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Abstract—Let F be a finite field. We prove that there is an
MSO-transduction which, given an F-representable matroid of
path-width 𝑘 , produces a branch-decomposition of width at most
𝑓 (𝑘), for some function 𝑓 . As a corollary, any recognizable
property of F-representable matroids with bounded path-width is
definable in MSO logic, and therefore recognizability is equivalent
to MSO-definability on classes of F-representable matroids of
bounded path-width. This generalizes the result of Bojańczyk,
Grohe and Pilipczuk [Logical Methods in Computer Science 17(1),
2021] which asserts the equivalence of the two notions on graphs
of bounded linear clique-width.

Index Terms—recognisability, definability, monadic second-
order logic, decomposition-width, transduction, matroid, branch-
width, path-width

I. INTRODUCTION

A tree-like decomposition, which is obtained from recursive
separations of a graph, has been widely used in various fields
of computer science such as algorithms design, databases,
and logic. Different notions of separations lead to different
decompositions like tree-decomposition, branch-decomposition,
rank-decomposition and carving-decomposition, to name a few.
Such a decomposition is especially handy for designing efficient
algorithms. When the complexity of separations is bounded,
the information that can be communicated across a separation
is limited and this allows an efficient processing of the entire
graph in a bottom-up manner following the tree structure.

A prominent example of algorithms utilizing tree-like
decompositions is Courcelle’s theorem [1]. This theorem states
that if a graph property Π is definable in monadic second-order
logic of the second kind with modular counting predicates
(CMSO2) , then the property is recognizable in the sense that
for each 𝑘 , there is a tree automaton that can recognise the
encodings of tree-decompositions of width at most 𝑘 of graphs
in Π. Courcelle [1] conjectured that the converse statement
holds. This conjecture was later proven by Bojańczyk and
Pilipczuk [2], [3], establishing that for graphs of bounded tree-
width, definability in CMSO2 is equivalent to recognizability.

It is well known that graphs of bounded tree-width have
bounded clique-width, and MSO1 logic is not weaker than
MSO2 logic on graphs of bounded tree-width. Courcelle,
Makowsky, and Rotics [4] extended Courcelle’s theorem for
tree-width to fixed-parameter tractability of CMSO1-model
checking on graphs of bounded clique-width. The question of
whether CMSO1-definability and recognizability are equivalent
on graphs of bounded clique-width was partially answered by
Bojańczyk, Grohe, and Pilipczuk [5], who showed that the
equivalence holds on graphs of bounded linear clique-width.

A common generalization of tree-width and clique-width
of a graph is the branch-width of a binary matroid. For any
graph 𝐺, one can associate a graphic matroid 𝑀𝐺 whose
bases are precisely the edge sets of 𝐺 forming a maximal
acyclic subgraph of 𝐺 and 𝑀𝐺 is representable over the binary
field F2. It is known that the branch-width of 𝑀𝐺 equals the
branch-width of 𝐺 minus one when 𝐺 is bridgeless [6]. As the
tree-width and the branch-width of a graph is bounded by a
constant factor of each other, branch-width of a binary matroid
generalises tree-width of a graph. On the other hand, clique-
width is functionally equivalent to rank-width, that is, rw(𝐺) ≤
cw(𝐺) ≤ 2rw(𝐺)+1 − 1 [7], and the rank-width of a graph can
be associated with the branch-width of a binary matroid in the
following way. For a graph 𝐺 on the vertex set {1, . . . , 𝑛}, we
define a so-called partitioned matroid 𝑀: the ground set of
𝑀 consists of 2𝑛 elements {𝑒1, . . . , 𝑒𝑛} ∪ {𝑣1, . . . , 𝑣𝑛}, where
𝑒𝑖’s are the standard basis of F𝑛2 , and each 𝑣𝑖 is the vector∑

𝑗∈𝑁 (𝑖) 𝑒 𝑗 . Additionally, the ground set of 𝑀 is equipped with
the partition {{𝑒𝑖 , 𝑣𝑖} : 𝑖 ∈ [𝑛]}, and the branch-width of 𝑀

is the width of a branch-decomposition of 𝑀 which assigns
the parts of the partition to the leaves, and not the individual
elements of the ground set. It can be easily shown that the
branch-width of 𝑀 equals twice the rank-width of 𝐺 [8].

Hliněný [9] proved a generalization of [1] and [4] for
matroids representable over any finite field F: if a class Π of F-
representable matroids is CMSO-definable on F-representable



matroids of bounded branch-width, then the encodings of
branch-decompositions of bounded width of matroids in Π are
recognised by a tree automaton. It is thus natural to conjecture
that on F-representable matroids of bounded branch-width, F
finite, definability in CMSO logic on matroids is equivalent
to recognizability.

The main result of this paper is that recognizability and
CMSO-definability are equivalent on F-representable matroids
of bounded path-width, for a finite field F, thus partially
establishing the conjecture (Theorem III.1). At the heart of our
proof lies an MSO-transduction 𝜏𝑘 , for each integer 𝑘 ≥ 0,
which nondeterministically produces encodings of some branch-
decompositions of width at most 𝑓 (𝑘), from a F-representable
matroid of path-width 𝑘 given by its independence represen-
tation (Theorem III.2). Once such an MSO-transduction 𝜏𝑘
is demonstrated, a standard argument using the Backwards
Translation Theorem [10] then implies the claimed result: if
encodings of branch-decompositions of width at most 𝑓 (𝑘)
of a class ℒ can be recognised by a tree automaton, then
these encodings form a CMSO-definable class [1, Proposition
5.4]. Then the Backwards Translation Theorem implies that
the matroids on which 𝜏𝑘 produces such encodings of branch-
decompositions of width at most 𝑓 (𝑘) is CMSO-definable as
well. On the class of F-representable matroids of path-width
at most 𝑘 , these matroids coincide with ℒ.

In fact, we prove the conjecture for a more general class
of matroids than the class of matroids representable over a
finite field F; the condition of F-representability in the previous
paragraph can be replaced by the so-called strongly-pigeonhole
property. This property relies on an alternative width, namely
on decomposition-width (see Subsection II-A), which was
independently introduced by Král’ [11] and Strozecki [12]
in order to extend Hliněný’s theorem [9]. The branch-width is
bounded by the decomposition-width but the decomposition-
width is not necessarily bounded by a function of the branch-
width. When a class of matroids has the property that the two
measures are functionally equivalent, we say that the class is
strongly-pigeonhole. This is the case for the class of matroids
representable over a finite field. It was shown in [13] that,
besides F-representable matroids for finite F, there are other
classes of matroids which are strongly-pigeonhole such as
the fundamental transversal matroids, lattice path matroids, 3-
connected bicircular matroids and 3-connected H-gain graphic
matroids with a finite group H.

To obtain our main result, we consider an algebra on so-
called 𝑘-ported set systems to rewrite a matroid of bounded
path-width (Subsection II-E). For a strongly-pigeonhole class
of matroids of bounded path-width, such a rewriting system of
a matroid allows us to view the linearised decomposition as a
word over a finite alphabet. Then, we follow the approaches
taken by the previous works [5], [2]. Using Simon’s Factori-
sation Forest Theorem, the word can be recursively factored
into subwords depicted by a bounded depth factorisation tree.
The construction of the MSO-transduction from strongly-
pigeonhole matroids of bounded path-width to encodings of a
decomposition of bounded width is done inductively based on

the depth of the factorisation tree.
A key technical issue encountered when following this

approach is that, while in the binary case we can guess the
bipartition into two 𝑘-ported set systems, we cannot guess the
unranked factorisation (see Section IV for the definition of the
factorisation). Instead of guessing the unranked factorisation,
we prove the existence of an equivalence relation, which can
be used to partition the elements of the unranked factorisation
and which has the property that we can guess the unranked
factorisation when restricted to each equivalence class through a
suitable colouring of the elements in the ground set. However,
we can prove the existence of this colouring only in some
special case of unranked factorisation (called without trivial
hyperedges). In order to deal with the other cases, we show
that one can modify the rewriting with 𝑘-ported set systems
and obtain another one without trivial hyperedges, and we
strongly rely on the fact that the rewriting with 𝑘-ported set
systems is a factor of a word defining a matroid. It is worth
mentioning that the other places where we use the fact that
the input is a matroid is for showing that the rooted layout
computed by the MSO-transduction has small width.

Related works: The extension of the well-established
connection between MSO, Automata, and algebra from graphs
to representable matroids has already been investigated in [14],
in which the author also unify the results of this kind
under category theory. It is known that, if given by the null
representation, the case of F-representable matroids of bounded
branch-width reduces to the case of graphs [14, Theorem 6.2]
(see also [15], [16]). In our present work, we deal with matroids
described by the independence representation. This standard
representation is a priori significantly less descriptive than
the null representation. Indeed, in the former, a representation
is fixed and given as part of the input, while the latter only
describes which ground subset is an independent. Clearly, the
independence representation can be obtained within MSO from
the null representation. However, whether an MSO-transduction
can produce the null representation of an F-representable
matroid given by its independence representation is unknown
in the general case, and we conjecture a negative answer to
this question.1 Hence, our result is not implied by the results
from [14]. Furthermore, even if our above conjecture turns
out to be wrong, using the null representation prevents the
generalization to classes of non-representable matroids for
which MSO is still tractable, e.g., the previously-mentioned
examples from [13]. In contrast, our technique does not rely
on the representation, and do work for strongly-pigeonhole
matroids which are not representable.

Outline: In Section II we present necessary terminologies.
In Section III we state our main results, namely Theorems III.1
and III.2, and we prove the former assuming the latter. The
proof of Theorem III.2 is presented in Section IV. Due to space
constraints, most of the proofs are omitted.

1By tuning our construction, we could actually obtain such a transduction
for representable matroids of bounded linear-branch-width.



II. PRELIMINARIES

The set of positive integers (including 0) is denoted by N
and for a positive integer 𝑛, the set {1, . . . , 𝑛} of integers
is denoted as [𝑛]. For 𝑚, 𝑛 ∈ N, we write J𝑚, 𝑛K for the
interval {𝑚, . . . , 𝑛}. For a set 𝑉 and 𝑥 ∈ 𝑉 , the singleton {𝑥}
shall be often written simply as 𝑥. The power set of a finite
set 𝑉 is denoted by 2𝑉 , the complement of a subset 𝑋 of 𝑉
is denoted by 𝑉 \ 𝑋 (or 𝑋 for short when 𝑉 is clear from
the context) and we write |𝑉 | to denote the size of 𝑉 . For an
equivalence relation ≡ on 𝑉 × 𝑉 , we denote by 𝑉/≡ the set
of equivalence classes of ≡ and we write [𝑌 ]≡ to denote the
equivalence class of 𝑌 ∈ 𝑉 . Recall that the set of equivalence
classes forms a partition.

