well-behaved program, the synchronous semantics of
when, whether relational or functional, is an infinite stream
even if the condition stream does not match the parameter
infinitely often. This is due to the explicit absence values. In
the Kahn semantics [36, §4.2.5], the stream may only contain a
finite number of values but the ability to produce an ϵ ensures
that the productive requirement for coiterative functions is met.

d) Delay: The fby operator takes two inputs, an initial
stream and a delayed stream. The Kahn definition, app from
figure 1, is simple: the head of the initial stream is prefixed
to the delayed stream. In a synchronous semantics, on the
other hand, absent values must remain in place, leading to
the relational rules at the top of figure 4. The FBY relation
propagates abs until values appear on the initial and delayed
streams, whence the initial value is propagated and the delayed
value is “memorized” in the FBY1 relation. The FBY1 also
propagates abs. When both input values are present, the mem-
orized value, v, is propagated, the initial value, x, is ignored,
since only its presence counts, and the delayed value, y, is
memorized. This definition is standard [21, figure 2].

The functional definition is more complicated because of its
role in fixpoint calculations. Consider, for example, the counter
x = 0 fby (x + 1). A definition that read from both inputs
before producing an output would have the fixpoint x = ⊥.
Instead, the semantic operator must read from the initial
stream, produce an output, then read from the delayed stream.
We express this idea in our definition, at bottom in figure 4,
as four mutually recursive functions: fby and fby1, which read
from an initial stream and produce a value, and fbyA and
fby′1, which read from a delayed stream. When fby reads abs
on the initial stream, it produces abs, and invokes fbyA to
check for abs on the delayed stream and otherwise produces a
synchronization error. When fby reads v on the initial stream,
it propagates it and invokes fby′1 to check for and memorize a
value on the delayed stream. The fby1 function does the same
with a memorized value v. Speculatively producing outputs
ensures the productivity of well-formed recursive equations.
For errors, these functions do not produce an err and continue
as usual, as in the definitions of lift and when. Rather, the
output stream becomes map (λx. err) xs , which replaces each
element of xs , whether it be abs, v, or err, with err. This
ensures that the overall definition of fby is length preserving,
which will be important in section III-E.
Lemma 3. For all streams xs and ys , if fby xs ys is infinite
and error-free then FBY xs ys (fby xs ys).

D. Resettable Node Instances

The ability to reset dataflow programs is, compared to
the classic stream operators, more recent and less studied.
As we have seen in the introductory examples, a resettable
function instance like (restart countdown every r)(n)

allows to reinitialize a function instance, here countdown(n),
whenever a stream, here defined by r, is true.

The relational rule for resettable node instances [7] is
modular in that it incorporates the unmodified predicate for
node instances, G ⊢ f(xs) ⇓ ys , presented in section II-B.



FBY xs ys rs

FBY (abs · xs) (abs · ys) (abs · rs)
==============================

FBY1 vy xs ys rs

FBY (vx · xs) (vy · ys) (vx · rs)
============================

FBY1 v xs ys rs

FBY1 v (abs · xs) (abs · ys) (abs · rs)
=================================

FBY1 vy xs ys rs

FBY1 v (vx · xs) (vy · ys) (v · rs)
=============================

fby (abs · xs) ys ≃ abs · fbyA xs ys

fby (v · xs) ys ≃ v · fby′1 None xs ys
fby (err · xs) ys ≃ err ·map (λx. err) xs

fbyA xs (abs · ys) ≃ fby xs ys

fbyA xs (err · ys) ≃ map (λx. err) xs

fbyA xs (v · ys) ≃ map (λx. errsync) xs

fby′1 None xs (v · ys) ≃ fby1 v xs ys

fby′1 (Some v) xs (abs · ys) ≃ fby1 v xs ys

fby′1 _ xs (err · ys) ≃ map (λx. err) xs

fby′1 _ xs (_ · ys) ≃ map (λx. errsync) xs

fby1 v (abs · xs) ys ≃ abs · fby′1 (Some v) xs ys

fby1 v (vx · xs) ys ≃ v · fby′1 None xs ys
fby1 v (err · xs) ys ≃ err ·map (λx. err) xs

Fig. 4: Delay operator: fby

The behavior of a resettable node instance is modeled as
a sequence of disjoint instances of f , a new one coming
into effect whenever the reset stream is true. Each individual
instance is isolated using a function maskk rs xs which filters
an input stream xs , propagating its values starting from the
kth true on rs until just before the next true, and otherwise
replacing them with abs. Consider, for example, its operation
on the following arbitrary values for rs and xs .

rs F F T abs F T F F F
xs 4 4 4 4 4 5 5 abs 5
mask0 rs xs 4 4 abs abs abs abs abs abs abs

mask1 rs xs abs abs 4 4 4 abs abs abs abs

mask2 rs xs abs abs abs abs abs 5 5 abs 5
...

The mask0 rs xs propagates values from xs up until the
first time that rs is true, then remains abs. The mask1 rs xs
produces abs until rs becomes true, propagates values from xs
up until rs is true again, and then remains abs. And so on.

The mask operator is combined with the rule for node
instances by universally quantifying over k and filtering both
inputs and outputs.

∀k,G ⊢ f(maskk rs xs) ⇓ maskk rs ys .

The input and output streams, xs and ys , are constrained by an
infinite conjunction of instances of f , each of which applies
within a disjoint interval starting from the kth true value of rs .
In terms of the example, a distinct instance of countdown is
applied to each masked interval and the results are recombined
as constraints on a single stream ys .

The mask function is defined coinductively as follows.

maskk rs xs := maskk0 rs xs

maskkk′ (F · rs) (x · xs) ≃
(if k′ = k then x else abs) ·maskkk′ rs xs

maskkk′ (abs · rs) (x · xs) ≃
(if k′ = k then x else abs) ·maskkk′ rs xs

maskkk′ (T · rs) (x · xs) ≃
(if k′ + 1 = k then x else abs) ·maskkk′+1 rs xs

It filters the stream xs , propagating its values starting from
the kth true on rs and stopping at the next true, and otherwise
replacing them with abs.

The relational rule works well in the proofs of compiler cor-
rectness by natural deduction, but its infinite set of intersecting
constraints is quite far from the ideal of programming real-
time systems in a functional programming language. It turns
out that a functional form already exists, imagined first with
recursive block diagrams [13] and later defined using primitive
dataflow operators and recursive node instances [27]:

resetf rs xs := let cs = true-until rs in

merge cs (f(whenT cs xs))

(resetf (whenF cs rs) (whenF cs xs)).

The local stream cs is true until the first true value on rs
at which point it immediately becomes false forever.2 The
merge thus returns values from an initial instance of f until cs
becomes false, at which point it returns values from the next
recursive instance. Such recursive, high-order programs can be
expressed in languages like Haskell and Lucid synchrone [38],
but to produce code that executes in bounded time and
space, a compiler would have to recognize the “once false
always false” invariant on cs and the resulting tail recursion
through the merge, and apply these facts to optimize the
allocation of memory for the function instance f . This is
difficult, brittle, and best avoided. Instead, in languages for
embedded software, recursive node instantiations are forbidden
and specific higher-order patterns are provided by language
features. This definition, however, is readily expressed using
the fixpoint combinator and applied to define the semantics of
resettable node instances. We found, though, that the standard

2The equation with true-until can be programmed with
cs = (true fby false) || (not rs && (true fby cs)).



semantics of merge [21, figure 2] must be adjusted to obtain
the expected fixpoint. Our version, merge′, just like for fby
and fby′1, speculatively produces abs in the recursive branch
to avoid becoming stuck at ⊥.