A set system S is a pair (𝑆,S) where 𝑆 is a finite set and S is
a collection of subsets of 𝑆. We refer to 𝑆 as the ground set and
to members of S as hyperedges. We use boldface capital letters
to denote set systems, e.g., S, M; capital letters for ground sets,
e.g., 𝑆, 𝑀; and calligraphic letters for set of hyperedges, e.g., S,
M. We follow [17] for our graph terminology. For a graph G,
we denote by 𝑉 (G) its vertex set, and by 𝐸 (G) its edge set;
an edge between 𝑥 and 𝑦 in an undirected graph is denoted
by 𝑥𝑦 (equivalently 𝑦𝑥). It is common to call vertices of a tree
nodes. A caterpillar is a tree where the remaining graph after
removing the leaves is a path. A rooted tree is a tree T with a
distinguished node called the root and denoted root(T).
A. Decomposition width

Let S be a set system, and 𝑈 a subset of 𝑆. Two subsets 𝑋

and 𝑌 of 𝑈 are 𝑈-equivalent, denoted by 𝑋 ≡𝑈
S 𝑌 , when, for

all 𝑍 ⊆ 𝑈, the set 𝑋 ∪ 𝑍 ∈ S if and only if 𝑌 ∪ 𝑍 ∈ S. Note
that ≡𝑈

S is an equivalence relation on subsets of 𝑈. Intuitively,
subsets of 𝑈 that are ≡𝑈

S -equivalent are indistinguishable by
any subset of 𝑈. Geometrically, we may think of the ≡𝑈

S -
equivalence classes as the possible “shadows” of subsets of 𝑈
when viewed from 𝑈. Computationally, for a subset 𝑍 of 𝐸 ,
we can think of the ≡𝑈

S -equivalence class that contains 𝑍∩𝑈 as
the partial evaluations of membership in S when we have only
looked at 𝑈. We let shadowS (𝑈) be the number of equivalence
classes of ≡𝑈

S for the set system S.
If 𝑆 is a finite set, a rooted layout of 𝑆 is a pair (T, 𝛿) formed

by a rooted tree T and a bijection 𝛿 : 𝑆 → 𝐿T between 𝑆 and
the set 𝐿T of leaves2 of T. For a rooted layout (T, 𝛿) and
a node 𝑣 of T, we denote by 𝑆𝑣 ⊆ 𝑆 the set of elements 𝑠

such that 𝑣 is on the unique path between root(T) and 𝛿(𝑠).
A rooted linear layout is a rooted layout (T, 𝛿) where T is a
caterpillar and root(T) is an internal node which is adjacent
to at most one node.

Definition II.1. Let 𝑓 : 2𝑆→N be a set function with 𝑓 (∅) = 0,
and (𝑇, 𝛿) a rooted (linear) layout of 𝑆. The 𝑓 -width of a node
𝑣 of T is defined as

max{ 𝑓 (
⋃
𝑤∈𝐹

𝑆𝑤) | 𝐹 is a subset of children of 𝑣},

2The root is never considered as a leaf. When 𝑆 is a singleton {𝑠}, the
only rooted layout of 𝑆 by convention is (𝑇, 𝛿 ) where 𝑇 is the 2-node tree
consisting in the root and a leaf 𝛿 (𝑠) .

and the 𝑓 -width of (T, 𝛿) is defined as the maximum 𝑓 -width
over all nodes of T. The (linear) 𝑓 -width of 𝑆 is defined as
the minimum 𝑓 -width over all rooted (linear) layouts (T, 𝛿)
of 𝑆. The (linear) decompostion-width of a set system S is the
(linear) shadowS-width of 𝑆, denoted by dw(S) (ldw(S)).

It is worth mentioning that our definition of rooted layout
is, contrary to the usual definition in the literature, not binary,
but as one checks easily, any rooted layout can be binarised in
the usual way by taking any linear ordering of the children of
a node with more than two children and still keeps the same
width. As in [5], the use of unranked rooted trees is important,
otherwise we won’t be able to transduce a decomposition since
linear orderings cannot be defined in MSO logic.

B. Matroids

We follow [18] for our matroid terminology. Consider a set
system M = (𝑀,M) where the following are satisfied:

C1. ∅ ∉ M.
C2. If 𝐶 ∈ M and 𝑋 ⊊ 𝐶, then 𝑋 ∉ M.
C3. If 𝐶1 and 𝐶2 are distinct members of M and there

is 𝑒 ∈ 𝐶1 ∩ 𝐶2, then there is some 𝐶3 ∈ M where
𝐶3 ⊆ (𝐶1 ∪ 𝐶2) − 𝑒.

When this is the case, we say that M is a matroid circuit-
description and call it simply a matroid. 3 For a matroid
circuit-description M, the rank function of M is the function
rM : 2𝑀 → N where, for 𝑋 ⊆ 𝑀 , we have

rM (𝑋) = max{|𝐼 | | 𝐼 ⊆ 𝑋, ∀𝑌 ⊆ 𝐼, 𝑌 ∉ M}

(When 𝐼 ⊆ 𝑀 is such that none of its subsets belongs
to M, 𝐼 is called an independent.) The local connectivity
function of M is ⊓M : 2𝑀 × 2𝑀 → N where for 𝑋,𝑌 ⊆
𝑀 , ⊓M (𝑋,𝑌 ) = rM (𝑋) + rM (𝑌 ) − rM (𝑋 ∪ 𝑌 ). The connectivity
function of M is 𝜆M : 2𝑀 → N given by 𝜆M (𝑋) = ⊓M (𝑋, 𝑋).
The branch-width of M, denoted by bw(M), is the 𝜆M-width
of M, and its path-width, denoted by pw(M), is its linear
𝜆M-width. It is easy to check that 𝜆M (𝑋) ≤ shadowM (𝑋) for
any matroid M and 𝑋 ⊆ 𝑀. As observed in [19], [11], [12],
(path-width) branch-width and (linear) decomposition-width
are essentially the same measure on matroids representable
over a fixed finite field, i.e., one is bounded by a function of
the other.

Proposition II.2 ([19], [11], [12]). For every 𝑋 ⊆ 𝑀 of
a matroid M, 𝜆M (𝑋) ≤ shadowM (𝑋). Moreover, for each
prime power 𝑞, there is a computable function 𝑓𝑞 such that,
if M is a GF(𝑞)-representable matroid, then shadowM (𝑋) ≤
𝑓𝑞 (𝜆M (𝑋)) for every subset 𝑋 ⊆ 𝐸 (𝑀).

One can ask for which other matroids this is still the case.
Funk, Mayhew and Newman proposed in [19] the following
class of matroids. A class of matroids 𝒞 is strongly-pigeonhole
if there is a function 𝑓 : N → N such that for every
matroid M ∈ 𝒞 and every 𝑋 ⊆ 𝑀 , shadowM (𝑋) ≤ 𝑓 (𝜆M (𝑋)).

3Matroids can be defined by several different set systems which are all
equivalent. We will however stick here with the circuit-descriptions unless
stated otherwise. We refer to [18] for more information on matroids.



By Proposition II.2, the class of matroids representable over
a fixed finite field is strongly-pigeonhole. Other strongly-
pigeonhole classes of matroids are the fundamental transversal
matroids, 3-connected bicircular matroids, and 3-connected
H-gain graphic matroids with a finite group H [13].

For a matroid M, and 𝑆 ⊆ 𝑀, let M|𝑆 be the set system
with ground set 𝑆 and set of hyperedges {𝐶 ∈ M |𝐶 ⊆ 𝑆}, and
let M/𝑆 be the set system with ground set 𝑀 \ 𝑆 and whose
set of hyperedges are the minimal elements of {𝐶 | ∅ ≠ 𝐶 ⊆
𝑀 \ 𝑆 and there is 𝑇 ⊆ 𝑆 with 𝐶 ∪ 𝑇 ∈ M}. It is well-known
that both M|𝑆 and M/𝑆 are matroids, c.f. [18, Chapter 3]. The
following relate layouts of small 𝜆M-width of a matroid M
with layouts of small 𝜆N-width of a minor N := (M/𝐴) |𝐵
of M and will be used in order to prove that the tree produced
by our transduction has small width.

Lemma II.3. Let M be a matroid and let 𝑈 be a subset of 𝑀 .
For every 𝑋 ⊆ 𝑈, 𝜆M (𝑋) ≤ 𝜆M (𝑈) + ⊓M (𝑋,𝑈 \ 𝑋).

Lemma II.4. Let M be a matroid, and 𝐴 and 𝐵 be disjoint
subsets of 𝑀 . If (T, 𝛿) is a rooted layout of 𝐵 with 𝜆 (M/𝐴) |𝐵-
width 𝑐, then this layout has 𝜆M |𝐵-width at most 𝑐 + ⊓M (𝐵, 𝐴).

C. Monadic second-order logic

Define an extended vocabulary to be a finite set of relation
and predicate names, each associated with an arity in N. An
extended relational structure A over an extended vocabulary Σ

(Σ-structure for short) consists of a set 𝐴, called the universe,
and, for each relation name R (resp. predicate name P) of Σ

of arity 𝑟 , a relation RA ⊆ 𝐴𝑟 (resp. a predicate PA ⊆ (2𝐴)𝑟 ).
We use the following extended vocabularies for representing
graphs, set systems, and layouts of set systems.

Graphs. A graph is represented by a relational {edg}-structure
G with the vertex set as universe and in which edg(𝑥, 𝑦) holds
if and only if 𝑥𝑦 is an edge. If in addition, each vertex is
labeled with a label from a finite set Σ, called Σ-labeled graphs,
then it can be represented by the {edg, (Va)𝑎∈Σ}-structure G
where 𝑥 ∈ Va if 𝑥 is labeled 𝑎.

Set systems. A set system is viewed as an extended relational
{hyperedge}-structure in which the universe of the structure
is the ground set of the set system and the unary predicate
hyperedge selects a set 𝑋 whenever 𝑋 is a hyperedge. For
example, if a given set system is a matroid with circuits (inde-
pendent sets, resp.) as hyperedges, the predicate hyperedge
indicates whether 𝑋 is a circuit (independent set, resp.).

Rooted layouts. A rooted layout of a set 𝑆 is seen as a relational
{prec,map}-structure in which the universe is the disjoint
union of 𝑆 and the set of nodes of the rooted tree. There
are two binary relations, namely prec which is transitive and
reflexive and which selects pairs (𝑛, 𝑚) of tree nodes where 𝑛

is a precedent of 𝑚 (i.e., a, possibly non-strict, ancestor of 𝑚),
and map which is an injective function selecting pairs (𝑥, 𝑛)
whenever 𝑥 ∈ 𝑆 is mapped to the leaf 𝑛 of the rooted tree. Tree
nodes can be recovered as those elements that are their own
precedent (by reflexivity of prec) and elements of 𝑆 can be
recovered as the rest of the universe.

Rooted layouts of (extended) relational structures. A
rooted layout of an (extended) relational structure will be
represented by the union of the (extended) relational structure
and the relational structure representing the rooted layout of
its ground set. For instance, the rooted layout of a set system
is a {prec,map, hyperedge}-structure (S∪T), where 𝑆 is the
subset of the universe of T which are not tree nodes and which
is mapped to nodes according to map.

To describe properties of relational structures, we use
monadic second order logic (MSO logic). We refer to [10]
for a complete presentation of MSO logic. This logic has
two types of variables, namely FO variables (denoted with
lower-case letters) and set variables (denoted with upper-case
letters), that can be quantified both universally and existentially.
A variable is free in a formula if it is not bound by a quantifier.
We write 𝜑(𝑥1, . . . , 𝑥𝑝 , 𝑋1, . . . , 𝑋𝑞) to say that 𝑥1, . . . , 𝑥𝑝 and
𝑋1, . . . , 𝑋𝑞 are among the free variables of 𝜑. An MSO
sentence is an MSO formula without free variables. If a
sentence 𝜙 is true in a structure A, we say that A models 𝜙,
written as A |= 𝜙. For an extended vocabulary Σ, let us denote
by SΣ the set of relational structures over the vocabulary Σ. A
class of relational structures over Σ is a subset 𝒞 of SΣ which
is closed under isomorphism. It is MSO-definable if there is
an MSO sentence 𝜑𝒞 such that A ∈ 𝒞 if and only if A |= 𝜑𝒞 .