merge′ (abs · sc) s1 s2

≃ abs · (merge′ sc (expecta s1) (expecta s2))

merge′ (T · sc) s1 s2

≃ app s1 (merge′ sc (tl s1) (expecta s2))

merge′ (F · sc) s1 s2

≃ app s2 (merge′ sc (expecta s1) (tl s2))

merge′ (err · sc) s1 s2

≃ map (λx.err) (err · sc)

expecta (abs · s) ≃ s

expecta (v · s) ≃ map (λx.errsync) s

expecta (err · s) ≃ map (λx.err) s

The operator first checks the condition stream to select a
value to propagate and thus unblock the computation in the
recursive application of resetf . Note that if the condition
stream becomes absω then the merge′ becomes absω without
propagating any errs from either branch. This does not cause
any problems, however, since we assume, and ultimately show
or require, the absence of errors in all sub-streams. Another
drawback is that incorrect synchronizations between T ·sc and
abs·s1 or between F ·sc and abs·s2 are ignored. These cannot
occur, however, in the definition of resetf .

Since the resetf above only uses the primitives fby, merge,
and when, it is also a valid Kahn network. In the Kahn
interpretation, values on the input streams rs and xs are
consumed at the same rate. The synchronous mask definition,
however, treats absence explicitly: an abs on rs can be paired
with a present value on xs and vice versa, as shown by the
successive values of xs and rs in the previous example. The
Kahn and synchronous interpretations thus only correspond
when rs and xs have the same clock. This constraint is
enforced by clock types in Lucid synchrone [38], but not in
Scade 6 or Vélus, which, for instance, accept

(restart countdown every r)(n when c),

even though r is not sampled on c. Such expressions, where
the input signal may be absent and the reset signal present,
are produced by the translation of state machines into com-
positions of simpler operators. They are given a synchronous
semantics by the relational rule, but cannot be given a Kahn
semantics without somehow expressing the timing relation
between input and reset streams.

There is an alternative reset [25, §2.6.4.2] that does not
restrict rs and xs , and is therefore sensitive to absence.

sresetf rs xs := sreset′f rs xs (f xs)

sreset′f (T · rs) xs ys ≃ sreset′f (F · rs) xs (f xs)

sreset′f (F · rs) (x · xs) (y · ys) ≃ y · (sreset′f rs xs ys)

sreset′f (abs · rs) (x · xs) (y · ys) ≃ y · (sreset′f rs xs ys)

It applies f to xs initially and whenever rs is true, passing
the result in an auxiliary stream ys . The values of ys are
propagated one-by-one as false or absent values are read on rs
and absent or present values are read on xs . We prove that this
functional definition coincides with the previous one when rs
and xs have the same clock. We also prove that it is correct
with respect to the relational rule.
Theorem 2. If the abs elements of rs and xs are aligned, and
if f preserves the alignment of abs elements from its inputs
through to its outputs, then sresetf rs xs ≃ resetf rs xs .
Theorem 3. The sreset operator satisfies the resettable node re-
lation: ∀k,G ⊢ f(maskk rs xs) ⇓ maskk rs (sreset f rs xs).
We are not aware of any previous proofs relating these three
characterisations of resettable node instances. Our proofs are
based on three fundamental properties. We subsequently prove,
using the fixpoint induction principle from the cpo library, that
our functional semantics satisfies these properties.

a) Invariance to initial absence: nodes stutter on initial
absent values, ∀xs, f(abs · xs) ≃ abs · f(xs), meaning that
not only are these values simply propagated, but also that the
stream function is invariant; in operational terms, any internal
state is unchanged. The property follows recursively from the
fact that the base clock, calculated at node instances, regulates
the production of constants (const from section II-B). A node’s
internal components are not activated until inputs are received.

b) Prefix commutativity: nodes commute with stream
prefixes, ∀n xs, f(take n xs) ≃ take n f(xs). This property
is a characterization of synchronous stream functions: they
need at most n inputs to produce n outputs. In fact, this
property implies a weaker one which suffices for theorem 3:
take n xs ≃ take n ys implies take n f(xs) ≃ take n f(ys).

c) Absence forever: if inputs become absent forever, so
do outputs, ∀n xs, if tln xs ⪯ absω then tln (f(xs)) ⪯ absω.
Stream prefix inequality is used because full equivalence
additionally implies productivity, which is not necessary here.
This property is a consequence of the correctness of the clock
type system. Unlike invariance to initial absence, it does not
require function invariance.

Together, the three properties cover the before, during, and
after phases of a maskk instance.

E. Causality Errors
A causality error occurs when a variable depends instanta-

neously on itself. Non-causal equations may have no solutions,
x = x + 1, too many, x = x, or require solving constraints,
x = (1 + x) / 2. In these cases, the fixpoint of the func-
tional semantics is x = ⊥. To reject problematic programs,
compilers analyze the dependency graphs of nodes [14, §4.1].
A node is causal if its variables can be ordered x1, . . . , xn such
that xi does not depend instantaneously on xj≥i. Variables at
right of a fby do not count as instantaneous dependencies:
for example, in z = x fby y, z depends on x, but not on y.
The dependency relation is formalized in Vélus, together with
an associated induction principle [9, §2.3].

In the semantics of causal programs, all streams are infinite,
that is, none of them end in ⊥. To prove this, we first show that



all operators are length preserving. We write |xs| ≥ i to mean
that a stream xs has at least i absent, present, or error values.
Formally, |xs| ≥ i := is-cons (tli−1 xs). The only interesting
case is for the fby.
Lemma 4. Given streams xs and ys such that |xs| ≥ i+1 and
|ys| ≥ i, then |fby xs ys| ≥ i+ 1.

This property in turn implies that iterating a node while
successively lengthening the input streams produces a fixpoint
whose local and output streams are just as long.
Lemma 5. Given a causal node f , if for all inputs x,
|env I(x)| ≥ i + 1, and for all local and output variables y,
|env(y)| ≥ i, then |(denotN f envG env I env)(y)| ≥ i+ 1.

This property is not admissible, so, unlike the other theo-
rems which are shown by fixpoint induction, this one is shown
by induction on the syntactic dependency relation.

Now, since ∀n, |xs| ≥ n implies xs infinite, the dependency
analysis implies that there are no causality errors.
Theorem 4. If a node f in a program G is syntactically causal
and if the input streams in the environment envI are infinite,
then the output streams of denot G f envI are infinite.

F. Typing and Runtime Errors

Compile-time analyses in the Vélus compiler reject ill-
typed programs and otherwise produce a typing context that
associates every variable in a node to a type and clock type,
Γ(x) = (tyx, ckx), and associated well-typing predicates.
We use the typing context to define well-formed, a predicate
on a functional environment env that is true only if for
every variable x in Γ: (i) the stream env(x) never contains
err, (ii) present values in env(x) have type tyx, written
env(x) : tyx, and (iii) env(x) is aligned with the denotation
of ckx. The first two conditions are readily expressed by
quantifying over stream elements. The third condition means
that whenever env(x) is present, the denotation of ckx is true,
and whenever env(x) is absent, it is false. We formalize this
alignment condition as

clock-of env(x) ⪯ denotC ckx env ,

where clock-of maps present values to true and others to false,
and a clock type’s denotation is defined inductively:

denotC • env := base-off.in env

denotC (ck on C(x)) env :=

zip (λc v. c ∧ v = C) (denotC ck env) env(x).

The alignment condition is a prefix inequality because, at
any iteration of the fixpoint calculation, the clock stream
may have one element more than the variable stream. Such
inequalities permit proof by fixpoint induction and thereafter
imply equivalence when the left-hand side is infinite.

Assuming a well-formed env , we prove that the denotation
of a well-typed expression with no run-time errors, (i) is
never err, (ii) has well-typed present values, and (iii) is aligned
with its clock. The proof is by induction on the syntax and
requires that every semantic operator preserve the invariant.

Freedom from run-time errors is necessary for clock align-
ment. We formalize it in a predicate no-rte that depends on an
expression’s semantics in an environment. The only interesting
cases are for unary and binary operators, the others descend
recursively or hold trivially. The rule for unary operators,
below, requires showing that an operator which receives well-
typed values never produces a run-time error.

no-rte envG env I env e
(denotE e envG env I env : type-of e

→ denotE (⋄ e) envG env I env ̸= · · · errrt · · · )
no-rte envG env I env (⋄ e)

Finally, if there are no such run-time errors, then the proof
on denotations of well-typed expressions extends to nodes.
Lemma 6. For a well-typed node n, environments envG and
well-formed (env I ⊎ env), given no-rte envG env I env n,
then well-formed (env I ⊎ denotN n envG env I env).