D. Monadic second-order transductions

We may also use MSO logic to describe transformations
of relational structures. Such transformations are described in
terms of MSO-transduction, that we now briefly introduce.
We refer to [10] for a detailed introduction, and we use the
equivalent presentation given in [2] in which transductions
are divided into “atomic” operations – the class of MSO-
transductions being indeed closed under composition [10,
Theorem 1.39]. Given two (extended) vocabularies Σ and Γ,
define a Σ-to-Γ MSO-transduction as a set of pairs in SΣ ×SΓ,
which can be defined using the MSO logic, as a composition
of the three following atomic transductions:

Copying: For each integer 𝑘 , define the 𝑘-copying of a Σ-
structure A to be 𝑘 disjoint copies of A, with the following
fresh predicates added to the vocabulary: copy(𝑥, 𝑦), and, for
each 𝑖 ∈ [𝑘], layer𝑖 (𝑥). The binary predicate copy checks
whether two elements are copies of the same element of the
original structure, whereas the unary predicate layer𝑖 checks
whether an element belongs to the 𝑖-th copy (or 𝑖-th layer).

Coloring: For each integer 𝑝 ≥ 1, define the 𝑝-coloring of a
Σ-structure A to be any structure obtained from A by adding 𝑝

unary relations X1, . . . ,X𝑝 to the vocabulary and interpreting
them as any subset of the universe.

Interpreting: The syntax of an MSO-interpretation consists
in an input vocabulary Σ, an output vocabulary Γ, and the
following family of MSO formulas over Σ: 𝜑dom, 𝜑univ (𝑥),
and, for each relation name 𝑅 (resp. predicate name P) of
arity 𝑟 , a formula 𝜑𝑅 (𝑥1, . . . , 𝑥𝑟 ) (resp. 𝜑P (𝑋1, . . . , 𝑋𝑟 )). The
formula 𝜑dom is a sentence, which filters the inputs of the
transduction. More precisely, a Σ-structure A will admit an



output by the interpretation if and only if A |= 𝜑dom. When
this is the case, the output is defined as the Γ-structure
whose universe is the restriction of the input universe to
those elements 𝑥 that satisfy 𝜑univ (𝑥), and in which each
relation name 𝑅 (resp. predicate P) is interpreted as those
tuples (𝑥1, . . . , 𝑥𝑟 ) (resp. (𝑋1, . . . , 𝑋𝑟 )) that satisfy the corre-
sponding formula 𝜑𝑅 (𝑥1, . . . , 𝑥𝑟 ) (resp. 𝜑P (𝑋1, . . . , 𝑋𝑟 )).

Interpreting is a partial function, copying is a total function,
and coloring is not a function (but has at least one output for
each input). A corollary of [10, Theorem 7.14] says that for
every Σ-to-Γ MSO-transduction 𝜏, there are MSO-formulas on
Σ describing 𝜏(M) from M. We say that an MSO-transduction
is effectively given if these formulas are computable. The
quantifier height of the transduction is the maximum quantifier
height of these formulas. There are two other measures on
MSO-transductions: the number of copies, and the number
of parameters (i.e., the number of used colors). We speak
of 𝑘-copying 𝑝-parameter MSO-transductions of quantifier
height ℎ, and we refer to [10] for precise definitions.

One of the most important features of MSO-transductions
is the Backwards Translation Theorem [10, Theorem 1.40].
It says that the pre-image of an MSO-definable class by an
MSO-transduction is itself MSO-definable. Another important
property of MSO-transductions is the Parallel Application
Lemma [5] that shows how an MSO-transduction may act
in parallel on an unbounded number of disjoint structures.
Let Σ be a vocabulary and A1, . . . ,A𝑛 be disjoint Σ-structures.
Define the disjoint union of structures A1, . . . ,A𝑛, denoted
by

⊔
0<𝑖≤𝑛 A𝑖 , as the following structure over the vocabu-

lary Σ ∪ {∼} where ∼ is a new binary relation name:

• the universe of
⊔

0<𝑖≤𝑛 A𝑖 is the union of the universes
of the A𝑖s (which are required to be disjoint);

• for each relation or predicate name from Σ, its interpre-
tation in

⊔
0<𝑖≤𝑛 A𝑖 is the union of its interpretations in

each of the A𝑖s;
• the interpretation of ∼ in

⊔
0<𝑖≤𝑛 A𝑖 is the set of pairs of

elements that originate from the same A𝑖 .

Lemma II.5 (Parallel Application Lemma [5]). Let 𝜏 be a 𝑘-
copying 𝑝-parameters Σ-to-Γ MSO-transduction of quantifier-
height 𝑞. Then there is a 𝑘-copying 𝑝-parameters (Σ ∪ {∼})-
to-(Γ ∪ {∼}) MSO-transduction 𝜏, of quantifier-height max
{𝑞, 𝑝 + 1}, such that, for every sequence I1, . . . , I𝑛 of Σ-
structures and every sequence O1, . . . ,O𝑛 of Γ-structures, we
have (⊔0<𝑖≤𝑛 I𝑖 ,

⊔
0<𝑖≤𝑛 O𝑖) ∈ 𝜏 if and only if there exists a

permutation 𝜋 of [𝑛] such that (I𝑖 ,O𝜋 (𝑖) ) ∈ 𝜏 for all 𝑖 ∈ [𝑛].

E. Recognisability

We follow the terminology of [10]. A functional signature
is a set of function symbols such that each function symbol 𝑓

is given with a nonnegative integer, the arity of 𝑓 , denoted
by ar( 𝑓 ). Function symbols of arity 0 are called constants.
The set of terms of 𝐹, denoted by 𝑇 (𝐹), is the set defined
inductively as:

base: each constant symbol is a term in 𝑇 (𝐹);

rule: if 𝑓 is a function symbol of arity 𝑘 and 𝑡1, . . . , 𝑡𝑘 are
terms in 𝑇 (𝐹), then 𝑓 (𝑡1, . . . , 𝑡𝑘) is a term in 𝑇 (𝐹).

For a functional signature 𝐹, an 𝐹-algebra M is a set 𝑀

equipped with total functions 𝑓M : 𝑀ar( 𝑓 ) → 𝑀 , for all 𝑓 ∈ 𝐹.
Each term 𝑡 ∈ 𝑇 (𝐹) is associated with an element in 𝑀,
denoted by valM (𝑡), and defined inductively as:

base: if 𝑡 is a constant symbol 𝑐, then valM (𝑡) is 𝑐M;
rule: if 𝑡 is 𝑓 (𝑡1, . . . , 𝑡𝑘), then valM (𝑡) is

𝑓M (valM (𝑡1), . . . , valM (𝑡𝑘)).
If M is an 𝐹-algebra and each element of 𝑀 is equal

to valM (𝑡) for some term 𝑡 in 𝑇 (𝐹), then we say that M
is generated by 𝐹.

We denote by T(𝐹) the 𝐹-algebra where for each 𝑓 ∈ 𝐹,
the function 𝑓T(𝐹 ) is defined as

𝑓T(𝐹 ) (𝑡1, . . . , 𝑡ar(f)) = 𝑓 (𝑡1, . . . , 𝑡ar(f)).

For a functional signature 𝐹 and two 𝐹-algebras M and A,
a function ℎ : 𝑀 → 𝐴 is an 𝐹-algebra homomorphism
if for every 𝑓 ∈ 𝐹 and 𝑚1, . . . , 𝑚ar( 𝑓 ) in 𝑀, we have
ℎ( 𝑓M (𝑚1, . . . , 𝑚ar( 𝑓 ) )) = 𝑓A (ℎ(𝑚1), . . . , ℎ(𝑚ar( 𝑓 ) )). If M is
an 𝐹-algebra, a subset 𝐿 of 𝑀 is said recognisable in M
if 𝐿 = ℎ−1 (𝐶), where ℎ : M → A is an 𝐹-algebra
homomorphism,4 𝐴 is finite and 𝐶 ⊆ 𝐴.

The following result from [10] states that recognisability of
terms is the same as recognisability of subsets of algebras.

Proposition II.6 ([10, Proposition 3.69]). Let M be an 𝐹-
algebra generated by a functional signature 𝐹 and let 𝐿 be
a subset of 𝑀. Then, 𝐿 is recognisable in M if and only if
val−1

M (𝐿) is recognisable in T(𝐹).

Let’s now describe the algebra that generates set systems of
decomposition-width 𝑘 , that is implicit in [19, Lemma 5.2] and
extends the algebra defined in [11], [12] for matroids. Let 𝑘 be
a positive integer. A 𝑘-ported set system is a pair (S, 𝜌) with S
a set system and 𝜌 : 2𝑆 → [𝑘] ∪ {indep, dep} a function such
that 𝜌(𝑋) = indep only if 𝑋 ∈ S. Let 𝑃𝑆𝑘 be a functional
signature consisting of (𝑘 + 2) (𝑘+2)2

binary function symbols
and 16 constant symbols.

For two 𝑘-ported set systems (S1, 𝜌1), (S2, 𝜌2) and a
function 𝑓 : ( [𝑘] ∪ {indep, dep})2 → [𝑘] ∪ {indep, dep}, let
(S1, 𝜌1) ⊕ 𝑓 (S2, 𝜌2) be the 𝑘-ported set system (S, 𝜌) where 𝑆

is the disjoint union of 𝑆1 and 𝑆2 and

S = {𝑋1 ∪ 𝑋2 | 𝑋1 ⊆ 𝑆1, 𝑋2 ⊆ 𝑆2, 𝑓 (𝜌1 (𝑋1), 𝜌2 (𝑋2)) = indep},
𝜌(𝑋) = 𝑓 (𝜌1 (𝑋 ∩ 𝑆1), 𝜌2 (𝑋 ∩ 𝑆2)) for all 𝑋 ⊆ 𝑆.

For each 𝑓 : {0, 1} → {1, 2, indep, dep}, let c 𝑓 be the 𝑘-
ported set system (S, 𝜌) with 𝑆 a singleton, 𝑓 −1 (indep) as
hyperedges, and

𝜌(𝑋) =
{
𝑓 (0) if 𝑋 = ∅,
𝑓 (1) if 𝑋 = 𝑆.

4The definition given in [10, Definition 3.55] is more general and allows
algebras with infinitely many sorts, but we restrict ourselves to the case with
one sort which is enough for our purposes.



Let’s denote by PS𝑘 the 𝑃𝑆𝑘-algebra with binary function
symbols bijectively mapped to the set of binary operations
{⊕ 𝑓 | 𝑓 : ( [𝑘] ∪ {indep, dep})2 → [𝑘] ∪ {indep, dep}}
and constant symbols bijectively mapped to the set
{c 𝑓 | 𝑓 : {0, 1} → {1, 2, indep, dep}}. It is clear that each
term in 𝑇 (𝑃𝑆𝑘) evaluates into a 𝑘-ported set system.

Proposition II.7 ([19, Lemma 5.2]). Let 𝑘 be a fixed integer.
There exists a deterministic MSO-transduction valPS𝑘 such
that if (T, 𝛿) is a rooted binary layout of shadowS-width 𝑘 of
a set system S, then one can label every node of T to obtain
a term 𝑡 in 𝑇 (𝑃𝑆𝑘) so that valPS𝑘 (𝑡) is isomorphic to S.