This result extends by fixpoint induction to program deno-
tations. Freedom from run-time errors for a node named f on
inputs xs , written no-run-time-errors G f xs , is defined as
no-rte (denot G) env I (denot G f env I) (G.f), where env I

is an environment produced from xs .

IV. COMPILER CORRECTNESS

Together, the definitions and properties described in sec-
tion III permit to strengthen the compiler correctness result.
Before stating the new theorem, we first note that the individ-
ual correctness results from sections III-C and III-D extend
to the fixpoints of section III-B, showing that the functional
semantics agrees with the relational one.
Theorem 6. For every node f and environment env I , if
executing the denotation of f on inputs env I results in an
infinite and error-free environment, then

G ⊢ f(⌈env I⌉f.in) ⇓ ⌈denot G f env I⌉f.out,

where ⌈·⌉l represents the conversion from an environment of
infinite Streamϵs to one on Streams, and its projection onto a
list for the variables in l.

This result enables us to prove the new correctness theorem
shown at right of the original theorem in figure 5. The first
two conditions are unchanged, that is, the compiler must still
produce a result and input values must still be well typed.
But, since the functional semantics assigns a meaning to
all programs, even erroneous ones, the requirement that a
program satisfy the semantic relation is replaced by a precise
requirement on error freedom. The conclusion guarantees the
existence of output streams ys that satisfy both the dataflow
semantics of the source program and the trace semantics
of the generated assembly program. This stronger theorem
provides a practicable proof obligation on source programs,
no-run-time-errors, that guarantees correct compilation.

In general, discharging the proof obligation requires reason-
ing about inputs and dynamic behavior. Often, however, it can
be achieved by static analysis. We propose a simple proof of
concept, check-ops(G), that suffices to guarantee the dynamic



Theorem 1 (Compiler correctness, original).
if compile G f = OK asm

and well-typed-inputs G f xs

and G ⊢ f(xs) ⇓ ys

then asm ⇓ ⟨Load(xs(i)) · Store(ys(i))⟩∞i=0

Theorem 5 (Compiler correctness, new).
if compile G f = OK asm

and well-typed-inputs G f xs

and no-run-time-errors G f xs

then ∃ys, G ⊢ f(xs) ⇓ ys ∧ asm ⇓ ⟨Load(xs(i)) · Store(ys(i))⟩∞i=0

Fig. 5: At left, the original Vélus correctness theorem [6], [9], at right, our new theorem

condition no-run-time-errors G f xs . Our version of Vélus
prints a warning if check-ops(G) = F. If compilation succeeds
with no warnings, then the generated assembly program is
guaranteed to be correct for well-typed inputs. Otherwise,
the programmer is responsible for ensuring, and eventually
proving, that run-time errors never occur.

Theorem 5 states that the generated assembly program can
produce the desired trace. We also show, moreover, thanks
to CompCert’s determinism theorems, that this is the only
trace possible in an environment where loads return successive
values from input streams. That is, a corollary strengthens the
conclusion to ∃!ys, · · · ∧ (asm ∥ envxs) ⇓ ⟨· · · ⟩∞i=0.

A. A Simple Static Check

The no-run-time-errors predicate is an obligation that, in
general, requires reasoning about a program from precondi-
tions and invariants, or otherwise analyzing the program source
in one way or another. Since the compiler correctness theorem
does not apply when errors occur, any analysis should be
applied to the dataflow source program rather than to the
generated code. In some cases, a simple check suffices to rule
out run-time errors by requiring (i) that a program never casts
floats to integers, which fails on extreme values, (ii) that for
integer divisions or modulos, the second argument is a constant
that is neither zero nor minus one, and (iii) that for bitwise shift
operations, the second argument is a constant that is strictly
less than the word size of the target architecture. The second
condition is restrictive but still useful for embedded control
software that only uses integer division for binary search in
lookup tables. We implemented a Rocq function check-ops
that returns true if the above conditions are met and prove
that this implies no-run-time-errors.