It is not hard to check that if a set system S is isomorphic
to valPS𝑘 (𝑡) for some term 𝑡 in 𝑇 (𝑃𝑆𝑘), then dw(S) ≤ 𝑘 . One
can therefore use the 𝑃𝑆𝑘-algebra PS𝑘 to define the notion of
recognisability for set systems. A class 𝒞 of set systems is said
to be 𝑘-recognisable if the set {S | S ∈ 𝒞 and dw(S) ≤ 𝑘} is
recognisable in PS𝑘 , and it is recognisable if it is 𝑘-recognisable
for each integer 𝑘 ≥ 0. The following can be obtained by
combining results from [10] and Proposition II.7.

Theorem II.8. If a class of set systems 𝒞 is CMSO-definable,
then it is recognisable.

III. MAIN RESULT

A natural question with regard to Theorem II.8 is whether
its converse is true, generalizing [20, Conjecture 1] which
concerns only graphs, to all set systems including matroids.
Our main result, stated below, is a partial answer, which implies
the results proved in [5] concerning graphs of bounded linear
clique-width, and those from [2] concerning graphs of bounded
path-width. We now state our main result.

Theorem III.1. Let F be a finite field and let 𝒞 be a class of F-
representable matroids. If 𝒞 is recognisable, then the subclass
of 𝒞 consisting of all matroids of path-width at most 𝑘 is
CMSO-definable, for each 𝑘 .

The key ingredient for proving Theorem III.1 is a CMSO-
transduction which, given a F-representable matroid M of
path-width at most 𝑘 , nondeterministically produces a rooted
layout of M of decomposition-width at most 𝑓 (𝑘), for some
function 𝑓 . We actually prove a stronger result, where M
does not need to be F-representable, but only to come from a
strongly-pigeonhole class of matroids.

Theorem III.2. Let 𝑘 be a positive integer and let 𝑔 : N → N
be a function. Then, there exists a constant 𝑐 (depending
only on 𝑘 and 𝑔(ℎ(𝑘)) for some computable function ℎ), and
an MSO-transduction 𝜏 from matroids to rooted layouts of
matroids such that, on every input matroid M, the following
holds:

1) if M is a matroid of path-width at most 𝑘 such that
shadowM (𝑋) ≤ 𝑔(𝜆M (𝑋)) for every 𝑋 ⊆ 𝑀, then 𝜏

outputs at least one rooted layout of M of 𝜆M-width at
most 𝑐, and

2) every output of 𝜏 is a rooted layout of M of 𝜆M-width
at most 𝑐.

The rest of this section is devoted to the proof of Theo-
rem III.1, assuming Theorem III.2. The proof of Theorem III.2
is the purpose of the next section.

Using Theorem III.2, we can prove Theorem III.1 which is a
partial converse to Theorem II.8. However, transducing layouts
is not enough to prove the definability. While this task is easy
when layouts are binary 5, this is less immediate in our case
because the layouts output by Theorem III.2 are unranked. To
overcome this difficulty, we first transfer the recognisability of
input matroids to the recognisability of transduced layouts. To
this end we first prove that we can label rooted layouts with a
finite alphabet so that, for any ordering of the nodes of the tree,
there is an MSO-transduction outputting a labeled binary tree
evaluating into GF(𝑞)-representable matroids. This labeling
is done by relating GF(𝑞)-representable matroids of small
branch-width with graphs of small clique-width, and such a
relation between GF(𝑞)-representable matroids and graphs was
already known for binary matroids, see for instance [8], relation
used for instance to obtain as a corollary of Theorem III.1
(see Corollary III.6) the equivalence between recognisability
and CMSO-definability for graph classes of bounded linear
clique-width, result proved in [5].

Proposition III.3. Let 𝑞 be a prime power and let 𝑘 be a fixed
positive integer. Then, there are a finite alphabet Σ𝑘 of size
at most 𝑔(𝑞, 𝑘), for some computable function 𝑔, an MSO-
transduction 𝜏1 and two deterministic MSO-transductions 𝜏2
and 𝛽 such that, for every GF(𝑞)-representable matroid M
and every rooted layout T of M of 𝜆M-width 𝑘 ,

1) every output 𝑡 ∈ 𝜏1 (M∪T) is a Σ𝑘-labeled tree such that
𝜏2 (𝑡) = M;

2) 𝛽(𝑡, ≤), for every 𝑡 ∈ 𝜏1 (M∪T), is a term 𝑡′ in
𝑇 (𝑃𝑆ℎ (𝑔 (𝑞,𝑘 ) ) ) such that valPSℎ (𝑔 (𝑞,𝑘) ) (𝑡′) = M, where ≤
is any linear ordering of the nodes of T and ℎ is a
computable function.

Secondly, we use an old result by Courcelle linking recognis-
ability of graphs with order-invariant MSO-definability. An or-
dered graph is a graph with a linear ordering6 We call a class L
of ordered graphs order-invariant if, for any graph 𝐺 and any
two linear orderings ≤1 and ≤2, it holds that (𝐺, ≤1) ∈ L if
and only if (𝐺, ≤2) ∈ L. If ≤ is a binary relation symbol,
let’s denote by MSO1 (≤) the set of monadic second-order
formulas over the relational signature {edg, ≤}. A property L
on graphs is said MSO1 (≤)-expressible if the class of ordered
graphs {(𝐺, ≤) | 𝐺 ∈ L, ≤ a linear ordering of 𝐺} is an
order-invariant MSO1-definable property.

Theorem III.4 ([21, Theorem 4.1]). Any MSO1 (≤)-expressible
graph property is recognisable.

5When the rooted layouts are binary, there is an MSO-transduction that
guesses the operations from 𝑃𝑆𝑐 in order to output a term in 𝑇 (𝑃𝑆𝑐 )
evaluating into matroid inputs, where 𝑐 is the constant from Theorem III.2.

6The definition extends to any relational structure, but we stick to graphs
as we only need the result on graphs.



Now, a combination of Proposition III.3 and of Theorem III.4
will allow to transfer the recognisability of input matroids to
the labeled trees output by Proposition III.3. To obtain the
CMSO-definability, we use the following result stating that on
labeled trees recognisability is the same as CMSO-definability.

Proposition III.5 ([1, Sections 4,5]). Let Σ be a finite alphabet.
A family of Σ-labeled trees is recognisable if and only if it is
CMSO-definable.

We are now ready to prove Theorem III.1.

Proof of Theorem III.1: Let 𝑞 and 𝑘 be fixed positive
integers. Let ℳ be a recognisable class of GF(𝑞)-representable
matroids of path-width at most 𝑘 . By Theorem III.2, there
is an MSO-transduction 𝜏 that, given a matroid M in ℳ,
outputs a rooted layout of 𝜆M-width at most 𝑔(𝑘), for some
computable function 𝑔. By Proposition III.3 there is an MSO-
transduction 𝜏′ such that 𝜏′ ◦ 𝜏 outputs a set of Σ𝑘-labeled
rooted trees, for some finite alphabet Σ𝑘 . Let L𝑘 be the set
of Σ𝑘-labeled trees output by the MSO-transduction 𝜏′ ◦ 𝜏 on
inputs matroids from ℳ. Again by Proposition III.3, there is an
MSO-transduction 𝛽 that takes as input T in L𝑘 (≤) and outputs
a term 𝑡 in 𝑇 (𝑃𝑆𝑔 (𝑞,𝑘 ) ), for some computable function 𝑔 and
such that valPS𝑔 (𝑞,𝑘) (𝑡) = M. Because ℳ is recognisable,
we can conclude that 𝛽(L𝑘 (≤)) is also recognisable by
Proposition II.6, Thus by Proposition III.5, 𝛽(L𝑘 (≤)) is
CMSO-definable. Since, for T ∈ 𝜏′ (𝜏(M)) and any two
linear orderings ≤1 and ≤2 of T, 𝛽((T, ≤1)) ∈ 𝛽(L𝑘 (≤))
if and only if 𝛽((T, ≤2)) ∈ 𝛽(L𝑘 (≤)), we can conclude
that L𝑘 is MSO1 (≤)-expressible.7 Hence, by Theorem III.4
L𝑘 is recognisable, and then by Proposition III.5 L𝑘 is
CMSO-definable. By the Backwards Translation Theorem [10,
Theorem 1.40], we can conclude that ℳ is CMSO-definable.

As a corollary we obtain the result from [5] concerning
graph classes of bounded linear clique-width and then the first
result in [2] concerning graph classes of bounded path-width.

Corollary III.6. Let 𝒞 be a class of graphs. Then, on
subclasses of 𝒞 of bounded linear clique-width recognisability
equals CMSO-definability.

Proof: From any graph G, one can associate the binary matroid
M(𝐺) represented by the matrix (𝐼𝑉 (G) 𝐴) over the binary
field F2 where 𝐴 is the adjacency matrix of G and 𝐼𝑉 (G) is the
identity matrix (rows are indexed by 𝑉 (G) and first 𝑛 columns
by 𝑉 (G) and last 𝑛 columns by a copy of 𝑉 (G)). One easily
checks that the matroid M(G) can be computed from G by an
MSO-transduction. It is known that the path-width of M is 2
times the linear clique-width of G and one can compute G by
an MSO-transduction from M (see for instance [8]). Now, one
checks that if 𝒞 is recognisable, then {M(G) | G ∈ 𝒞} is also
recognisable. By Theorem III.1, the subset of {M(G) | G ∈ 𝒞}

7It is worth mentioning that counting predicates can be expressed using the
ordering ≤, that is why we write MSO1 (≤) instead of CMSO1 (≤) .

of path-width 2𝑘 is CMSO-definable, hence the subset of 𝒞
of linear clique-width 𝑘 is CMSO-definable.

Remark. While many of the constructions seem to work for
set systems of small linear decomposition-width, there are
three main technical issues on extending Theorem III.1 to
them. Firstly, a notion of circuit on set systems that behave
well with respect to (linear) decomposition-width is unclear.
Secondly, while we can circumvent it on the special case of
independent set systems – matroids are a special case – by
defining circuits as minimal transversals of hyperedges, we
cannot even prove lemmas similar to Lemmas II.3 and II.4
with the shadow function on independent set systems. This
is the reason why we restrict ourselves to strongly-pigeonhole
matroids in Theorem III.2. Thirdly, even if we circumvent
these two obstacles, we need to prove that any layout (T, 𝛿) of
shadowS-width 𝑘 of a set system S can be labeled so that the
set S is CMSO-definable from the labeled one. Unfortunately
we can prove such a labeling only for GF(𝑞)-representable
matroids, with 𝑞 a prime power (see Proposition III.3), reason
why Theorem III.1 is only stated for them.

IV. PROOF OF THEOREM III.2 : DEFINABILITY FOR
BOUNDED PATH-WIDTH

We are now ready to propose an MSO-transduction for
describing a rooted layout of small 𝜆-width for strongly-
pigeonhole matroids. We recall that there is no hope to describe
a linear layout of small 𝜆-width, otherwise we might be able
to describe in MSO a linear ordering on any set. As in [5],
[2], our proof relies on Simon’s Factorisation Forest Theorem
which will be used to color the universe with a bounded
number of colors and use the Parallel Application Lemma in
order to construct the transduction. Let’s first recall Simon’s
Factorisation Forest Theorem.

Remind that a semi-group is a set 𝑆 equipped with an
associative binary operation. Notice also that 𝐴∗ is the set
of finite words over the alphabet 𝐴, while 𝐴+ is the set
of non-empty finite words over 𝐴, and each equipped with
concatenation · is a semi-group. An idempotent element in a
semi-group (𝑆, ◦) is an element 𝑒 such that 𝑒 ◦ 𝑒 = 𝑒. For two
semi-groups (𝑆1, ◦1) and (𝑆2, ◦2), a semi-group homomorphism
is a function ℎ : 𝑆1 → 𝑆2 such that ℎ(𝑥 ◦1 𝑦) = ℎ(𝑥) ◦2 ℎ(𝑦).

Let (𝑆, ◦) be a semi-group and 𝐴 an alphabet. For a semi-
group homomorphism ℎ : 𝐴+ → 𝑆, an ℎ-factorisation of a
word 𝑤 ∈ 𝐴∗ is a sequence (𝑤1, . . . , 𝑤𝑛) such that

1) 𝑤 = 𝑤1 · 𝑤2 · · · · · 𝑤𝑛,
2) |𝑤𝑖 | < |𝑤 | for all 𝑖 ∈ [𝑛], and
3) ℎ(𝑤1) = ℎ(𝑤2) = · · · = ℎ(𝑤𝑛) is idempotent if 𝑛 ≥ 3.
The ℎ-rank of a word 𝑤 ∈ 𝐴∗ is defined inductively as

follows : single letters have ℎ-rank 1, and for every 𝑤 ∈ 𝐴∗ of
length at least 2, its ℎ-rank is

1 + min
(𝑤1 ,...,𝑤𝑛 ) is an ℎ-factorisation of 𝑤

(
max

1≤𝑖≤𝑛
{ℎ-rank of 𝑤𝑖}

)
.

Imre Simon proved in [22] that the ℎ-rank of any word is
upper-bounded by a function on the size of the target semi-



group, which we refer below with the improvement given in
[23].

Theorem IV.1 (Simon’s Factorisation Forest Theorem [23]).
Let 𝑆 be a finite semi-group and let ℎ : 𝐴∗ → 𝑆 be a semi-
group homomorphism. Then, every word 𝑤 ∈ 𝐴+ has ℎ-rank
at most 3 · |𝑆 |.

A. Bi-ported set systems

We will construct the transduction using an induction based
on Simon’s Factorisation Theorem. For doing so, we need
to associate with each strongly-pigeonhole matroid a word
in a word language and a finite semi-group recognising the
associated word language. We propose here an algebra, based
on the functional signature 𝑃𝑆𝑘 , 𝑘 ≥ 1, and suited for linear
decomposition-width. We first prove that any set system of
linear decomposition-width 𝑘 can be associated with a word
using the functions of the algebra. Then, we show that in
case of matroids, one can furthermore require some more
properties on the words. One can check that our algebra will
not only resume boundaried GF(𝑞)-representable matroids of
bounded branch-width [9], [11], [12], but also bi-interfaced
graphs considered in [2].

Let L and R be prescribed sets of size 𝑘 with distinguished
elements l∅ ∈ L and r∅ ∈ R. We call L and R the left labels and
right labels, respectively. If shadowS (𝑈) and shadowS (𝑈)
are less than or equal to 𝑘 , then we may use subsets of L and R
to label the equivalence classes coming from the left and right
respectively. When this is done, we reserve the distinguished
elements l∅ and r∅ for the equivalence class that contains the
empty set. This motivates the following structure.

Definition IV.2. A bi-ported set system is a tuple S =

(IL, 𝑆, IR;S) where

1) 𝑆 is a finite set called the internal elements,
2) IL and IR are subsets of L × R, called the left interactions

and right interactions, respectively, and
3) S is a subset of IL × 2𝑆 × IR called the hyperedges, such

that: a
a) For each iL ∈ IL, there exist 𝑍 ⊆ 𝑆 and iR ∈ IR such

that (iL, 𝑍, iR) ∈ S. Similarly, for each iR ∈ IR, there
exist 𝑍 ⊆ 𝑆 and iL ∈ IL such that (iL, 𝑍, iR) ∈ S.

b) There is a rightwards relabelling function 𝜌R :
L ×2𝑆 → L and a leftwards relabelling function
𝜌L : 2𝑆 × R → R such that ((lL, rL), 𝑍, (lR, rR)) ∈
IL × 2𝑆 × IR is a hyperedge only if 𝜌R (lL, 𝑍) = lR

and rL = 𝜌L (𝑍, rR). Furthermore 𝜌R (l∅ , ∅) = l∅

and r∅ = 𝜌L (∅, r∅).
Any hyperedge ((lL, rL), ∅, (lR, rR)) such that lL ≠ l∅

and rR ≠ r∅ is called a trivial hyperedge.

Notice that for each 𝑋 ⊆ 𝑆, lL ∈ L and rR ∈ R, there are
unique rL ∈ R and lR ∈ L such that ((lL, rL), 𝑋, (lR, rR)) ∈ S. If
S is a set system and (𝐴, 𝐵, 𝐶) is a tri-partition of 𝑆, we would
like bi-ported set systems on 𝐴, 𝐵, and 𝐶, which describe how
to combine subsets in 𝐴, 𝐵, and 𝐶 in order to obtain a set

in S. To do so, we introduce a concatenation operation on
bi-ported set systems.

For two bi-ported set systems S1 = (IL
1 , 𝑆1, IR

1 ;S1) and
S2 = (IL

2 , 𝑆2, IR
2 ;S2) with IR

1 = IL
2 , we define the concatenation

S1 ⊙ S2 as the bi-ported set system S = (IL
1 , 𝑆1⊔𝑆2, IR

2 ;S) where
the elements of S are of the form (i1, 𝑍1 ⊔ 𝑍2, i2) for some
(i1, 𝑍1, i3) ∈ S1 and (i3, 𝑍2, i2) ∈ S2. If IR

1 ≠ IL
2 , we instead

define S1 ⊙ S2 as a new object 0. We think of 0 as denoting
“syntactical error”. We also define S1 ⊙ 0 = 0 ⊙ S2 = 0. The
following tells that the concatenation operation on bi-ported
set systems is well-defined.

Lemma IV.3. If S1 = (IL
1 , 𝑆1, IR

1 ;S1) and S2 = (IL
2 , 𝑆2, IR

2 ;S2)
are bi-ported set systems with IR

1 = IL
2 , then their concatenation

S = S1 ⊙ S2 is also a bi-ported set system and is unique.

For a positive integer 𝑘 ≥ 2, we let BSS𝑘 be the set of
bi-ported set systems with L = R = [𝑘], and with exactly
one internal element. If S1S2 . . . S𝑝 is a word on the alphabet
BSS𝑘 , its value is the bi-ported set system S1 ⊙ S2 ⊙ · · · ⊙ S𝑝 .

Let S be a bi-ported set system. We say (lL, rL) ∈ IL is
internally realised by 𝑍 ⊆ 𝑆 when rL = 𝜌L (𝑍, r∅). Similarly,
we say (lR, rR) ∈ IR is internally realised by 𝑍 ⊆ 𝑆 when
lR = 𝜌R (l∅ , 𝑍). A subset 𝑋 of 𝑆 is called an internal hyperedge
in S if there are rL ∈ R and lR ∈ L that are both internally
realised by 𝑋 , i.e., if ((l∅ , rL), 𝑋, (lR, r∅)) is in S. By abuse
of language we talk about the decomposition-width of a bi-
ported set system S as the decomposition-width of the set
system with ground set 𝑆 and set of internal hyperedges
of S as set of hyperedges. If a set system S has linear
decomposition-width at most 𝑘 , then it is the value of a word
on the alphabet BSS2𝑘 .

Proposition IV.4. Let S = (𝑆,S) be a set system.

1) If S is the value of a word on the alphabet BSS𝑘 , then
it has linear decomposition-width at most 𝑘 .

2) If S has linear decomposition-width at most 𝑘 , then it is
the value of a word on the alphabet BSS2𝑘 .

While Proposition IV.4 will allow associating with set sys-
tems of linear decomposition-width 𝑘 a semi-group recognising
them (see next Section), we unfortunately need some properties
that allow us to control how internal hyperedges are constructed
during concatenation. These properties are subsumed by the
following equivalence relation, that can be defined on any set
system satisfying the two first axioms of circuit-set axiom of
matroids. We however define it only for matroids avoiding the
definition of circuits for set systems.

For a matroid M and subset 𝑈 of 𝑀, we let ≃𝑈
M be the

binary relation on 2𝑈 × 2𝑈 where, for each two subsets 𝑋 and
𝑌 of 𝑈, 𝑋 ≃𝑈

M 𝑌 if 𝑋 ≡𝑈
M 𝑌 , and for each 𝑍 ⊆ 𝑈,

there exists 𝑌 ′ ⊊ 𝑌 such that 𝑌 ′ ∪ 𝑍 is a circuit if
and only if there exists 𝑋 ′ ⊊ 𝑋 such that 𝑋 ′ ∪ 𝑍 is
a circuit.

It is easily observed that ≃𝑈
M is an equivalence relation. It

is not hard to check also that 𝑋 ≃𝑈
S 𝑌 whenever 𝑋 ≡𝑈

M 𝑌 and
{[𝑋 ′]≡𝑈

M
| 𝑋 ′ ⊊ 𝑋} = {[𝑌 ′]≡𝑈

M
| 𝑌 ′ ⊊ 𝑌 }, i.e., the number



of equivalence classes of ≃𝑈
M is bounded by shadowM (𝑈) ·

2shadowM (𝑈) .

Proposition IV.5. If a matroid M has linear decomposition-
width 𝑘 , then M is the value of a word S1 · · · S𝑚 in BSS2𝑘×22𝑘

such that, for every 1 ≤ 𝑖 ≤ 𝑚 and each interaction i ∈
IR
𝑖
= IL

𝑖+1, all the sets internally realising i in S1 ⊙ · · · ⊙ S𝑖
(resp. S𝑖+1 ⊙ · · · ⊙ S𝑚), are equivalent with respect to ≃𝑆≤𝑖

S
(resp. ≃𝑆>𝑖

S ) where 𝑆≤𝑖 and 𝑆>𝑖 are, respectively, 𝑆1 ∪ · · · ∪ 𝑆𝑖
and 𝑆𝑖+1 ∪ · · · ∪ 𝑆𝑚.

Remark IV.6. This technical proposition is needed when, given
a bi-ported set system S admitting a binary Simon Factorisation
S1S2, we want to compute S1 and S2. This property will allow
to guess representatives and bind deterministically each set
with its unique representative. It will be also crucial when the
Simon factorisation of a bi-ported set system contains trivial
hyperedges. Indeed, if S1 · · · S𝑝 is an unranked Simon factori-
sation of S, then trivial hyperedges prevent from characterising
𝑆 ∩ 𝑆𝑖 , for any 1 ≤ 𝑖 ≤ 𝑝. The fact that interactions have such
a meaning on the circuits of the original matroid will however
allow us to define an operation on bi-ported set systems so
that we can reduce the case with trivial hyperedges to the case
without trivial hyperedges.