Theorem 7. For a node f in a well-typed program G, if
check-ops(G) = T then ∀xs, no-run-time-errors G f xs .

This result combined with theorem 5, the new correctness
theorem, guarantees that if check-ops returns true, no run-
time errors occur and that the source dataflow semantics is
preserved by the semantics of the generated assembly.

Theorem 8 (Compiler correctness for checked programs).

if compile G f = OK asm

and well-typed-inputs G f xs

and check-ops(G) = T

then ∃ys, G ⊢ f(xs) ⇓ ys

∧ asm ⇓ ⟨Load(xs(i)) · Store(ys(i))⟩∞i=0

V. RELATED WORK AND DISCUSSION

We aim for a verified compiler with a semantics that is as
simple and direct as possible within the constraints of an in-
teractive theorem prover. Dataflow synchronous languages are
pure functional languages whose basic values are potentially
infinite sequences. It is thus natural to associate a program
with a function over streams of type

Stream α1 × · · · × Stream αn

→ Stream β1 × · · · × Stream βm.

Existence and determinism are intrinsic properties of such
functions, whereas they must be separately proved for rela-
tional definitions, that is, for definitions by predicate. The ear-
lier sections essentially present the choices and compromises
that we made to realize the ideal of a functional semantics in
our context. The related work can also be understood from
this perspective.

General-purpose functional languages, like Haskell or a
subset of OCaml with Lazy streams, are not used to program
safety-critical embedded control software because of the need
to statically determine the memory use and execution time
of generated code. They can, however, be used to define
the semantics of dataflow synchronous languages [16], [18].
Transferring such definitions into an interactive theorem prover
requires respecting the constraints of the underlying formal
logic: inductive definitions must terminate, coinductive defini-
tions must produce, and domain-theoretic definitions require
proof of continuity. All theorem provers address these con-
straints in one way or another, and many solutions have been
developed, see [40, §7] for some historical references.

HOLCF [34] is an extension to the Isabelle interactive
theorem prover [35] that combines the HOL and LCF logical
systems. It includes a formalization of cpos and continuous
functions, and provides mechanisms for defining and reasoning
about (partial) recursive functions and infinite values. These
features are applied to formalize I/O automata [33], [32],
and notably to model execution traces as potentially infinite
sequences. Unlike the constructive sequences underlying our
development [36], the sequence type formalized in HOLCF
allows distinguishing finite total sequences, finite partial se-
quences, and infinite sequences [33, §6.2]:

domain (α)seq = nil | (HD : α)#(lazy(TL : (α)seq)).

The explicit nil constructor that marks the end of a finite
sequence is distinct from the ⊥ element implicit in a HOLCF
domain declaration. This makes it possible to model both



automata that terminate and those that diverge by perform-
ing infinitely many internal transitions. Since our definitions
in section III never refer explicitly to ϵ, we believe that they
would transfer directly to the classical context of HOLCF.
Certain proof details may even be simpler.

A defining feature of Rocq is that it is both an interactive
theorem prover and a programming language. It is natural
in this setting to focus on constructive definitions and, as
explained in section II-C, the cpo library [36] does so. In
principle, building on this library means that our semantics
is executable. In practice, however, calculating the first few
elements of a simple definition can take hours, even after
extraction and compilation. In terms of specification and
proof, working with the library involves a lot of technical
details, but ultimately enables the development presented in
section III. While coinductive proofs can be difficult in Rocq
due to restrictions on the underlying proof terms, coinduction
loading [24] sufficed to overcome these problems in our case.