B. Abstractions of bi-ported set systems

The construction of the transduction is by induction using
Simon’s Factorisation Forest Theorem, and for that we need
to define a semi-group homomorphism from the set of words
in BSS𝑘 to a finite semi-group. As in [5], [2], the semi-group
will describe some local connectivity allowing to deal with the
unranked factorisation. Indeed, in the unranked factorisation,
we need to colour the elements with a bounded number of
colours and use this colouring to identify which elements of the
domain belong to the same block of the factorisation. However,
this is impossible in general - otherwise we might be able to
MSO-transduce a linear ordering -, so we need to restrict the
colouring to subsets of elements for which we can characterise
when two elements in the domain belong to the same block.
While in the graph case such subsets can be defined using
connected components, there seems to be many obstacles in
doing so for matroids or in general set systems. What we
can first remark is that if S appears as an unranked factor in
Simon’s Factorisation of the word generating a matroid M,
then the set of circuits of M|𝑆 appear as internal hyperedges
in S. It is attempting then to consider connected components
of M|𝑆 as subsets to colour. Unfortunately, even though we
can show that whenever two elements of the same block are
internally connected, then they are internally connected in a
bounded window, we cannot obtain a characterization because
of trivial hyperedges ((lL, rL), ∅, (lR, rR)). In the graph case,
this situation was solved in [2] by removing the vertices in
common in the interactions. In our case, the interactions are not
element matroids, so we need a more elaborate operation. We
will however be able to overcome this difficulty by showing
that we can expand such a bi-ported set system into a matroid
and contract a subset that allows to reduce into the case without

trivial hyperedges. This is done unfortunately at the price of a
bit more complicated abstraction semi-group, and also more
constraints on the bi-ported set system describing the input
matroid, besides the more particular constraint that the input
matroid belongs to a strongly-pigeonhole class. Let us now
introduce some terminologies, before defining abstractions.

Let S = (IL, 𝑆, IR;S) be a bi-ported set system. Say that a
subset 𝑍 of 𝑆 links i1 ∈ IL and i2 ∈ IR when (i1, 𝑍, i2) ∈ S.
When the empty set links some i1 ∈ IL to some i2 ∈ IR we say
that they are trivially linked.

A bi-ported set system S is called a circuit bi-ported set
system if for every i ∈ IL and j ∈ IR, there are no 𝑋 and
𝑋 ′ ⊊ 𝑋 such that both (i, 𝑋, j) and (i, 𝑋 ′, j) are hyperedges. It
is worth mentioning that if S1 and S2 are both circuit bi-ported
set systems, then S1 ⊙ S2 is not necessarily a circuit bi-ported
set system. However, if S1 ⊙ · · · ⊙ S𝑚 is a matroid, then each
factor S𝑖 ⊙ · · · ⊙ S 𝑗 , for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚, is a circuit bi-ported
set system. Let’s now introduce abstractions. The abstraction
of a circuit bi-ported set system S, denoted by [S], is the tuple
(IL, IR; AL; ASL) where

1) AL is the edge-labeled bipartite graph between IL and
IR with two vertices adjacent when there is some subset
𝑍 of 𝑆 that links these label interactions, and the label
of an edge (i, j) is 0 if i and j are trivially linked, and 1
otherwise. We call it the link graph.

2) ASL is the edge-labeled directed graph on vertex-set
IL × IR, and there is an arc ((i1, j1), (i2, j2)) if there are
𝑋 ⊆ 𝑆 and a subset 𝑋 ′ of 𝑋 such that (i1, 𝑋, j1) and
(i2, 𝑋 ′, j2) are both hyperedges in S; each edge is labeled
by 1 (there are 𝑋 and 𝑋 ′ ⊊ 𝑋) or 0 (𝑋 ′ = 𝑋 and no
𝑋 ′ ⊊ 𝑋). We call it the strong link graph.

Notice that i ∈ IL and j ∈ IR cannot be linked at the same
time by both 𝑋 and 𝑋 ′ ⊊ 𝑋 in circuit bi-ported set systems,
which explains why the labelings of AL and of ASL are both
exclusive. Let [0] be a new element, that can be considered as
denoting “syntactical error”. The abstraction of any bi-ported
set system that is not a circuit bi-ported set system is defined as
[0]. Let A𝑘 be the set that contains all the possible abstractions
of circuit bi-ported set systems using labels L = R = [𝑘], as
well as the special abstraction [0]. The following summarises
the properties we are interested on abstractions, in particular it
admits a semi-group structure.

Proposition IV.7. The set A𝑘 has size at most 3𝑘4 (𝑘4+1) . There
is moreover an associative operation [⊙̃] such that [S1 ⊙ S2] =
[S1] [⊙̃] [S2].

C. Proof of definability

We prove here Theorem III.2. For every positive integer
𝑘 , let ≂𝑘 : BSS+

𝑘 → A𝑘 be the function that maps every
word S1S2 · · · S𝑚 into [S1 ⊙ S2 ⊙ · · · ⊙ S𝑚]. We have seen in
Subsection IV-B that ≂𝑘 is a semi-group homomorphism.
The proof will be by induction on the ≂𝑘-rank of words
in BSS+

𝑘 defining matroids and satisfying the conditions of
Proposition IV.5.



Throughout the section, we let 𝑓 be a computable function
and we are assuming that every correct input S to the
transduction satisfies the following: There are bi-ported set
systems A and Z such that A ⊙ S ⊙ Z is a matroid M, and
shadowM (𝑋) ≤ 𝑓 (𝜆M (𝑋)) for every 𝑋 ⊆ 𝑀. We call such
bi-ported set systems matroidal bi-ported set systems, and A
and Z its certificates. We recall that if 𝑤 is a word in BSS𝑘

defining a matroid M with shadowM (𝑋) ≤ 𝑓 (𝜆M (𝑋)), then
any factor of 𝑤 has as value a matroidal bi-ported set system.
We let 𝑔 be the function where 𝑔(1, 𝑡) = 𝑓 (𝑡) for every integer
𝑡 ≥ 0, and 𝑔(ℓ, 𝑡) = 𝑓 (𝑔(ℓ − 1, 𝑡) + 3𝑡) for all integers ℓ ≥ 2
and 𝑡 ≥ 0.

A bi-ported set system is viewed as an extended relational
structure in which the universe consists in the ground set
elements together with the left and right interactions, and there
are two monadic relations Left and Right which correspond,
respectively, to left and right interactions, and two predicates
lhyperedge and rhyperedge which, respectively, select tuples
({lL}, 𝑋, {lR}) and ({rL}, 𝑋, {rR}) such that ((lL, rL), 𝑋, (lR, rR))
is a hyperedge.

Definition IV.8. Let S be a matroidal bi-ported set system
that is the value of a word S1 · · · S𝑚 ∈ BSS+

𝑘 . The definable
decomposition-width of S, denoted by ddw(S), is the minimum
quantifier-height of an MSO-transduction computing a rooted
layout of S of shadowS-width at most 𝑔(ℓ, 𝑘), with ℓ the
≂𝑘-rank of S1 · · · S𝑚.

We are going to prove the following, which combined
with Simon’s Factorisation Theorem and Proposition IV.7
and Theorem III.2.

Proposition IV.9. For every positive integer 𝑘 , there is a
function 𝑓𝑘 such that

ddw(S1 ⊙ · · · ⊙ S𝑚) ≤ 𝑓𝑘 (max{ddw(S𝑖) | 1 ≤ 𝑖 ≤ 𝑚}),

where S1 · · · S𝑚 is an ≂𝑘-factorisation of a matroidal bi-ported
set system S.

We consider two cases in proving Proposition IV.9 : either
the ≂𝑘-factorisation is binary or it is unranked, and in the latter
case we need to consider the cases with and without trivial
hyperedges. In the remaining, let S be a matroidal bi-ported
set system and let also A and Z be certificates of S such that
A ⊙ S ⊙ Z = M.

1) Binary case: Let S1S2 be an ≂𝑘-factorisation of S.
Assume that there are MSO-transductions 𝜏1 and 𝜏2, of
quantifier-heights at most 𝑞, that on inputs, respectively, S1
and S2, output, respectively, a rooted layout of width at most 𝑐.
We recall that if S = S1 ⊙ S2, then IR

1 = IL
2 , IL = IL

1 and IR = IR
2 ,

and also IL, IR, I2
1 ⊆ L × R.

Let’s make some observations before describing the MSO-
transduction. For i ∈ IL and 𝑋1, 𝑋

′
1 ⊆ 𝑆1, we write 𝑋1 ∼L

i 𝑋 ′
1

if, for any j ∈ IR and 𝑋2 ⊆ 𝑆2, we have (i, 𝑋1 ∪ 𝑋2, j) ∈
S if and only if (i, 𝑋 ′

1 ∪ 𝑋2, j) ∈ S. First observe that ∼L
i

is an equivalence relation and has at most |IR
1 | equivalence

classes. Moreover, if A ⊙ S ⊙ Z is a matroid M, then for any

𝑈 ⊆ 𝐴 and 𝑋1, 𝑋
′
1 ⊆ 𝑆1, we have that 𝑈 ∪ 𝑋1 ≃𝐴∪𝑆1

M 𝑈 ∪ 𝑋 ′
1

whenever ((l∅ , ·),𝑈, i) ∈ A, and {[𝑌 ]∼L
i′
| i′ ∈ IL, 𝑌 ⊆ 𝑋1} =

{[𝑌 ]∼L
i′
| i′ ∈ IL, 𝑌 ⊆ 𝑋 ′

1}. Therefore, let’s write 𝑋1 ≃L
i 𝑋 ′

1, for
𝑋1, 𝑋

′
1 ⊆ 𝑆1, whenever 𝑋1 ∼L

i 𝑋 ′
1 and {[𝑌 ]∼L

i′
| i′ ∈ IL, 𝑌 ⊆

𝑋1} = {[𝑌 ]∼L
i′
| i′ ∈ IL, 𝑌 ⊆ 𝑋 ′

1}, which is an equivalence

relation. Therefore, ≃L
i is a refinement of both ≃𝐴∪𝑆1

M and of
≡𝐴∪𝑆1

M , and has at most |IR
1 | · 2 |IL | · |IR

1 | equivalence classes, that
we denote by 𝑘L

𝑖
. We define similarly, equivalence relations

∼R
j and ≃R

j , for j ∈ IR, on subsets of 𝑆2 and denote the number
of equivalence classes of ∼R

j by 𝑘R
j .

Let’s describe the transductions, whose composition, com-
putes a rooted layout of shadowS-width at most 𝑓 (𝑐+2𝑘) of S.
We omit details of the transductions for page constraints. While
we need to be careful, there are no difficulties in producing
them from the description given below.

1) The first one colors two subsets 𝑆1 and 𝑆2 forming a
partition of 𝑆.

2) The second is the composition of the following, con-
structed for each i ∈ IL. For each i ∈ IL, we have
an MSO-transduction that colors 𝑘L

i subsets of 𝑆1 and
checks that they are representatives of the equivalence
classes of ≃L

i . It also creates an extended relation rep1
where rep1 (i, 𝑋, 𝑋𝑡 ) holds if and only if 𝑋 ≃L

i 𝑋𝑡 and
𝑋𝑡 is among the colored set. Notice that because ≃L

i is
an equivalence relation, for each 𝑋 ⊆ 𝑆1, there is exactly
one 𝑋𝑡 such that 𝑋 ≃L

i 𝑋𝑡 .
3) The third is exactly the same as the second transduction,

except it computes rep2 (j, 𝑌 ,𝑌𝑡 ) for j ∈ IR and 𝑌 ⊆ 𝑆2
and colors 𝑘R

j subsets of 𝑆2, which are intended to be
representatives of the equivalence classes of ≃R

j .
4) The fourth transduction will compute bi-ported set

systems S1 and S2, on ground sets, respectively, 𝑆1 and
𝑆2 and such that S = S1 ⊙ S2. This step can be done by
a sequence of MSO-transductions using relations rep1
and rep2.
We have thus proved that if S = S1 ⊙ S2, then there
is an MSO-transduction that guesses S1 and S2. Let’s
now combine this MSO-transduction with 𝜏1 and 𝜏2 to
compute a rooted layout of S.