The ϵ from the Streamϵ type [36] is also used in interaction
trees [42, Figure 1] (Tau), which additionally model termina-
tion (Ret) and interactions (Vis). In HOL4, ϵ is not required
for co-recursive definitions and divergence may be modelled
directly (Div) [30, §3.3]. In any case, interaction trees are less
natural for a functional dataflow language, where computations
occur both instantaneously (evaluation of expressions) and
infinitely often (parallel composition of node equations).

Another approach to handling partial or non-terminating
functions in interactive theorem provers is to restrict their
domains. Theorems and reduction rules then only apply to
a function when a condition on its inputs is satisfied. For
stream functions, one such requirement is productivity [1][39,
§3]. The syntactic guardedness condition of Lustre, that oth-
erwise cyclic dependencies must be broken by inserting fbys,
precludes many productivity problems, but not those arising
from the sampling operator. Consider, for example, the equa-
tion x = 42 when false. It is productive in a synchronous
semantics, giving a stream of absent values, but not in a Kahn
semantics, where it defines an empty stream, since when is
equivalent to filter.

S. Boulmé and G. Hamon specify dataflow synchronous
operators and programs directly in Rocq [4], [5], exploiting its
dependent type system to encode the clock types of Lustre and
Lucid synchrone [12], [15], [21]. They define a type family
for dependent streams Str A c, indexed by A, the type of
values, and c, a clock that reflects when values are available.
The type of c is clock, which is a synonym for Stream bool.
The constructor for dependent streams has the type

∀c : clock→ lvalueA (hd c)→Str A (tl c)→Str A c.

The first argument, usually inferred, specifies the clock on
which the remaining types depend. The second argument is
the head of the stream. It has type lvalue A bool, which has
constructors for present values, v : lvalueA T, absent values,
abs : lvalueA F, and indeterminate values, fail : lvalueA T.
Indeterminate values are used to define a clocked stream ⊥(c)
from which least fixpoints are built. They are successively

replaced by present values, as mutually recursive definitions
are evaluated, and disappear completely from streams in well-
formed programs. Reasoning about a program by unfolding
its fixpoint requires proof that none of its streams depends
instantaneously on itself.

Expressing the typing and clock-typing rules as dependent
types allows semantic operators to be defined as functions
using just the cases of the corresponding relational defini-
tions. Unwanted cases are ruled out by construction. Partial
arithmetic and logical operators are not considered in the
above development and their treatment would surely require
more sophisticated dependent types. With enough wizardry,
including, for example, the use of heterogeneous lists [17, §9],
it might not be impossible to follow this approach in a verified
compiler. The main obstacle would seem to be the interlocking
constraints between the types representing the syntax of a pro-
gram being compiled and those representing its semantics. The
compiler would have to build these, essentially validating the
typing rules in the process and thereby losing one advantage
of the shallow embedding. Proving properties would require
manipulating dependent terms with Rocq tactics. We took a
different approach.

In the coiterative semantics of [16], length-preserving (syn-
chronous) stream functions are characterized by an initial state
of type S and a step function of type

S × (α1 × · · · × αn) → S × (β1 × · · · × βm).

The composition of individual operators gives a state and step
function for a complete program. Iterating this step function
from the initial state with successive values from input streams
gives successive values of output streams. By making the
state explicit, it becomes possible to determine whether or not
program execution time and memory use are bounded. This
semantics is thus well suited for reasoning about compilation,
and for defining interpreters and executable semantics [18].
Programs can be distinguished by their internal structure,
which must be explicitly abstracted to obtain the input/out-
put equivalence intrinsic to a stream semantics. Non-length-
preserving functions like when and merge are treated by
adding an explicit absent value. Obtaining a Kahn semantics
requires to explicitly model buffering.

While our development is more complex than strictly neces-
sary for a synchronous semantics, it lays the groundwork for a
simple correspondence with a Kahn semantics by mapping abs
to ϵ [28, Chapter 3]. Reasoning in a Kahn semantics is prefer-
able because there is no need to account for absence [10], [23]
and operator definitions are simpler, notably for fby. A formal
correspondence would permit to transfer verified properties
to the synchronous model, which specifies the behavior of
generated code by making precise when values are calculated
and used, and ultimately to the generated assembly.
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