5) The last MSO-transduction consists in first running 𝜏1
on S1 and then 𝜏2 on S2 and keeps only S, the rooted
layouts (T1, 𝛿1) of 𝑆1 and (T2, 𝛿2) of 𝑆2 and a bijective
mapping between 𝑆 and the leaves of T1 ∪T2, which can
be constructed from (T1, 𝛿1) and (T2, 𝛿2). Then, it colors
one element of 𝑆 and creates a rooted layout rooted at a
copy of the colored element and whose children are the
roots of T1 and T2. It finally cleans everything, except
S and the rooted layout of S.

It is routine now to check that each step is an MSO-
transduction of quantifier-height depending only on |IL |, |IR |
and |IR

1 | = |IL
2 |. Since, we combine a constant number of

MSO-transductions, each of quantifier-height depending only
on |IL |, |IR |, |IR

1 | = |IL
2 |, and 𝑞, the computed MSO-transduction

has quantifier-height at most 𝑓𝑘 (𝑞) for some function 𝑓𝑘 ,



by [10, Theorems 7.10 and 7.14]. The fact that the computed
rooted layout can be assumed to have shadowS-width at most
𝑓 (𝑐+2𝑘) follows from Lemma II.3 combined with the fact that
𝜏1 (resp. 𝜏2) compute rooted layouts of shadowS1 -width (resp.
shadowS1 -width) bounded by 𝑐, and the fact that 𝜆M (𝑆1) and
𝜆M (𝑆2) are both bounded by 2𝑘 .

2) Unranked case: Let 0 ≠ S = S1 ⊙ · · · ⊙ S𝑝 with [S1] =
· · · = [S𝑝] = (IL, IR; AL; ASL). Because [S1] [⊙̃] [S2] =

[S1 ⊙ S2] and [S1] = · · · = [S𝑝], we can conclude that
IL = IR = I, i.e., S𝑛 = (I, 𝑆𝑛, I;S𝑛), for all 1 ≤ 𝑛 ≤ 𝑝.
Recall that l∅ and r∅ are reserved for the equivalence class of
the subset ∅ as we are dealing with matroids. Since moreover,
the bi-ported set system we are manipulating will produce a
matroid, the ∅ cannot be a resultant set.

Unranked case without trivial hyperedges. We are not going
to use the idempotency neither the strong link graph here,
but we will do in the case where trivial hyperedges exist. We
will show that whenever we restrict ourselves to an internal
connected component 𝐶, then we are able to guess 𝐶 ∩ 𝑆𝑛, for
each 1 ≤ 𝑛 ≤ 𝑝, and the linear ordering of the 𝑆𝑖’s intersecting
𝐶. In a second step, we prove that one can combine the rooted
layouts of small width of the internal connected components
into one of small width of 𝑆. Say that 𝑥 and 𝑦 in 𝑆 are
internally connected if there is an internal hyperedge 𝑋 of
S such that 𝑥, 𝑦 ∈ 𝑋 . An internal connected component of
S, is a maximal subset 𝐶 of 𝑆 such that any pair 𝑥, 𝑦 of 𝐶

are internally connected. The following characterises internal
connected components of matroidal bi-ported set systems.

Lemma IV.10. Let S be a matroidal bi-ported system. Then
“being internally connected” is an equivalence relation and each
internal connected component corresponds to an equivalence
class of it.

The following says that a matroidal bi-ported set system
always has a rooted layout of small shadowS-width displaying
internal connected components.

Lemma IV.11. Let S be a matroidal bi-ported set system. If
the decomposition-width of S is 𝑘 , then S has a rooted-layout
(T, 𝛿) of shadowS-width 𝑘 such that each subtree rooted at a
child of the root corresponds to a rooted layout of one internal
connected component of S.

The goal now is to prove that we can color the elements of 𝑆
with a bounded number of colours and using this colouring we
can identify 𝐶∩𝑆𝑛 for each internal connected component. Let
bc : J1, 𝑝K → J0, 2|I| + 5K be the mapping where bc(1) = 0
and, for each 2 ≤ 𝑛 ≤ 𝑝,

bc(𝑛) = (bc(𝑛 − 1) + 1) mod (2|I| + 6).

Notice that, for every 𝑛 ≥ |I| + 3, there is a unique
𝑟 ∈ J0, 2|I| + 5K such that 𝑟 ∉ {bc(𝑚) | 𝑚 ∈
J𝑛 − (|I| + 2), 𝑛 + (|I| + 2)K}, and let’s denote this unique inte-
ger 𝑟 by −bc(𝑛).

Let’s now define the mapping c : 𝑆 → J0, 2|I| + 5K where,
for each 1 ≤ 𝑛 ≤ 𝑝 and each 𝑥 ∈ 𝑆𝑛, we have c(𝑥) = bc(𝑛).

It is worth mentionning that c induces a partition of 𝑆 into
2|I| + 6 parts, by colouring the sequence 𝑆1, 𝑆2, . . . , 𝑆𝑝 in a
cyclic ordering 0, 1, 2, . . . , 2|I| + 5, 0, 1, 2, . . . , 2|I| + 5, . . ..

Lemma IV.12. Let 𝑥 and 𝑦 be two elements in the same
internal connected component of S. Then, there is 1 ≤ 𝑛 ≤ 𝑝

such that 𝑥 and 𝑦 belong to 𝑆𝑛 if and only if c(𝑥) = c(𝑦) and
𝑥 and 𝑦 are in an internal hyperedge 𝑋 not intersecting 𝑆𝑚,
for any 1 ≤ 𝑚 ≤ 𝑝 with bc(𝑚) = −bc(𝑛).

In the same way, we can prove the following.

Lemma IV.13. Let 𝑥 and 𝑦 be two elements in the same
internal connected component of S. Then, there is 1 ≤ 𝑛 ≤ 𝑝

such that 𝑥 ∈ 𝑆𝑛 and 𝑦 ∈ 𝑆𝑛+1 if and only if c(𝑦) = (c(𝑥) + 1)
mod (2|I| +6), and 𝑥 and 𝑦 are in an internal hyperedge 𝑋 not
intersecting 𝑆𝑚, for any 1 ≤ 𝑚 ≤ 𝑝 with bc(𝑚) = −bc(𝑛 + 1).

We are now ready to give the MSO-transduction that
computes a rooted layout of S from the MSO-transduction 𝜏

that takes as input a bi-ported set system S𝑛, for 1 ≤ 𝑛 ≤ 𝑝,
and outputs a rooted layout of S𝑛. But, before we need a last
technical lemma. Indeed, what we are able to characterise is
𝐶 ∩ 𝑆𝑛, for each internal connected component 𝐶 of S, while
the transduction 𝜏 is taken as input S𝑛. We prove in the next
lemma that there exists an MSO-transduction 𝜏′ that, given
the internal hyperedges of S included in 𝐶 ∩ 𝑆𝑛, extend it into
a bi-ported set system S′𝑛 such that 𝜏(S𝑛) produces an output
if and only if 𝜏′ (S′𝑛) does.

Lemma IV.14. Let 𝜏 be an effectively given MSO-transduction
that takes as input matroidal bi-ported set systems S having
interactions in I and certificates A and Z such that A ⊙ S ⊙ Z
has decomposition-width 𝑞. For every positive integer 𝑘 , there
exists an effectively given MSO-transduction 𝜏𝑘 , taking as
inputs 𝑘-ported set systems and such that, for every matroidal
bi-ported set system S and 𝑘-ported set system (N, 𝜌) with
non-emptyset 𝑁 ⊆ 𝑆 and shadowS (𝑁) = 𝑘 ,

𝜏(S) has an output if and only if 𝜏𝑘 (N, 𝜌) has an output.

The MSO-transduction for an internal connected component
𝐶 consists then in guessing the colouring described above and
define the equivalence relation same−bag stating that two
elements in the internal connected component belong to the
same S𝑖 (this is possible thanks to Lemma IV.12). Then, it
calls in parallel the transduction from Lemma IV.14 in all
the equivalence classes of same−bag, which is possible by
Lemma II.5 and the fact that Lemma IV.12 gives an equivalence
relation. Using finally the characterisation from Lemma IV.13
one can construct an MSO-transduction that takes as input all
the rooted layouts of equivalence classes of same−bag and
compute a rooted layout of 𝐶 of desired shadowS-width.

The MSO-transduction for S consists then in calling first,
in parallel, the transduction for connected components, in all
internal connected components (recall it is possible thanks to
Lemma II.5 and “being internally connected” is an equivalence
relation). Then it constructs a rooted layout where each child
of the root is the root of a rooted layout of some internal



connected component. Again we omit the technical details that
can be found in the appendix due to page constraints.

Unranked case with trivial hyperedges. Contrary to the
previous case where neither the idempotency nor the strong
link graph are needed, both are needed here to prove that
we can reduce to the case without trivial hyperedges. The
transduction will be the composition of two: one that extends
S into a matroid, and one that uses this last matroid to compute
a bi-ported set system admitting an ≂𝑘-factorisation without
trivial hyperedges, so that we can call the previous MSO-
transduction.

Suppose that 0 ≠ S = S1 ⊙ · · · ⊙ S𝑝 with [S] = [S1] =

· · · = [S𝑝] = (IL, IR; AL; ASL) is idempotent. We remind
that S is matroidal and let A and Z be certificates such that
A ⊙ S ⊙ Z = M. By the assumption also on the word defining
M (see the equivalence relation ≃𝑈

M for each subset 𝑈 of 𝑀

and the definition of bi-ported set systems), we know that
only the ∅ is equivalent to l∅ and r∅ . In particular, whenever
(l∅ ≠ lL, ·) (resp. (·, rR ≠ r∅)) belongs to IL, then there is a
non-empty 𝑋 ⊆ 𝐴 such that [𝑋]≃𝐴

M
is lL (resp. non-empty

𝑋 ⊆ 𝐵 such that [𝑋]≃𝐵
M

is rR). By using this, we first prove
that after contracting 𝐵, there are no more trivial hyperedges,
when we restrict to 𝑆. Then, we show that, the bi-ported set
system reduced to 𝑆 \ (𝑆1∪𝑆𝑝), after contracting 𝐵, has an ≂𝑘-
factorisation allowing to use the previous MSO-transduction.
From now on, let N be the matroid (M/𝐵) |𝑆 .

Lemma IV.15. Let 1 ≤ 𝑛 < 𝑚 ≤ 𝑝. Let 𝑥 ∈ 𝑆𝑛 and 𝑦 ∈ 𝑆𝑚.
There is no circuit 𝐶 ⊆ 𝑆𝑛 ∪ · · · ∪ 𝑆𝑚 of N containing both 𝑥

and 𝑦 such that 𝐶 ∩ 𝑆𝑎 = ∅ for some 𝑛 + 1 ≤ 𝑎 ≤ 𝑚 − 1.

By Lemma IV.15, for each circuit 𝐶 of 𝑁 , there is an interval
J𝑛, 𝑚K ⊆ [𝑝] such that 𝐶 ⊆ 𝑆𝑛∪· · ·∪𝑆𝑚 and 𝐶∩𝑆𝑎 ≠ ∅ for all
𝑎 ∈ J𝑛, 𝑚K. Again, there are bi-ported set systems N1, . . . ,N𝑝

on, respectively, 𝑆1, . . . , 𝑆𝑝 , such that the set of circuits of 𝑁 is
exactly the set system described by N = N1 ⊙ · · · ⊙N𝑝 , and no
internal hyperedge in N𝑛 ⊙ · · · ⊙N𝑚, for 1 ≤ 𝑛 ≤ 𝑚 ≤ 𝑝, uses
trivial hyperedges (by Lemma IV.15). We are going to prove
that the link graph in [N𝑎] is the same as the link graph in
[N2], for all 3 ≤ 𝑎 ≤ 𝑝 − 1, which will be sufficient to reduce
to the case where no internal hyperedge goes through trivial
hyperedges. Our main obstacle is the description of interactions
in N, and we will overcome this difficulty by showing that
we can in fact keep the same as in S. We will do it in two
steps. First, we prove that if 𝑋 and 𝑌 , subsets of 𝑁𝑎 = 𝑆𝑎, are
≃𝑆≤𝑎

M -equivalent, then they remain ≃𝑆≤𝑎
N -equivalent.

Lemma IV.16. Let 1 ≤ 𝑛 ≤ 𝑝 and let i ∈ IR be internally
realised in A ⊙ S1 ⊙ · · · ⊙ S𝑛 by 𝑋 and 𝑌 , both subsets of 𝑆≤𝑖 .
Then, 𝑋 ≃𝑆≤𝑛

N 𝑌 .

In a second step, we show that {i1, i2} exists in the link
graph of [N𝑎], for 2 ≤ 𝑎 ≤ 𝑝 − 1, if and only if it exists
in the link graph of [N2]. As a consequence, in order to
describe [N𝑎], we can use the same interactions as in S𝑎.
Also, we are only interested in internally realised interactions
and we can consider only them when computing N. Because

[S] = [S1] = · · · = [S𝑝] is idempotent, we know that i is
internally realised in S if and only if it is internally realised in
each S𝑖 , and because IL = IR, we do not lose any generality by
restricting the interactions of each N𝑎 to the internally realised
ones. The following is then a corollary of Lemma IV.16.

Lemma IV.17. Let 2 ≤ 𝑎 ≤ 𝑝 and let i and j be two internally
realised interactions in S. For every two subsets 𝑋 and 𝑌 of
𝑆𝑎 such that (i, 𝑋, j) and (i, 𝑌 , j) are hyperedges in S𝑎, the
following are equivalent:

1) (i, 𝑋, j) is a hyperedge in N𝑎.
2) (i, 𝑌 , j) is a hyperedge in N𝑎.

Therefore, for any two internally realised interactions i and j,
the question whether there is 𝑋 such that (i, 𝑋, j) is a hyperedge
in N𝑎 can be answered using the abstraction of S. Notice that
the link graph in [N𝑝] may be distinct from the link graph in
[N2] because N𝑝 has no right interaction (except the trivial
ones (·, r∅)); and similarly N1 has no left interaction (except
the trivial ones (l∅ , ·)) and then the link graph in [N1] may be
distinct from the link graph in [N2]. The following summarises
the properties.

Proposition IV.18. For every 2 ≤ 𝑎 ≤ 𝑝−1, there is no trivial
hyperedge in N𝑎 and moreover, ALN𝑎

= ALN2 .

We are now ready to describe the MSO-transduction, as
before we give the main steps, each being clearly a transduc-
tion which quantifier-height depends only on the number of
interactions and the quantifier-height of the MSO-transduction
described when there are no trivial hyperedges. First, recall
there is an MSO-transduction 𝜒 of constant quantifier-height,
which given a matroid 𝑀 and a tri-partition (𝐴, 𝑆, 𝐵) of its
ground set, computes the matroid M/𝐵 |𝑆 . One can use then
pumping arguments and the strongly pigeonhole property to
prove that there is an MSO-transduction 𝜒′ of quantifier-height
𝑓 ( |I|), for some computable function 𝑓 depending on 𝜒, which
takes as input a bi-ported set system S over interactions I
for which there are A and B with A ⊙ S ⊙B a matroid 𝑀

of decomposition-width 𝑘 and computes (M/𝐵) |𝑆 . Since the
MSO-transduction 𝜒′ can first guess representatives of A and
Z, we can also use 𝜒′ to guess 𝑆1, 𝑆𝑝 and compute at the
same time (by making some copies first if necessary) the bi-
ported set systems S1, S𝑝 ,N1,N𝑝 and N2 ⊙ · · · ⊙N𝑝−1 such
that N is N1 ⊙N2 ⊙ · · · ⊙N𝑝−1 ⊙N𝑝 . This MSO-transduction
can be computed in the same way as it was done in the binary
case, and has quantifier-height depending only on 𝑘 and the
quantifier-height of 𝜒. Here are now the different steps of the
desired MSO-transduction:

1) The first step consists in running 𝜒′ on S to obtain the
desired bi-ported set systems, and clear it by removing
N1 and N𝑝 .

2) Because N2 ⊙ · · · ⊙N𝑝−1 does not have trivial hyper-
edges and is an idempotent factorisation, we can run in
a third step the MSO-transduction in the case without
trivial hyperedges on N2 ⊙ · · · ⊙N𝑝−1 and obtain a rooted
layout of N2 ⊙ · · · ⊙N𝑝−1.



3) Let 𝜏 be the MSO-transduction which takes as input
some S𝑎, for 1 ≤ 𝑎 ≤ 𝑝, and computes a rooted layout
of 𝑆𝑎 of shadowS𝑎 -width at most 𝑔(ℓ−1, 𝑘). The fourth
step consists in calling 𝜏, on S1 and then on S𝑝 .

4) The fifth step consists then in creating a rooted layout
with root root whose first child is the root of the rooted
layout of S1, its second child is root1 and this latter has as
first child the root of the rooted layout of N2 ⊙ · · · ⊙N𝑝−1
and its second child is the root of the rooted layout of
S𝑝 .

5) The last step consists in cleaning everything, except
keeping the rooted layout of S (with S itself).

Let us now analyse the 𝜆M |𝑆 -width of the computed rooted
layout. Let (T1, 𝛿1), (T2, 𝛿2) and (T3, 𝛿3) be the rooted layouts
of, respectively, S1, N2 ⊙ · · · ⊙N𝑝−1 and of S𝑝. It is easy
to check that we need only to look at cuts in T1,T2 and
T3 in order to upper-bound the 𝜆M |𝑆 -width of the computed
rooted layout. By inductive hypothesis and Proposition II.2,
each cut in T1 (resp. in T2 and T3) has 𝜆N |𝑆1

-width (resp.
𝜆N |𝑆𝑝

-width and 𝜆N |𝑁\(𝑆1∪𝑆𝑝 ) -width) at most 𝑔(ℓ − 1, 𝑘) and
by Lemma II.3 has 𝜆N |𝑆 -width at most 𝑔(ℓ − 1, 𝑘) + 2𝑘 . By
Lemma II.4 and the fact that N is obtained by contracting
𝐵 and 𝜆M (𝐵) ≤ 𝑘 , we can conclude that each cut in T has
𝜆M |𝑆 -width at most 𝑔(ℓ − 1, 𝑘) + 3𝑘 , i.e., has shadowS-width
at most 𝑓 (𝑔(ℓ − 1, 𝑘) + 3𝑘) = 𝑔(ℓ, 𝑘).

Let’s conclude with the quantifier-height of the MSO-
transduction described above. Since each step uses an MSO-
transduction whose quantifier-height and number of variables
depend only on 𝑘 and of the quantifier-height and number of
variables of the MSO-transduction 𝜏, we can conclude that the
quantifier-height of the given MSO-transduction depend only
on 𝑘 and the definable decomposition-width of each S𝑎, for
1 ≤ 𝑎 ≤ 𝑝, by [10, Theorems 7.10 and 7.14].
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[15] M. M. Kanté, “Well-quasi-ordering of matrices under schur complement
and applications to directed graphs,” Eur. J. Comb., vol. 33, no. 8, pp.
1820–1841, 2012. [Online]. Available: https://doi.org/10.1016/j.ejc.2012.
03.034

[16] S. Oum, “Rank-width and well-quasi-ordering of skew-symmetric or
symmetric matrices,” Linear Algebra Appl., vol. 436, pp. 2008–2036,
2012. [Online]. Available: https://doi.org/10.1016/j.laa.2011.09.027

[17] R. Diestel, Graph theory, 3rd ed., ser. Graduate Texts in Mathematics.
Springer-Verlag, Berlin, 2005, vol. 173.

[18] J. Oxley, Matroid theory, 2nd ed., ser. Oxford Graduate Texts in
Mathematics. Oxford University Press, Oxford, 2011, vol. 21. [Online].
Available: https://doi.org/10.1093/acprof:oso/9780198566946.001.0001

[19] D. Funk, D. Mayhew, and M. Newman, “Tree automata and pigeonhole
classes of matroids: I,” Algorithmica, vol. 84, no. 7, pp. 1795–1834,
2022. [Online]. Available: https://doi.org/10.1007/s00453-022-00939-7

[20] B. Courcelle, “The monadic second-order logic of graphs V: on
closing the gap between definability and recognizability,” Theor.
Comput. Sci., vol. 80, no. 2, pp. 153–202, 1991. [Online]. Available:
https://doi.org/10.1016/0304-3975(91)90387-H

[21] ——, “The monadic second-order logic of graphs. X. Linear orderings,”
Theoret. Comput. Sci., vol. 160, no. 1-2, pp. 87–143, 1996. [Online].
Available: https://doi.org/10.1016/0304-3975(95)00083-6

[22] I. Simon, “Factorization forests of finite height,” Theoret. Comput.
Sci., vol. 72, no. 1, pp. 65–94, 1990. [Online]. Available:
https://doi.org/10.1016/0304-3975(90)90047-L

[23] M. Kufleitner, “The height of factorization forests,” in Mathematical
foundations of computer science 2008, ser. Lecture Notes in Comput.
Sci. Springer, Berlin, 2008, vol. 5162, pp. 443–454. [Online]. Available:
https://doi.org/10.1007/978-3-540-85238-4 36

https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1145/2933575.2934508
https://doi.org/10.1007/s002249910009
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.1109/TIT.2017.2740283
https://doi.org/10.1109/TIT.2017.2740283
https://doi.org/10.1016/j.jctb.2005.08.005
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1016/j.dam.2011.02.005
http://arxiv.org/abs/2305.18039v1
https://doi.org/10.1016/j.ejc.2012.03.034
https://doi.org/10.1016/j.ejc.2012.03.034
https://doi.org/10.1016/j.laa.2011.09.027
https://doi.org/10.1093/acprof:oso/9780198566946.001.0001
https://doi.org/10.1007/s00453-022-00939-7
https://doi.org/10.1016/0304-3975(91)90387-H
https://doi.org/10.1016/0304-3975(95)00083-6
https://doi.org/10.1016/0304-3975(90)90047-L
https://doi.org/10.1007/978-3-540-85238-4_36

	Introduction
	Preliminaries
	Decomposition width
	Matroids
	Monadic second-order logic
	Monadic second-order transductions
	Recognisability

	Main result
	Proof of thm:mso-transduction : Definability for bounded path-width
	Bi-ported set systems
	Abstractions of bi-ported set systems
	Proof of definability
	Binary case
	Unranked case


	References

